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Effect of frequency detunings and finite relaxation rates on laser localized structures
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We study, analytically and numerically, the effect of frequency detunings and relaxation processes in laser
media on stability and bifurcations of dissipative optical localized struct(iP€3LS’s) in a transversely
one-dimensional laser with a saturable absorber. The approximate envelope equation, with an intensity depen-
dent effective coefficient of the diffusion, is derived. Andronov-Hopf bifurcations resulting from frequency
detuning and leading to oscillatory DOLS'’s are analyzed numerically. A numerical and analytical study of
bifurcations of transversely motionless DOLS’s in a laser with finite relaxation rates of amplifying and ab-
sorbing media is performed. New types of DOLS’s are found, including those moving with a large transverse
velocity and those moving with a periodically oscillating transverse velocity. Hysteresis between different
types of DOLS's is demonstrated.

PACS numbgs): 42.65.Tg, 42.65.Sf, 42.65.Pc, 42.55.Ah

I. INTRODUCTION ered in Ref.[14]. Different applications of the DOLS's to
information processing were proposed, including a shift reg-
Dissipative localizedsolitonlike) structures of laser ra- ister and full addefsee Refs[9] and[15]. In experiment, a
diation are of particular interest because they represent selscheme of multichannel optical memory was demonstrated in
organization in dissipative nonlinear systems with energy exRefs.[7,8].
change[1,2], and are promising for applications in optical ~ Similar types of DOLS's—the so-called “laser
data processing3]. The term “dissipative,” in contrast to autosolitons”—were first predicted in RdfL6]. In this pa-
“conservative,” underlines a key part of the energy flows in per localized structures of laser radiation were theoretically
systems with radiation sink§osse$ and sourcegexternal  found in a model of a wide-aperture laser with a saturable
radiation injection or pumping While conservative solitons absorber under bistability conditions. Recently such struc-
in transparent nonlinear medje.g., solitons of the nonlinear tures, with a hard type of excitation, were observed experi-
Schralinger equation[4]) have a continuous spectrum of mentally in a cavity with photorefractive crystals that served
their parameters, including the peak intensity, a spectrum ais gain and loss element$7,18, and in a dye laser with
the main characteristics of the dissipative optical localizedbacteriorhodopsin as a saturable absofbg}. In subsequent
structureg DOLS’s or “autosolitons’) is discrete, since the studies different types of laser DOLS’s were found and in-
condition of balance between losses and pumping is fulfilledsestigated: geometrically one-dimensioraD), (2D), and
only for some definite values of the radiation intensity.(3D), stationary and pulsating, motionless and moving, radi-
Therefore, the physics of the DOLS’s differs essentially fromally symmetric and rotating, with high-order topological in-
that of the conservative solitons. As for applications, the efdices, and solitary and coupl¢#0,21,9,3,22
fect of noise and the drift of parameters are significantly In the case of fast nonlinearity the governing equations
reduced for the DOLS’s, resulting in their robustness andor cavity systems with diffraction and for continuous media
extreme stability. with frequency dispersion are equivalent. Therefore, tempo-
In optics, stationary and pulsating dissipative localizedral DOLS's in a single-mode nonlinear fiber with saturable
structures were first predicted theoreticdl8;6] and found gain and losses are mathematically equivalent to 1D spatial
experimentally{7,8] for passive nonlinear systems, such ascavity DOLS's in a laser with a saturable absortere Ref.
wide-aperture nonlinear interferometers driven by external9] and Ref.[3], and references therginn Ref.[23] a spe-
radiation (see also Ref[9] and Ref.[3], and references cific case of a fiber with large frequency detunings, dominat-
therein. Due to the important role of diffraction in their ing a dispersive type of inertionless optical nonlinearity, was
formation, these structures were called “diffractive autosoli-considered. For practical purposes, detunings between the
tons.” Diffusive autosolitons were investigated earlier in radiation carrier frequency and the frequencies of amplifica-
various physical, chemical, and biological systefh8,11.  tion and absorption spectral line centers cannot be too large.
Mathematical aspects of theory of similar structures weredtherwise the radiation amplification would not be efficient.
also studied without any reference to optical problesee An essential limitation of the existing theory of laser
Refs.[12,13, and references therginSpecific features of DOLS'’s is the lack of a systematic study of the effect of
DOLS’s in conditions of “nascent” bistability were consid- frequency detunings and relaxation times of the active and
passive media on the DOLS properties. Most previous stud-
ies were performed under the assumption that relaxation pro-

*Electronic address: sfedorov@sf3997.spb.edu cesses in the laser media can be neglected. However, our
"Electronic address: andrei@sp1254.spb.edu recent numerical study24] showed that even the very small
*Electronic address: rosanov@ilph.spb.su relaxation times of the media drastically change the proper-
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ties of the DOLS'’s, including their symmetry features, sta-are proportional to small signal coefficients of gain and ab-
bility, spectrum of characteristics, etc. In experimeit8—  sorption, respectively. The tintds normalized by the cavity
19], a saturable absorber is characterized by very largeelaxation time, and is the dimensionless transverse coor-
relaxation timegin the range of seconfismuch greater than dinate normalized by the width of the effective Fresnel zone
the cavity relaxation time. In Ref25] a different type of
DOLS's corresponding to an opposite case of a very long L.
relaxation time of an active medium, was studied in a laser Xg= 2kg(1-R)’

. 0
without a saturable absorber. However, these structures are

unstable because of the growth of initially small perturba- . . . .
tions at the structure periphefg]. wherelL. is the cavity lengthkg is the light wave number,

The goal of this paper is to study the stability and bifur- andR is the product of the cavity mirror coefficients of re-

; ; _ 2 2 )
cations of localized structurdélaser DOLS's”) in a wide-  1€Ction. The ratio parametdy=7,7, a5/ (747, g11g) Mea

aperture laser with a saturable absorber, taking into accourit'' > the relative saturabll}ty of active and passive media.
ere uq o are the atomic dipole momenta, amdy | ,7g.a

the effect of frequency detunings and population relaxatio e . O
processesa class B lasér We consider the simplest case of are the relaxation times for atomic polarizations and popula-
dion differences divided by the cavity relaxation tinfe, ,

1D DOLS'’s corresponding to a single mode regime for on h | : ; \arizati -
of the two transverse coordinates. The bifurcation approac® the envelopes of atomic polarizations, alig=(wg

used here is similar to that developed earlier for class A @c)7ig @nd Aa=(wa—w() 7., are dimensionless detun-
lasers in Ref[26]. ings between the gaifabsorption _spectral line centewg 5
Starting with Maxwell-Bloch equations and assuming@nd the frequency of empty cavity mode,. Model (2.1)
small relaxation times, in Sec. Il we derive approximate enCOIT€Sponds to the case of homogeneous spectral broadening;
velope equations for a wide-aperture laser with a saturablBarticle diffusion is neglected here. We consider a wide-
absorber. The simplegplane-wave monochromajicsolu- aperture laser with a planar cavity width much greater than
tions of these equations are analyzed in Sec. Ill. In Sec. IVKE - ) ) )
we consider laser DOLS's for the case of media inertionless L€t us consider a class B laser for which the media polar-
nonlinearity; the effect of frequency detunings on the DOLS/Zation relaxation times are much smaller than the cavity
bifurcations is investigated. Section V is devoted to the eff€laxation time, while the pppulanon relaxation timeg,
fect of population relaxation rates on the DOLS stability ang@re in general large enough; g, ;<1. Using the approach
bifurcations. The stability domains of different types of developed in Ref[28], we take into account the effects of
DOLS's are given, and various hysteretic phenomena resulRolarization relaxation in the first-order approximation in
ing from overlapping of these domains are described. ConT1g,1a ONly. In zeroth order, polarization is determined by

clusions are given in Sec. VI. equating the left hand side of EQR.1d to zero: Pg0)=(1
+iAg)‘1g E. Up to the first-order terms im, 4, from Eq.
Il. LASER MODEL (2.10 we obtain

We consider a wide-aperture laser with an intracavitary ap(o))
(2.2

saturable absorber. In the mean-field approximafiai] PH=P{+ Hg(1+iAg)l( &tg
valid for the case of small changes of the radiation field per

foonrtrangawty roundtrip, the Maxwell-Bloch equations have theSimilar relations are valid for a passive medium. Substituting

Eqg. (2.2 into Eq.(2.13, we keep only the first-order terms

2 in 7, 4,4 before the second derivative on Moreover, we
JE  J°E 9 : ) X
—  j—=P.—P.—E 2.1 neglect the imaginary parts of these terms acting as small
| 2 g a 1 ( a . . . ..
ot IX perturbations to the diffraction coefficient. These assump-
tions are justified, because it is precisely the real part of these
ag . terms that gives an effective coefficient of diffusion, which
9ot 90— 9~ ReEEPy), (2.1 has a critical effect on the stability of spatially homogeneous
regimes[28]. Finally we obtain the following system of
Ja equations governing the evolution of the transverse field dis-
TaE=aO—a—b ReEP}), (2.10 tribution in a class B laser with a saturable absorber:
_ =
oP E E = ==
Tiga_tg:gE_(lJ,_iAg)Pg, (2.19 E—U+d)y=[—1+(1—|Ag)g—(1—|Aa)a]E,
(2.3a
P, _
qa7=aE—(1+|Aa)Pa. (2.1 (95 o -
g =00~ (1+1)g, (2.3b)

HereE is the dimensionless complex electric field envelope;

g (a) is the population difference in an actiyeassive me- _

dium; andg, anda, are stationary values of the population 3_5‘:— _ TNT

differences in the absence of the laser fielti=0), which a5t 3~ (1+bl)a, (.39
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d=2[7, a0, /(1+A2) — 7, 4904 /(1+A2)], (2.4

wherelz@2 is the laser field intensity for a normalized
amplitude E=E/\1+AZ; and g=g/(1+A?%) anda=a/(1
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X—X+h, (2.10b
X— —X, (2.1009

with arbitrary » andh.

+A2) are the saturate.d gain and absorption coefficients at Moreover, Eq.(2.9) describing a laser with inertionless
the cavity frequency. Since one has to use saturated values pfedia exhibits additional symmetry with respect to “Gal-

populations in Eq(2.4), the diffusion coefficiend=d(l) in

ilean transformation” to a reference frame moving in the

Eqg. (2.33 is intensity dependent. The normalized linear gaintransverse direction with velocity:

and absorption coefficients, anda,, and the ratio of the

saturation intensitieb at the cavity frequency are defined by

90=00/(1+A2), ag=a,/(1+A2),

_ (2.5
b=b(1+A2)/(1+A%).

In the limit of inertionless mediar ,—0) we find, from
Egs.(2.3b and(2.30),

g(l)=go/(1+1), a(l)=ap/(1+bl).

Then Eqgs.(2.39 and(2.4) are reduced to a single equation
for the electric field envelope:

(2.6

B EE
E—[IJF (| |)]?— (IE[*)E, 2.7
where
L (1-iAggy  (1-idgag
f)=—1+—77; o (2.89
_ TLgAgE) 7, 280
d(l)=— . - .
(1+A2)(1+1)  (1+A2)(1+Dl)
(2.8b)

Note that unlike the amplitude equations of Ginzburg-

Landau type, wherd(l) andd(l) are expanded in power
series, Eq(2.7) is valid not only in a small vicinity of the
bistability threshold. Therefore, E§2.7) describes a wider

E(x,1)—E(x—vt,t)elvx/2-ivt4 (2.11
This means that any motionless solution of E29) gener-
ates a family of uniformly moving field distributions, each
characterized by some value of the veloaitya continuous
spectrum ofv). For nonzero values of the relaxation times
Tg.a» Symmetry(2.11) is broken and, hence, DOLS’s cannot
travel with an arbitrary constant velocity. In this case uni-
formly moving DOLS'’s are expected to have zero velocity or
some fixed nonzero velocity.

Ill. MONOCHROMATIC PLANE-WAVE SOLUTIONS

Stationary spatially homogeneous solutions of H8sl)
are obtained by equating their right hand sides to zero. After
the substitutions

E(x,H)—e T,

Py, —e M\TgT)/(1+iAg—i67, ),

wherel =1(1+A}) is proportional to a plane wave intensity
and @ is the wave frequency shift with respect to the cavity
eigenfrequency, we obtain

(1-iAg+if7 )90 B (1—-iA +i07 m)ag _

1+(Ag—07,9)°+T  1+(A,— 07, 0)%+ bT(; 1)'

—1+i6+

For class B lasersr( 4—0, 7, ;,—0), the complex equa-
tion (3.1) is separated into two real equations for the wave
intensity | and the frequency shifg:

domain of DOLS stability, and is more adequate to the ex-

perimental situation. The next simplification is to neglect the

intensity dependence of the diffusion coefficiehtin Eq.
(2.7). A justification of this assumption will be given in Sec.

V C. Note that when the diffusion coefficient defined by Eq.

(2.8b is not positive, additional terms with fourth-order de-
rivatives must be included in E¢2.2) [28].

Ref(l)=0, 6=—Imf(l), (3.2
wheref(l) is defined in Eq(2.89. In doing so we neglect
off-resonant solutiong29] and take into account the resonant
ones only. Generally for the latter solutions the frequency

shift 6 differs from zero only for nonzero values of fre-

In the simplest case, when the small diffusion coefficientquency detuningd, ,. Using the rescaled media parameters

is neglected d=0), instead of Eq(2.7) we have

(2.9

Equations(2.39, (2.4), and (2.9 are invariant under a

phase shift of the field envelope, translations, and reflection
in space. These symmetries are defined by the transforma-

tions

E(x,t)—E(x,1)€e'?, (2.103

(2.5 evaluated at the cavity eigenfrequency, it is possible to
solve equationg3.2) for arbitrary values of detunings, , in

the same way as for zero detunings. Two solutions of the
corresponding quadratic equation fiorif they exist and are
positive, determine the upper and intermediate intensity
branchegsee Fig. 1 Their stability will be discussed later.
The lower branch corresponds to the nonlasing regime,

S , ] —
5 0. Hysteresis takes place in the rangg..<do<9up-
Here g,,=1+a, is the linear lasing threshold, argl,

=(1+ \/aoathr)zl(gathr) is the threshold of lasing break-
down. The intensity corresponding to the lasing breakdown
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20 9] Inthe{Aq, A,} plane this boundary is given by curve 2. The

] equation for the lasing threshold determines a hyperbola, or
16 — A curve 1 in Fig. 2:

_ (1+A?
. A2=—1+ —Zag‘). (3.4

T 1+Aa+ dp
8 —

4 : Equations(3.3) and (3.4) are tangent to one another at the
4 - symmetrical pointD (A4,A,):
. | ér A2=—1+go—goae/b, A2=—1-ay+\geao/b.

3.2

In the domain of small detunings, bounded by curves 1 and
FIG. 1. Intensity of the plane-wave regime vs linear gain coef-2, the absorptive mechanism of nonlinearity has a dominant
ficientgo. The lower hysteretic brandh=0 is stable up to the right fole. The transition from small to large detunings corre-
vertical dashed straight line. The regimes represented by the upp&PONds to a transition from absorptive to dispersive types of
hysteretic branch exist and are stable against small spatially unfonlinearity. However, bistability is absent in areas of large
form perturbations up to the left vertical dashed straight line. Thedetunings, between curves 1 and 2, because the necessary
dashed curve corresponds to the intermediate unstable branch. Thendition of bistability, 14ows=>0, or §0= ao/(1+A§)
vertical straight line lying inside the bistability range corresponds to> g, . is not fulfilled there. As follows from Fig. 2, the last
go=2.06. Parameters ara;=2 andb=10. condition also depends on the detunings. The dashed lines
(parabolic curves in the plane of squared detuningsrre-

is | goun=(Vag/am—1)/b, where ag=1/(b—1) is the spond to the .gonditioa?z'athr, and inter;ect the boundaries

threshold value of the absorption coefficient. Bistability ex-Of the bistability domain in tangent poinf3. They enclose

ists if the two conditions are satisfied) saturation intensity the bistability domain in the case of large detunings.

for a passive medium is less than that for an active mediundNevertheless, bistability can also be obtained in the region of

b>1: and (i) the linear absorption coefficient is large large detunings, since with an increase of the gain coefficient
t— 0o tangent points go to the region of large detunings along

enough,ay>ay, -

In Fig. 2 the boundaries of bistability domain are shownthe unchanged dashed lines. In this case the bistability do-

inthelA. A | Th q ed by th ."'main does not include the vicinity of zero detunings, and
in the { 93 %} piane. They are letermined by the equationy, oy« into two parts, corresponding to opposite signs,of
9up,dowd Ag,A3) =go/(1+Ag), which can be resolved with Ny et us consider stability of the plane-wave solutions

respect taA . As a result, the condition of the lasing break- against small perturbatiorisnodulation instability. Linear-
down is represented by a Stra|ght line in the plane of detunizing Eq (29) with respect to perturbations of the type
ings squared:
E(x,t)—e M JI(1+u e’ et ufer t=in,
Af=—1+go+(1+A%+ag)/b—2vgoas/b. (3.3 . _
one can find an expression for the dependence of perturba-
tion growth ratey on modulation spatial frequenoy:

Y& =R 1f'(1)]+ VR If'(1))2+ 22 Im[1f'(1)]— k*.
(3.9

It follows from Eq. (3.5 that modulation instability exists in
the range 8<«x?<2«?2 .., when InfIf’(1)]>0. Here k2,
=Im[If'(1)]. The maximum growth rate is given by
V(K2 )=Re 1T (1) ]+ VR If'(1)]?+ k2,4,>0. Curve 3 in
Fig. 2 is determined by the condition i (1)]=0. Since
positive valuesA, correspond to radiation self-focusing in
the active medium, the domain of modulation instability ap-
pears to the right from dotted curve 3.

IV. LOCALIZED STRUCTURES FOR INERTIONLESS
FIG. 2. Bistability and modulation instability domains in the NONLINEARITY: EFFECT OF FREQUENCY DETUNINGS

plane of detunings. Curves 1 indicate the linear lasing threshold. ) ) ) )
Curves 2 correspond to the threshold of lasing breakdown. Vertical | Ne simplest type of stationary localized structure is a
dashed straight lines are asymptotes of curves 1. Synibdlnote ~ Motionless DOLS. The steady-state envelope of such a
tangent points of these curves. Bistability domains are situated ned?OLS does not depend on the values of the relaxation times
zeroth detunings. The modulation instability domain lies to the right7y 2, Whereas its stability is relaxation dependent. In this
of dotted curve 3. Parameter values are chosen in such a way thaection we consider the stability and bifurcations of a station-
bistability exists for zero detuningg,=2.06, a,=2, andb=10. ary DOLS for the case of inertionless nonlinearity. For zero
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frequency detunings such a study was performed in Refs. 81 (@)
[26,30. Therefore, here we concentrate on the case of non- 7
zero frequency detunings. In dimensional units, the width of 6

the DOLS is typically about the effective Fresnel zofe,
and depends slightly on gain. Note that laser DOLS’s exist

both without and with a modulational instability of homoge- 5

neous field distributions, as well as in the case of driven §
nonlinear interferometers81,32. 0 .X|
For d=0 we seek for solution of E¢2.7) in the form 30 0/\ 130

E=A(x)e_i‘”, (41) 0.008 —_ (b)

0.004 —

with A(x)—0 for x— *=oo. Substituting Eq.4.1) into Eq. 1

(2.9), we obtain the following ordinary differential equation 0.000 —

for the DOLS envelope: -0.004 —
2 -0.008 — X

d’A ; 2 I T I ' |
— +aA—iAf(|A]?)=0, (4.2
dx? 3.32 3.36 3.40
FIG. 3. Stable three-particle localized structure. Curve 1 repre-
sents transverse intensity profiles. Curve(® shows the real
(imaginary part of the field envelope near one of the two intensity
minima. Markers represent calculation mesh. Parameters are the
same as in Fig. 2.

with f(]A|?) defined by Eq(2.89. The value of the spectral
parameterr describing the frequency shift of the DOLS is to
be determined. After the substitutigk(x)=p(x)e'®*™, Eq.
(4.2) can be rewritten in the formigl 3,26

_ _ 2
Ip=pK, 9xq 2qk+Ref(p), particular, for the symmetri€with an even functiorA(x)]

three-particle DOLS shown in Fig. 3, there are no exact in-
tensity zeros. As follows from Fig.(B), the zeros of real and
imaginary parts of the complex envelopéx) are slightly
split. Note that Fig. 3 presents results of a direct solution of
the partial differential equatiof2.9). We solve this and simi-
lar equationg2.3) numerically by the splitting method, with
== Gl(a+ )+ fo/1 2+ at )% and ke=foi/20..  the lj]SG of an algorithm of f);stydiscre?e Fo%rier transforma-
Here fy;=Ref(0)=—-1+go—a, and fyp=Imf(0) tion[6,16].
= _(E()Ag_goAa)- These two solutions represent the non- Now let us consider the DOLS stability against small per-
lasing regime; see Sec. lIl. Linearization of E¢.3) in the  turbations. In this section we deal with the simplest case of
vicinities of the fixed pointd . shows that each of the so- inertionless media, when the laser dynamics is described by
lutionsL . has a single real eigenvalue and a pair of complexEd- (2.9). An unperturbed solution has the form of E4.1),
conjugated eigenvalues defined by =k., A\j=—2(k. w!th the envelopeA(x) obeying Eq.(4.2). Substituting
+ig.), and\3=\3*. Since in the bistability domain we Slghtly perturbed solutions
havef, <0, the fixed point. _ (L) is a saddle-focus with
a 1D unstablgstable manifold and a 2D stabléunstabl¢ [Vg(x)+ SV(x)eMe-at V0:<ReA), :(ReéA)
manifold. ImA Im 5A

A stationary DOLS corresponds to heteroclinic trajectory (4.9
of Egs. (4.3 connecting the fixed points, andL _ . There-
fore, we need to find bifurcation points in the parameterinto real and imaginary parts of Eg2.9 and neglecting
space for which Eqs4.3) have a heteroclinic trajectory of second and higher terms with respect to small perturbation
the type described. Specifically, a fundamentaingle- sy \we obtain the linear equatidn, sV (x) =\ 8V (x) for the

humped DOLS corresponds to the simplgSsingle-pass”)  gjgenvalues\, determining the stability of the DOLS. Here
heteroclinic trajectory that visits vicinities of the fixed points {ne |inear operator

L_ to L, only once. It was shown in Ref26] that the

4.3
ak=—a+g>—k>—Imf(p?),

whereq=d,®, k=p~1o,p, and g, = dl ox.
Equationg4.3) have two spatially homogeneous solutions
L. which correspond to zero laser fielgp=0, Q-

existence of such a DOLS implies the existence of an infinite ReF . (A A* —a—de—IMFE _(A.A*
number of multi-humped, or combined DOLS'’s, that can be[ .= +(AAY) . o _*( A7) ,
considered as a coupled state of two or more single DOLS's. a+ dytImE L (AAY) ReF_(AA*)

Due to the symmetry propert{2.11), after an appropriate (4.9

shift along thex axis the envelop@\(x) of the motionless )

DOLS can be taken as either even or odd functior.dote ~ With F.(A,A*)=f(lo)+f'(Io)(10£A?), 1o=|Al?>, and

that, according to Refi26], the intensity of any stationary f'(lo)=(df(1)/dl);— .

DOLS cannot have more than one zero at a finite transverse In the bistability domain, where the nonlasing regike
coordinatex. Hence for an odd functioA(x) there is only =0 is stable, the continuous spectrum of operaob) lies

one zero ak=0, and no zeros for even functiodgx). In in the left half-plane of the complex plane=Re\ +i ImA,
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eigenvectors obey the equatif)a\lflyz(x) =0. The third zero
eigenvalue is associated with the symmetry prop&tgl),
and corresponds to the adjoint vector®;(x)
=(Reys,Imy3) T with 3= —ixA/2 obeying the equation
I:0\If3(x):\If2(x). Note that, due to the symmetry property
of the fundamental DOLS envelop&(—x)= £A(X), the
two neutral moded’;(x) andW¥,(x) have opposite parities.
Specifically, for a “one-particle” DOLS with an even func-
tion A(x)=A(—x), we haveW,(x)="(—x) and W,(x)

= —W,(—x). Moreover, sincd_y(x)=Lo(—X), any eigen-
vector of the linear operatdr, is either even or odd. There-
fore, it is possible to study the stability with respect to even
(symmetri¢ and odd (antisymmetri¢ perturbations sepa-
rately.

Figure 4. The discrete spectrum of the linear opera@5) A was

FIG. 4. Stability boundaries of the localized structures on thecalculated humerically for a fundamental DOLS with differ-

plane of frequency detunings. The localized structure is stable fo?3nt frequgncy detuning .a_ndAa. The bqundarles of the
moderate values of detunings. Dashed lines indicate the boundari%OLS ex'Sten(_:e and St,ab'“ty are shown 'n, Fig. 4 The sta-
of the bistability domain of spatially homogeneous regimes. Curve§'0n_ary DOL_S_ is stable in the central gl_’ea, Includln_g the co-
1 represent the Andronov-Hopf supercritical bifurcation. At saddle-Ordinate origin Ag=A,=0. The stability boundaries are
node bifurcation curves 2, a stable localized solution merges witlgiven by curves 1 and 2. At the saddle-node bifurcation
an unstable one and disappears. Curves 3 and 4 are the upper di#fves 2, a stable DOLS merges with an unstable one and
lower boundaries of the stability domain of an oscillating localizeddisappears. We found also an additional bifurcation that is
structure. Below curve 4 an oscillating localized structure is transnot shown in Fig. 4, since it is very close to the upper part of
formed into a “leading center.” Bistability of stationary and oscil- curves 2. At the Andronov-Hopf bifurcation curves labeled 1
lating localized structures takes place between curve 3 and ththere is a pair of pure imaginary eigenvaluescorrespond-
lower part of curve 1. A narrow bistability domain near upper curveing to even perturbations. In this case, destabilization of a
1 is not shown. Parameters are the same as in Fig. 2. stationary DOLS results in the arising of spatially inhomo-
geneous nonstationary regimes. Examples of such a regime,
and does not produce instability. Therefore, we can restricbbtained by a numerical solution of E(.9), are given in
our consideration to the discrete spectrum. Fig. 5. At the point of the Andronov-Hopf bifurcation, the
Due to the symmetry propertie?.10 and (2.11), the  period of DOLS oscillations is 2/Im \. It should be par-
discrete spectrum of operat@t.5) includes a triply degener- ticularly emphasized that here we study an Andronov-Hopf
ate zero eigenvalue. Two corresponding eigenvectors, dsifurcation of an inhomogeneou#ocalized field distribu-
“neutral modes,” are designated by W, x) tion, contrary to instabilities of homogeneous distributions
=(Regy,Imy )T, with ¢,=iA and y,=dA. These (see, e.g., Refd6,14,33). Periodically oscillating DOLS's
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FIG. 5. Oscillatory localized structure;=0.1, andA ;= —0.48. Other parameters are the same as in Fig. 2.
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0.01 — -
] Rec 15 T,
Stable
0.008 = 10 - motionless
B dissiton
0.006 — 5
0.004 —|
1 0 T
0 2 4 6 8 &
0.002 —|
i FIG. 7. Bifurcation diagram for the motionless localized struc-
o . : . : al Kl ture: go=2.06, a;=2.0, b=10, andA, ,=0. Bifurcation curves

000 010 020 030 are obtained by means of numerical calculations of the discrete
spectrum of the operatot. The steady-state bifurcation line is
FIG. 6. Real part of the perturbation growth rate vs the spatialnarkeds CurvesH, H,, and H, correspond to Andronov-Hopf
frequencyx: go=2.06,2,=2.0, b=10, andAy,=0. bifurcations. The motionless localized structure solution is stable
above curvesS H, and H,. Asterisks indicate the positions of
exist between curves 3 and 4 in Fig. 4. Between curves 4 anebdimension-two points.
1 (lower curve a more complex regime referred as a “lead- ) o . N
ing center” arises. It is characterized by the periodical AS in the case of inertionless media, the operatdnas
emerging of new(additiona) DOLS’s. Analogous regimes tWo eigenvectorsW,(x)=(—Im A,ReA,0,0)T and W5(x)
for zero frequency detunings were described in Red]. A =x(ReA,ImA,g®,al?)T, which are associated with sym-
similar bifurcation takes place near upper curve 1, but in dnetries(2.103 and(2.10 respectively. However, the “Gal-
much more narrow domain. Note that Fig. 4 illustrates bifur-léan transformation” symmetry2.11) is now broken, and,
cations of the fundamental DOLS, while its “excited states” as a result of this, the linear operatorhas only two zero
with oscillating intensity transverse profile exist in a more eigenvaluesh;=\,=0. The third eigenvalui 3, which was
narrow range of the laser parameters; see R&. equal to zero in the inertionless limit, ,= 0, is in the gen-
As pointed out above, we consider a transversely 1D lasegral case shifted from the origin in the complex plane. There-
with a single mode regime for the second transverse coordfore, even if the DOLS is stable far, ,=0, it may be un-
natey. For transversely 2D lasers, there exishdependent stable for arbitrary small nonzero relaxation times.
stripe patterns with the same field dependence as for the Bifurcation loci for the motionless DOLS as a solution of
1D laser. However, we have shown that these patterns at€qgs.(2.9) are shown in Fig. 7. They were plotted using the
modulationally unstable. To find the small perturbationresults of numerical calculation of the discrete spectrum of
growth rate, one has to generalize expres##) by inclu-  the operatoll. The straight lineS indicates the steady-state
sion of multipliers exp€ixy). The results of the growth rate pifyrcation defined by the conditions=0. Here the eigen-

calculation are presented in Fig. 6. The instability takes plac?/alue)\3 corresponds to an odd eigenvector of the operlétor

in a finite range of perturbation spatial frequeneyDiffer- which is di - . S
; ! ; ch is different fromW¥,, but coincides with this eigenvec-
ent types of stable 2D DOLS's were described in R8J. tor in the limit 7, ,— 0. For sufficiently smalk , the lineS

defines the stability boundary of the motionless DOLS.

V. EFFECT OF RELAXATION RATES When crossing this line from the right, the motionless DOLS
_ o becomes unstable, giving rise to a localized structure slowly
A. Transversely motionless dissipative structures moving with some definite constant velocity The exact

In this section we present numerical results concerning@lue of v depends on the distance from the instability
the stability of the motionless DOLS’s as solutions of Egs.PoundaryS. Since opposite directions of propagation are
(23a with a zero value of the diffusion coefficiewt and equvalent, there exist at least two DOLS'’s travellng with
nonzero values of the population relaxation timgg>0.  OPposite velocities. If the population difference in the pas-
Let us consider a slightly perturbed stationary DO[Ry.  Sive medium relaxes much faster than that in the active me-

(4.1)] defined by Eq(4.4), together with dium, the motionless DOLS is always unstable. Indeed, for
7,=0 and74>0 the passive medium is equally saturated by
E(X,t)zg(o)(XH sg(x)eM, a(x,t)=a®(x)+ sa(x)eM, motionless and travelling DOLS'’s, while the active medium

(5.1) is less saturated by a travelling DOLS. This situation seems
to be more favorable for the existence of a stable traveling
— — . DOLS than for a motionless one. With the increase of the
whereg?(x)=g(I(x)) andal®(x)=a(l(x)) are given by relaxation timer, the absorption saturation decreases for a
Eq.(2.6. Here, as before, we choose the coordinate origin ifraveling DOLS, and for a given, a certain threshold value
such a way that the unperturbed DOLS envelope is an evegf . exists above which the motionless DOLS becomes
function of the variablex [A(x) =A(—x)]. Due to this fact  staple. Thus the population relaxation process in an absorb-
we can study the stability with respect to evsymmetrid  ing medium exerts a stabilizing effect on the motionless
_and odd(antisymmetri¢ p_erturbations separately. Substitut- poLs. When 74 are large enough, different bifurcation
ing Egs. (4.4 and (5.1) into Egs. (2.3D and (2.39, we  scenario leading to the instability of the motionless DOLS is
obtain the linearized equatiorsV(x)=x46V(x) with observed. In this case the stability boundary is associated
SV(x)=(RedA,Im 5A,9,5a)". with the Andronov-Hopf bifurcation. In Fig. 7 the
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Here the small parameter is the velocity of the slowly

H,. The curveH represents an Andronov-Hopf bifurcation moving DOLS to be found. The paramebf—éf) measures the
with a pair of pure imaginary eigenvalues corresponding tadeviation from the bifurcation point.

even eigenvectorsV(x) =V (—x)]. This bifurcation leads to
an oscillating DOLS similar to that shown in Fig. 5.
CurvesH; andH, correspond to Andronov-Hopf bifur-

Substituting Egs(5.2b and (5.29 into Eg. (5.29, we
obtain

cations with a pair of pure imaginary eigenvalues associatepaE+[i +d(|E|2)]&§§E+ Ef([E|?)

with odd eigenvectors of the linear operatarThe bifurca-

tion curve H, terminates at a codimension-2 point of

Bogdanov-Takens type35,36 marked B in Fig. 7.

=—vU(E,d.0,0:a) +ivd(|E|*)d:E+O(v?7 4, o),

Codimension-2 points associated with the interaction be- S _ _
tween two Andronov-Hopf bifurcations are also present inwhered.=d/d¢, d.,=d“/d¢, functionsf andd are defined

Fig. 7. These points are label€l Under certain conditions

by Eq.(2.8), and

the existence of this kind of degenerate bifurcation implies

the appearance of quasiperiodic and irregular regif8&%

PointsT denote the intersections of the Andronov-Hopf bi-

furcation curvedd andH, with the pitchfork bifurcation line

(1-iA)7eg (1—iAy) T2
1+|E? 1+b|E]2 |

U(E,g,a)=E

S These points correspond to codimension-2 bifurcations

with a single zero and two purely imaginary eigenvalues.

B. Bifurcation to a slowly moving localized structure

In this section we derive an analytical stability condition

for motionless DOLS's as solutions of Eq2.33 and(2.4),
with nonzero values of relaxation timeg , . To this end, we

introduce a perturbation technique for DOLS’s with small
transverse velocities ardi* 0. We start with the laser equa-
tions in a moving frame of reference. Substituting, in Egs.

(2.39 and(2.4),

g(xt)—g(§), alxt)—a(é),

E(x,H)—E(&e 2,
whereé=x—ut, v is the velocity of moving frame accom-
panying the moving DOLSy is the nonlinear frequency
shift for motionless DOLS, and= v+ (v?/4), we obtain

(.2 S + L d(g.a)E=iaE-+[i+d 2
—iv (g,a)E+z (g,0)E=iaE+[i+ (<.11,a)]d—fz
+f(g,a)E, (5.29
dg — da — —
—rgvd—§=go—g—|Elzg, —ravd—§=a0—a—b|E|2a,
(5.2b
f(g,a)=—1+(1-iAyg—(1-iAya,
d(g,a)=—-2| 7 gi—r a—=—|. (5.29
' A2 T eA?n T

g

We are looking for slowly moving DOLS’s which can
bifurcate from the motionless one. Léf) be the bifurcation
value of the parametety corresponding to instability of the
motionless DOLS. Then, perturbing the parametgmear
the bifurcation point, we obtain

Tg= Téo)‘f‘ vZT(gZ) .

We are looking for slowly moving DOLS's in the forms
E(£)=Eo(£)+vEy(£)+0(v?),
9(&)=9 (&) +vg(&) +0(v?),
a(§)=a%(é) +va(§)+0(?),

where Eq(x)e ', g©(x), anda®(x) correspond to a

motionless DOLS. Since the original equations are invariant

under the transformationx(v) — (—x,—v), for the funda-
mental DOLS we obtairE,(— &)= (—1)*Ex(¢), g™ (—¢)
=(—1)*g® (&), a(-§=(-1)a¥(¢), andk=0 and 1.
Equating zeroth order terms in we obtain

A
1+blEo(&)*’
(5.3

%

. (0) —
e © Y

96 =

where the envelope of the motionless DOER x) obeys the
equation

i aEo+[i+d(|Eq(£)]?)]0¢Eo+ Eof ((Eo(£)[%)=0.
Equating the first order terms i, we obtain
LV,=U,, (5.9

where

Eq
V =
1 EI ’

U(Eo,2:9?,9:a9) —id(|Eo|?) 3:Eq
U*(Eg,7,9'?,9:a) +id(|Eq|?) 7:E§

o

and
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~ (L L2

L = * * !
12 L1

W|th (9|f(|0):[df(|)/d|)|:|o, and|0:|E0|2

Note that the linear operatdr has zero eigenvalue asso-
ciated with the eigenvecto¥; defined by

W
*), p1=0¢Eq, 1(E)=—in(—§).
2

o

These vectors obey the relatiohs?;=0. The adjoint
operatorL T, which is obtained from Eq(5.5) by transposi-

tion, has a zero eigenvalue associated with the eigenvecto

Wi=(yl,¢1*)7, and ¢l(&)=—yl(—&). In order for Eq.
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L= —ia=(i+d(10)dg— (o) =100 (1)~ E§ 9zeEodd(l),
L1o=—Egaif(10)—EqdeeEodd(lo),

(5.5

C. Numerical simulations

Here we present the results of study of DOLS stability
and bifurcations by numerical solution of Eq2.33. In Fig.
8 we show the transverse profile of the intensity dependent
diffusion coefficientd(l) (curve 3, and give its approxima-
tion by a constant value estimated in the vicinity of the
DOLS intensity maximum(line 4). Curves 1 and 2 present
DOLS transverse intensity profiles calculated for intensity
dependent diffusion coefficiert(l) defined by Eq.(2.8b),
and for constant diffusion coefficierd(l)=d=const, re-
§?>ectively. It follows from Fig. 8 that the approximation of
constant diffusion coefficient does not change the DOLS

(5.4 to be solvable, its right hand side must be orthogonal Ghape essentially. Hence, when solving E217), one can

the solution of the adjoint equatid}friI'I=0:
(wlu)=0. (5.6)

Equation(5.6) can be rewritten in the form

0 f RE(1-1A9)Eoy1] g ;

9 )= 1+|Eo|?

B f R (1-i4,)Eoploa®
") 1+b|E|?
; f:d<|Eo|2>lm<wIagEo>df, (5.7

with g anda® defined by Eq.(5.3). Equation(5.7) de-
fines the pitchfork bifurcation of a motionless DOLS into a

slowly moving one, and corresponds to a straight line in the

plane of parametersr(, 7,). According to Fig. 7, this line is

the stability boundary of the motionless DOLS for moderate

values ofry and 7,.

I d

0 T I ' T

0.008

0.006

0.004

0.002

0.000

assume thadl is intensity independent.

Our numerical simulations based on E¢®.3a confirm
the results of the bifurcation analysis given in Sec. V B. Ad-
ditionally, they permit one to study dynamical regimes far
from the bifurcation threshold, and, what is especially impor-
tant, to find new types of DOLS'’s.

Stability domains of different types of DOLS's in the
(74,7a) plane are shown in Fig. 9. Steady-state motionless
DOLS's are stable to the left of straight line 1 and curve 2.
As discussed in Sec. VB, line [kee Eq.(5.7)] indicates a
pitchfork bifurcation from a motionless DOLS into a slowly
moving one. The latter type of DOLS is stable in the domain
between straight line 1 and curve 3. The pitchfork bifurca-
tion at line 1 is associated with an eigenvalue corresponding
to an odd vectolF5(x) = —W3(—x). Therefore, unlike the
motionless DOLS, the slowly moving one is transversely
asymmetric. In other words, leading and trailing edges of a
DOLS, which moves in a medium with relaxation, interact
with unsaturated and saturated amplification and absorption,
respectively. However, when the DOLS velocity is small,

P

-10 ] 10 X 0 1 2 3

FIG. 8. Comparison of the “exact{curves 1 and Band ap- FIG. 9. Stability domains of different localized structures. Mo-
proximate(curves 2 and ¥stationary localized structures as solu- tionless localized structures are stable to the left from curves 1 and
tions of Eq.(2.7). Transverse profiles of intensity(curves 1 and 2 3. Fast localized structures are stable to the right of curve 4. The
and diffusion coefficient (curve 3 and line ¥for stable localized slowly moving localized structure is stable between curves 1 and 3.
structures are given for, 5, ,=0.03 andAy ,=—0.1. Other pa- Parameters ard=0.01 andA =A,=0. Other parameters are the
rameter values are the same as in Fig. 2. same as in Fig. 2.
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2 _ gv 8 1 2 _ 74 N IIIIIIX (a)
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FIG. 10. Transverse profiles of radiation intenditypoopulation 7 v
difference in active mediung (curve 1, and effective losse$ 12 T TT T T
=1+a—g (curve 2 for a localized structure moving with velocity -0.30 -0.26 -0.22

v=—0.1036(a) and —9.367(b). Dashed lines indicate intensity of FIG. 11. Ph it of a localized ith periodicall
the stationary spatially homogeneous states. Arrows indicate the . G'_ - rhase port_ralto a localize str_uc_ture wit periodically
direction of the localized structure motion. Parametersrgre0.3 o.scnlapng velocity | max I thg})m.axmum rgdlatlon ngar-f!eld |nFen-
and 74— 1. Other parameters are the same as in Fig. 9. sity, P is the total ppwe(a), I imax 1S the maximum far-field intensity,
and v is the localized structure velocitgh). Parameters aret,

this asymmetry is practically indistinguishable. At the =0.3 andry=1.23. Other parameters are the same as in Fig. 9.
Andronov-Hopf bifurcation curve 2 transition from a mo-
tionless steady-state DOLS into a pulsating one occurs. Thia slow DOLS increases with, up to a bifurcation into a
DOLS is similar to that shown in Fig. 5. DOLS with oscillating velocity at4=1.2. As the relaxation

Numerical simulations revealed the existence of two dif-time 7, is further increased, a hysteretic jump to a branch
ferent types of DOLS'’s. First, to the right of curve 4, stablecorresponding to fast DOLS’s occurs. Then, with a decrease
DOLS’s moving with large transverse velocity ‘fast of 74, a jump from the branch of the fast DOLS’s to the
DOLS’s”) can be formed. These structures are characterizeranch of the motionless ones takes placegat0.9.
by narrower intensity distributions and much greater peak
intensities, as compared with slowly moving DOLSs. In Fig. V]. CONCLUSION
10 we present transverse profiles of the laser field intensity
together with the saturated gajrand the difference between ~ We have performed a systematic study of the effect of
total losses and gain la—g for bistable “slow” and frequency detunings on the properties of DOLS's—localized
“fast” localized structures. It follows from this picture that Structures of coherent radiation in dissipative nonlinear opti-
at the |eading edge of the fast DOLS the gain iS practica'lwal SChemeS. In the ||m|t Of fagtnertionleS$ nonlinearity,
unsaturated. The peak of the gain saturation is shifted to thée model considered describes both transverselyslah
trailing edge. Behind the core of the fast DOLS, there existdasers with a saturable absorber and single mode fibers with
a “refractory period” zone[10], in which the gain slowly —9ain and saturable losses. We have analyzed bifurcations of
relaxes to its unsaturated value. Note that the peak intensitationary DOLS's, and found a wide domain of detunings
of the fast DOLS is much greater than the intensity of theWhere periodically oscillating DOLS’s and more complex
homogeneous steady-state solution which corresponds to ti§@atially inhomogeneous nonstationary regimes arise. A hys-
upper branch of the bistability cursee Fig. 1 This prop-
erty establishes a certain similarity of the fast DOLS’s with
Q-switching regimes typical of lasers with a saturable ab-
sorber.

Second, DOLS’s with a periodically varying transverse
velocity and an oscillating transverse profile can be excited.
Periodic evolution of the DOLS'’s characteristics is illus- 0.1

=
.
<
»\

IIIIIL|,|,| 11111

S U

trated in Fig. 11. For the parameters of Fig. 11 the period of ?
oscillations isT=50r;, where 77, is the photon lifetime in .
the cavity. 0.01 5
Different types of DOLS’s can coexist in certain param- 3
eter domains. A hysteretic behavior that takes place with the 0.001 T

change of the population relaxation time in an amplifying
medium, is illustrated by Fig. 12. Up tg,=0.9, a motion-
less DOLS is stable. With an increasemgf this DOLS loses FIG. 12. Hysteretic change of the localized structure velocity for
stability, and a slowly moving DOLS arises. The velocity of 7,=0.3. Other parameters are the same as in Fig. 9.

04 06 08 1.0 12 14
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teresis between stationary and nonstationary DOLS’s wa®-switching regimes in a laser with a saturable absorber; and
demonstrated. (i) DOLS's characterized by a transverse velocity and pro-
Important new features of the DOLS’s arise when thefile oscillating in time. With a change of the laser param-
relaxation processes in intracavitary active and passive meters, hysteretic jumps between different types of DOLS’s
dia are taken into account. We present a derivation of th@ccur.
field envelope equation, which includes intensity-dependent The results presented demonstrate the existence of a large
effective diffusion coefficient. Linear stability analysis of the variety of localized structures in dissipative optical systems
simplest transversely motionless DOLS's revealed the condnder bistability conditions. Although only 1D structures
ditions of bifurcations of these DOLS'’s into slowly moving were studied here, similar features are expected for two- and
or pulsating ones. Secondary bifurcations of the pulsatinghree-dimensional DOLS's.
DOLS's lead to more complex patterns, with a nonconserva-
tion of the number of localized structures. Numerical solu-
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