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Effect of frequency detunings and finite relaxation rates on laser localized structures
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We study, analytically and numerically, the effect of frequency detunings and relaxation processes in laser
media on stability and bifurcations of dissipative optical localized structures~DOLS’s! in a transversely
one-dimensional laser with a saturable absorber. The approximate envelope equation, with an intensity depen-
dent effective coefficient of the diffusion, is derived. Andronov-Hopf bifurcations resulting from frequency
detuning and leading to oscillatory DOLS’s are analyzed numerically. A numerical and analytical study of
bifurcations of transversely motionless DOLS’s in a laser with finite relaxation rates of amplifying and ab-
sorbing media is performed. New types of DOLS’s are found, including those moving with a large transverse
velocity and those moving with a periodically oscillating transverse velocity. Hysteresis between different
types of DOLS’s is demonstrated.

PACS number~s!: 42.65.Tg, 42.65.Sf, 42.65.Pc, 42.55.Ah
-
se
ex
al

in

r
f

e

lle
ty
m
e
tl
n

e

a
na

r
li
in

er

-

eg-

d in

r

ally
ble
uc-
eri-
ed

in-

di-
-

ns
ia
po-
le
tial

at-
as
the

ca-
rge.
nt.
er
of
and
ud-
pro-

our
ll
er-
I. INTRODUCTION

Dissipative localized~solitonlike! structures of laser ra
diation are of particular interest because they represent
organization in dissipative nonlinear systems with energy
change@1,2#, and are promising for applications in optic
data processing@3#. The term ‘‘dissipative,’’ in contrast to
‘‘conservative,’’ underlines a key part of the energy flows
systems with radiation sinks~losses! and sources~external
radiation injection or pumping!. While conservative solitons
in transparent nonlinear media~e.g., solitons of the nonlinea
Schrödinger equation@4#! have a continuous spectrum o
their parameters, including the peak intensity, a spectrum
the main characteristics of the dissipative optical localiz
structures~DOLS’s or ‘‘autosolitons’’! is discrete, since the
condition of balance between losses and pumping is fulfi
only for some definite values of the radiation intensi
Therefore, the physics of the DOLS’s differs essentially fro
that of the conservative solitons. As for applications, the
fect of noise and the drift of parameters are significan
reduced for the DOLS’s, resulting in their robustness a
extreme stability.

In optics, stationary and pulsating dissipative localiz
structures were first predicted theoretically@5,6# and found
experimentally@7,8# for passive nonlinear systems, such
wide-aperture nonlinear interferometers driven by exter
radiation ~see also Ref.@9# and Ref. @3#, and references
therein!. Due to the important role of diffraction in thei
formation, these structures were called ‘‘diffractive autoso
tons.’’ Diffusive autosolitons were investigated earlier
various physical, chemical, and biological systems@10,11#.
Mathematical aspects of theory of similar structures w
also studied without any reference to optical problems~see
Refs. @12,13#, and references therein!. Specific features of
DOLS’s in conditions of ‘‘nascent’’ bistability were consid
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ered in Ref.@14#. Different applications of the DOLS’s to
information processing were proposed, including a shift r
ister and full adder~see Refs.@9# and @15#. In experiment, a
scheme of multichannel optical memory was demonstrate
Refs.@7,8#.

Similar types of DOLS’s—the so-called ‘‘lase
autosolitons’’—were first predicted in Ref.@16#. In this pa-
per localized structures of laser radiation were theoretic
found in a model of a wide-aperture laser with a satura
absorber under bistability conditions. Recently such str
tures, with a hard type of excitation, were observed exp
mentally in a cavity with photorefractive crystals that serv
as gain and loss elements@17,18#, and in a dye laser with
bacteriorhodopsin as a saturable absorber@19#. In subsequent
studies different types of laser DOLS’s were found and
vestigated: geometrically one-dimensional~1D!, ~2D!, and
~3D!, stationary and pulsating, motionless and moving, ra
ally symmetric and rotating, with high-order topological in
dices, and solitary and coupled@20,21,9,3,22#.

In the case of fast nonlinearity the governing equatio
for cavity systems with diffraction and for continuous med
with frequency dispersion are equivalent. Therefore, tem
ral DOLS’s in a single-mode nonlinear fiber with saturab
gain and losses are mathematically equivalent to 1D spa
cavity DOLS’s in a laser with a saturable absorber~see Ref.
@9# and Ref.@3#, and references therein!. In Ref. @23# a spe-
cific case of a fiber with large frequency detunings, domin
ing a dispersive type of inertionless optical nonlinearity, w
considered. For practical purposes, detunings between
radiation carrier frequency and the frequencies of amplifi
tion and absorption spectral line centers cannot be too la
Otherwise the radiation amplification would not be efficie

An essential limitation of the existing theory of las
DOLS’s is the lack of a systematic study of the effect
frequency detunings and relaxation times of the active
passive media on the DOLS properties. Most previous st
ies were performed under the assumption that relaxation
cesses in the laser media can be neglected. However,
recent numerical study@24# showed that even the very sma
relaxation times of the media drastically change the prop
5814 ©2000 The American Physical Society
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PRE 61 5815EFFECT OF FREQUENCY DETUNINGS AND FINITE . . .
ties of the DOLS’s, including their symmetry features, s
bility, spectrum of characteristics, etc. In experiments@17–
19#, a saturable absorber is characterized by very la
relaxation times~in the range of seconds!, much greater than
the cavity relaxation time. In Ref.@25# a different type of
DOLS’s corresponding to an opposite case of a very lo
relaxation time of an active medium, was studied in a la
without a saturable absorber. However, these structures
unstable because of the growth of initially small perturb
tions at the structure periphery@3#.

The goal of this paper is to study the stability and bifu
cations of localized structures~‘‘laser DOLS’s’’! in a wide-
aperture laser with a saturable absorber, taking into acc
the effect of frequency detunings and population relaxat
processes~a class B laser!. We consider the simplest case
1D DOLS’s corresponding to a single mode regime for o
of the two transverse coordinates. The bifurcation appro
used here is similar to that developed earlier for class
lasers in Ref.@26#.

Starting with Maxwell-Bloch equations and assumi
small relaxation times, in Sec. II we derive approximate
velope equations for a wide-aperture laser with a satura
absorber. The simplest~plane-wave monochromatic! solu-
tions of these equations are analyzed in Sec. III. In Sec
we consider laser DOLS’s for the case of media inertionl
nonlinearity; the effect of frequency detunings on the DO
bifurcations is investigated. Section V is devoted to the
fect of population relaxation rates on the DOLS stability a
bifurcations. The stability domains of different types
DOLS’s are given, and various hysteretic phenomena res
ing from overlapping of these domains are described. C
clusions are given in Sec. VI.

II. LASER MODEL

We consider a wide-aperture laser with an intracavit
saturable absorber. In the mean-field approximation@27#
valid for the case of small changes of the radiation field
one cavity roundtrip, the Maxwell-Bloch equations have t
forms

]E

]t
2 i

]2E

]x2
5Pg2Pa2E, ~2.1a!

tg

]g

]t
5g02g2Re~EPg* !, ~2.1b!

ta

]a

]t
5a02a2b Re~EPa* !, ~2.1c!

t'g

]Pg

]t
5gE2~11 iDg!Pg , ~2.1d!

t'a

]Pa

]t
5aE2~11 iDa!Pa . ~2.1e!

HereE is the dimensionless complex electric field envelo
g (a) is the population difference in an active~passive! me-
dium; andg0 anda0 are stationary values of the populatio
differences in the absence of the laser field (E50), which
-
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are proportional to small signal coefficients of gain and a
sorption, respectively. The timet is normalized by the cavity
relaxation time, andx is the dimensionless transverse coo
dinate normalized by the width of the effective Fresnel zo

XF5A Lc

2k0~12R!
,

whereLc is the cavity length,k0 is the light wave number,
andR is the product of the cavity mirror coefficients of re
flection. The ratio parameterb5tat'ama

2/(tgt'gmg
2) mea-

sures the relative saturability of active and passive me
Here mg,a are the atomic dipole momenta, andt'g,'a ,tg,a
are the relaxation times for atomic polarizations and popu
tion differences divided by the cavity relaxation time.Pg,a
are the envelopes of atomic polarizations, andDg5(vg
2vc)t'g and Da5(va2vc)t'a are dimensionless detun
ings between the gain~absorption! spectral line centervg,a
and the frequency of empty cavity modevc . Model ~2.1!
corresponds to the case of homogeneous spectral broade
particle diffusion is neglected here. We consider a wid
aperture laser with a planar cavity width much greater th
XF .

Let us consider a class B laser for which the media po
ization relaxation times are much smaller than the cav
relaxation time, while the population relaxation timestg,a
are in general large enough:t'g,'a!1. Using the approach
developed in Ref.@28#, we take into account the effects o
polarization relaxation in the first-order approximation
t'g,'a only. In zeroth order, polarization is determined b
equating the left hand side of Eq.~2.1d! to zero: Pg

(0)5(1
1 iDg)21gE. Up to the first-order terms int'g , from Eq.
~2.1d! we obtain

Pg
(1)5Pg

(0)1t'g~11 iDg!21S ]Pg
(0)

]t D . ~2.2!

Similar relations are valid for a passive medium. Substitut
Eq. ~2.2! into Eq. ~2.1a!, we keep only the first-order term
in t'g,'a before the second derivative onx. Moreover, we
neglect the imaginary parts of these terms acting as sm
perturbations to the diffraction coefficient. These assum
tions are justified, because it is precisely the real part of th
terms that gives an effective coefficient of diffusion, whic
has a critical effect on the stability of spatially homogeneo
regimes @28#. Finally we obtain the following system o
equations governing the evolution of the transverse field
tribution in a class B laser with a saturable absorber:

]Ē

]t
2~ i 1d!

]2Ē

]x2
5@211~12 iDg!ḡ2~12 iDa!ā#Ē,

~2.3a!

tg

]ḡ

]t
5ḡ02~11I !ḡ, ~2.3b!

ta

]ā

]t
5ā02~11b̄I !ā, ~2.3c!
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d52@t'aāDa /~11Da
2!2t'gḡDg /~11Dg

2!#, ~2.4!

where I 5uĒu2 is the laser field intensity for a normalize
amplitudeĒ5E/A11Dg

2; and ḡ5g/(11Dg
2) and ā5a/(1

1Da
2) are the saturated gain and absorption coefficient

the cavity frequency. Since one has to use saturated valu
populations in Eq.~2.4!, the diffusion coefficientd5d(I ) in
Eq. ~2.3a! is intensity dependent. The normalized linear ga
and absorption coefficients,ḡ0 and ā0, and the ratio of the
saturation intensitiesb̄ at the cavity frequency are defined b

ḡ05g0 /~11Dg
2!, ā05a0 /~11Da

2!,
~2.5!

b̄5b~11Dg
2!/~11Da

2!.

In the limit of inertionless media (tg,a→0) we find, from
Eqs.~2.3b! and ~2.3c!,

ḡ~ I !5ḡ0 /~11I !, ā~ I !5ā0 /~11b̄I !. ~2.6!

Then Eqs.~2.3a! and ~2.4! are reduced to a single equatio
for the electric field envelope:

]Ē

]t
2@ i 1d~ uĒu2!#

]2Ē

]x2
5 f ~ uĒu2!Ē, ~2.7!

where

f ~ I !5211
~12 iDg!ḡ0

11I
2

~12 iDa!ā0

11b̄I
, ~2.8a!

d~ I !522S t'gDgḡ0

~11Dg
2!~11I !

2
t'aDaā0

~11Da
2!~11b̄I !

D .

~2.8b!

Note that unlike the amplitude equations of Ginzbu
Landau type, wheref (I ) and d(I ) are expanded in powe
series, Eq.~2.7! is valid not only in a small vicinity of the
bistability threshold. Therefore, Eq.~2.7! describes a wider
domain of DOLS stability, and is more adequate to the
perimental situation. The next simplification is to neglect t
intensity dependence of the diffusion coefficientd in Eq.
~2.7!. A justification of this assumption will be given in Se
V C. Note that when the diffusion coefficient defined by E
~2.8b! is not positive, additional terms with fourth-order d
rivatives must be included in Eq.~2.2! @28#.

In the simplest case, when the small diffusion coefficie
is neglected (d50), instead of Eq.~2.7! we have

]Ē

]t
2 i

]2Ē

]x2
5 f ~ uĒu2!Ē. ~2.9!

Equations~2.3a!, ~2.4!, and ~2.9! are invariant under a
phase shift of the field envelope, translations, and reflect
in space. These symmetries are defined by the transfo
tions

Ē~x,t !→Ē~x,t !eih, ~2.10a!
at
of

-

-
e

.

t

s
a-

x→x1h, ~2.10b!

x→2x, ~2.10c!

with arbitraryh andh.
Moreover, Eq.~2.9! describing a laser with inertionles

media exhibits additional symmetry with respect to ‘‘Ga
ilean transformation’’ to a reference frame moving in t
transverse direction with velocityv:

Ē~x,t !→Ē~x2vt,t !eivx/22 iv2t/4. ~2.11!

This means that any motionless solution of Eq.~2.9! gener-
ates a family of uniformly moving field distributions, eac
characterized by some value of the velocityv ~a continuous
spectrum ofv). For nonzero values of the relaxation time
tg,a , symmetry~2.11! is broken and, hence, DOLS’s cann
travel with an arbitrary constant velocity. In this case u
formly moving DOLS’s are expected to have zero velocity
some fixed nonzero velocity.

III. MONOCHROMATIC PLANE-WAVE SOLUTIONS

Stationary spatially homogeneous solutions of Eqs.~2.1!
are obtained by equating their right hand sides to zero. A
the substitutions

E~x,t !→e2 iutAĨ ,

Pg~x,t !→e2 iutAĨ g~ Ĩ !/~11 iDg2 iut'g!,

whereĨ 5I (11Dg
2) is proportional to a plane wave intensit

andu is the wave frequency shift with respect to the cav
eigenfrequency, we obtain

211 iu1
~12 iDg1 iut'g!g0

11~Dg2ut'g!21 Ĩ
2

~12 iDa1 iut'a!a0

11~Da2ut'a!21b Ĩ
50.

~3.1!

For class B lasers (t'g→0, t'a→0), the complex equa-
tion ~3.1! is separated into two real equations for the wa
intensity I and the frequency shiftu:

Ref ~ I !50, u52Im f ~ I !, ~3.2!

where f (I ) is defined in Eq.~2.8a!. In doing so we neglect
off-resonant solutions@29# and take into account the resona
ones only. Generally for the latter solutions the frequen
shift u differs from zero only for nonzero values of fre
quency detuningsDg,a . Using the rescaled media paramete
~2.5! evaluated at the cavity eigenfrequency, it is possible
solve equations~3.2! for arbitrary values of detuningsDg,a in
the same way as for zero detunings. Two solutions of
corresponding quadratic equation forI, if they exist and are
positive, determine the upper and intermediate inten
branches~see Fig. 1!. Their stability will be discussed later
The lower branch corresponds to the nonlasing regimeI

50. Hysteresis takes place in the rangegdown,ḡ0,gup.
Here gup511ā0 is the linear lasing threshold, andgdown

5(11Aā0athr)
2/(b̄athr) is the threshold of lasing break

down. The intensity corresponding to the lasing breakdo
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is I down5(Aā0 /athr21)/b̄, where athr51/(b̄21) is the
threshold value of the absorption coefficient. Bistability e
ists if the two conditions are satisfied:~i! saturation intensity
for a passive medium is less than that for an active medi
b̄.1; and ~ii ! the linear absorption coefficient is larg
enough,ā0.athr .

In Fig. 2 the boundaries of bistability domain are show
in the $Dg , Da% plane. They are determined by the equati
gup,down(Dg

2 ,Da
2)5g0 /(11Dg

2), which can be resolved with
respect toDg

2 . As a result, the condition of the lasing brea
down is represented by a straight line in the plane of det
ings squared:

Dg
25211g01~11Da

21a0!/b22Ag0a0 /b. ~3.3!

FIG. 1. Intensity of the plane-wave regime vs linear gain co

ficient ḡ0. The lower hysteretic branchI 50 is stable up to the righ
vertical dashed straight line. The regimes represented by the u
hysteretic branch exist and are stable against small spatially
form perturbations up to the left vertical dashed straight line. T
dashed curve corresponds to the intermediate unstable branch
vertical straight line lying inside the bistability range corresponds

ḡ052.06. Parameters are:ā052 andb̄510.

FIG. 2. Bistability and modulation instability domains in th
plane of detunings. Curves 1 indicate the linear lasing thresh
Curves 2 correspond to the threshold of lasing breakdown. Ver
dashed straight lines are asymptotes of curves 1. SymbolsD denote
tangent points of these curves. Bistability domains are situated
zeroth detunings. The modulation instability domain lies to the ri
of dotted curve 3. Parameter values are chosen in such a way
bistability exists for zero detunings:g052.06, a052, andb510.
-

,

-

In the$Dg , Da% plane this boundary is given by curve 2. Th
equation for the lasing threshold determines a hyperbola
curve 1 in Fig. 2:

Dg
25211

~11Da
2!g0

11Da
21a0

. ~3.4!

Equations~3.3! and ~3.4! are tangent to one another at th
symmetrical pointsD(Dg ,Da):

Dg
25211g02Ag0a0 /b, Da

25212a01Ag0a0 /b.

In the domain of small detunings, bounded by curves 1 a
2, the absorptive mechanism of nonlinearity has a domin
role. The transition from small to large detunings corr
sponds to a transition from absorptive to dispersive types
nonlinearity. However, bistability is absent in areas of lar
detunings, between curves 1 and 2, because the nece
condition of bistability, I down.0, or ā05a0 /(11Da

2)
.athr , is not fulfilled there. As follows from Fig. 2, the las
condition also depends on the detunings. The dashed l
~parabolic curves in the plane of squared detunings!, corre-
spond to the conditionā05athr , and intersect the boundarie
of the bistability domain in tangent pointsD. They enclose
the bistability domain in the case of large detuningsDa .
Nevertheless, bistability can also be obtained in the regio
large detunings, since with an increase of the gain coeffic
g0 tangent points go to the region of large detunings alo
the unchanged dashed lines. In this case the bistability
main does not include the vicinity of zero detunings, a
breaks into two parts, corresponding to opposite signs ofDg .

Now let us consider stability of the plane-wave solutio
against small perturbations~modulation instability!. Linear-
izing Eq. ~2.9! with respect to perturbations of the type

Ē~x,t !→eiutAI ~11u1egt1 ikx1u2* eg* t2 ikx!,

one can find an expression for the dependence of pertu
tion growth rateg on modulation spatial frequencyk:

g~k2!5Re@ I f 8~ I !#1ARe@ I f 8~ I !!212k2 Im@ I f 8~ I !#2k4.
~3.5!

It follows from Eq.~3.5! that modulation instability exists in
the range 0,k2,2kmax

2 , when Im@ I f 8(I )#.0. Here kmax
2

5Im@ I f 8(I )#. The maximum growth rate is given b
g(kmax

2 )5Re@ I f 8(I )#1ARe@ I f 8(I )#21kmax
2 .0. Curve 3 in

Fig. 2 is determined by the condition Im@ f 8(I )#50. Since
positive valuesDg correspond to radiation self-focusing i
the active medium, the domain of modulation instability a
pears to the right from dotted curve 3.

IV. LOCALIZED STRUCTURES FOR INERTIONLESS
NONLINEARITY: EFFECT OF FREQUENCY DETUNINGS

The simplest type of stationary localized structure is
motionless DOLS. The steady-state envelope of suc
DOLS does not depend on the values of the relaxation tim
tg,a , whereas its stability is relaxation dependent. In t
section we consider the stability and bifurcations of a stati
ary DOLS for the case of inertionless nonlinearity. For ze
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frequency detunings such a study was performed in R
@26,30#. Therefore, here we concentrate on the case of n
zero frequency detunings. In dimensional units, the width
the DOLS is typically about the effective Fresnel zoneXF ,
and depends slightly on gain. Note that laser DOLS’s e
both without and with a modulational instability of homog
neous field distributions, as well as in the case of driv
nonlinear interferometers@31,32#.

For d50 we seek for solution of Eq.~2.7! in the form

Ē5A~x!e2 iat, ~4.1!

with A(x)→0 for x→6`. Substituting Eq.~4.1! into Eq.
~2.9!, we obtain the following ordinary differential equatio
for the DOLS envelope:

d2A

dx2
1aA2 iA f ~ uAu2!50, ~4.2!

with f (uAu2) defined by Eq.~2.8a!. The value of the spectra
parametera describing the frequency shift of the DOLS is
be determined. After the substitutionA(x)5r(x)eiF(x), Eq.
~4.2! can be rewritten in the forms@13,26#

]xr5rk, ]xq522qk1Ref ~r2!,
~4.3!

]xk52a1q22k22Im f ~r2!,

whereq5]xF, k5r21]xr, and]x[]/]x.
Equations~4.3! have two spatially homogeneous solutio

L6 which correspond to zero laser field:r50, q6

56„

1
2 @(a1 f 02)

21 f 01
2#1/21a1 f 02…

1/2, and k65 f 01/2q6 .

Here f 015Ref (0)5211ḡ02ā0 and f 025Im f (0)
52(ḡ0Dg2ā0Da). These two solutions represent the no
lasing regime; see Sec. III. Linearization of Eqs.~4.3! in the
vicinities of the fixed pointsL6 shows that each of the so
lutionsL6 has a single real eigenvalue and a pair of comp
conjugated eigenvalues defined byl1

65k6 , l2
6522(k6

1 iq6), andl3
65l2

6* . Since in the bistability domain we
have f 01,0, the fixed pointL2 (L1) is a saddle-focus with
a 1D unstable~stable! manifold and a 2D stable~unstable!
manifold.

A stationary DOLS corresponds to heteroclinic trajecto
of Eqs.~4.3! connecting the fixed pointsL1 andL2 . There-
fore, we need to find bifurcation points in the parame
space for which Eqs.~4.3! have a heteroclinic trajectory o
the type described. Specifically, a fundamental~single-
humped! DOLS corresponds to the simplest~‘‘single-pass’’!
heteroclinic trajectory that visits vicinities of the fixed poin
L2 to L1 only once. It was shown in Ref.@26# that the
existence of such a DOLS implies the existence of an infin
number of multi-humped, or combined DOLS’s, that can
considered as a coupled state of two or more single DOL
Due to the symmetry property~2.11!, after an appropriate
shift along thex axis the envelopeA(x) of the motionless
DOLS can be taken as either even or odd function ofx. Note
that, according to Ref.@26#, the intensity of any stationary
DOLS cannot have more than one zero at a finite transv
coordinatex. Hence for an odd functionA(x) there is only
one zero atx50, and no zeros for even functionsA(x). In
s.
n-
f

t

n

-

x

r

e
e
s.

se

particular, for the symmetric@with an even functionA(x)#
three-particle DOLS shown in Fig. 3, there are no exact
tensity zeros. As follows from Fig. 3~b!, the zeros of real and
imaginary parts of the complex envelopeA(x) are slightly
split. Note that Fig. 3 presents results of a direct solution
the partial differential equation~2.9!. We solve this and simi-
lar equations~2.3! numerically by the splitting method, with
the use of an algorithm of fast discrete Fourier transform
tion @6,16#.

Now let us consider the DOLS stability against small p
turbations. In this section we deal with the simplest case
inertionless media, when the laser dynamics is described
Eq. ~2.9!. An unperturbed solution has the form of Eq.~4.1!,
with the envelopeA(x) obeying Eq. ~4.2!. Substituting
slightly perturbed solutions

@V0~x!1dV~x!elt#e2 iat, V05S ReA

Im AD , dV5S RedA

Im dAD
~4.4!

into real and imaginary parts of Eq.~2.9! and neglecting
second and higher terms with respect to small perturba
dV, we obtain the linear equationL̂0dV(x)5ldV„x… for the
eigenvaluesl, determining the stability of the DOLS. Her
the linear operator

L̂05S ReF1~A,A* ! 2a2]xx2Im F2~A,A* !

a1]xx1Im F1~A,A* ! ReF2~A,A* !
D ,

~4.5!

with F6(A,A* )5 f (I 0)1 f 8(I 0)(I 06A2), I 05uAu2, and
f 8(I 0)5(d f(I )/dI) I 5I 0

.

In the bistability domain, where the nonlasing regimeA
50 is stable, the continuous spectrum of operator~4.5! lies
in the left half-plane of the complex planel5Rel1 i Im l,

FIG. 3. Stable three-particle localized structure. Curve 1 rep
sents transverse intensity profiles. Curve 2~3! shows the real
~imaginary! part of the field envelope near one of the two intens
minima. Markers represent calculation mesh. Parameters are
same as in Fig. 2.
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and does not produce instability. Therefore, we can res
our consideration to the discrete spectrum.

Due to the symmetry properties~2.10! and ~2.11!, the
discrete spectrum of operator~4.5! includes a triply degener
ate zero eigenvalue. Two corresponding eigenvectors
‘‘neutral modes,’’ are designated by C1,2(x)
5(Rec1,2,Im c1,2)

T, with c15 iA and c25]xA. These

FIG. 4. Stability boundaries of the localized structures on
plane of frequency detunings. The localized structure is stable
moderate values of detunings. Dashed lines indicate the bound
of the bistability domain of spatially homogeneous regimes. Cur
1 represent the Andronov-Hopf supercritical bifurcation. At sadd
node bifurcation curves 2, a stable localized solution merges w
an unstable one and disappears. Curves 3 and 4 are the uppe
lower boundaries of the stability domain of an oscillating localiz
structure. Below curve 4 an oscillating localized structure is tra
formed into a ‘‘leading center.’’ Bistability of stationary and osc
lating localized structures takes place between curve 3 and
lower part of curve 1. A narrow bistability domain near upper cur
1 is not shown. Parameters are the same as in Fig. 2.
ct

or

eigenvectors obey the equationL̂0C1,2(x)50. The third zero
eigenvalue is associated with the symmetry property~2.11!,
and corresponds to the adjoint vectorC3(x)
5(Rec3 ,Im c3)T with c352 ixA/2 obeying the equation

L̂0C3(x)5C2(x). Note that, due to the symmetry proper
of the fundamental DOLS envelopeA(2x)56A(x), the
two neutral modesC1(x) andC2(x) have opposite parities
Specifically, for a ‘‘one-particle’’ DOLS with an even func
tion A(x)5A(2x), we haveC1(x)5C1(2x) and C2(x)
52C2(2x). Moreover, sinceL̂0(x)5L̂0(2x), any eigen-
vector of the linear operatorL̂0 is either even or odd. There
fore, it is possible to study the stability with respect to ev
~symmetric! and odd ~antisymmetric! perturbations sepa
rately.

The discrete spectrum of the linear operator~4.5! l was
calculated numerically for a fundamental DOLS with diffe
ent frequency detuningsDg andDa . The boundaries of the
DOLS existence and stability are shown in Fig. 4. The s
tionary DOLS is stable in the central area, including the c
ordinate origin Dg5Da50. The stability boundaries ar
given by curves 1 and 2. At the saddle-node bifurcat
curves 2, a stable DOLS merges with an unstable one
disappears. We found also an additional bifurcation tha
not shown in Fig. 4, since it is very close to the upper part
curves 2. At the Andronov-Hopf bifurcation curves labeled
there is a pair of pure imaginary eigenvaluesl, correspond-
ing to even perturbations. In this case, destabilization o
stationary DOLS results in the arising of spatially inhom
geneous nonstationary regimes. Examples of such a reg
obtained by a numerical solution of Eq.~2.9!, are given in
Fig. 5. At the point of the Andronov-Hopf bifurcation, th
period of DOLS oscillations is 2p/Im l. It should be par-
ticularly emphasized that here we study an Andronov-H
bifurcation of an inhomogeneous~localized! field distribu-
tion, contrary to instabilities of homogeneous distributio
~see, e.g., Refs.@6,14,33#!. Periodically oscillating DOLS’s
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s
-
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-

he
FIG. 5. Oscillatory localized structuresDg50.1, andDa520.48. Other parameters are the same as in Fig. 2.
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exist between curves 3 and 4 in Fig. 4. Between curves 4
1 ~lower curve! a more complex regime referred as a ‘‘lea
ing center’’ arises. It is characterized by the periodic
emerging of new~additional! DOLS’s. Analogous regimes
for zero frequency detunings were described in Ref.@34#. A
similar bifurcation takes place near upper curve 1, but i
much more narrow domain. Note that Fig. 4 illustrates bif
cations of the fundamental DOLS, while its ‘‘excited state
with oscillating intensity transverse profile exist in a mo
narrow range of the laser parameters; see Ref.@26#.

As pointed out above, we consider a transversely 1D la
with a single mode regime for the second transverse coo
natey. For transversely 2D lasers, there existy-independent
stripe patterns with the same field dependence onx as for the
1D laser. However, we have shown that these patterns
modulationally unstable. To find the small perturbati
growth rate, one has to generalize expression~4.4! by inclu-
sion of multipliers exp(6iky). The results of the growth rat
calculation are presented in Fig. 6. The instability takes pl
in a finite range of perturbation spatial frequencyk. Differ-
ent types of stable 2D DOLS’s were described in Ref.@3#.

V. EFFECT OF RELAXATION RATES

A. Transversely motionless dissipative structures

In this section we present numerical results concern
the stability of the motionless DOLS’s as solutions of Eq
~2.3a! with a zero value of the diffusion coefficientd and
nonzero values of the population relaxation timestg,a.0.
Let us consider a slightly perturbed stationary DOLS@Eq.
~4.1!# defined by Eq.~4.4!, together with

ḡ~x,t !5g(0)~x!1dg~x!elt, a~x,t !5a(0)~x!1da~x!elt,
~5.1!

whereg(0)(x)5ḡ„I (x)… and a(0)(x)5ā„I (x)… are given by
Eq. ~2.6!. Here, as before, we choose the coordinate origin
such a way that the unperturbed DOLS envelope is an e
function of the variablex @A(x)5A(2x)#. Due to this fact
we can study the stability with respect to even~symmetric!
and odd~antisymmetric! perturbations separately. Substitu
ing Eqs. ~4.4! and ~5.1! into Eqs. ~2.3b! and ~2.3c!, we
obtain the linearized equationL̂dV(x)5ldV(x) with
dV(x)5(RedA,Im dA,dg,da)T.

FIG. 6. Real part of the perturbation growth rate vs the spa
frequencyk: g052.06, a052.0, b510, andDg,a50.
nd
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As in the case of inertionless media, the operatorL̂ has
two eigenvectorsC1(x)5(2Im A,ReA,0,0)T and C2(x)
5]x(ReA,Im A,g(0),a(0))T, which are associated with sym
metries~2.10a! and~2.10b! respectively. However, the ‘‘Gal-
ilean transformation’’ symmetry~2.11! is now broken, and,
as a result of this, the linear operatorL̂ has only two zero
eigenvalues;l15l250. The third eigenvaluel3, which was
equal to zero in the inertionless limittg,a50, is in the gen-
eral case shifted from the origin in the complex plane. The
fore, even if the DOLS is stable fortg,a50, it may be un-
stable for arbitrary small nonzero relaxation times.

Bifurcation loci for the motionless DOLS as a solution
Eqs.~2.9! are shown in Fig. 7. They were plotted using t
results of numerical calculation of the discrete spectrum
the operatorL̂. The straight lineS indicates the steady-stat
bifurcation defined by the conditionl350. Here the eigen-
valuel3 corresponds to an odd eigenvector of the operatoL̂
which is different fromC2, but coincides with this eigenvec
tor in the limit tg,a→0. For sufficiently smalltg,a the lineS
defines the stability boundary of the motionless DOL
When crossing this line from the right, the motionless DO
becomes unstable, giving rise to a localized structure slo
moving with some definite constant velocityv. The exact
value of v depends on the distance from the instabil
boundaryS. Since opposite directions of propagation a
equivalent, there exist at least two DOLS’s traveling w
opposite velocities. If the population difference in the pa
sive medium relaxes much faster than that in the active
dium, the motionless DOLS is always unstable. Indeed,
ta50 andtg.0 the passive medium is equally saturated
motionless and travelling DOLS’s, while the active mediu
is less saturated by a travelling DOLS. This situation see
to be more favorable for the existence of a stable trave
DOLS than for a motionless one. With the increase of
relaxation timeta the absorption saturation decreases fo
traveling DOLS, and for a giventg a certain threshold value
of ta exists above which the motionless DOLS becom
stable. Thus the population relaxation process in an abs
ing medium exerts a stabilizing effect on the motionle
DOLS. When tg,a are large enough, different bifurcatio
scenario leading to the instability of the motionless DOLS
observed. In this case the stability boundary is associa
with the Andronov-Hopf bifurcation. In Fig. 7 the

l

FIG. 7. Bifurcation diagram for the motionless localized stru
ture: g052.06, a052.0, b510, andDg,a50. Bifurcation curves
are obtained by means of numerical calculations of the disc

spectrum of the operatorL̂. The steady-state bifurcation line i
markedS. CurvesH, H1, and H2 correspond to Andronov-Hop
bifurcations. The motionless localized structure solution is sta
above curvesS, H, and H1. Asterisks indicate the positions o
codimension-two points.
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Andronov-Hopf bifurcation curves are markedH, H1, and
H2. The curveH represents an Andronov-Hopf bifurcatio
with a pair of pure imaginary eigenvalues corresponding
even eigenvectors@V(x)5V(2x)#. This bifurcation leads to
an oscillating DOLS similar to that shown in Fig. 5.

CurvesH1 and H2 correspond to Andronov-Hopf bifur
cations with a pair of pure imaginary eigenvalues associa
with odd eigenvectors of the linear operatorL̂. The bifurca-
tion curve H2 terminates at a codimension-2 point
Bogdanov-Takens type@35,36# marked B in Fig. 7.
Codimension-2 points associated with the interaction
tween two Andronov-Hopf bifurcations are also present
Fig. 7. These points are labeledQ. Under certain conditions
the existence of this kind of degenerate bifurcation impl
the appearance of quasiperiodic and irregular regimes@35#.
PointsT denote the intersections of the Andronov-Hopf b
furcation curvesH andH1 with the pitchfork bifurcation line
S. These points correspond to codimension-2 bifurcati
with a single zero and two purely imaginary eigenvalues

B. Bifurcation to a slowly moving localized structure

In this section we derive an analytical stability conditio
for motionless DOLS’s as solutions of Eqs.~2.3a! and~2.4!,
with nonzero values of relaxation timestg,a . To this end, we
introduce a perturbation technique for DOLS’s with sm
transverse velocities anddÞ0. We start with the laser equa
tions in a moving frame of reference. Substituting, in E
~2.3a! and ~2.4!,

Ē~x,t !→E~j!eivj/22 int, ḡ~x,t !→g~j!, ā~x,t !→a~j!,

wherej5x2vt, v is the velocity of moving frame accom
panying the moving DOLS,n is the nonlinear frequency
shift for motionless DOLS, anda5n1(v2/4), we obtain

2 ivd~g,a!
dE

dj
1

v2

4
d~g,a!E5 iaE1@ i 1d~g,a!#

d2E

dj2

1 f ~g,a!E, ~5.2a!

2tgv
dg

dj
5ḡ02g2uEu2g, 2tav

da

dj
5ā02a2b̄uEu2a,

~5.2b!

f ~g,a!5211~12 iDg!g2~12 iDa!a,

d~g,a!522S t'gg
Dg

11Dg
2

2t'aa
Da

11Da
2D . ~5.2c!

We are looking for slowly moving DOLS’s which ca
bifurcate from the motionless one. Lettg

(0) be the bifurcation
value of the parametertg corresponding to instability of the
motionless DOLS. Then, perturbing the parametertg near
the bifurcation point, we obtain

tg5tg
(0)1v2tg

(2) .
o

d

-

s

s

l

.

Here the small parameterv is the velocity of the slowly
moving DOLS to be found. The parametertg

(2) measures the
deviation from the bifurcation point.

Substituting Eqs.~5.2b! and ~5.2c! into Eq. ~5.2a!, we
obtain

iaE1@ i 1d~ uEu2!#]jjE1E f~ uEu2!

52vU~E,]jg,]ja!1 ivd~ uEu2!]jE1O~v2t'g,'a!,

where]j[d/dj, ]jj[d2/dj2, functionsf andd are defined
by Eq. ~2.8!, and

U~E,g,a!5EF ~12 iDg!tgg

11uE2u
2

~12 iDa!taa

11b̄uEu2
G .

We are looking for slowly moving DOLS’s in the forms

E~j!5E0~j!1vE1~j!1O~v2!,

g~j!5g(0)~j!1vg(1)~j!1O~v2!,

a~j!5a(0)~j!1va(1)~j!1O~v2!,

where E0(x)e2 iat, g(0)(x), anda(0)(x) correspond to a
motionless DOLS. Since the original equations are invari
under the transformation (x,v)→(2x,2v), for the funda-
mental DOLS we obtainEk(2j)5(21)kEk(j), g(k)(2j)
5(21)kg(k)(j), a(k)(2j)5(21)ka(k)(j), andk50 and 1.
Equating zeroth order terms inv, we obtain

g(0)~j!5
ḡ0

11uE0~j!u2
, a(0)~j!5

ā0

11b̄uE0~j!u2
,

~5.3!

where the envelope of the motionless DOLSE0(x) obeys the
equation

iaE01@ i 1d„uE0~j!u2
…#]jjE01E0f „uE0~j!u2

…50.

Equating the first order terms inv, we obtain

L̂V15U1 , ~5.4!

where

V15S E1

E1*
D ,

U15S U~E0 ,]jg
(0),]ja

(0)!2 id~ uE0u2!]jE0

U* ~E0 ,]jg
(0),]ja

(0)!1 id~ uE0u2!]jE0*
D

and
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L̂5S L11 L12

L12* L11*
D ,

L1152 ia2~ i 1d~ I 0!!]jj2 f ~ I 0!2I 0] I f ~ I 0!2E0* ]jjE0] Id~ I 0!,

L1252E0
2] I f ~ I 0!2E0]jjE0] Id~ I 0!,

~5.5!
o-
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with ] I f (I 0)5@d f(I )/dI) I 5I 0
, andI 05uE0u2.

Note that the linear operatorL̂ has zero eigenvalue ass
ciated with the eigenvectorC1 defined by

C15S c1

c1*
D , c15]jE0 , c1~j!52c1~2j!.

These vectors obey the relationsL̂C150. The adjoint
operatorL̂†, which is obtained from Eq.~5.5! by transposi-
tion, has a zero eigenvalue associated with the eigenvec
C1

†5(c1
† ,c1

†* )T, and c1
†(j)52c1

†(2j). In order for Eq.
~5.4! to be solvable, its right hand side must be orthogona
the solution of the adjoint equationL̂†C1

†50:

^C1
†U1&50. ~5.6!

Equation~5.6! can be rewritten in the form

tg
(0)E

2`

` Re@~12 iDg!E0c1
†#]jg

(0)

11uE0u2
dj

5taE
2`

` Re@~12 iDa!E0c1
†#]ja

(0)

11b̄uE0u2
dj

1E
2`

`

d~ uE0u2!Im~c1
†]jE0!dj, ~5.7!

with g(0) and a(0) defined by Eq.~5.3!. Equation~5.7! de-
fines the pitchfork bifurcation of a motionless DOLS into
slowly moving one, and corresponds to a straight line in
plane of parameters (tg ,ta). According to Fig. 7, this line is
the stability boundary of the motionless DOLS for moder
values oftg andta .

FIG. 8. Comparison of the ‘‘exact’’~curves 1 and 3! and ap-
proximate~curves 2 and 4! stationary localized structures as sol
tions of Eq.~2.7!. Transverse profiles of intensityI ~curves 1 and 2!
and diffusion coefficientd ~curve 3 and line 4! for stable localized
structures are given fort'g,'a50.03 andDg,a520.1. Other pa-
rameter values are the same as in Fig. 2.
rs
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e

C. Numerical simulations

Here we present the results of study of DOLS stabil
and bifurcations by numerical solution of Eqs.~2.3a!. In Fig.
8 we show the transverse profile of the intensity depend
diffusion coefficientd(I ) ~curve 3!, and give its approxima-
tion by a constant value estimated in the vicinity of t
DOLS intensity maximum~line 4!. Curves 1 and 2 presen
DOLS transverse intensity profiles calculated for intens
dependent diffusion coefficientd(I ) defined by Eq.~2.8b!,
and for constant diffusion coefficientd(I )5d5const, re-
spectively. It follows from Fig. 8 that the approximation o
constant diffusion coefficient does not change the DO
shape essentially. Hence, when solving Eq.~2.7!, one can
assume thatd is intensity independent.

Our numerical simulations based on Eqs.~2.3a! confirm
the results of the bifurcation analysis given in Sec. V B. A
ditionally, they permit one to study dynamical regimes f
from the bifurcation threshold, and, what is especially imp
tant, to find new types of DOLS’s.

Stability domains of different types of DOLS’s in th
(tg ,ta) plane are shown in Fig. 9. Steady-state motionl
DOLS’s are stable to the left of straight line 1 and curve
As discussed in Sec. V B, line 1@see Eq.~5.7!# indicates a
pitchfork bifurcation from a motionless DOLS into a slow
moving one. The latter type of DOLS is stable in the doma
between straight line 1 and curve 3. The pitchfork bifurc
tion at line 1 is associated with an eigenvalue correspond
to an odd vectorC3(x)52C3(2x). Therefore, unlike the
motionless DOLS, the slowly moving one is transverse
asymmetric. In other words, leading and trailing edges o
DOLS, which moves in a medium with relaxation, intera
with unsaturated and saturated amplification and absorpt
respectively. However, when the DOLS velocity is sma

FIG. 9. Stability domains of different localized structures. M
tionless localized structures are stable to the left from curves 1
3. Fast localized structures are stable to the right of curve 4.
slowly moving localized structure is stable between curves 1 an
Parameters ared50.01 andDg5Da50. Other parameters are th
same as in Fig. 2.
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this asymmetry is practically indistinguishable. At th
Andronov-Hopf bifurcation curve 2 transition from a mo
tionless steady-state DOLS into a pulsating one occurs. T
DOLS is similar to that shown in Fig. 5.

Numerical simulations revealed the existence of two d
ferent types of DOLS’s. First, to the right of curve 4, stab
DOLS’s moving with large transverse velocity~‘‘fast
DOLS’s’’ ! can be formed. These structures are character
by narrower intensity distributions and much greater pe
intensities, as compared with slowly moving DOLSs. In F
10 we present transverse profiles of the laser field inten
together with the saturated gaing and the difference betwee
total losses and gain 11a2g for bistable ‘‘slow’’ and
‘‘fast’’ localized structures. It follows from this picture tha
at the leading edge of the fast DOLS the gain is practica
unsaturated. The peak of the gain saturation is shifted to
trailing edge. Behind the core of the fast DOLS, there ex
a ‘‘refractory period’’ zone@10#, in which the gain slowly
relaxes to its unsaturated value. Note that the peak inten
of the fast DOLS is much greater than the intensity of
homogeneous steady-state solution which corresponds to
upper branch of the bistability curve~see Fig. 1!. This prop-
erty establishes a certain similarity of the fast DOLS’s w
Q-switching regimes typical of lasers with a saturable a
sorber.

Second, DOLS’s with a periodically varying transver
velocity and an oscillating transverse profile can be excit
Periodic evolution of the DOLS’s characteristics is illu
trated in Fig. 11. For the parameters of Fig. 11 the period
oscillations isT550t ñ , wheret ñ is the photon lifetime in
the cavity.

Different types of DOLS’s can coexist in certain param
eter domains. A hysteretic behavior that takes place with
change of the population relaxation time in an amplifyi
medium, is illustrated by Fig. 12. Up totg50.9, a motion-
less DOLS is stable. With an increase oftg, this DOLS loses
stability, and a slowly moving DOLS arises. The velocity

FIG. 10. Transverse profiles of radiation intensityI, population
difference in active mediumg ~curve 1!, and effective lossesd
511a2g ~curve 2! for a localized structure moving with velocit
v520.1036~a! and29.367~b!. Dashed lines indicate intensity o
the stationary spatially homogeneous states. Arrows indicate
direction of the localized structure motion. Parameters areta50.3
andtg51. Other parameters are the same as in Fig. 9.
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a slow DOLS increases withtg up to a bifurcation into a
DOLS with oscillating velocity attg51.2. As the relaxation
time tg is further increased, a hysteretic jump to a bran
corresponding to fast DOLS’s occurs. Then, with a decre
of tg, a jump from the branch of the fast DOLS’s to th
branch of the motionless ones takes place attg50.9.

VI. CONCLUSION

We have performed a systematic study of the effect
frequency detunings on the properties of DOLS’s—localiz
structures of coherent radiation in dissipative nonlinear o
cal schemes. In the limit of fast~inertionless! nonlinearity,
the model considered describes both transversely 1D~slab!
lasers with a saturable absorber and single mode fibers
gain and saturable losses. We have analyzed bifurcation
stationary DOLS’s, and found a wide domain of detunin
where periodically oscillating DOLS’s and more comple
spatially inhomogeneous nonstationary regimes arise. A h

he FIG. 11. Phase portrait of a localized structure with periodica
oscillating velocity.I max is the maximum radiation near-field inten
sity, P is the total power~a!, I max

(v) is the maximum far-field intensity,
and v is the localized structure velocity~b!. Parameters are:ta

50.3 andtg51.23. Other parameters are the same as in Fig. 9

FIG. 12. Hysteretic change of the localized structure velocity
ta50.3. Other parameters are the same as in Fig. 9.
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teresis between stationary and nonstationary DOLS’s
demonstrated.

Important new features of the DOLS’s arise when t
relaxation processes in intracavitary active and passive
dia are taken into account. We present a derivation of
field envelope equation, which includes intensity-depend
effective diffusion coefficient. Linear stability analysis of th
simplest transversely motionless DOLS’s revealed the c
ditions of bifurcations of these DOLS’s into slowly movin
or pulsating ones. Secondary bifurcations of the pulsa
DOLS’s lead to more complex patterns, with a nonconser
tion of the number of localized structures. Numerical so
tion of the envelope equation shows the existence of
new types of DOLS’s:~i! fast DOLS’s, i.e., DOLS’s moving
with large transverse velocity which are similar
-

s
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tt.

.

V.
s

e-
e
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Q-switching regimes in a laser with a saturable absorber;
~ii ! DOLS’s characterized by a transverse velocity and p
file oscillating in time. With a change of the laser param
eters, hysteretic jumps between different types of DOL
occur.

The results presented demonstrate the existence of a
variety of localized structures in dissipative optical syste
under bistability conditions. Although only 1D structure
were studied here, similar features are expected for two-
three-dimensional DOLS’s.
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