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Multidimensional quasiperiodic antiphase dynamics
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We study analytically the (N21)-fold degenerate Hopf bifurcation at whichN stationary modes with
identical parameters become unstable in a model of a solid-state laser with intracavity second harmonic
generation. We use the normal form method and exploit the symmetries of the problem. Up toN53, stable
periodic antiphased solutions emerge from the Hopf bifurcation. ForN54, stable quasiperiodic solutions arise
from the degenerate Hopf bifurcation. ForN.4, the quasiperiodic solutions may be unstable. Then chaotic
itineracy is observed numerically close to the degenerate Hopf bifurcation.@S1063-651X~99!07808-3#

PACS number~s!: 05.45.Xt, 05.40.2a, 42.65.Ky
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I. INTRODUCTION

Antiphase oscillations were studied theoretically and
perimentally in coupled Josephson junctions@1,2#, coupled
chemical oscillators@3#, olfactory systems@4#, multimode
lasers@5–15#, and coupled laser arrays@16#. In a solid-state
laser with intracavity second harmonic generation~ISHG!
operating onN longitudinal modes, this type of oscillation
can appear after a Hopf bifurcation of the cw regime ch
acterized by an equal intensity of all the modes. When all
excited modes belong to the same electric field polariza
and have equal gains, losses, and cross-saturation co
cients, this bifurcation is degenerate and produces diffe
kinds of antiphase states. In particular, there is a perio
solution in which all modes oscillate with the same wa
form but each mode has its phase shifted by 2p/N from the
previous mode. Permutation among the modes produceN
21)! such states. These solutions have been referred t
type-1 antiphase dynamics~AD1! in the ISHG problem
@10,11#. They have also been called splay-phase sta
@16,17# or ponies on a merry-go-round@18#. AD1 solutions
are similar to the traveling~rotating! wave solutions de-
scribed in a ring of coupled oscillators@16,19,20#. Due to
their high multiplicity, the AD1 solutions have potential a
plications as basic elements of rewritable dynamic patt
memory@21#. Although these solutions are most common
found in the context of laser antiphase dynamics, their
bility properties for the ISHG model have never been stud
systematically. This paper is an attempt to fill this gap. F
that purpose, we derive the normal form equations govern
the evolution of the laser modal intensities near the H
instability threshold. Using these equations we analyze
stability properties of the AD1 solutions oscillating on a
arbitrary number of modes. We show that for the model
study, near the degenerate Hopf bifurcation point the p
odic AD1 solutions are unstable ifN.3. Stable AD1 re-
gimes can appear only at a finite distance from the dege
ate bifurcation point if the mode numberN is small enough.
PRE 601063-651X/99/60~2!/1616~14!/$15.00
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We describe the instabilities of the AD1 solution leading
quasiperiodic antiphase states. Though the validity of
analytical results is limited to a small vicinity of the dege
erate Hopf bifurcation point, qualitative results concerni
the antiphased properties of these quasiperiodic solut
turn out to be in a good agreement with those obtained
numerical integration of the original laser equations in
wide parameter domain.

This paper is organized as follows. After this introductio
we present the model for ISHG lasers in Sec. II. In Sec.
we introduce the general formalism for the analysis of
degenerate Hopf bifurcation of theN-mode solution based on
symmetry considerations. The main section is Sec. IV wh
the explicit normal form is derived from the physical equ
tions. In Sec. V, the general analysis is applied to the thr
mode regime, the only regime for which stable periodic AD
solutions emerge though the Hopf bifurcation is degener
Section VI deals with the four-mode regime in which th
Hopf bifurcation leads to stable quasiperiodic solutions.
Sec. VII we derive some properties of the bifurcating so
tion for five and more oscillating modes. The results a
summarized and discussed in the conclusion.

II. MODEL EQUATIONS

A frequency-doubled solid-state laser can be described
the equations@22#

h
dIk

dt
5I kFGk2a1«I k22«(

r 51

N

I r G , ~1!

dGk

dt
5g2GkF11~12b!I k1b(

r 51

N

I r G . ~2!

Here I k (Gk) is the intensity~gain! of the modek. The pa-
rameterh is defined ash5tc /t f wheretc and t f are the
cavity round-trip and fluorescence lifetime, respectively. T
cavity loss parameter isa, the linear gain isg, andb is the
1616 © 1999 The American Physical Society
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cross-saturation parameter. These three parameters ar
sumed to be the same for all the modes.N is the total number
of laser modes. We assume that all modes have the s
electric field polarization. The parameter« describes the
nonlinear losses due to the frequency doubling process in
KTP ~KTiOPO! crystal. Note that all modes are strict
equivalent since they have exactly the same parame
Therefore Eqs.~1! and ~2! are SN equivariant, whereSN is
the symmetry group consisting of all possible permutatio
of modal indices.

III. DEGENERATE HOPF BIFURCATION

It has been shown that for«,h!1 andg small enough,
the only stable steady-state solution of Eqs.~1! and~2! is that
for which all N lasing modes have equal intensities and eq
gains@9#

I j5I .0, Gj5G.0, j 51, . . . ,N. ~3!

Increasing the pump parameter, this solution undergoe
Hopf bifurcation leading to antiphase oscillations of t
modal intensities. The Hopf bifurcation condition is@9#

g5
I 0

u
@a1«I 0~2N21!#, I 05

u

12u@11~N21!b#
,

~4!

where I 0 is the critical modal intensity andu5h/«. At the
bifurcation boundary~4! the linear stability analysis of the
solution ~3! yields N21 identical pairs of pure imaginar
eigenvalues. Hence, forN.2 the condition~4! defines a
degenerateHopf bifurcation~hereafter referred to asH) that
cannot be described by means of the usual Hopf bifurca
formalism. The degeneracy of the Hopf bifurcation resu
from the symmetries imposed by the equivalence of the la
modal parameters. Unlike a nondegenerate Hopf bifurca
which produces only a single branch of periodic solutio
the number of solutions bifurcating from theN-mode solu-
tion atH increases with increasingN. Among these solutions
are the (N21)! AD1 antiphased periodic solutions fo
which all N modes oscillate with the same wave form b
with the phase shifted by 2p/N from another mode@1#.
However, we show in the next sections that more soluti
can exist, in particular, stable quasiperiodic antiphased s
tions.

IV. NORMAL FORM EQUATIONS

A. Linear transformation

Consider the Hopf bifurcation point defined by Eq.~4!.
As already mentioned, forN.2 Eqs. ~4! correspond to a
degenerate bifurcation. After introducing the variables

x2 j 215«~ I j2I !, x2 j5Gj2a2«I ~2N21!, t5tI /u,

where j 51, . . . ,N and I is the steady-state modal intensi
~3!, Eqs.~1! and ~2! are transformed into

]tx5Jx1K ~x,x!, ~5!
as-
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wherex5(x1 ,x2 , . . . ,x2N)T and K (x,x) is a vector whose
components are homogeneous second order polynomia
the xj . The 2N32N Jacobian matrixJ has the structure

S L1 L2 . . . L2

L2 L1 . . . L2

] ] � ]

L2 L2 . . . L1

D , ~6!

whereL1 andL2 are the 232 matrices

L15S 21 1

2x 2112r
D , L25S 22 0

2bx 0D ,

~7!

x5uS 2N211
a

«I D , r5
u

2I 0I
~ I 2I 0!,

and I 0 is the critical modal intensity defined by Eq.~4!. The
matrix L2 results from the coupling between modes. T
eigenvalues of the matrix~6! are

l j5r2 iv, lN1 j5l j* , lN52N1r2 iV,

l2N5lN* ,

with j 51, . . . ,N21, and

v25x~12b!2~12r!2,

V25x@11~N21!b#2~N211r!2. ~8!

The parameterr is the deviation from the Hopf bifurcation
point, andv and V are the two relaxation oscillation fre
quencies@12#. The Hopf bifurcation is possible only ifv2

.0. In the following analysis we assume thatV2 is also
positive. The stable eigenvalueslN and l2N are associated
with the eigenvectors belonging to the synchronization ma
fold x15x35•••5x2N21 and x25x45•••5x2N , whereas
the remaining eigenvalues are associated with the eigen
tors orthogonal to this manifold@23#. The eigenvectorsvl
5$v lm% (wl5$wlm%) of the matrixJ ~transposed matrixJT)
can be chosen as

v j ,2k2152
ie2p i j (k21)/N

2N Im l j
,

v j ,2k52~122r1lN1 j !v j ,2k21 , ~9!

wj ,2k215~122r1l j !wj ,2k , wj ,2k5e22p i j (k21)/N, ~10!

vN1 j5vj* , wN1 j5wj* , ~11!

with j ,k51, . . . ,N. The eigenvectorsvl and wm are bior-
thogonal,

(
p51

2N

v lpwmp5d lm ,

and obey the relations

(
k51

N

v j ,2k215 (
k51

N

v j ,2k5 (
k51

N

wj ,2k215 (
k51

N

wj ,2k50, ~12!
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with j 51, . . . ,N21. The relations~12! are equivalent to the
sum rule derived in@10,11#.

We introduce the linear change of variables

yj5 (
k51

2N

wj ,kxk , yN1 j5 (
k51

2N

wN1 j ,kxk5yj* , ~13!

with j 51, . . . ,N in Eqs.~5! which are transformed into

dyj

dt
5l j y j1Yj~y1 , . . . ,yN ,y1* , . . . ,yN* !, ~14!

where j 51, . . . ,N and Yj are homogeneous second ord
polynomials inyk andyk* .

Since all lasing modes have identical parameters, Eqs~1!
and~2! are equivariant under any permutations of the mo
indices. As a result, Eqs.~14! must also possess symmet
properties. Let us consider the transformation defined by
cyclic permutation of the modal indices

~1,2,3, . . . ,N!˜~N,1,2, . . . ,N21!. ~15!

Taking into account Eqs.~13! and ~10!, it is easy to show
that the symmetry property~15! of Eqs. ~1! and ~2! implies
that Eqs.~14! are equivariant under the action of the cyc
groupZN which is defined by

z~y1 , . . . ,yN!5~ei zy1 , . . . ,eiNzyN!, z52p/N. ~16!

Let us fix the index of the first lasing mode (j 51) and
consider all possible permutations of the remainingN21
modal indices,j 52, . . . ,N. It follows from Eq. ~13! that
each of these permutations generates a linear transform
of the variablesy1 , . . . ,yN . According to Eq.~10!, wNk
does not depend onk. HenceyN is invariant under any mode
permutation. Using the relations~9! we get the following
transformation rule for the remainingN21 variables:

y˜Sny, Sn5V21PnV, n51, . . . ,~N21!!, ~17!

where y5(y1 , . . . ,yN21)T. The elements of the (N21)
3(N21) matrix V5$Vlm% in Eq. ~17! are Vlm5e2p i lm/N

while P1 , . . . ,P(N21)! are the unitary matrices obtaine
from the (N21)3(N21) identity matrix using all possible
row permutations. The linear transformations~17! define a
unitary representation of the symmetric groupSN21 consist-
ing of all the permutations among theN21 modal indices,
j 52, . . . ,N. The symmetries of Eqs.~1! and ~2! imply that
the right hand side of Eqs.~14! commutes with all the trans
formations defined by Eq.~17!. The symmetry groupSN21
has (N21)! elements, each corresponding to a unitary m
trix Sn . Note, however, that the action of this group can
generated by onlyN22 linear transformations. Every pe
mutation of the modal indices can be obtained by the sequ
tial application ofN22 permutations, each of which inte
changes only two neighboring indicesj and j 11.

There is also a transformation in Eq.~17! which corre-
sponds to the flip symmetry of Eqs.~14! defined by

k~y1 ,y2 , . . . ,yN21 ,yN!5~yN21 ,yN22 , . . . ,y1 ,yN!. ~18!

This symmetry corresponds to the permutation
r

l

e

ion

-
e

n-

~1,2,3, . . . ,N!˜~1,N,N21, . . . ,2!.

In the new variables~13!, the sum of the mode intensitie
takes the form

(
k51

N

I k~ t !5 (
k51

N S I 1
x2k21

« D
5NI1

1

« S (
k51

N

(
j 51

N

v j ,2k21yj1c.c.D
5NI2

Im yN~t!

«V
, ~19!

whereNI is the sum of the steady-state modal intensities
follows from Eq. ~19! that the time-dependent part of th
total intensity is proportional to the imaginary part of th
variable yN corresponding to the eigenvalue2N1r2 iV.
This accounts for the fact that the total intensity of the mod
exhibits only one relaxation frequency, which isV @12#. The
relation ~19! also explains another peculiar feature of t
total output laser intensity which appears in the course of
antiphase oscillations. SinceyN andyN* are the only variables
associated with eigenvalues having finite negative real p
at the Hopf bifurcation pointr50 in the limit t˜`, these
variables and, hence, the total output laser intensity, h
much smoother behavior at least nearH than the intensities
of the individual modes@12,13#, which can be expressed a
linear combinations of the order parametersyk andyk* with
k51, . . . ,N21.

Each of the eigenvectors defined by Eqs.~9!, ~10!, and
~11! is associated with a type of antiphased regime. A sc

FIG. 1. Schematic representation of the eigenvect
v1 , . . . ,vN21 defined by Eqs.~9! for the case~a! N53, ~b! N54,
~c! N55, and ~d! N56. The arrow labeledk corresponds to the
modal intensityI k . Phase shift between the oscillating modal inte
sities is determined by the angle between the rays. If the grea
common divisor ofm and N is equal top, the vectorvm is repre-
sented by a diagram havingp rays.
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matic representation of the antiphased regimes corresp
ing to the basis eigenvectorsv1 , . . . ,vN21 is shown in Fig. 1
for N53, 4, 5, and 6. Each ray in this figure depicts a la
mode, whereas the angle between the rays describes the
tive phase shift between the oscillations of the modal int
sities. Periodic antiphase solutions emerging fromH can be
associated with linear combinations of the basis eigenvec
~9!. In particular, forN54 there exist (421)!56 types of
antiphased AD1 regimes which can be obtained by m
permutations. Only two of them, those corresponding to
eigenvectorsv1 and v3, are presented in Fig. 1~b!. The re-
maining four regimes are associated with two pairs of lin
combinations @v11(16 i )v27 iv3#/2 and @v31(16 i )v2
7 iv1#/2.

The linear coordinate change~13! with wjk defined by
Eqs.~10! and~11! is similar to the discrete Fourier transfo
mation which is used to study the dynamics of coupled
cillators ~see, for example,@16,20,23#!. Therefore, the ampli-
tudesyj can be considered as Fourier modes characterize
a certain wave number as shown in the next section.

B. Nonlinear analysis

Close to the Hopf bifurcation~4!, we can transform Eqs
~14! into normal form equations governing the time evo
tion of the order parametersy1 , . . . ,yN21. The transforma-
tion is performed in the vicinity of the steady-state soluti
with the help of near identity polynomial changes of va
ables@24–26#. In the new variableszj , j 51,2, . . . ,N21, the
resulting unfolded normal form equations take the form

dzj

dt
5~r2 iv!zj1(

p,q
Aj pqz1

p1
•••zN21

pN21z1
* q1

•••zN21
* qN21 ,

~20!

where j 51, . . . ,N21, p5(p1 , . . . ,pN21)>0, and q
5(q1 , . . . ,qN21)>0. The coefficientsAj pq of the normal
form depend on the parameters of the original laser eq
tions. According to the normal form theory@24# the sum over
p andq in the right hand side of Eqs.~20! contains only third
and higher order resonant terms which are characterize
(k51

N21(pk2qk)51. This means that the right hand side
Eqs. ~20! commutes with theS1 circle group action gener
ated by the transformation

q~z1 , . . . ,zN21!5eiq~z1 , . . . ,zN21!, qPS1. ~21!

This property is inherent in the Hopf bifurcation. In additio
the normal form equations~20! preserve all the symmetrie
of Eqs. ~14!. In particular, it follows from the symmetry
property ~16! that only the nonlinear terms which obey th
relation

modS (
k51

N21

k~pk2qk!,ND 5 j ~22!

are present in the right hand side of the equation govern
the evolution of the variablezj . By definition mod(a,b) is
the fractional part ofa/b. The remaining symmetry proper
ties ~17! of Eqs. ~14! imply certain relations between th
d-

r
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rs

e
e

r
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by

a-

by

g

normal form coefficientsAj pq . With these properties take
into account, Eq.~20! truncated to retain terms up to thir
order becomes

dzj

dt
5~r2 iv!zj22azj (

k51

N21

uzku2

2bzN2 j* (
k51

N21

zkzN2k2c (
k,l ,m51

N21

dkl
m jzm* zkzl , ~23!

where j 51, . . . ,N21, dkl
m j51 for mod(k1 l 2m2 j ,N)

50, anddkl
m j50 otherwise. Explicit expressions for the com

plex coefficientsa, b, and c in terms of the parameters o
Eqs.~1! and ~2! are given in the Appendix.

The symmetry property~18! results in the flip symmetry

k~z1 ,z2 , . . . ,zN21!5~zN21 ,zN22 , . . . ,z1! ~24!

of Eqs.~20! and~23!. Together with Eq.~16!, the symmetry
property ~24! constitutes the dihedral symmetry groupDN .
Therefore, the symmetry group of the normal form equatio
containsDN as a subgroup.

In the following sections we analyze the stability prope
ties of the third order normal form equations~23! in the limit

h,«!1, a,b,u[h«5O~1!, ~25!

which is suggested by the experiments@5#. In the limit ~25!,
using the asymptotic expressions for the normal form co
ficients given in the Appendix, we obtain the scalings

Rea,Rec5O~1!, Im a5O~«21/2!, Reb5O~«21!,

Im b,Im c5O~«23/2!, ~26!

Rea,Reb.0, Rec,Im a,Im c,0. ~27!

If N˜` the normal form equations~23! can be written as

]tW5~r2 iv!W22aWE
21/2

1/2

uWu2 dj

2bW* E
21/2

1/2

W2 dj2cWuWu2, ~28!

with a periodic boundary conditionW(t,21/2)5W(t,1/2),
where j is the continuous analog of the discrete variab
j /N21/2. For even N, substituting W(t,j)
5( j 51

N21zj (t)e2p i ( j 2N/2)j into Eq. ~28! we get the normal
form equations~23! which govern the time evolution of the
Fourier modeszj . Hence, the Fourier modezj can be asso-
ciated with the wave numberK j5 j 2N/2. In Eq. ~28! the
terms proportional toa andb describe the global coupling. In
the absence of coupling (a5b50) the Hopf bifurcation is
subcritical if Rec,0. As will be shown later, this inequality
leads to the instability of the periodic AD1 solutions in
laser with mode numberN.3.

According to the scalings~26!, the real parts of the
normal form coefficients can be neglected to leading or
in «. Then, Eqs.~23! at r50 become conservative with a
energy integral defined byE05(k51

N21uzku2. The correspond-
ing integral of Eq.~28! is E05*21/2

1/2 uWu2 dj. This result is
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in agreement with a more general result valid not o
in the vicinity of the instability threshold@27#. In the con-
servative limit the third order normal form~23! has an ad-
ditional integral defined by E15Im bu(k51

N21zkzN2ku2

1Im c( j ,k,l ,m51
N21 dkl

m jzj* zm* zkzl in the discrete case andE1

5Im bu*21/2
1/2 W2 dju21Im c*21/2

1/2 uWu4 dj in the continuous
case.

In order to examine the antiphase properties of the nor
form equation solutions, we need to come back to the v
ablesx2 j 21 describing the deviations of the modal intensiti
from the steady-state intensity

«~ I j2I !5x2 j 215 (
k51

N

vk,2j 21yk1c.c. ~29!

Any type of AD1 regime can be associated with a seque
$ j 1 , j 2 , . . . ,j N%, where two consecutive indicesj k and j k11
correspond to modal intensities oscillating with the pha
shift 2p/N. Consider the solution of Eqs.~23!,

z15r 1e2 i (v1v1)t, zk50 ~k.1!, ~30!

wherev1 is the nonlinear frequency shift proportional to th
unfolding parameterr. It describes the periodic AD1 regim
corresponding to the temporal pattern$1,2, . . . ,N% associ-
ated with the eigenvectorv1. Replacingy1 in Eq. ~29! by z1
from Eq. ~30! we get the relation x2 j 21
'r 1v1,2j 21e2 i (v1v1)t1c.c., where the complex function
v1,2j 21 determine the phase shift between the oscillat
modal intensitiesI k and I k11 which equals 2p/N.

Let us suppose that the solution~30! undergoes a second
ary Hopf bifurcation leading to a quasiperiodic solution. W
assume that near the secondary bifurcation point the co
butions of all the Fourier modes except forz1 andzm11 are
negligible and the quasiperiodic solution can be written
the form

z15r 1e2 i (v1v1)t, zm115r m11e2 i (v1vm11)t,

uv1,m11u!v, r 1@r m11@uzku ~kÞ1,m11!. ~31!

The solution~31! is characterized by two frequencies. Th
carrier frequencyv1v1 is determined by the frequency o
the periodic AD1 solution~30! and the envelope frequency
equal to the frequency splitting of the variablesz1 andzm11.
The temporal pattern$1,2, . . . ,N% associated with the an
tiphased carrier of the quasiperiodic solution~31! is the same
as for the AD1 solution~30!. Replacingyk by zk in Eq. ~29!
and neglecting the contributions of all the amplitudes exc
for z1 andzm11, we get for the oscillating parts of the mod
intensities x2 j 21'Zj (t)v1,2j 21e2 i (v1v1)t1c.c. The time
dependence ofZj (t) determines the envelope of the qua
periodic solution~31!. Using Eq.~9!, Zj (t) can be written as

Zj~t!5r 11e2p im( j 21)/Nr m11e2 iDvt, ~32!

whereDv5vm112v1 is the frequency splitting ofz1 and
zm11 ande2p im( j 21)/N describes the relative phase shift b
tween the envelopes of the quasiperiodic modal intensitie
can be deduced from Eq.~32! that for Dv.0 ~Dv,0! the
al
i-

e

e

g

ri-

t

It

low-frequency antiphased envelope of the quasiperiodic
lution ~31! has the temporal pattern associated with the
genvectorvm (vN2m).

Similar considerations can be applied if the quasiperio
regime ~31! itself undergoes a secondary Hopf bifurcatio
leading to a three-dimensional~3D! torus. If such a bifurca-
tion leads to the appearance of a third Fourier modezn11
(nÞm) oscillating at frequencyv1vn11 such thatuDv8u
5uvn112v1u!uDvu!v, then the resulting quasiperiodi
solution will exhibit two envelopes associated with th
eigenvectorsvm ~or vN2m) andvn ~or vN2n). The first enve-
lope is characterized by the frequencyuDvu!v, the second
envelope hasuDv8u!uDvu.

V. THREE MODES

For a laser operating with three identical modes,H cor-
responds to two identical pairs of pure imaginary eigenv
ues. In this case the normal form equations areD33S1 equi-
variant, whereD3 is the dihedral symmetry group which i
isomorphic to the symmetry groupS3 of the original laser
equations.D3 is generated by

z~z1 ,z2!5~ei zz1 ,e2 i zz2!, z52p/3, ~33!

k~z1 ,z2!5~z2 ,z1!. ~34!

A detailed study of a Hopf bifurcation withDN symmetry
was presented in@20#. However, in our particular case, th
relations ~26! and ~27! reduce substantially the number o
possible stable solutions. ForN53, the normal form equa-
tions ~20! limited to the fifth order take the form

]tzj5zj@r2 iv2Auzj u22Buzku22puzj u4

2quzku42r uzj u2uzku2#2szk
3zj*

2 , ~35!

where j ,k51,2, j Þk, A52a1c, andB52(a1b1c). We
do not present here an explicit form of the fifth order co
ficientsp, q, r, ands since it is not important in the furthe
analysis.

Let us first neglect the fifth order terms in Eqs.~35!. Then
the solutions corresponding to the antiphase periodic osc
tions of the modal intensities with the same wave forms
with a phase shift 2p/3 from one mode to the next~periodic
AD1 regimes! are given by

~z,0!, uzu25r/ReA, ~36!

~0,z!, uzu25r/ReA. ~37!

The solution ~36! is invariant under the transformatio
(z1 ,z2)˜e2 iq(ei zz1 ,e2 i zz2), while the solution~37! is in-
variant under (z1 ,z2)˜eiq(ei zz1 ,e2 i zz2) with q5z
52p/3 and, hence, they have the isotropy subgro
Z̃3,D33S1 @20#.

The eigenvalues determining the stability of the solutio
~36! and ~37! are

L1,252r6 iA3~ Im A!2/~ReA!221, ~38!

L3,45
r

ReA
@2Re~2b1c!6 i Im B#. ~39!
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The stability condition ReL1,252r,0 implies that the
AD1 solutions can be stable only if they are supercriti
(ReA.0). The second pair of eigenvalues~39! describes the
stability of the solutions~36! and ~37! with respect to small
perturbations of the Fourier modez2 and z1, respectively.
For ReA.0, using the relations~26! and ~27!, we get the
inequality ReL3,4,0 with ReL3,4'22r Reb/ReA
5rO(«21). Hence, in the limit~25!, the solutions~36! and
~37! are stable if and only if they are supercritical (ReA
.0). It can also be shown using the asymptotic express
of the normal form coefficients given in the Appendix that
the limit «˜0, the conditionb.1/4 is sufficient for the
solutions~36! and ~37! to be supercritical and stable.

Apart from Eqs.~36! and~37! the third order normal form
equations have the following family of periodic solutions:

~z,zeiw!, uzu25r/Re~A1B!.0, ~40!

with constantw. For Re (A1B).0 Eq. ~40! bifurcates su-
percritically atH. It is stable when Re (2b1c),0. Since in
the limit ~25! we have Re (A1B)'Re (2b1c)'2Reb.0,
the solution~40! is supercritical and unstable.

It can be shown that if the fifth order terms in Eq.~35! are
taken into account, the solution~40! splits into two limit
cycles withw50 andw5p. The limit cycle withw50 is
invariant under Eq.~34! and, hence, it has the isotropy su
group Z2(k),D3. For this regime, referred to as AD2 i
@10,11#, the intensities of two modes have the same wa
form and same phase while the third mode is dephased bp.
The limit cycle withw5p is invariant under the transforma
tion (z1 ,z2)˜eip(z2 ,z1). Therefore, it has the isotropy sub
group Z2(k,p),D33S1 and corresponds to a situatio
where two modal intensities oscillate with the same wa
form but arep out of phase, while the third intensity has
small amplitude oscillation at half the period. It follows fro
this analysis that for typical values of the parameters
which the experiments are conducted, both limit cycles
unstable nearH.

Thus, we have shown that in the limit~25! and for ReA
.0 only periodic AD1 regimes can be stable near the H
bifurcation boundary in a three-mode laser. The stable eig
values L3,4 defined by Eq.~39! are associated with an
tiphased damped oscillations. On the other hand, nume
simulations of Eqs.~1! and ~2! indicate that far aboveH
similar oscillations can become undamped. This correspo
to a secondary Hopf bifurcation which transforms the pe
odic antiphased AD1 regime into a regime with quasipe
odic modal intensities. An example is presented in Fig.
Though such secondary bifurcation far away from the fi
Hopf bifurcation cannot be described in the framework of
normal form~35!, the antiphased properties of the quasipe
odic solutions arising after secondary Hopf bifurcation c
be explained using the formalism presented in this pa
One can see that both the carrier and the envelope of
quasiperiodic regime shown in Fig. 2 are of the AD1 typ
Since this quasiperiodic regime bifurcates from the AD1
lution with the temporal pattern$1,2,3%, its carrier is associ-
ated with the eigenvectorv1 shown in Fig. 1~a!. The enve-
lope of the quasiperiodic solution results from the interact
between the Fourier modesy1 andy2. Therefore, depending
on the sign of their frequency splitting@Dv in Eq. ~32!#, this
l
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envelope is associated with either the eigenvectorv2 or the
eigenvectorv1. In Fig. 2 the low-frequency antiphased env
lope displays the temporal pattern$1,3,2% corresponding to
the eigenvectorv2. Therefore, in this case we haveDv,0 in
Eq. ~32!. Thus, the appearance of the quasiperiodic regim
can be related to the interaction between different types
periodic antiphased states, each one associated with a
genvector of the biorthogonal basis of Fourier modes~9!. In
the subsequent sections we show that forN>4 the normal
form equations~23! can exhibit undamped antiphased qua
periodic oscillations.

VI. FOUR MODES

In the case of four lasing modes, the symmetry group
the normal form equations is generated by

z~z1 ,z2 ,z3!5~ei zz1 ,ei2zz2 ,e2 i zz3!, z5
p

2
,

k~z1 ,z2 ,z3!5~z3 ,z2 ,z1!,

k1S z1

z2

z3

D 5
1

2 S i 12 i 1

12 i 0 11 i

1 11 i 2 i
D S z1

z2

z3

D ,

q~z1 ,z2 ,z3!5eiq~z1 ,z2 ,z3!, qPS1.

For N54 the third order normal form equations~23! take the
form

FIG. 2. Quasiperiodic solution of Eqs.~1! and ~2! with N53,
h51027, a51022, «5531027, g543, b50.3, andt85tAh. ~a!
and ~b! correspond to the same solution shown on two differ
time scales. The carrier~envelope! of the quasiperiodic solution is
associated with the eigenvectorv1 (v2) which is shown in Fig. 1~a!
and corresponds to the AD1 regime with the temporal patt
$1,2,3% ($1,3,2%).



ng

h
i.e
e
v
a

he

it
e

-

il-
l
v
d

ee
it
if

ity
d.

e

ion

rm

a-

ll

the

ent
m
to
eri-
ng

f

ts of

-

ter-

ary

1622 PRE 60A. G. VLADIMIROV, E. A. VIKTOROV, AND PAUL MANDEL
]tzj5zj@r2 iv2Auzj u22Cuz2u22Buzku2#

2czk
2zj* 2~c1b!z2

2zk* , ~41!

]tz25z2@r2 iv2~A1b!uz2u22C~ uz1u21uz3u2!#

22~c1b!z1z3z2* , ~42!

where j ,k51,3, j Þk, and

A52a1c, B52~a1b1c!, C52~a1c!. ~43!

Periodic solutions of normal form equations bifurcati
from H can be classified by their invariance properties~iso-
tropy subgroups! @20# . In our analysis we do not distinguis
between the solutions belonging to the same group orbit,
which can be obtained from each other with the help of p
mutations of modal indices. Since all such solutions ha
identical stability properties it is sufficient to consider only
single representative for each group orbit. It follows from t
equivariant Hopf theorem@20# that Eqs.~41! and ~42! pos-
sess at least five different types of periodic solutions w
period 2p/v atH. These solutions are listed below togeth
with their isotropy subgroups:

AD1:~z,0,0!, uzu25r/ReA, Z̃4 , ~44!

AD231:~z,z,z!, uzu25r/Re~6a13b17c!,

^k1&3^k&, ~45!

AD222:~0,z,0!, uzu25r/Re~A1b!, Z23^k&, ~46!

AD211:~z,0,z!, uzu25r/Re~C1b!, Z̃23^k&, ~47!

AD13:~z,z2zA3,22z1A3z!,

uzu25r/@4~21A3!Re~C1a!#, ^~k1,2p/3!&. ~48!

Here ^k&, ^k1&, Z̃2, and^(k1,2p/3)& are the groups gener
ated, respectively, byk, k1 , 2§q with q5p, andk1q with
q52p/3. The solution~44! is invariant under cyclic mode
permutation and has the isotropy subgroupZ̃4. The notation
AD2lm corresponds to the solution with two groups of osc
lating modes consisting ofl andm modes, respectively. Al
modal intensities in each group have the identical wa
forms and the same phase, while the intensities of the mo
belonging to different groups arep out of phase. It follows
from the relations~26! and ~27! that the solutions~45!–~47!
are always supercritical in the limit«˜0. The last solution
~48! resembles the AD1 solution that appears in a thr
mode laser: three of the four modal intensities oscillate w
the same wave form and such that each mode is phase sh
by 2p/3 from another mode, while the fourth modal intens
exhibits a small amplitude oscillation with half the perio
The stability conditions for all the solutions~44!–~48! can be
derived analytically. In the limit~25! the solutions~45!–~48!
are unstable with the real parts of the most unstable eig
values beingrO(«21).

The eigenvalues determining the stability of the solut
~44! are given by Eq.~38! and
.,
r-
e

h
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e
es

-
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n-

L3,45
r

ReA
@2Rec6 i Im C#, ~49!

L5,65
r

ReA
@2Re~2b1c!6 iA~ Im B!22ucu2#. ~50!

As for N53, the condition ReL1,2,0 implies that the AD1
solution can be stable only when it is supercritical (ReA
.0). Using the asymptotic expressions for the normal fo
coefficients given in the Appendix, it can be shown that ReA
is always positive forb.1/5. In the following analysis we
assume that the inequality ReA.0 is fulfilled. The eigenval-
uesL5,6 describe the stability with respect to small perturb
tions of the Fourier modez3. Using the relations~26! and
~27! we obtain ReL5,6'22r Reb/ReA,0. Finally, the ei-
genvaluesL3,4 describe the stability with respect to sma
perturbations of the Fourier modez2. Since for physical pa-
rameter values we have Rec,0 ~see the Appendix!, these
eigenvalues have positive real parts. This means that
AD1 solutions areunstableat least nearH where the third
order normal form equations are valid. This is in agreem
with the results of numerical simulations of the normal for
equations~41! and ~42!. For parameter values relevant
experimental situations, these equations exhibit quasip
odic oscillations with two frequencies, one of them bei
determined by the Hopf frequencyv and the second being
equal to the frequency splitting of the Fourier modesz1 and
z2. In the limit ~25! using the inequalityuReau,uRecu
!uRebu,uIm au,uIm bu,uIm cu which is the consequence o
Eq. ~26!, the quasiperiodic solution of Eqs.~41! and~42! can
be approximated as

uz1u2'
r

ReA
1O~«!, uz2u2'2uz1u2D2F1O~«2!,

uz3u2'uz1u2D1D2F21O~«3!, ~51!

argz12argz25Dvt't@ uz1u2 Im c1O~«1/2!#, ~52!

sin~argz11argz322argz2!

'S 3 Imc Reb

2AD1D2
D uz1u2 Im c1O~«3/2!, ~53!

where

F52
2 Rec

~3Imc!2Reb
,

D65~Reb!21@ Im ~4b1c63c!/4#2. ~54!

It is seen from the data shown in Fig. 3 that in the limit~25!
these expressions are in good agreement with the resul
numerical integration of Eqs.~41! and ~42!. Using Eqs.
~51!–~54! and the relations~26!, we get the asymptotic ex
pressionsuz2u25uz1u2O(«) and uz3u25uz1u2O(«2) for the
quasiperiodic solution. Therefore, this solution is charac
ized by the hierarchyuz1u@uz2u@uz3u, which can be inter-
preted in the following way. Let us consider the second
Hopf bifurcation of the AD1 solution~44! leading to a qua-
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siperiodic solution that takes place at ReL3,450 (Rec50).
At this boundary the antiphase oscillations associated w
the Fourier modez2 become undamped, leading to a we
antiphased modulation of the solution~44!. The modulation
frequency is determined by the frequency splitting of t
Fourier modesz2 and z1. This frequency vanishes atH.
Since for Rec50 we haveF50 in Eq. ~54! and hence
z25z350 in Eq. ~51!, it becomes clear that the relation
~51!–~54! describe the quasiperiodic solution bifurcatin
from the AD1 solution at the secondary bifurcation bound
ReL3,450. Moreover, the relations~26! imply the
asymptotic expressions ReL3,45rO(1), ReL5,6
5rO(«21), and, hence, the relation ReL3,4/ReL5,6
5O(«). Therefore, the hierarchial property of the quasipe
odic solution can be related to the fact that the effect
distance from the secondary Hopf bifurcation thresh
ReL3,450 becomes very small in the limit«˜0 ~the sec-
ondary bifurcation itself is not accessible in physical situ
tions since Rec is always negative!. This is why in the limit
~25! the contributions of the Fourier modesz2 andz3 in Eqs.
~51!–~54! vanish and the quasiperiodic solution~51!–~54!
becomes very similar to the periodic AD1 solution~44!.
SinceF.0 according to Eq.~27!, andD6.0, we can con-
clude from Eq.~51! that the quasiperiodic solution~51!–~54!
bifurcates supercritically at the secondary Hopf bifurcat
threshold ReL3,450 and, therefore, is stable near th
threshold.

Let us examine the temporal pattern associated with
antiphased envelope of the quasiperiodic solution~51!–~54!.
Since this solution bifurcates from the AD1 solution~44!, its
carrier is determined by the eigenvectorv1 which is associ-

FIG. 3. Quasiperiodic solutions of the normal form equatio
N54, r50.2. The normal form coefficients are evaluated
h50.001 25,a50.03, andb50.3. ~a! «50.003. The solid lines cor-
respond to numerical solution of Eqs.~41! and ~42!. The dashed
lines are obtained using the approximate expressions~51!–~53 !. ~b!
The solid lines correspond to the approximate solution~51!–~53!
which are constant in time. The asterisks denote the time-aver
numerical solutions of Eqs.~41! and ~42!.
th

y

-
e
d
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e

ated with the dominating Fourier modez1 and the temporal
pattern$1,2,3,4%. According to the results of Sec. IV B, th
envelope of the quasiperiodic solution resulting from the
teraction of the Fourier modesz1 andz2 is associated eithe
with the eigenvectorv3 @Dv,0 in Eq. ~32!# or with the ei-
genvectorv1 @~Dv.0 in Eq. ~32!#. Since according to Eqs
~52! and ~27! Dv'uz1u2 Im c,0, the frequency splitting of
the Fourier modesz1 andz2 is negative, and the envelope o
the quasiperiodic solution~51!–~53! corresponds to the ei
genvectorv3 and the temporal pattern$1,4,3,2%. This is in
agreement with the results of a numerical integration of
original laser equations. Figure 4 presents a quasiperio

.
t

ed

FIG. 4. Quasiperiodic solution of Eqs.~1! and ~2! with N54
andg50.355. The values of the parametersh, a, «, andb are the
same as in Fig. 3~a!, and t85tAh. ~a! and ~b! correspond to the
same solution shown on two different time scales. The carrier~en-
velope! of the quasiperiodic solution is associated with the eig
vectorv1 (v3) which is shown in Fig. 1~b! and corresponds to the
AD1 regime of the type$1,2,3,4% ($1,4,3,2%).

FIG. 5. Same solution as in Fig. 4 presented using the coo
natesy1,2,3 defined by Eq.~13!.
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1624 PRE 60A. G. VLADIMIROV, E. A. VIKTOROV, AND PAUL MANDEL
solution of Eqs.~1! and~2! calculated nearH for the param-
eter values of Fig. 3. The initial conditions were chosen
such a way that the carrier of this solution has the temp
pattern$1,2,3,4%. The envelope of the quasiperiodic solutio
shown in Fig. 4 has the temporal pattern$1,4,3,2% as pre-
dicted by the normal form analysis. In Fig. 5 the same so
tion is represented using the Fourier modesy1,2,3 which in
the linear approximation coincide withz1,2,3. As for the so-
lution of the normal form equations shown in Fig. 3~a!, the
Fourier modey1 determining the carrier type of the quas
periodic solution dominates the hierarchy. The second do
nating mode isy2, which determines the envelope type of t
quasiperiodic solution (v3). The smallest Fourier modey3
turns out to be of the same order asy4, which is not shown in
Fig. 5. The amplitudey4 determines the oscillation depth o
the total output laser intensity.

Thus, we see that in a laser operating in four identi
modes, pure periodic AD1 regimes are alwaysunstablein
the vicinity ofH if b.1/5 and in the limit~25!. Instead of
these regimes the third order normal form equations pre
quasiperiodic hierarchical solutions characterized by
tiphased carrier and antiphased envelope. However, acc
ing to our numerical observations the width of the applic
bility domain of the third normal form equations~23!
decreases with the decrease of the parameters« andh. There
exist at least two reasons for this phenomenon. The first
is that due to the singular nature of the laser equations~1!
and ~2! in the limit ~25!, H is a singular Hopf bifurcation
@28#. Very recently the singular nature of a Hopf bifurcatio
was also established in a model of a solid-state laser op
ing on n-L transition. It was shown that the asymptotic e
pansions used in the Hopf bifurcation analysis are valid o
for r!h1/2 @29#. This conclusion is supported by the resu
of numerical simulations of Eqs.~1! and ~2!, which show
that the quasiperiodic solution arising at the primary insta
ity thresholdH can disappear via a secondary Hopf bifurc
tion of the corresponding AD1 solution. After such a bifu
cation, which cannot be described by the third order norm
form equations~23!, the AD1 solution becomes stabl
Moreover, we have found that as the parameter« becomes
smaller, the distance betweenH and the secondary Hop
bifurcation decreases. However, according to our numer
results, the stable AD1 regime arising after this second
Hopf bifurcation usually undergoes a tertiary Hopf bifurc
tion leading once again to a quasiperiodic solution with
tiphased properties similar to those predicted using our n
mal form analysis. This indicates that the qualitati
conclusions derived with the help of the normal form meth
can remain valid even beyond the applicability domain of
normal form equations~23!. Moreover, far above the firs
instability thresholdH, we have observed numerically 3
tori with the carrier corresponding to the eigenvectorv1 and
two antiphased envelopes corresponding to the eigenve
v3 and v2. This result indicates that when the linear ga
parameter is large enough, the antiphased oscillations a
ciated with the complex eigenvaluesL5,6 describing the sta-
bility with respect to small perturbations of the Fourier mo
z3 can become unstable. These oscillations produce an a
tional antiphased low-frequency envelope which exhibit
temporal pattern associated with the eigenvectorv2 displayed
in Fig. 1~b!.
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The second factor that restricts the applicability of t
normal form equations is related to the possibility of sy
chronization of the quasiperiodic solution. According to Eq
~7! and ~8! in the limit ~25! the Hopf bifurcation frequency
becomesv5O(«21/2). On the other hand, taking into ac
count the asymptotic expressions for the normal form co
ficients given in the Appendix, we conclude that the env
lope frequency of the quasiperiodic solution~51!–~53! is
uDvu'uz1u2 Im c5rO(«23/2). Hence, for«˜0 the envelope
frequency grows much faster than the carrier frequencyv.
However, since the normal form equations~20! and~23! are
valid only for uDvu!v, for « small enough the applicability
domain of the normal form equations becomes very narr
r!«5O(h). Outside this domain the carrier and the env
lope frequencies can be of the same order and, hence
synchronization phenomenon which cannot be described
the normal form equations~20! and ~23! is possible.

For N54 we have a simple pair of pure imaginary eige
values at the secondary Hopf bifurcation boundary ReL3,4
50. Therefore, each of the AD1 solutions generates onl
single 2D torus. Therefore, one could expect that generic
the total number of different stable hierarchical quasiperio
solutions obtained by permutations of the modal indices
incides with the total number of different periodic AD1 re
gimes, i.e.,~421!!56. However, simple considerations ind
cate that synchronization of these tori may produce a gre
number of stable periodic solutions. Indeed, a synchron
tion of the quasiperiodic solution characterized by the hi
archyuz1u@uz2u@uz3u would produce periodic solutions with
all three nonzero amplitudes. Neglecting the contribution
the smallest Fourier modez3, we conclude that the periodi
antiphased regime arising after synchronization correspo
to the linear combinationz1v11z2v2, where the phase dif-
ference between the Fourier modesz1 and z2 is fixed for a
pure periodic solution. Though foruz1u@uz2u such solutions
are very similar to the AD1 solutions which are invaria
under the isotropy subgroupZ̃4, the presence of the secon
Fourier modez2Þ0 breaks the symmetry with respect
cyclic permutations of modal indices. Therefore, in this ca
such permutations also can produce distinct periodic s
tions. In particular, the symmetry breaking associated w
the synchronization of the hierarchical quasiperiodic solut
can lead to slightly different oscillation amplitudes for di

FIG. 6. Stable periodic solution of Eqs.~1! and ~2! with

broken Z̃N symmetry.N54, h51026, a50.01, «50.9631025,
g50.0151,b50.2, andt85tAh.
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PRE 60 1625MULTIDIMENSIONAL QUASIPERIODIC ANTIPHASE DYNAMICS
ferent modes. Similar periodic solutions were observed
merically and one of them is presented in Fig. 6. In t
figure two pairs of modes have slightly different oscillatin
amplitudes. The existence of such a solution will imply fro
symmetry considerations the existence of at le
2~421!!512 distinct stable solutions which can be obtain
with the help of modal index permutations. Stable perio
solutions for which all four modes have slightly differe
oscillation amplitudes were also observed for parame
close to those of Fig. 6. In this case, the number of sta
solutions obtained by permutations of the modal indices
creases up to 4!524.

VII. FIVE OR MORE MODES

In this section we restrict our considerations to the sta
ity properties of the antiphased AD1 solutions of Eqs.~23!

having the isotropy subgroupZ̃N . All such solutions belong
to the same group orbit and, hence, without loss of genera
we can consider only a single solution defined by

uz1u25r/ReA, zk50 ~k.1!. ~55!

The first two pairs of eigenvalues determining the stability
the solution~55! are given by Eqs.~38! and ~49!. As in the
caseN54, the eigenvaluesL1,2 determine whether the AD1
regime bifurcates supercritically or not. It can be shown t
in the limit ~25! the conditionb,1/(N11) is sufficient for
the AD1 solution to be supercritical. This corresponds
ReA.0 and we will assume that this inequality is fulfilled
Since we have Rec,0, the second pair of eigenvaluesL3,4,
which describes the stability with respect to small pertur
tions of the Fourier modez2, is always unstable. ForN55
the remaining four eigenvalues are given by

L5,75
r

ReA
@2b2Rec6 iA~ Im C2 ib !22ucu2#, ~56!

L6,85L5,7* . ~57!

For N>6 there existN25 additional pairs of complex ei
genvalues

L9,105
r

ReA
@2Rec6 iA~ Im C!22ucu2#. ~58!

Here A, B, andC are defined by Eq.~43!. The eigenvalues
~56! and~57! describe the stability with respect to small pe
turbations of the Fourier modesz3 andzN21. In the limit ~25!
the eigenvaluesL5,6 have negative real parts.

We have found that forN55, depending on the sign o
the real parts of the eigenvaluesL7,8, the normal form equa-
tions can exhibit two different types of behavior. If ReL7,8
,0, the only unstable eigenvalues areL3,4. In this case the
solutions of the normal form equations~23! are quasiperiodic
and characterized by a hierarchy similar to that obtained
N54. Specifically, for the hierarchical solution with dom
nating Fourier modez1, the second dominating mode whic
determines the type of low-frequency modulation of mo
intensities isz2. Hence, depending on the sign of the fr
quency splitting of the Fourier modesz1 and z2, this enve-
lope is associated either with the eigenvectorv4 or with v1.
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However, ReL7,8.0 in most physical situations. In this cas
quasiperiodic hierarchical solutions are unstable and num
cal integration of Eqs.~23! yields more complicated irregula
solutions as shown in Fig. 7. This kind of solution can
related to a chaotic intermittency between different unsta
quasiperiodic states, each associated with a certain AD1
gime. Similar antiphased solutions with slowly varying i
regular envelope were observed by numerical integration
Eqs.~1! and~2! close toH. They are presented in Figs. 8 an
9. Unlike the hierarchical quasiperiodic solution describ
above, for which the carrier type does not change with tim
the solution shown in Fig. 9 has a high-frequency carr
with a time-dependenttemporal pattern. This intermittent be
havior is similar to the chaotic itineracy found in@21#.

FIG. 7. Numerical solution of the normal form equations~23!
with N55, r50.2. The normal form coefficients are evaluated
h51024, a50.02,«5531024, andb50.34.

FIG. 8. Antiphased solution of Eqs.~1! and ~2! with slowly
varying irregular envelope.N55, g50.04111, andt85tAh. Other
parameter values are the same as for Fig. 7.
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1626 PRE 60A. G. VLADIMIROV, E. A. VIKTOROV, AND PAUL MANDEL
As in the caseN54, stable AD1 solutions can appear f
N55 by increasing the distance fromH. Usually they ap-
pear in the following way. First, the quasiperiodic hierarc
cal solutions become stable. After that, these solutions m
into the AD1 solutions at the secondary Hopf bifurcati
point. However, when the distance fromH is further in-
creased, the AD1 solutions usually become unstable a
via a tertiary Hopf bifurcation leading to quasiperiodic so
tions with the antiphased properties that can still be
scribed qualitatively using the orthogonal Fourier basis~9!.
If, for example, the antiphased carrier type of the quasip
odic regime corresponds to the eigenvectorv1, the envelope
type is determined by one of the remaining eigenvectors.
numerical simulations also indicate the existence of soluti
with two antiphased envelopes appearing on different t
scales. Such solutions, obtained by numerical integration
Eqs.~1! and~2! with N55, are displayed in Figs. 10 and 1
One can see from these figures that while the antipha
carrier of the solution corresponds to the eigenvectorv1 and
the temporal pattern$1,2,3,4,5%, the two antiphased enve
lopes correspond to the eigenvectorsv4 with mode pattern
$1,2,3,4,5% and v2 with mode pattern$1,5,4,3,2%. It follows
from our analysis that these envelopes can be related to
eigenvaluesL3,4 andL5,6,7,8, respectively.

Finally, for N>6 there areN25 pairs of the eigenvalue
~58!, each of them describing the stability with respect
small perturbations of the Fourier modesz31k and zN222k
with k<N25. Since Rec,0, these eigenvalues have pos
tive real parts. Therefore, at least in the vicinity ofH the
number of unstable eigenvalues of the AD1 solution
creases with the mode numberN. This may be one of the
main obstacles that prevents the observation of the pure
riodic AD1 regimes in a frequency-doubled laser with lar
number of modes.

The stability analysis of the solution~55! performed using
the normal form equations~23! is valid only in the vicinity of
H. However, Eqs.~14! governing the evolution of the vari
ablesyj are isomorphic to Eqs.~1! and ~2! if v2.0 in Eq.

FIG. 9. Same solution as in Fig. 8 shown on two identical tim
intervals separated byDt8589 800. The local maxima of the inten
sity I k are labeledk.
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~8!. As already mentioned, the variableyj can be considered
as a Fourier mode corresponding to the wave numberK j
5 j 2N/2. Now let us return to the expression~32! describ-
ing the envelope of a quasiperiodic solution which aris
after a secondary Hopf instability of the AD1 solution~55!.
It follows from this expression that the temporal pattern
the envelope is determined by the wave number differenc
the Fourier modesy1 and ym11 and by the sign of their
frequency splittingDv. Hence, there exists a corresponden
between the envelope pattern of the quasiperiodic solu
and the wave number splitting of the basic Fourier modey1
and the second dominating~most unstable! Fourier mode
ym11. We illustrate this statement by Fig. 12 which show
the same quasiperiodic solution as in Figs. 10 and 11,
presented using the antiphased Fourier basisy1 , . . . ,y5. It is
seen that the basic Fourier mode determining the carrier
of the quasiperiodic solution is the modey1. The second
~third! dominating Fourier modey2 (y3) produces the enve
lope associated with the eigenvectorv4 (v2). According to
Figs. 10 and 11, both the Fourier modesy2 andy3 produce
undamped oscillations and, therefore, they are unstable
can be seen from Fig. 12 that the most unstable secon
Fourier mode is the modey2. It is associated with the wave
number closest to that of the basic Fourier modey1 (K2
2K151). This indicates that the first instability of the AD
solution is associated with thelongest wavelengthperturba-
tions. It should be noted that we have observed a sim
feature in almost all cases where the secondary Hopf bi
cations of the AD1 solutions have been detected by num
cal integration of Eqs.~1! and ~2!. In Fig. 12 the Fourier
mode y4 with K452K1 has the smallest absolute valu
This could be interpreted as a result of strong competit

FIG. 10. Quasiperiodic solution of Eqs.~1! and ~2! with N
55, h51027, a51022, «5331027, g50.43, b50.3, andt8
5tAh. The envelope corresponding to the smallest of the th
frequencies is associated with the eigenvectorv2 shown in Fig. 1~c!.
This eigenvector corresponds to the antiphased AD1 regime of
type $1,4,2,5,3%.
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between the counterpropagating waves with equal abso
values of group velocities.

VIII. CONCLUSION

We have studied the (N21)-fold degenerate Hopf bifur
cation that is responsible for the onset of the antiphase o
lations in a model of intracavity second harmonic generati
Using the normal form techniques and symmetry consid
ations, we have derived third order normal form equatio
~23! and~28! describing the mode interaction near the ins
bility threshold. Since the normal form equations obtain
are universal, they can be applied to study not only the IS
problem but also an equivariant Hopf bifurcation in oth
systems consisting of globally coupled identical elemen
With the help of these equations we have performed an a
lytical stability analysis of periodic solutions emerging atH.
Specifically, in the parameter range typical of experimen
we have shown that if the mode numberN is greater than 3,
the usual periodic AD1 solutions characterized by eq
phase shift 2p/N between neighboring modes are usua
unstablein the vicinity ofH. Moreover, the number of un
stable eigenvalues for these solutions increases with the
crease of the mode numberN. This might prevent the obser
vation of the pure periodic AD1 regimes in a frequenc
doubled laser with large number of excited modes. Note
for N.3 the instability of the AD1 solution is accompanie
by the appearance of astrong resonancein the normal form
equations@20,24#.

The comparison of the analytical results with those
numerical simulations of the original laser equations sho
that though in the limit~25! the validity domain of the third
order normal form equations~23! is very narrow, antiphased

FIG. 11. Same as Fig. 6 but on a larger time scale. The enve
corresponding to the second smallest frequency is associated
the temporal pattern$1,5,4,3,2%. The oscillations with the carrie
frequency are associated with the temporal pattern$1,2,3,4,5%.
te
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quasiperiodic oscillations similar to those predicted using
normal form method can be observed even far above
Hopf instability threshold. These solutions are characteri
by antiphased carrier and low-frequency antiphased en
lopes, each of them corresponding to an eigenvector of
biorthogonal basis~9!–~11!. Such kinds of regimes can b
interpreted as a result of interaction between different
tiphased states~Fourier modes! oscillating with slightly dif-
ferent frequencies and corresponding to different wave nu
bers. According to this interpretation the frequency and
temporal pattern of the antiphased envelope are determ
by the wave number difference and the frequency splitting
the corresponding interacting Fourier modes each assoc
with a certain antiphase state.

It follows from our analysis that the coefficients of th
normal form equations governing the evolution of modal
tensities nearH obey the asymptotic scalings~26!. This im-
plies the existence of a certain hierarchy between the
parts of the eigenvalues determining the stability of the A
regime, with some eigenvalues having absolute values
their real parts much smaller than the others. Therefore,
could expect that the relaxation frequencies associated
the eigenvalues having the smallest absolute values of t
real parts might be detected in the fluctuation spectra o
stable AD1 regime which can appear at a finite distance fr
H. For Rec50 in Eqs.~23! and ~28!, the AD1 solution of
the normal form equations is neutrally stable with the nu
ber of neutrally stable eigenvalues increasing linearly withN.
A related property, referred to as neutral stability of t
splay-phase solution, has been reported in Josephson
tion arrays@30,31# and in an array of linearly coupled solid
state lasers@16#. In our model, instead of neutrally stab
directions we have weakly unstable directions which cor
spond to eigenvalues having real parts of the orderrO(«0).
Numerical simulations of Eqs.~1! and ~2! show that the

pe
ith

FIG. 12. Same solution as in Figs. 10 and 11, but presente
the antiphased Fourier basis.
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weakly unstable directions can be stabilized by increas
the distance fromH and, as a result of this, stable AD
solutions can appear. In the parameter range~25! we have
not observed this stabilization for the mode numbersN.5.

We have also presented numerical evidence for a st
solution with slightly broken symmetry under cyclic perm
tations of modal indices which could be related to the s
chronization on the antiphased torus. It follows from symm
try considerations that the number of such stable soluti
g

le

-
-
s

should be greater than the number of the usual AD1 perio
regimes, which is equal to (N21)!.

ACKNOWLEDGMENTS

This research has been supported in part by the Fo
National de la Recherche Scientifique, the Interuniversity
traction Pole program of the Belgian government, and by
INTAS grant.
APPENDIX: COEFFICIENTS OF THE NORMAL FORM

The coefficients in Eqs.~23! evaluated up to a common positive multiplicator are

Rea5
~12b! u $uNb v21@12u~12b!# ~N22v21V2!%

2~N21V2!
,

Im a5
u~12b! $uN~223 b! v21@2u~12b! 2v2# ~N22v21V2!%

2v~N21V2!
,

Reb5
1

2 @N21~2 v2V!2# @N21~2 v1V!2#
„N v2 $8u2~12b22uN ~12b! @112u ~31b!#24 v2@115u26u b

2u2 ~12b!2#1Nv2 @1115u217u b14u2b~12b!#18 v4 ~12ub!1u ~N21V2! @223b12bv222u~12b!2#%

1@12u~12b!#@v22u~12b!# ~N414v412 N2V225 v2 V21V4!…,

Im b5
1

6 v @N21~V22 v!2# @N21~V12 v!2#
„212N v4 $u ~12b!~32u!2v2@31u24 ub1u2b~12b!#%

13 u N v2 $~7 b24! v21u ~12b! @22b ~31v2!#% ~N21V2!1@v213u ~12b! v222 v4

1u2~12b!2 ~v222!# ~N414 v425 v2 V21V4!2N2v2 ~2 v221! ~11v212 V2!

13 u N2v2 @~19223b! v218 b v412 ~12b! V2#2u2N2 ~12b!2 @13v414 V212 v2 ~112V2!#),

Rec52
1

2
~12b! u @12u~12b!#,0,

Im c5
2v2~11v2!1u~12b! @3 v22u~12b! ~101v2!#

6v
.

Herev andV are defined by Eqs.~8!.
In the limit ~25!, we have obtained the following asymptotic expressions:

Rea5
Nu b~12b!

2@11~N21!b#
1O~«!,

Im a52
Nub~12b!

2@11~N21! b# S a ~12b!u

«I 0
D 1/2

1O~«1/2!,

Reb5
N a ~12b! u $8~12b!22b@32~N13! b# @11u~12b!#%

2«I 0@32~N13!b# 2
1O~1!,

Im b5
Nb

3@32~N13! b# S a ~12b!u

«I 0
D 3/2

1O~«21/2!,
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