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Abstract. We study stability and bifurcations of 1D localized structures in a laser with a
saturable absorber. Instability leading to oscillating localized structure is described. Our
numerical study of light propagation in a dispersive medium with saturable gain and
absorption provides evidence for the existence of 3D ‘laser bullets’.
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1. Introduction

The term ‘localized structures (LSs) of laser radiation’ is used
for structures formed in a limited region of the transverse
section of laser systems, for example, in wide-aperture lasers.
They are of particular interest since they represent the case
of self-organization in nonlinear coherent optical systems
and have promising applications in optical data processing.
Stable localized laser structures, ‘laser autosolitons’, were
first predicted in [1] and were investigated theoretically in
[2–5] (see also the literature cited there). Recently, such
structures were observed experimentally in a cavity with
photorefractive crystals serving as the gain and loss elements
[6,7] and in a dye laser with bacteriorhodopsin as a saturable
absorber [8]. Mathematical aspects of a theory of similar
structures were studied without specific reference to lasers
(see [9, 10] and the references therein). Laser autosolitons
representing islands of lasing against the background of
a stable nonlasing regime and formed by hard excitation,
are very similar to localized structures in bistable passive
nonlinear optical systems, such as wide-aperture nonlinear
interferometers excited by external radiation investigated
earlier. Stationary and pulsating ‘diffraction autosolitons’
arising in driven passive optical devices were predicted
theoretically [11, 12] and detected experimentally [13, 14]
(see also the review [3]). ‘Diffusive autosolitons’ were
investigated intensively earlier in various physical, chemical
and biological systems [15,16].

Here we study stability and bifurcations of 1D localized
solutions arising in a model of a wide-aperture laser with a
saturable absorber. Numerical evidence for the existence of
3D ‘laser bullets’ arising in a medium with saturable gain,
absorption and frequency dispersion is presented.
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2. Laser model

We start with the consideration of 1D localized structures
arising in transverse section of a wide aperture bistable ring
laser with a saturable absorber. The laser model is described
by the equation governing the evolution of the dimensionless
complex electric field envelopeE [3,4]

∂tE = i∂xxE +Ef (|E|2), (1)

where

f (|E|2) = −1 +
L1(1− i11)g0

1 +L1|E|2/β −
L2(1− i12)a0

1 +L2|E|2 . (2)

The timet is normalized by the cavity relaxation rate;x is the
dimensionless transverse coordinate. The parametersg0 and
a0 describe linear gain and linear absorption, respectively;
β = Ig/Ia is the ratio of the saturation intensities. The
parameter11 (12) describes frequency detuning between
cavity eigenfrequency and amplification (absorption) line
centre; L1,2 = (1 + 12

1,2)
−1. Spatially homogeneous

dynamical regimes arising in a detuned laser with a saturable
absorber are described in [17]. Note, that after the
substitutiont → z, x → t equation (1) is transformed into
the simplest equation describing light propagation in a single
mode fibre with saturable amplification and absorption [3].
Herez is the coordinate along the fibre axis.

Equation (1) is invariant under phase shift of the electric
field envelope and under translations in space. These
symmetry properties are defined by the transformations

E(x, t)→ E(x, t)eiη, (3)

E(x, t)→ E(x + h, t), (4)

with arbitrary η and h. They are preserved in the case
of finite population relaxation rates in amplifying and
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absorbing media. In addition, equation (1) describing a
laser with inertionless media is invariant under ‘Galilean
transformation’ (transformation to a moving system of
coordinates):

E(x, t)→ E(x − vt, t)eivx/2−iv2t/4. (5)

This means that any motionless solution of equation (1)
generates a family of uniformly moving solutions each
characterized by some definite value of the velocityv. For
finite values of the population relaxation rates ‘Galilean
transformation’ symmetry is broken and, hence, localized
structures cannot travel with arbitrary constant velocity. In
this case uniformly moving autosolitons are expected to have
some fixed velocity.

3. Localized solutions

Let us consider the stationary motionless localized solution of
equation (1) which is characterized by the time independent
transverse distribution of the laser intensity|E|2 = I (x):

E = A(x)e−iαt , (6)

with A(x) → 0 for x → ±∞. Substituting (6) into (1)
we get the ordinary differential equation for the autosoliton
amplitude

∂xxA + αA− iAf (|A|2) = 0, (7)

with f (|A|2) defined by equation (2). Here the values
of the spectral parameterα (frequency shift of the laser
field) for which stationary localized solutions exist, are to
be determined. After the substitutionA(x) = a(x)ei8(x),
equation (7) can be rewritten in the form [5,10]

∂xa = ak ∂xq = −2qk + Ref (a2)

∂xk = −α + q2 − k2 − Im f (a2),
(8)

whereq = ∂x8 and k = a−1∂xa. Equations (8) possess two
steady-state solutions which correspond to zero laser-field
intensity

L± : a = 0

q± = ±( 1
2[(α + f02)

2 + f01
2]1/2 + α + f02)

1/2

k± = f01/2q±.

(9)

Heref01 = Ref (0) = −1 + g0 − a0 andf02 = Im f (0) =
−(g011 − a012). Each of the steady states (9) has a single
real eigenvalue and a pair of complex conjugated eigenvalues
defined byλ±1 = k±, λ±2 = −2(k± + iq±), andλ±3 = λ±∗2 .
Since in the bistability domain we havef01 < 0, L− (L+) is
a saddle focus with 1D unstable (stable) manifold and 2D
stable (unstable) manifold. Stationary LS corresponds to
heteroclinic trajectory of equations (8) connecting the fixed
points L− and L+. Thus, the process of finding stationary LS
includes identifying the bifurcation points in the parameter
space for which equations (8) have a heteroclinic trajectory
of the type described. Specifically, the single-humped ‘one-
soliton’ solution corresponds to the simplest (‘single-pass’)
heteroclinic orbit that visits vicinities of the fixed points L− to

L+ only once. As was shown in [5], the existence of such LS
implies the existence of an infinite number of multi-humped
solutions that can be considered as stationary LSs formed by
two or more coupled ‘one-soliton’ solutions. Moreover, for
any givenn there exists an infinite countable number ofn-
humped solutions differing by the distances between coupled
‘one-soliton’ solutions.

Due to the symmetry propertyx →−x of equations (1)
the equations (8) are invariant under the transformation
(x, a, q, k) → (−x, a,−q,−k). Using this fact and that
for given laser parameter values there can exist only one
heteroclinic trajectory connecting the steady states L± one
can easily show that any LS associated with the heteroclinic
orbit of equations (8) can be described (after an appropriate
shift of the reference point for the coordinatex) by an even
functionA(x) = A(−x). It follows that in the phase space
of equations (8) the midpoint of the heteroclinic trajectory
corresponding to the symmetry centre of the even LS (x = 0)
lies on thea-axis (q = k = 0). Therefore, in order to find
the spectral parameter value for which equations (8) have
a heteroclinic solution we can use the following procedure.
First we calculate the intersection point(a0, 0, k0) of the 1D
unstable manifold of the fixed point L− with the 2D plane
q = 0. Then we find the value of the parameterα for which
the intersection point hits thea-axis (k0 = 0). This procedure
serves as a basis for an effective numerical procedure of
finding stationary localized solutions. Note, that apart from
even localized solutionsA(x) = A(−x) equation (1) possess
odd localized solutions withA(x) = −A(−x) andA(0) = 0.
Each of them can be associated with a pair of ‘solitons’
coupled in antiphase. However, since forA = 0 the variable
k is singular, odd localized solutions cannot be described with
the help of equations (8) and require separate consideration
[5].

The dependence of the spectral parameterα of the ‘one-
soliton’ solution on the linear gain parameterg0 is presented
in figure 1. The curve shown in figure 1 forms an infinite
spiral with the end at point P corresponding to a codimension-
two heteroclinic bifurcation of equations (8). At this point
there exists a heteroclinic connection L− → N− → N+ →
L+, where N− and N+ denote the two of the four fixed points
of the system (8) which correspond to nonzero laser intensity.
Like L− and L+, these two fixed points are transformed into
each other after the transformation(a, q, k)→ (a,−q,−k).
Figure 2 represents four different ‘one-soliton’ solutions
existing for the same laser parameter values. In figure 1
these solutions correspond to the intersection points of the
‘one-soliton’ curve with the dashed vertical line defined by
the relationg0 = 2.102. Note, that the only stable solution
is the one corresponding to curve 4 in figure 2.

4. Autosoliton stability and bifurcations

LetE(x, t) = A0(x)e−iα0t be a motionless localized solution
of equation (1). Substituting a slightly perturbed autosoliton
solution

E = [V0(x) + δV (x)eλt ]e−iα0t

V0 = (ReA0, ImA0)
T

δV = (ReδA, Im δA)T ,

(10)
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Figure 1. Spectral parameterα for the ‘one-soliton’ solution of
equation (1) versus linear gain parameterg0. a0 = 2,β = 10, and
11,2 = 0. The inset shows the vicinity of the point P on an
enlarged scale. The thick (thin) curve corresponds to the stable
(unstable) autosoliton solution. S and S′ (H and H′) are the points
of a saddle-node (Andronov–Hopf) bifurcation. P is the
codimension-two global bifurcation point for equations (8). The
vertical dashed line is defined byg0 = 2.102. Intersections of this
line with the ‘one-soliton’ solution curve are labelled by 1–4.
These intersections correspond to the localized solutions shown in
figure 2.

Figure 2. Spatial distributions of laser intensity corresponding to
four localized structures calculated forg0 = 2.102,a0 = 2,
β = 10,11,2 = 0. (1)α = 0.141 75; (2)α = 0.042 18; (3)
α = 0.066 63; (4)α = 0.059 34. The only stable solution is the
one represented by the solid curve 4.

into the real and imaginary part of equation (1) we get the

linear equationL̂0δV (x) = λδV (x), for the eigenvaluesλ

determining the stability of the localized solution. Here the

linear operator̂L0 is defined by

L̂0 =
(

ReF+(A0, A
∗
0) −α0 − ∂xx − Im F−(A0, A

∗
0)

α0 + ∂xx + ImF+(A0, A
∗
0) ReF−(A0, A

∗
0),

)
(11)

with F±(A0, A
∗
0) = f (I0)+f ′(I0)(I0±A2

0), I0 = |A0|2, and
f ′(I0) = (df (I)/dI )I=I0. In the bistability domain where
the nonlasing solution is stable, the continuous spectrum of
the operator (11) lies in the left half-plane of the complex
plane and does not produce instability. Therefore, we focus
our consideration on the discrete spectrum.

Due to the symmetry properties (3)–(5) the operator (11)
has a triply degenerate zero eigenvalue. This eigenvalue
corresponds to the eigenvectors

Ψ1,2(x) = (Reψ1,2, Imψ1,2)
T , ψ1 = iA0

ψ2 = ∂xA0,
(12)

for which we haveL̂0Ψ1,2(x) = 0. The symmetry property
(5) implies that apart from the two eigenvectorsΨ1,2(x) there
exists an adjoint vector defined by

Ψ3(x) = (Reψ3, Imψ3)
T , ψ3 = −ixA0/2. (13)

This vector obeys the equation̂L0Ψ3(x) = Ψ2(x). Note,
that since the amplitudeA0(x) of the motionless LS can
be taken as either an even or odd function ofx, the
two neutral modesΨ1(x) andΨ2(x) have opposite parity.
Specifically, the ‘one-soliton’ solution (after an appropriate
shift along thex-axis) can be described by an even function
A0(x) = A0(−x) and, therefore, in this case we have
Ψ1(x) = Ψ1(−x) and Ψ2(x) = −Ψ2(−x). Moreover,
since forA0(x) = A0(−x) we haveL̂0(x) = L̂0(−x), any
eigenvector of the linear operatorL̂0 is either an even or odd
one. Due to this fact we can study the stability with respect
to even (symmetric) and odd (antisymmetric) perturbations
separately.

The results of numerical analysis of the discrete spectrum
of the linear operator (11) are shown in figure 1. In this figure
thick (thin) curves correspond to a stable (unstable) ‘one-
soliton’ solution. The largest autosoliton stability domain
lies between the saddle-node bifurcation point S and the
Andronov–Hopf bifurcation point H. From our numerical
data one can assume the existence of an infinite number
of autosoliton stability domains in addition to this domain:
each coil of the infinite spiral is supposed to have its own
domain. However, since the width of these secondary
stability domains rapidly decreases, we have shown only the
two largest domains. The second largest stability domain
is situated between the saddle-node bifurcation point S′ and
the Andronov–Hopf bifurcation point H′. The Andronov–
Hopf bifurcations H and H′ correspond to the eigenvectors
symmetric under the transformationx → −x. At the
saddle-node bifurcation points S and S′ the operator̂L0 has
an additional (fourth) zero eigenvalue which corresponds to
the adjoint vectorΨ4(x) = −Ψ4(−x) = (Reψ4, Imψ4)

T ,
ψ4 = (∂A0(x, α)/∂α)α=αs , which obeys the relation
L̂0Ψ4(x) = Ψ2(x) [5]. Here A0(x, α) is the branch of
autosoliton solutions defined by the curve shown in figure 1
andαs is the critical value of the spectral parameter which
corresponds to the saddle-node bifurcation point. Note that
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Figure 3. Eigenvalues of the operatorL̂0(x) with the largest real
parts.a0 = 2 andβ = 10. (a) and (c) ((b) and (d)) correspond to
g0 = 2.08< g0H (g0 = 2.10> g0H ), whereg0 = g0H is the
Andronov–Hopf bifurcation point. (a) and (b) ((c) and (d))
correspond to even (odd) eigenvectors. Note, that the zero
eigenvalue in the left diagrams is doubly degenerate.

for the soliton solution of the nonlinear Schrödinger equation
one always has four zero eigenvalues [18]. In contrast to this,
in our analysis the fourth zero eigenvalue appears only at the
saddle-node bifurcation points.

Figure 3 presents several eigenvalues of the operator
L̂0 that have the largest real parts. The two upper (lower)
graphs correspond to the parameter values below (above)
the Andronov–Hopf instability threshold. It follows from
this figure that at the Andronov–Hopf bifurcation point a
pair of eigenvalues corresponding to even eigenfunctions
Ψ4,5(x) = Ψ4,5(−x) crosses the imaginary axis. These
eigenfunctions are presented in figure 4 together with the
eigenfunctionsΨ1,2 and the adjoint functionΨ3. Note,
that according to (12) the square of the modulus of the
eigenfunctionΨ1 coincides with the intensity distribution
of the autosoliton solution. Our numerical calculations show
that the Andronov–Hopf bifurcation that takes place at the
point H is a supercritical one. To the right from this point in
figure 1 an oscillating symmetric LS appears (see figure 5).

5. Computer simulations of 3D laser localized
structures

The term ‘laser bullets’ denotes dissipative 3D localized
structures of laser radiation. Similar to laser autosolitons
(see section 3), they have a discrete spectrum of their
characteristics and a hard type of excitation. However, unlike
autosolitons, laser bullets are expected to be formed not in
a cavity, but in a continuous medium with saturable gain,
absorption, and linear frequency dispersion (both normal and
anomalous). The laser bullets were predicted in [21] on
the basis of an approximate analytical method of moments.
Here we present the results of our computer simulations that

|Ψ3|

|Ψ1|

|Ψ4,5|

|Ψ2|

Figure 4. Eigenfunctions of the operator̂L0(x) corresponding to
the eigenvalues with largest real parts at the Hopf bifurcation point
H. Solid (dashed) curves correspond to even (odd) eigenfunctions.
The eigenfunctionsΨ1,2 and the adjoint functionΨ3 correspond to
zero eigenvalues. They are defined by equations (12) and (13),
respectively. The eigenfunctionsΨ4,5 correspond to a pair of pure
imaginary eigenvalues responsible for the Andronov–Hopf
bifurcation.

Figure 5. Symmetric oscillatory localized structure arising above
the Andronov–Hopf bifurcation threshold.g0 = 2.102,a0 = 2,
β = 10, and11,2 = 0.

demonstrate the existence of various types of laser bullets.
We restrict our consideration to the case of an inertialess
medium and neglect all kinds of frequency detunings. Then,
the equation for the field envelopeE takes the form

∂zE − i1⊥E − iD2∂ττE = Ef (|E|2). (14)

Herez is the longitudinal coordinate,1⊥ is the transverse
Laplacian, andD2 is the coefficient of quadratic linear
dispersion. The variableτ = t − z/vg, wheret is time,
describes the time in the coordinate system moving with
group velocityvg. The nonlinear functionf is defined by
(2) with 11,2 = 0. The real coefficient in front of the
transverse Laplacian has been removed as a result of scaling
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Figure 6. Formation of a radially symmetric stationary laser
bullet. Intensity (phase) profiles are represented by thick (thin)
lines. g0 = 2.16,a0 = 2,β = 10.

of transverse coordinates. The scale for the variablez is
determined by the value of linear nonresonant absorption.
Moreover, we can scale the variableτ in such a way that
|D2| = 1. In our simulations we have used the values
a0 = 2 for the linear absorption andβ = 10 for the saturation
intensity.

Equation (14) has been solved numerically using
the split-step method and the fast Fourier transformation
algorithm. The number of spatial harmonics was 643 and
1283. The results of our calculations are evidence for the
formation of stationary radially symmetric localized intensity
distributions for the linear gain parameterg0 in the range
from 2.153 to 2.17. If we introduce a sufficiently small
asymmetry into the initial field distribution, the symmetry
is restored in the course of time evolution. This proves the
stability of the stationary symmetric laser bullet. However,
if the initial asymmetry exceeds some critical value, a new
type of laser bullet can be formed with the field distribution
periodic in time and asymmetric in space. Figures 6 and
7 illustrate the process of laser bullet formation. Figure 6
presents transverse intensity and phase distributions evolving
in the course of light propagation into a stationary radially

Figure 7. Peak intensityIM and the mean value of intensity
distribution widthw versus longitudinal coordinatez. a0 = 2,
β = 10. Asymmetric perturbation was introduced atz = 50. (a)
g0 = 2.154. Small initial perturbation dissolves in the course of
propagation. (b) g0 = 2.16. Formation of the oscillating laser
bullet.

symmetric laser bullet. The evolution of the peak intensity
and the mean value of the intensity distribution width is
shown in Figure 7. Figure 7(a) (7(b)) corresponds to the
case when initial perturbation introduced atz = 0 dissolves
(grows) leading to the formation of a stationary (oscillatory)
laser bullet. One can see from figure 7(b) that once the
perturbation was introduced, both modulation of maximum
intensity and average width of the LS gradually increase and
finally are stabilized. Dynamics of the bullet width in the two
transverse directions (x andy) is approximately antiphase.
The periodically oscillating bullets exist in a narrower range
of the parameterg0 values than the stationary ones. Thus, in
laser systems with energy exchange there can exist stable
stationary and oscillating localized structures of radiation
with different geometric dimensionality (fromd = 1 tod =
3). For a nonlinear medium with finite population relaxation
rates the variety of the localized structures increases.

6. Conclusion

Using the bifurcation theory methods we have constructed
autosoliton solutions in the model of a bistable laser with
one-dimensional transverse section. The autosoliton stability
has been studied with the use of combined analytical and
numerical methods. It has been shown that the autosoliton
solution can exhibit an Andronov–Hopf bifurcation leading
to an oscillating LS. Bistable stationary radially symmetric
and oscillatory 3D asymmetric localized structures have been
found in a saturable dispersive medium which is composed
of a mixture of amplifying and absorbing atoms. Numerical
evidence of their stability has been presented. In this paper
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we have considered only the case of inertialess laser media.
The results concerning the effect of the finite values of the
population relaxation rates on the stability of autosoliton
solutions will be presented in a subsequent paper.
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