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Abstract. We study stability and bifurcations of 1D localized structures in a laser with a
saturable absorber. Instability leading to oscillating localized structure is described. Our
numerical study of light propagation in a dispersive medium with saturable gain and
absorption provides evidence for the existence of 3D ‘laser bullets’.
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1. Introduction 2. Laser model

Theterm ‘localized structures (LSs) of laser radiation’ is used We start with the consideration of 1D localized structures
for structures formed in a limited region of the transverse arising in transverse section of a wide aperture bistable ring
section of laser systems, for example, in wide-aperture laserslaser with a saturable absorber. The laser model is described
They are of particular interest since they represent the caseby the equation governing the evolution of the dimensionless
of self-organization in nonlinear coherent optical systems complex electric field envelopE [3, 4]

and have promising applications in optical data processing. . )

Stable localized laser structures, ‘laser autosolitons’, were WE =10 E+Ef(IEI), )

first predicted in [1] and were investigated theoretically in

where
[2-5] (see also the literature cited there). Recently, such . .
structures were observed experimentally in a cavity with FUEPR) = —1+ L1 —1A1)go  L2(1—1A2)ag )
photorefractive crystals serving as the gain and loss elements 1+L4|E?/B 1+Lo|E?

[6,7] and in a dye laser with bacteriorhodopsin as a saturable

a:)so:ber [8]. Ma:hg.mgncil:] astpects .?.f a tfheory oftS|Im|Iar dimensionless transverse coordinate. The paramgjensd
structures were studied without Specitic reference 1o a_sersao describe linear gain and linear absorption, respectively;
(see [9, 10] and the references therein). Laser autosolitons

ting islands of lasi inst the back d fﬂ = I,/1, is the ratio of the saturation intensities. The
representing islands ot lasing against theé background o parameterA; (Az) describes frequency detuning between
a stable nonlasing regime and formed by hard excitation,

- . ) . " cavity eigenfrequency and amplification (absorption) line
are very similar to localized structures in bistable passive centrye' Eglz _q a +yA2 )1 pSpatiaIIy (homogenezaus
) . . : i L1 = T2
ponhnear optical sy;tems, such as W|de.apertgre no.nl'neardynamical regimes arising in a detuned laser with a saturable
interferometers excited by external radiation investigated absorber are described in [17] Note. that after the
earlier. Stationary and pulsating ‘diffraction autosolitons’ substitution — z, x —» tequatior; (1) is tra’msformed into
?hr::cl)?gtig;”d”[\ﬁn lpz?sjr']\:je d(;rtjggfédd::lcﬁism\gr?tgl pﬁglcﬁ? the simplest equation describing light propagation in a single
y o e P aty ;] mode fibre with saturable amplification and absorption [3].
(see also the review [3]). ‘Diffusive autosolitons’ were

) ; . . . . . . Herez is the coordinate along the fibre axis.
investigated intensively earlier in various physical, chemical . o . . .

X : Equation (1) is invariant under phase shift of the electric
and biological systems [15, 16].

. . . . field envelope and under translations in space. These
Here we study stability and bifurcations of 1D localized . : .
. NN . - symmetry properties are defined by the transformations
solutions arising in a model of a wide-aperture laser with a

The timer is normalized by the cavity relaxation rateis the

saturable absorber. Numerical evidence for the existence of E(x,t) — E(x,1)d", (3)
3D ‘laser bullets’ arising in a medium with saturable gain,

absorption and frequency dispersion is presented. E(x,1) > E(x +h,1), (4)

§ E-mail addressandrei@snp.usr.pu.ru with arbitrary n and k. They are preserved in the case
| E-mail addressrosanov@ilph.spb.su of finite population relaxation rates in amplifying and
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absorbing media. In addition, equation (1) describing a L. only once. As was shown in [5], the existence of such LS
laser with inertionless media is invariant under ‘Galilean implies the existence of an infinite number of multi-humped
transformation’ (transformation to a moving system of solutions that can be considered as stationary LSs formed by

coordinates): two or more coupled ‘one-soliton’ solutions. Moreover, for
it any givenn there exists an infinite countable numbemef
E(x,t) > E(x — vt, 1)g"*/27 /4, (5) humped solutions differing by the distances between coupled

. . ) ) ‘one-soliton’ solutions.

This means that any motionless solution of equation (1) Due to the symmetry property— —x of equations (1)
generates a family of uniformly moving solutions each e equations (8) are invariant under the transformation
characterized by some definite value of the veloeityFor (x,a,q,k) — (—x,a, —q, —k). Using this fact and that
finite value§ of the populqtion relaxation rates ‘Galilgan for given laser parameter values there can exist only one
transformation symmetry_ls bro_ken and, hence, Ioc_ahzed heteroclinic trajectory connecting the steady statesohe
structures cannot travel with arbitrary constant velocity. In g easily show that any LS associated with the heteroclinic
this case uniformly moving autosolitons are expected to have g pit of equations (8) can be described (after an appropriate

some fixed velocity. shift of the reference point for the coordinatgby an even
function A(x) = A(—x). It follows that in the phase space
3. Localized solutions of equations (8) the midpoint of the heteroclinic trajectory

corresponding to the symmetry centre of the evend. S (0)
Letus consider the stationary motionless localized solution of lies on thea-axis § = k = 0). Therefore, in order to find
equation (1) which is characterized by the time independentthe spectral parameter value for which equations (8) have

transverse distribution of the laser intengiB|? = I (x): a heteroclinic solution we can use the following procedure.
i First we calculate the intersection poiab, 0, ko) of the 1D
E=A(x)e™™, (6) unstable manifold of the fixed point Lwith the 2D plane

g = 0. Then we find the value of the parametefior which

the intersection point hits theaxis o = 0). This procedure

serves as a basis for an effective numerical procedure of

. 5 finding stationary localized solutions. Note, that apart from
dnA+aA —IAf(1A]) =0, ) even localized solutions(x) = A(—x) equation (1) possess

with 7(JA[® defined by equation (2). Here the values ©0dd localized solutions with (x) = —A(—x) andA(0) = 0.

of the spectral parameter (frequency shift of the laser Each of them can be associated with a pair of ‘solitons’

field) for which stationary localized solutions exist, are to coupled in antiphase. However, since for= 0 the variable

with A(x) — 0 forx — =4oo. Substituting (6) into (1)
we get the ordinary differential equation for the autosoliton
amplitude

be determined. After the substitution(x) = a(x)é®®, kis singular, odd localized solutions cannot be described with
equation (7) can be rewritten in the form [5, 10] the help of equations (8) and require separate consideration
[5].
oya = ak 9,qg = —2qk + Re f(a?) The dependence of the spectral parametefrthe ‘one-
(8) soliton’ solution on the linear gain parameggris presented

_— 2 2 2 . . . . . . .
Ik = —a+q” — k" —Im f(a%), in figure 1. The curve shown in figure 1 forms an infinite

spiral with the end at point P corresponding to a codimension-
two heteroclinic bifurcation of equations (8). At this point
there exists a heteroclinic connection k&> N_ — N, —
L., where N and N, denote the two of the four fixed points
L. a=0 of the system (8) which correspond to nonzero laser intensity.
Like L_ and L., these two fixed points are transformed into
gr = £G[@+ fo)’ + foll1V2 +a + fo)?  (9) each other after the transformatian ¢, k) — (a, —q, —k).
e — 5 Figure 2 represents four different ‘one-soliton’ solutions
+ = Jor/2qs- existing for the same laser parameter values. In figure 1
Here fo = Ref(0) = —1+go —ap and fo = Im f(0) = these solutions correspond to the intersection points of the

—(g0A1 — apA). Each of the steady states (9) has a single ‘one-soliton’ curve with the dashed vertical line defined by

real eigenvalue and a pair of complex conjugated eigenvaluesh€ relationgo = 2.102. Note, that the only stable solution
defined bya = ks, 32 = —2(ks +igy), andrd = A2, is the one corresponding to curve 4 in figure 2.

Since in the bistability domain we havig; < 0, L_ (L+) is
a saddle focus with 1D unstable (stable) manifold and 2D 4. Autosoliton stability and bifurcations

stable (unstable) manifold. Stationary LS corresponds to ,

heteroclinic trajectory of equations (8) connecting the fixed LetE(x, 1) = Ag(x)e™'*" be a motionless localized solution
points L_ and L.. Thus, the process of finding stationary LS 0f equation (1). Substituting a slightly perturbed autosoliton
includes identifying the bifurcation points in the parameter Solution
space for which equations (8) have a heteroclinic trajectory

whereg = 9, ® and k = a~19,a. Equations (8) possess two
steady-state solutions which correspond to zero laser-field
intensity

E = [Vo(x) + 3V (2)e"'Je™*

of the type described. Specifically, the single-humped ‘one- Vo = (ReAo, Im Ag)T (10)
soliton’ solution corresponds to the simplest (‘single-pass’)
heteroclinic orbit that visits vicinities of the fixed points ko 8V = (ResA,ImsA)",
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Figure 1. Spectral parameter for the ‘one-soliton’ solution of
equation (1) versus linear gain parametgra, = 2, 8 = 10, and
A1, = 0. The inset shows the vicinity of the point P on an
enlarged scale. The thick (thin) curve corresponds to the stable
(unstable) autosoliton solution. S and(8 and H) are the points
of a saddle-node (Andronov—Hopf) bifurcation. P is the
codimension-two global bifurcation point for equations (8). The
vertical dashed line is defined Igy = 2.102. Intersections of this
line with the ‘one-soliton’ solution curve are labelled by 1-4.

These intersections correspond to the localized solutions shown in

figure 2.

[E|

Figure 2. Spatial distributions of laser intensity corresponding to
four localized structures calculated fgy = 2.102,a0 = 2,

B =10,A1,=0. (1)a = 0.14175; (2)x = 0.042 18; (3)

a = 0.066 63; (4)x = 0.059 34. The only stable solution is the
one represented by the solid curve 4.

into the real and imaginary part of equation (1) we get the
linear equation.o8V (x) = A8V (), for the eigenvalues
determining the stability of the localized solution. Here the

Laser localized structures

linear operatotq is defined by
fo= ( ) (11)

with Fi. (Ao, Ay) = f(Io) + f'(Io)(lo== AD), I = |Ag|?, and
f'lo) = dfI)/dI);—,. In the bistability domain where
the nonlasing solution is stable, the continuous spectrum of
the operator (11) lies in the left half-plane of the complex
plane and does not produce instability. Therefore, we focus
our consideration on the discrete spectrum.

Due to the symmetry properties (3)—(5) the operator (11)
has a triply degenerate zero eigenvalue. This eigenvalue
corresponds to the eigenvectors

ReF, (Ao, Ap)
o + 3y, + 1M Fi (Ao, Ap)

—0p — 3y — IM F_(Ao, AY)
ReF_(Ao, AY).

T1,o(x) = (Reyyo, Imyr ),
Wz = axAOy

Y1 =14Ap 12)

for which we haveiO\Ill,z(x) = 0. The symmetry property
(5) implies that apart from the two eigenvectdrg,(x) there
exists an adjoint vector defined by

T3(x) = (Reys, Im y3)”,

This vector obeys the equati(frb\Ilg(x) = W,(x). Note,
that since the amplitudd(x) of the motionless LS can
be taken as either an even or odd function xgf the
two neutral modesP,(x) and ¥,(x) have opposite parity.
Specifically, the ‘one-soliton’ solution (after an appropriate
shift along thex-axis) can be described by an even function
Ap(x) = Ap(—x) and, therefore, in this case we have
Wi(x) = Pi(—x) and ¥o(x) = —P,(—x). Moreover,
since forAg(x) = Ag(—x) we haveLo(x) = Lo(—x), any
eigenvector of the linear operatby is either an even or odd
one. Due to this fact we can study the stability with respect
to even (symmetric) and odd (antisymmetric) perturbations
separately.

The results of numerical analysis of the discrete spectrum
ofthe linear operator (11) are shown in figure 1. In this figure
thick (thin) curves correspond to a stable (unstable) ‘one-
soliton’ solution. The largest autosoliton stability domain
lies between the saddle-node bifurcation point S and the
Andronov—Hopf bifurcation point H. From our numerical
data one can assume the existence of an infinite number
of autosoliton stability domains in addition to this domain:
each coil of the infinite spiral is supposed to have its own
domain. However, since the width of these secondary
stability domains rapidly decreases, we have shown only the
two largest domains. The second largest stability domain
is situated between the saddle-node bifurcation pdiang
the Andronov—Hopf bifurcation point’H The Andronov—
Hopf bifurcations H and Hcorrespond to the eigenvectors
symmetric under the transformation —- —x. At the
saddle-node bifurcation points S an(ti$e operatot.q has
an additional (fourth) zero eigenvalue which corresponds to
the adjoint vectolr4(x) = —W4(—x) = (Revq, Imy,)’,

Y (0Ao(x, a)/da)q=a,, Which obeys the relation
LoWa(x) = Wy(x) [5]. Here Ao(x, «) is the branch of
autosoliton solutions defined by the curve shown in figure 1
ando; is the critical value of the spectral parameter which
corresponds to the saddle-node bifurcation point. Note that

lﬁ3 = —ion/Z. (13)
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Figure 4. Eigenfunctions of the operatdr,(x) corresponding to

the eigenvalues with largest real parts at the Hopf bifurcation point
H. Solid (dashed) curves correspond to even (odd) eigenfunctions.
The eigenfunction@, , and the adjoint functio® 3 correspond to
zero eigenvalues. They are defined by equations (12) and (13),
respectively. The eigenfunctions, 5 correspond to a pair of pure
imaginary eigenvalues responsible for the Andronov—Hopf
bifurcation.

Figure 3. Eigenvalues of the operatéro(x) with the largest real
parts.ap = 2 andg = 10. @) and €) ((b) and @)) correspond to
g0 =2.08 < goy (go = 2.10 > goy), Wherego = goy is the
Andronov—Hopf bifurcation point.a) and @) ((c) and @))
correspond to even (odd) eigenvectors. Note, that the zero
eigenvalue in the left diagrams is doubly degenerate.

for the soliton solution of the nonlinear Séldinger equation
one always has four zero eigenvalues [18]. In contrast to this,
in our analysis the fourth zero eigenvalue appears only at the

saddle-node bifurcation points. ) /,,‘/‘il I
_ Figure 3 presents several eigenvalues of the operator ‘“‘“I“"“

Lo that have the largest real parts. The two upper (lower) AT] ‘||||‘|‘|'I‘,‘,,“,/:,;_:\.

graphs correspond to the parameter values below (above) ‘l‘l‘!‘!!g,';%?;"“\“\‘l 6
the Andronov—Hopf instability threshold. It follows from \ ¢ ;,%;’{“‘\“\“"'%“‘!“

this figure that at the Andronov—Hopf bifurcation point a us! "“““\‘\“““‘n"\

pair of eigenvalues corresponding to even eigenfunctions 230 "‘||\\\I“,},§,2‘e‘}« 0
P,5(x) = Pus(—x) crosses the imaginary axis. These \‘““4“,“},};{;{;’;%
eigenfunctions are presented in figure 4 together with the \‘&W' 200
eigenfunctions®, , and the adjoint function¥s. Note, == 100

that according to (12) the square of the modulus of the X

eigenfunction®; coincides with the intensity distribution 30770 t

of the autosoliton solution. _Our “‘_Jme”ca' calculations show Figure 5. Symmetric oscillatory localized structure arising above
that the Andronov—Hopf bifurcation that takes place at the the Andronov—Hopf bifurcation thresholgde = 2.102,a0 = 2
point H is a supercritical one. To the right from this pointin g =10, andA,, = 0.

figure 1 an oscillating symmetric LS appears (see figure 5).

demonstrate the existence of various types of laser bullets.
We restrict our consideration to the case of an inertialess
medium and neglect all kinds of frequency detunings. Then,

the equation for the field envelogetakes the form
The term ‘laser bullets’ denotes dissipative 3D localized

structures of laser radiation. Similar to laser autosolitons
(see section 3), they have a discrete spectrum of their
characteristics and a hard type of excitation. However, unlike Herez is the longitudinal coordinate); is the transverse
autosolitons, laser bullets are expected to be formed not inLaplacian, andD; is the coefficient of quadratic linear

a cavity, but in a continuous medium with saturable gain, dispersion. The variable = r — z/v,, wherer is time,
absorption, and linear frequency dispersion (both normal anddescribes the time in the coordinate system moving with
anomalous). The laser bullets were predicted in [21] on group velocityv,. The nonlinear functiory is defined by

the basis of an approximate analytical method of moments. (2) with A;, = 0. The real coefficient in front of the
Here we present the results of our computer simulations thattransverse Laplacian has been removed as a result of scaling

5. Computer simulations of 3D laser localized
structures

3,E—iAE —iDy3..E = Ef(|E|?. (14)
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Figure 6. Formation of a radially symmetric stationary laser
bullet. Intensity (phase) profiles are represented by thick (thin)
lines. go = 2.16,a0 = 2, 8 = 10.

of transverse coordinates. The scale for the variabie
determined by the value of linear nonresonant absorption.
Moreover, we can scale the variahiein such a way that
|[D;] = 1. In our simulations we have used the values
ap = 2 forthe linear absorption argl= 10 for the saturation
intensity.

Equation (14) has been solved numerically using
the split-step method and the fast Fourier transformation
algorithm. The number of spatial harmonics was @#d
128. The results of our calculations are evidence for the
formation of stationary radially symmetric localized intensity
distributions for the linear gain parametgy in the range
from 2153 to 217. If we introduce a sufficiently small
asymmetry into the initial field distribution, the symmetry
is restored in the course of time evolution. This proves the
stability of the stationary symmetric laser bullet. However,
if the initial asymmetry exceeds some critical value, a new
type of laser bullet can be formed with the field distribution
periodic in time and asymmetric in space. Figures 6 and
7 illustrate the process of laser bullet formation. Figure 6

Laser localized structures
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Figure 7. Peak intensity;, and the mean value of intensity
distribution widthw versus longitudinal coordinate ap = 2,

B = 10. Asymmetric perturbation was introduced at 50. @)

go = 2.154. Small initial perturbation dissolves in the course of
propagation. If) go = 2.16. Formation of the oscillating laser
bullet.

symmetric laser bullet. The evolution of the peak intensity
and the mean value of the intensity distribution width is
shown in Figure 7. Figure @] (7(b)) corresponds to the
case when initial perturbation introducedzat 0 dissolves
(grows) leading to the formation of a stationary (oscillatory)
laser bullet. One can see from figurebythat once the
perturbation was introduced, both modulation of maximum
intensity and average width of the LS gradually increase and
finally are stabilized. Dynamics of the bullet width in the two
transverse directionsc (and y) is approximately antiphase.
The periodically oscillating bullets exist in a narrower range
of the parameteg, values than the stationary ones. Thus, in
laser systems with energy exchange there can exist stable
stationary and oscillating localized structures of radiation
with different geometric dimensionality (fro/h= 1tod =

3). For a nonlinear medium with finite population relaxation
rates the variety of the localized structures increases.

6. Conclusion

Using the bifurcation theory methods we have constructed
autosoliton solutions in the model of a bistable laser with
one-dimensional transverse section. The autosoliton stability
has been studied with the use of combined analytical and
numerical methods. It has been shown that the autosoliton
solution can exhibit an Andronov—Hopf bifurcation leading
to an oscillating LS. Bistable stationary radially symmetric
and oscillatory 3D asymmetric localized structures have been
found in a saturable dispersive medium which is composed

presents transverse intensity and phase distributions evolvingof a mixture of amplifying and absorbing atoms. Numerical

in the course of light propagation into a stationary radially

evidence of their stability has been presented. In this paper
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we have considered only the case of inertialess laser media. [8]

The results concerning the effect of the finite values of the
population relaxation rates on the stability of autosoliton
solutions will be presented in a subsequent paper.
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