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It is shown that the phase space of the complex Lorenz model has the geometric structure
associated with a fiber bundle. Using the equations of motion in the base space of the fiber
bundle the surfaces bounding the attractors in this space are found. The homoclinic “butterfly”
responsible for the Lorenz-like attractor appearance is shown to correspond to a codimension-
two bifurcation. One-dimensional map describing bifurcation phenomena in the complex Lorenz
model is constructed.

The Complex Lorenz Model (CLM)

ẋ = −σ(x− y) ,

ẏ = −(1− iδ)y + (r − z)x ,

ż = −bz +
1

2
(x∗y + xy∗) ,

(1)

was introduced by Gibbon & McGuinness [1982] as
a generalization of the Lorenz model (LM), orig-
inally derived from the partial differential equa-
tions describing thermal convection of a liquid flow
[Lorenz, 1963; Sparrow, 1982]. In Eqs. (1) x and
y are complex and z is a real variable. Formally
the complexity of the variables x and y in (1) (in
LM these variables are real) is associated with the
parameters δ and r = r1 + ir2, which is not so
in LM. The generalization of LM by Gibbon &
McGuinness is, however, much more meaningful
and covers a variety of dynamical systems described
by partial differential equations and possessing a

certain type of instability. As a specific example of
the system, where CLM results from the multiple
scale analysis of the supercritical behavior, Gibbon
& McGuinness [1982] treated the two-layer model of
the baroclinic instability in the atmosphere, intro-
duced by Phillips [1963]. CLM is also a basic model
in the semiclassical theory of lasers and masers (see
e.g. [Ning & Haken, 1990]), for which x and y are the
slow complex amplitudes of the electric field and the
atomic polarization, respectively, and z is the pop-
ulation difference of the energy levels for the reso-
nance transition. Recent measurements of unstable
far-infrared laser output has shown remarkable sim-
ilarity to the results of the numerical integration of
CLM [Tang & Weiss, 1994; Tang et al., 1991; Weiss
et al., 1988].

The issue of the present work is to reveal the
geometric structure of CLM and some general prop-
erties of the model associated with this structure.
Following this we introduce a specific projective
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space, in which the states differing only by the
common phase of the variables x and y are con-
sidered to be equivalent. The phase space and the
projective space occur as parts of a principle fiber
bundle [Kobayashi & Nomizu, 1969]. We show that
all the physical information about the system can
be extracted from the equations of motion in this
projective space. Using these equations, we show
the existence of a surface bounding the limit sets of
trajectories in the projective space. This leads to
the conclusion that for CLM the homoclinic bifur-
cation is with codimension-two. Based on these re-
sults, we derive a one-dimensional map, associated
with CLM dynamics near the homoclinic bifurca-
tion. Analyzing this map we reveal the hierarchy of
bifurcations inherent to the “complex” behavior of
CLM.

Alongside of Eqs. (1), we shall use another
equivalent representations of CLM. Let

σ(r1 − 1)− δ2

4
≡ η > 0, b < 2σ .

Applying the change of variables

x′ = η−3/4ax ,

y′ = η−5/4σa

(
y −

(
1 +

iδ

2σ

)
x

)
,

z′ = η−1σ

(
z − |x|

2

2

)
,

t′ = t
√
η ,

(2)

where

a = e−iδt/2

√
2σ − b

2
,

to Eqs. (1) one can obtain the following representa-
tion for CLM

dx′

dt′
= y′ ,

dy′

dt′
= (1 + iν)x′ − µy′ − x′z′ − ρx′|x′|2 ,

dz′

dt′
= −βz′ + |x′|2 .

(3)

Here

ν =
2r2σ + δ(σ − 1)

2η
, µ =

1 + σ
√
η
,

ρ =

√
η

2σ − b , β =
b
√
η
.

(4)

The Jacobian for the transformation (2) is equal
to |a|4σ3/η5. Therefore, for η > 0 and b < 2σ the
transformation (2) is a diffeomorphism, i.e. it is con-
tinuous and invertible, and the vector fields defined
by (1) and (3) are topologically equivalent.

Neglecting the term −ρx|x|2 in (3) one can ob-
tain the complex generalization of the Shimizu–
Morioka equations [Shimizu, 1980], which were
investigated in detail [Shilnikov, 1991] and were
shown in [Vladimirov, 1993; Rucklidge,1993] to be
the truncated normal form equations describing
the chaotic phenomena near a bifurcation point at
triply degenerate zero eigenvalue with geometrical
multiplicity two. Note that all the coefficients in (3)
are real when ν = 0, i.e. when the condition (13) is
satisfied.

Let us now observe that both Eqs. (1) and
Eqs. (3) possess a symmetry group U(1), which acts
in the subspace C2 of the CLM phase space H, re-
lated to the variables x and y for Eqs. (1), or to the
variables x′ and y′ for Eqs. (3). These group trans-
formations change the phases of x and y (or x′ and
y′) to the same value. The invariance of the vector
field defined by CLM under the U(1) group action
reflects the fact that the states differing only by the
common phase in x and y, belong to the same phys-
ical state. Consider the real functions u, v and w
of CLM phase variables

u = (|x′|2 − |y′|2)/2 (5)

and
v + iw = x′∗y′ . (6)

Note that for R = (u2 + v2 + w2)1/2 = (|x′|2 +
|y′|2)/2, one can write |x′|2 = R + u and |y′|2 =
R − u. Being considered as the Cartesian coordi-
nates in the Euclidean space P, the functions u, v, w
and z′ provide the projection map Π : H → P. This
map projects all the elements of the CLM phase
space H, differing only by a common phase factor
in x′ and y′, into the same point in P. Differen-
tiating (5) and (6) with respect to time and using
Eqs. (1) one gets the following equations of motion

u̇ = v + µ(R− u)− νw − v(1− z′ − ρ(R+ u)) ,

v̇ = −µv +R− u+ (R + u)(1− z′ − ρ(R+ u)) ,

ẇ = −µw + ν(R+ u) ,

ż′ = −βz′ + (R+ u) . (7)

One can observe that the spaces H and P
and the map Π form a fiber bundle [Kobayashi &
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Nomizu, 1969] so that H is the bundle space, P
is the base space and the structure group is U(1).
This fiber bundle is similar to the one known from
quantum mechanics [Samuel & Bhandari, 1988] and
formed by the Hilbert space of state vectors, the
density matrix space and the corresponding projec-
tion map. This similarity becomes clear by iden-
tifying the “state vector” |X〉 for CLM with the
pair of complex numbers x′ and y′ and noting that
|x′|2 = R+u and |y′|2 = R−u are just the diagonal
elements and v + iw is the off-diagonal one for the
corresponding “density matrix”. The remarkable
property of the fiber bundle (H, P, Π) is that the
evolution inHmay be extracted from the trajectory
in P. Indeed, it was proved [Samuel & Bhandari,
1988] that if the evolution of the state vector obeys
the relation

Im(〈X|Ẋ〉) = 0 , (8)

then the phase γg(t) = arg(〈X(0)|X(t)〉) may be
calculated as

γg = −
∮

ΓT
Asds, (9)

where As is given by

As = Im
〈X(s)|d/ds|X(s)〉
〈X(s)|X(s)〉 . (10)

Here 〈|〉 denotes the Hermitian scalar product on C2

and ΓT is the closed contour in H composed by the
segment T of the trajectory between two states and
any curve Γ, which projects onto the geodesic in P.
Since this phase is completely determined by the ge-
ometry of the contour, it was called geometric phase
[Samuel & Bhandari, 1988]. For CLM the state vec-
tor may be made to obey Eq. (8) by means of the
gauge transformation |X〉 → |X〉 exp(iγd), where
the “dynamic phase” γd is given by the equation
[Toronov & Derbov, 1994]:

γd =

∫ t

0
Im

[ 〈X|F 〉
〈X|X〉

]
t′
dt′ , (11)

|F 〉 is the right-hand side vector for the first two
equations in (3).

One can see from Eq. (11), that the dynamic
phase is the function of the point in P. To show
that γg may be also extracted from P, we introduce
the spherical coordinates ρ, θ and φ

u = ρ cos θ, v = ρ sin θ cos φ, w = ρ sin θ sin φ .

Expressing As in (9) in terms of ρ, θ and φ, one
gets:

γg =

∮
ΓT

sin2
(
θ

2

)
dφ , (12)

where the integral is taken in P along the contour
composed by the trajectory and the geodesic. One
can see that the right-hand side of (12) is nothing
but half the solid angle subtended by the contour.
Thus the evolution of the complete phase of |X〉,
that is γd + γg, may be reconstructed from the tra-
jectory in P, determined by Eqs. (7). So, one may
use these equations instead of (1) for studying CLM.

Consider now the plane in P given by the equa-
tion w = 0. It follows from Eqs. (7) that at w = 0
we have ẇ = ν(R + u) = ν|x′|2. Therefore, the
value of dw/dt is non-negative when ν > 0 and non-
positive in the opposite case. Thus for ν > (<)0
the trajectories on the plane are tangent to it, or
directed towards the region of P w > (<)0. It fol-
lows from Eqs. (7) that the surface w = 0 is globally
stable and flow invariant for ν = 0. The condition
ν = 0 may be rewritten in the form

r2 = r2c = δ
1 − σ

2σ
. (13)

Let us show that for r2 > (<)r2c every trajectory
starting in the region w < (>)0 is attracted to other
trajectories where w ≥ (≤)0. Let r2 be greater than
r2c, which is the same as ν > 0. Consider the fam-
ily of hyperplanes w = C < 0 in P. It may be seen
from Eqs. (7) that for ν > 0 the value of ẇ is posi-
tive on each of these hyperplanes. Therefore, a tra-
jectory, being started somewhere in the half-space
w < 0, intersects all these hyperplanes reaching the
hyperplane w = 0. There exists a zero-measured set
of trajectories that tend to the origin in the limit
t→∞ (see below). All other trajectories once and
forever come to the half-space w > 0. To show that
for r2 < r2c every trajectory tends to the set of
points in P for which w ≤ 0 one should consider
the family of hyperplanes given by w = C > 0.
We omit the detailed consideration here since it is
completely analogous to the case r2 > r2c.

An important outcome of the existence of the
bounding surface w = 0 is the restriction for the
homoclinic bifurcation in the parameter space. It
is known that in LM the homoclinic orbits that
exist for certain parameter values [Sparrow, 1982]
are very important structures responsible for the
formation of a chaotic set of trajectories. These
structures are formed by the trajectories which are
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bi-asymptotic to the saddle x = y = z = 0.
The necessary condition for the existence of these
structures is the intersection of stable and unstable
invariant manifolds of a saddle [Shil’nikov, 1981].
Since CLM include LM as a particular case at δ = 0
and r2 = 0, the corresponding homoclinic structures
are also present in the CLM.

The local structure of invariant manifolds of
a saddle may be realized from the linear stabil-
ity analysis of the steady-state solution of Eqs. (3)
x′ = y′ = z′ = 0. This analysis gives the eigenvalues

λ1 = −µ
2

+

√
1 +

µ2

4
+ iν ,

λ2 = −µ
2
−

√
1 +

µ2

4
+ iν ,

λ3 = −β .

(14)

If Re[λ1] > 0, the origin is a saddle. The eigen-
vectors in H corresponding to the eigenvalues λ1,2,3

are:

V1 = N−1
1

 1

λ1

0

 , V2 = N−1
2

 1

λ2

0

 , V3 =

 0

0

1

 ,

where N1,2 =
√

1 + |λ1,2|2. It follows from (14) that

for sufficiently small ν we have Reλ1 > 0, Reλ2 < 0
and λ3 < 0. In addition, for ν > 0

Imλ1 = −Imλ2 > 0 . (15)

We consider only the case when |λ3| < |Reλ2|
since it corresponds to the appearance of a Lorenz
attractor.

The linear subspaces Eu = span{V1} and Es =
span{V2, V3} are are given by

Eu : y′ = x′λ1, z
′ = 0 ,

Es : y′ = x′λ2 .

The unstable manifold W u (stable manifold W s) of
the origin, is tangent to Eu (Es) at x′ = y′ = z′ = 0.
Since the z′-axis is flow-invariant and belongs to
W s, in the small sphere defined by |x′|2+|y′|2+z′2 ≤
ε2 these manifolds can be written in the form

W u
loc : y′ = x′{λ1 + O(ε)}, z′ = O(ε2) , (16)

W s
loc : y′ = x′{λ2 + O(ε)} . (17)

Consider the projections Π(W u) and Π(W s). Being
flow invariant, they should also be invariant under

the U(1)-group action. Their dimensions are also
smaller by one than the dimensions of W u and W s.
Hence, Π(W u) is a one-dimensional manifold and
Π(W s) is a three-dimensional one. From (6), (16)
and (17) we obtain

w|Π(Wu
loc

) = |x′|2{Imλ1 + O(ε)},

w|Π(W s
loc) = |x′|2{Imλ2 + O(ε)} .

(18)

Taking (15) into account one can conclude that
for ν > 0 all points of the projection Π(W u

loc) are
in the half-space w ≥ 0. Then, using the formal
solution of the third equation in (11)

w(t′) = w(0) + νe−µt
′
∫ t′

0
(R(s) + u(s))ds . (19)

we conclude that all points of Π(W u) are in this
half-space. It follows from (18) that all points of
the projection Π(W s

loc), except for the points lying
on the z′-axis, are in the half-space w < 0. Hence,
Π(W u) and Π(W u

loc) can intersect only along the z′-
axis. However, it is impossible since this axis does
not belong to W u. Therefore, for ν > 0 Eqs. (1)
and (5) cannot possess orbits homoclinic to the ori-
gin. Using the invariance of the sets of Eqs. (10)
and (11) with respect to the transformation

ν → −ν, w → −w (20)

one can easily show that such orbits cannot exist
for ν < 0 also. Thus, ν = 0 or

r2 =
δ(1 − σ)

2σ

is the necessary condition for the existence of the
Lorenz homoclinic “butterfly”.

Let us assume that

α = −λ3

λ1
< 1 ,

where λ1 and λ3 are given by Eqs. (14) with ν = 0.
This inequality corresponds to the case when a
strange invariant set appears after the destruction
of the “butterfly” (for δ = r2 = 0). In LM the as-
sociated bifurcation phenomena has been described
by means of the one-dimensional map [Shil’nikov,
1981b]

ξ → sign ξ(−ε1 + signA|ξ|α), 0 < |ξ| � 1 ,

0 ≤ ε1 � 1 ,
(21)
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where ξ is a real variable, A is the separatrix value,
and ε1 describes the small deviation of the param-
eter values from the homoclinic bifurcation point.
Below A is assumed to be positive.

Now we shall construct a similar map for CLM.
Let x′, y′ be complex and ν = 0 in (3). Then, as
shown above, the limit sets of trajectories of Eqs. (3)
belong to the globally stable hypersurface x′∗y′ −
x′y′∗ = w = 0. Every trajectory lying on this hy-
persurface has the form (x′(t′)eiψ , y′(t′)eiψ, z′(t′)),
where (x′(t′), y′(t′), z′(t′)) is the solution of Eqs. (3)
with real x′ and y′, and ψ is a constant depending
on initial conditions. Based on this fact one can
rewrite (21) in the form that is valid for complex x′

and y′ in Eqs. (3)

ξ → eiargξ(−ε1 + |ξ|α) , (22)

Here, unlike (21), ξ is complex. Taking into account
possible rescaling of ξ, the coefficient A have been
set to unit magnitude.

The coordinate change (5, 6) transforms the ho-
moclinic “butterfly” into a single homoclinic orbit
in the projective space P. The one-dimensional
map describing bifurcation phenomena in P asso-
ciated with this orbit can be easily obtained from
(22)

Ξ→ (−ε1 + Ξα/2)2, 0 < Ξ� 1, 0 ≤ ε1 � 1 ,

(23)

Here Ξ = |ξ|2. Together with (22) the map (23) is
valid only for ν = 0. For 0 < ν � 1 we have

Ξ→ G(Ξ, ε1, ν), 0 < Ξ� 1, 0 ≤ ε1 � 1 ,

(24)

where G(Ξ, ε1, 0) = (−ε1 + Ξα/2)2. Assuming that
for small Ξ and ε1 there exists the derivative

Gνν(Ξ, ε1, 0) =

(
∂2G(Ξ, ε1, ν)

∂ν2

)
ν=0

,

for small ν from (24) we obtain

Ξ→ G(Ξ, ε1, 0) +
ν2

2
Gνν(Ξ, ε1, 0) + O(ν4) . (25)

Here G(Ξ, ε1, 0) is defined by (23). Due to the sym-
metry property (20) of Eqs. (3) linear and cubic
terms in ν are absent in (25). Since Ξ, ε1 � 1 we
neglect the dependence of Gνν(Ξ, ε1, 0) on Ξ and

ε1. Then, omitting the small terms O(ν4) in (25),
we get

Ξ→ (−ε1 + Ξα/2)2 + ε2
2, 0 < Ξ� 1 ,

0 ≤ ε1, ε2 � 1 ,
(26)

where ε2
2 = (ν2/2)Gνν(0, 0, 0). Since G(Ξ, ε1, ν) ≥

0 and G(0, 0, 0) = 0 we have Gνν(0, 0, 0) ≥ 0. We
will assume that Gνν(0, 0, 0) > 0. Note, that the
point ε1 = ε2 = 0 corresponds to the codimension-
two homoclinic bifurcation. The parameter ε2 is
proportional to the small quantity ν.

Substituting

Ξ = ε
2/α
1

{
1 +

2λ

α2
(1− 2ζ)ε

2(1−α)/α
1

}
,

and

ε2 = ε
1/α
1

{
1 +

λ(2− λ)

2α2
ε

2(1−α)/α
1

}
, (27)

into (26) we obtain the logistic map

ζ → λζ(1− ζ) + O(ε
2(1−α)/α
1 ) .

Thus, the bifurcations exhibited by the map (26)
are similar to those exhibited by the logistic map.
Moreover, in the small vicinity of the codimension-
two point (ε1 = 0, ε2 = 0) one can obtain asymp-
totic expressions for the bifurcation sets of the map
(26) by substituting the bifurcation values of the
parameter λ calculated for the logistic map into
Eq. (27). In particular, the first two bifurcations
of the logistic map are the saddle-node (λ = 1) and
the period-doubling one (λ = 3). Hence, asymp-
totic expressions for the bifurcation curves on the
parameter plane (ε1, ε2) corresponding to these bi-
furcations are

ε2 = ε
1/α
1

{
1 +

1

2α2
ε

2(1−α)/α
1 + O(ε

4(1−α)/α
1 )

}
,

(28)

and

ε2 = ε
1/α
1

{
1− 3

2α2
ε

2(1−α)/α
1 + O(ε

4(1−α)/α
1 )

}
,

(29)

respectively. Since 0 < α < 1, one can see from
Eqs. (28) and (29) that both curves match each
other in the vicinity of the codimension-two point
(ε1 = 0, ε2 = 0).
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Fig. 1. Bifurcation set for Eqs. (7). The parameters are defined by (4). σ = 3, r2 = 0, b = (1/9). T — linear threshold.
H — Hopf bifurcation. S — saddle-node bifurcation of the period-one solution. D — period doubling bifurcation.

To check the results obtained with the help of
the one-dimensional map (26) we have calculated
numerically several bifurcation curves of Eqs. (1)
with real r. These curves are shown in Fig. 1 in
the (δ, r)-plane. The curve T indicates the sta-
bility boundary of the trivial steady-state solution
x′ = y′ = z′ = 0 that is unstable above this
curve. The reduction of Eqs. (1) to Eqs. (3) is
valid above the curve M defined by the equality
σ(r1−1)−δ2/4 = 0. The point h is the codimension-
two homoclinic bifurcation point. According to our
considerations it should be a limit point for infinite
number of bifurcation curves each corresponding to
a certain bifurcation of the logistic map. Two of
these curves are shown in Fig. 1. The curve S cor-
responds to the saddle-node bifurcation (28). When
crossing this curve from the right two limit cycles
appear in the projective space P. One of them is
stable and the other one is unstable. When the pa-
rameter δ is further decreased the stable limit cycle
undergoes a period-doubling bifurcation (curve D)
which is the first bifurcation of the infinite period-
doubling cascade leading to a chaotic attractor.
This result of our numerical calculations is in good
agreement with the predictions based on the one-
dimensional map (26). Namely, the behavior of the
curves D and S in the vicinity of the point h is sim-
ilar to that of the curves described by Eqs. (28)
and (29) up to the diffeomorphysm of the plane
(ε1, ε2) onto the plane (δ, r). The curve H in Fig. 1

corresponds to the Hopf bifurcation of the nontrivial
steady-state solution in the projective space P. The
dashed (solid) line indicates the subcritical (super-
critical) branch of this curve. Note that the inter-
section of the curve H with the r-axis corresponds
to the subcritical Hopf bifurcation that is known to
take place in the parameter space of the real Lorenz
model.

Our results may be summarized as follows. We
have shown that all the dynamical properties of
CLM including the peculiarities of the phase evolu-
tion can be revealed using the representation of the
model equations in the projective space. This rep-
resentation provides an efficient and clear method
for studying the properties of CLM. The surface
bounding the attractors in the projective space is
found. The codimension-two origin of the homo-
clinic bifurcation in CLM is shown. For the param-
eter values close to the codimension-one bifurcation
point a one-dimensional map equivalent to the logis-
tic map is obtained. The correspondence between
the bifurcation hierarchy in CLM and that obtained
from the asymptotic expressions in the vicinity of
codimension-two bifurcation is shown numerically.

Acknowledgments

V. Yu. Toronov and V. L. Derbov are grateful to
the State Committee for High Education of Russia
for the support of this work (grant no. 95-0-2.1-59).



The Complex Lorenz Model 729

References
Gibbon, J. D. & McGuinness, M. J. [1982] “The real

and complex Lorenz equations in rotating fluids and
lasers,” Physica D5, 108–122.

Kobayashi, S. & Nomizu, K. [1969] Foundations of Dif-
ferential Geometry (Interscience, NY).

Lorenz, E. N. [1963] “Deterministic non-periodic flow,”
J. Atmos. Sci. 20, 130–141.

Ning, C. Z. & Haken, H. [1990] “Detuned lasers and the
complex Lorenz equations: Subcritical and supercriti-
cal Hopf bifurcations,” Phys. Rev. A41, 3826–3837.

Phillips, N. A. [1963] “Geostrophic motion,” Rev. Geo-
phys. 1, 123–176.

Rucklidge, A. M. [1993] “Chaos in a low-order model of
magnetoconvection,” Physica D62, 323–327.

Samuel, J. & Bhandari, R. [1988] “General setting for
Berry’s phase,” Phys. Rev. Lett. 60, 2339–2342.

Shil’nikov, A. L. [1991] “Bifurcations and chaos in the
Shimizu-Marioka system,” Selecta Math. Sovietica 10,
105–107.

Shil’nikov, L. P. [1981] “The theory of bifurcations and
quaziattractors,” Uspekh. Math. Nauk 36(4), 240-242.

Shil’nikov, L. P. [1969] “On a new type of bifurcation of
multidimensional dynamic systems,” Sov. Math. Dokl.
10, 1368–1371.

Shimizu, T. & Marioka, N. [1980] “On the bifurcation
of a symmetric limit cycle to an asymmetric one in a
simple model,” Phys. Lett. A76(3, 4), 201–204.

Sparrow, C. [1982] The Lorenz Equations: Bifurcations,
Chaos and Strange Attractors (Springer-Verlag).

Tang, D. Y. & Weiss, C. O. [1994] “Uniqueness of the
chaotic attractor of a single-mode laser,” Phys. Rev.
A49, 1296–1300.

Tang, D. Y., Li, M. Y. & Weiss, C. O. [1991] “Field
dynamics of a single-mode laser,” Phys. Rev. A44,
7597–7604.

Toronov, V. Yu. & Derbov, V. L. [1994] “Geometric
phases in lasers and liquid flows,” Phys. Rev. A49,
1392–1399.

Vladimirov, A. G. & Volkov, D. Yu. [1993] Opt. Com-
mun. 96, 351–360.

Weiss, C. O., Abraham, N. B. & Hubner, U. [1988]
“Homoclinic and heteroclinic chaos in a single-mode
laser,” Phys. Rev. Lett. 61, 1587–1596.


