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Effect of Cherenkov radiation on localized-state interaction
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We study theoretically the interaction of temporal localized states in all fiber cavities and microresonator-based
optical frequency comb generators. We show that Cherenkov radiation emitted in the presence of third-order
dispersion breaks the symmetry of the localized structures interaction and greatly enlarges their interaction range
thus facilitating the experimental observation of the dissipative soliton bound states. Analytical derivation of
the reduced equations governing slow time evolution of the positions of two interacting localized states in a
generalized Lugiato-Lefever model with the third-order dispersion term is performed. Numerical solutions of the
model equation are in close agreement with analytical predictions.
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I. INTRODUCTION

Frequency comb generation in microresonators has revo-
lutionized such research disciplines as metrology and spec-
troscopy [1,2]. This is due to the development of laser-based
precision spectroscopy, including the optical frequency comb
technique [3]. Driven optical microcavities widely used for
the generation of optical frequency combs can be modeled by
Lugiato-Lefever equation [4] that possesses solutions in the
form of localized structures also called cavity solitons (CSs)
[5,6]. Localized structures of the Lugiato-Lefever model have
been theoretically predicted in Ref. [7] and experimentally
observed in Ref. [8]. In particular, temporal CSs manifest them-
selves in the form of short optical pulses propagating in the
cavity. The experimental evidence of temporal CSs interaction
performed in Ref. [8] indicated that due to a very fast decay of
their tails, stable CS bound states are hardly observable. It has
been also demonstrated theoretically and experimentally that
when periodic perturbations [9–13] or high-order dispersions
[13–17] are present, radiation of weakly decaying dispersive
waves, e.g., so-called Cherenkov radiation [18–20], can lead
to a strong increase of the interaction range and formation of
new types of bound states. Experimental investigation of this
radiation induced by the high-order dispersion was carried out
in [10,13,14,16,21]. In particular, in Ref. [13] bound states of
CSs resulting from their interaction via Cherenkov radiation
were observed experimentally. Numerical studies of the effect
of high-order dispersions on the properties of CSs and their
interaction were reported in Refs. [10,13,14,17,19,22–26].

In this paper, we provide an analytical understanding of how
two CSs interact under the action of the Cherenkov radiation
induced by high order dispersion. For this purpose, we use
the paradigmatic Lugiato-Lefever model with the third-order
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dispersion term. We derive the equations governing the time
evolution of the position of two well-separated CSs interacting
weakly via their exponentially decaying tails. We demonstrate
that the presence of the third-order dispersion term breaking
the parity symmetry of the model equation leads to a significant
extension of the CS interaction range and affects strongly the
nature of the interaction. We show that the interference between
the dispersive waves emitted by two interacting CSs produces
an oscillating pattern responsible for the stabilization of the
bound states. In particular, we show that when two CSs interact,
one of them remains almost unaffected by the interaction force.
On the contrary, the second interacting CS is strongly altered
by the dispersive wave emitted by the first one.

II. MODEL EQUATION

The generalized Lugiato-Lefever model with high-order
dispersion terms has been introduced in Ref. [27]. In what
follows, we consider only the second and third orders of
dispersion. In this case, the intracavity field is governed by
the following dimensionless equation:

∂E

∂T
= Ein − (1 + iθ )E + id2

∂2E

∂t2
+ d3

∂3E

∂t3
+ iE|E|2. (1)

Here E = E(t,T ) is the complex electric field envelope, T is
the slow time variable describing the number of round trips
in the cavity, and t is the normalized retarded time variable
(fast time). The parameter Ein denotes the normalized injected
field amplitude, and θ is the normalized frequency detuning.
Further, d2 and d3 are the second- and the third-order dispersion
coefficients, respectively. Assuming anomalous group velocity
dispersion d2 > 0, we rescale d2 to unity. Here we consider
the case when |d3| � d2 = 1 and the fourth-order dispersion
is much weaker than the third-order one. Therefore, we will
neglect the effect of the fourth-order dispersion on the CS
interaction.
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FIG. 1. The amplitude |E| of a CS calculated by numerical
solution of Eq. (1) in linear scale (left) and the deviation A(ξ )
of the CS amplitude from the background in logarithmic scale
(right). Top: CS formation in the (t,T ) plane (d3 = 0.2). Bottom: CS
moving uniformly with the velocity v = 0.50679 (d3 = 0.1). Other
parameters are θ = 3.5 and Ein = 2.0.

III. CAVITY SOLITON SOLUTION

The homogeneous stationary solution (HSS) of Eq. (1) is
obtained from E2

in = I0[1 + (θ − I0)2] with I0 = |E0|2. For
θ <

√
3 (θ >

√
3) the HSS is monostable (bistable) as a

function of the input intensity. When d3 = 0, Eq. (1) supports
both periodic [4] and CS [7] stationary states even in the
monostable regime.

When d3 �= 0, due to the breaking of the parity symmetry
t → −t , CS becomes asymmetric and starts to move uniformly
with the velocity v along the t axis. An example of a moving
CS obtained by direct numerical simulations of Eq. (1) with
periodic boundary conditions is shown in Fig. 1, where the
deviation of the CS amplitude from the HSS is defined as
A(ξ ) = E(ξ ) − E0 with ξ = t − vT (if not otherwise stated,
all the data represented in the figures are dimensionless).
It is seen from this figure that the inclusion of the third-
order dispersion induces an asymmetry in CS shape. The left
(leading) CS tail decays very fast to the HSS E = E0 as in
the case when the third-order dispersion is absent. By contrast,
the right (trailing) tail contains a weakly decaying dispersive
wave associated with the Cherenkov radiation [18]. Note that
the phase matching condition between the CS and the linear
dispersive wave leads to a resonant wave amplification [18,19],
which is responsible for the appearance of this radiation. The
relation between classical Cherenkov radiation and emission
of dispersive waves by solitons is discussed in Ref. [18].

The velocity v of the CS can be estimated asymptotically
at small d3 using the multiple-scale techniques,

v � −d3s, s =
∫ +∞

−∞
w0 · ∂3a0

∂ξ 3
dξ

( ∫ +∞

−∞
w0 · a0dξ

)−1

,

(2)
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FIG. 2. Soliton velocity v vs. third-order dispersion coefficient
d3. Solid line corresponds to the plot of the asymptotic formula
Eq. (2) with numerically calculated s = 3.895. Dots indicate soliton
velocities obtained by means of direct numerical integration of Eq. (1)
and by calculation of stationary soliton solutions in the comoving
frame with the help of the Newtons iteration method. Parameter values
are the same as in Fig. 1.

where the index “0” indicates that both the CS solution a0 =
(ReA ,ImA)Td3=0 and the adjoint neutral mode w0 = wd3=0

are evaluated at d3 = 0. The soliton velocity estimated using
Eq. (2) and calculated by numerical solution of the model
Eq. (1) is shown in Fig. 2. It is seen that the asymptotic
expression Eq. (2) with the numerically calculated coefficient
s = 3.895 agrees very well with the results of direct numerical
simulation of Eq. (1) for d3 � 0.1, where the CS velocity de-
pends linearly on the third-order dispersion coefficient. Notice
that in the conservative limit where losses and injection are
absent, one can obtain s = θ = 3.5 [18]. At larger third-order
dispersion coefficients, d3 � 0.1, analytical formula Eq. (2)
underestimates the velocity v.

IV. CAVITY SOLITON TAILS

The CS shown in Fig. 1 is generated in regime where
the system exhibits a bistable behavior. Let E = E0 be the
stable HSS with smallest field intensity I0 = |E0|2. At large
distance from the CS core its tails decay exponentially to this
HSS. To characterize the asymptotic behavior of the CS tails,
we substitute E0 + εbeλξ into Eq. (1) and collect first-order
terms in the small parameter ε. This yields the following
characteristic equation:

d2
3 λ6 + (1 + d3v)λ4 − 2d3λ

3 + λ2(4I0 + v2 − 2θ ) − 2vλ

+ θ2 + 1 + 3I 2
0 − 4θI0 = 0,

for the eigenvalue λ. In the absence of third-order dis-
persion, when d3 = 0 and v = 0, four solutions of the
characteristic equation are given by the expression λ =
±

√
θ − 2I0 ±

√
I0

2 − 1. In the case when I0 < 1 this ex-
pression gives two pairs of complex conjugated eigenvalues
±λ0 and ±λ∗

0. For small nonzero d3 the eigenvalues ±λ0 and
±λ∗

0 are transformed into a pair of stable complex conjugated
λ1,2 and a pair of unstable complex conjugated (or real)
eigenvalues, λ5 and λ6, located in small neighborhoods of
±λ0 and ±λ∗

0 in the complex plane. More importantly, a pair
of new eigenvalues, λ3 and λ4 = λ∗

3, appears. In the limit of
small third-order dispersion |d3| � 1 the eigenvalues λ3,4 can
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be written as

λ3,4 = −d3 ∓ i

[
1

d3
+ d3(θ − 2I0 − s)

]
+ O

(
d2

3

)
,

where we have neglected the term v2 = O(d2
3 ). These new

eigenvalues with small real and large imaginary parts are
associated with the weakly decaying linear dispersive wave
(Cherenkov radiation) emitted by CSs. As we will see below,
they are responsible for the increase of the CS interaction range
and formation of a large number of bound states with large CS
separations. In the anomalous dispersion regime, the dispersion
coefficient d3 is positive and the eigenvalues λ3,4 have negative
real parts. In this case the Cherenkov radiation appears at the
trailing tail of the CS. At sufficiently large distances from the
CS core this tail can be represented in asymptotic form,

A(ξ ) ≈ b1e
λ1ξ + b2e

λ2ξ + b3e
λ3ξ + b4e

λ4ξ , ξ → +∞, (3)

where the coefficients b3,4 can be considered as amplitudes of
the Cherenkov radiation. Furthermore, linearizing Eq. (1) at
E = E0 we obtain b1,4 = p1,4b

∗
2,3 with

p1,4 = E2
0

θ − 2|E0|2 − iκ + ivλ1,4 − λ2
1,4 + id3λ

3
1,4

. (4)

In particular, for the parameter values given in Fig. 1 and d3 =
0.1 numerical estimation of b2,3 and p1,4 gives b2 = 3.286 +
1.581i, b3 = −0.0678 + 0.0286i, p1 = 0.0221 − 0.0856i,
and p4 = −0.001297 − 0.000895i.

It follows from Eq. (4) that |p4| = O(d2
3 ) in the limit d3 →

0, which means that small last term in Eq. (3) can be omitted
in the asymptotic analysis of the CS interaction. Therefore,
since the eigenvalue λ3 has a small real part, at large positive
ξ the third term in Eq. (3) with the amplitude b3 dominates
in the weakly decaying and oscillating CS trailing tail. This
coefficient is exponentially small in the limit d3 → 0 and can
be estimated analytically using the techniques similar to that
described in the conservative limit [18,28]. This is, however,
beyond the scope of the present work. Stable eigenvalues λ5,6

are responsible for the fast decay of the CS leading edge at
negative ξ → −∞:

A(ξ ) ≈ b5e
λ5ξ + b6e

λ6ξ , ξ → −∞. (5)

Numerical estimation gives the following values of the coef-
ficients b5,6: b5 = 0.111 − 1.50i and b6 = 3.54 + 4.83i. Due
to the translational invariance of Eq. (1) along the t direction,
the linear operator L̂(a) with a = (ReA ,ImA)T obtained by
linearization of Eq. (1) on the CS solution has zero eigenvalue
corresponding to the so-called neutral translational eigen-
mode u = ∂ξ (ReA ,ImA)T satisfying the relation L̂(a)u = 0.
In what follows, we will need also the neutral mode w of
the linear operator L̂†(a) adjoint to L̂(a), which satisfies the
relation L̂†(a)w = 0. The asymptotic behavior of the function
z defining the two components of the adjoint neutral mode
w = (Rez ,Imz)T is given by the relations

z(ξ ) ≈ c1e
−λ∗

1ξ + c2e
−λ∗

2ξ + c3e
−λ∗

3ξ + c4e
−λ∗

4ξ ,
(6)

ξ → −∞,

z(ξ ) ≈ c5e
−λ5ξ + c6e

−λ6ξ , ξ → +∞, (7)
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FIG. 3. Neutral mode |u| (gray) and adjoint neutral mode |w|
(black) in logarithmic scale calculated for d3 = 0.1. Other parameters
are the same as for Fig. 1.

with c1,4 = −p∗
1,4c

∗
2,3 and the coefficients p1,4 defined by

Eq. (4). Numerical estimation of the coefficients c2,3,5,6

yields c2 = −0.313 + 0.252i, c3 = −0.0152 − 0.0294i, c5 =
−0.185 − 0.0991i, and c6 = 0.245 + 0.456i. Similar to
|b4| � |b3|, the absolute value of the coefficient c4 is much
smaller than that of c3. Hence, the term proportional to c4

can be neglected in Eq. (6) when deriving the CS interaction
equations. Absolute values of the neutral mode |u| = |∂ξA| and
the adjoint neutral mode |w| are shown in Fig. 3 in logarithmic
scale. From this figure we see that the neutral (adjoint neutral)
mode has weakly decaying trailing (leading) tail.

V. INTERACTION EQUATIONS

To derive the CS interaction equations we use the Karpman-
Solov’ev-Gorshkov-Ostrovsky approach [29] and look for the
solution of Eq. (1) in the form of two weakly interacting CSs,
see also Refs. [30,31],

E(ξ,T ) = E0 + A1 + A2 + δA. (8)

Here, Ak = A[ξ − τk(T )], k = 1, 2 are unperturbed CS so-
lutions with slowly changing coordinates along the ξ -axis,
dτ1,2/dT = O(ε). The last term in the right-hand side de-
scribes a small correction due to the interaction, δA = O(ε),
where the parameter ε � 1 measures the weakness of the in-
teraction. Substituting Eq. (8) into the model Eq. (1), collecting
the terms of the first order in ε, writing solvability conditions
of the resulting first-order equation, and using asymptotic re-
lations (3), (5), (6), and (7) we obtain two equations governing
the slow time evolution of the CS positions τ1,2:

dτ2

dT
=

∑
n=2,3

Re
[
bnc

∗
n

(
v + 3d3λ

2
n + 2iλn

)
eλnτ

]
, (9)

dτ1

dT
= −

∑
n=5,6

Re
[
bnc

∗
n

(
v + 3d3λ

2
n + 2iλn

)
e−λnτ

]

+Re
[
(b5c

∗
6 + b6c

∗
5)

(
v + λ2

56 + iλ56 − λ5λ6
)
e− λ56τ

2
]
.

(10)

Here τ = τ2 − τ1 is the time separation of two CSs and λ56 =
λ5 + λ6. At small time separations the term with n = 2 in the
right-hand side of Eq. (9) and all the terms in the right-hand side
of Eq. (10) dominate in the interaction equations. In particular,
for d3 = 0.1 when the eigenvalues λ5,6 are real the two terms in
Eq. (10) are responsible for monotonous attraction of first CS
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to the second one. At larger CS separations, however, where
the fast decaying right-hand side of Eq. (10) and the term with
n = 2 in Eq. (9) become very small, the n = 3 term in the
right-hand side of Eq. (9) related to the Cherenkov radiation
becomes dominating. This slowly decaying term oscillates fast
with the CS time separation and it is responsible for bound state
formation at large τ . Thus, at large CS separations Eqs. (9)
and (10) can be rewritten in the form clearly indicating the
asymmetry of the CS interaction:

dτ

dT
≈ dτ2

dT
≈ Re

[
b3c

∗
3

(
3d3λ

2
3 + 2iλ3

)
eλ3τ

]
,

dτ1

dT
≈ 0.

(11)

These equations predict the existence of an infinite countable
set of equidistant stable CS bound states separated by unstable
ones. The CS separations in the stable bound states are defined
by the relation

τn = π (2n + 1) − φ

−Imλ3
, (12)

with integer positive n � n0, where odd (even) n correspond
to stable (unstable) bound states and n0 enumerates the
bound state with minimal distance between the two CSs.
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FIG. 4. Top: The dependence of CS velocities on their time
separation. Unlike the velocity of the first CS (black line), which is
positive and fast decaying with the increase separation τ = τ2 − τ1,
the velocity of the second CS (gray line) decays very slowly and
oscillates fast as τ changes. Bottom: Difference of CS velocities as a
function of their time separation. Zeros of this difference correspond
to bound CS states. Numerically calculated CS time separations
in the bound states are indicated by dots. Stable (unstable) bound
states are shown by filled (empty) dots and correspond to decreasing
(increasing) CS velocity difference. d3 = 0.1, other parameters are
the same as in Fig. 1.

The constant shift φ entering Eq. (11) is defined by φ =
arg [b3c

∗
3(3d3λ

2
3 + 2iλ3)], where the product b3c

∗
3 has to be

calculated numerically. For d3 = 0.1 and the parameter values
of Fig. 1 the first bound state is unstable and corresponds to
n0 = 12 and numerical calculations give b3c

∗
3 = (−0.162 +

2.433i) × 10−3. The stable bound states calculated using
Eq. (12) are in an excellent agreement with those calculated
numerically with relative error less than 0.3%. Furthermore, for
all bound states except for the first three stable bound states
with smallest CS separations, τ13, τ15, τ17, which are most
strongly affected by short-range interaction associated with the
fast-decaying eigenvalues λ2, λ5, and λ6, the relative error is
less than 0.1%. The smallness of the relative error indicates that
the distances between the CS in the bound states are determined
by the long range interaction via the Cherenkov radiation and
are almost unaffected by the short-range interaction. The latter
interaction is responsible only for the suppression of the bound
state formation at small distances between the CS. In other
words, the short-range interaction determined the number n0

of the first bound state having the smallest CS separation.
Note that Eq. (12) formally predicts the existence of infinite
countable set of stable bound states. In reality the number of
bound states is finite due to the finite cavity length and the
presence of noise that can dominate over exponentially weak
interaction at large CS separations.
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FIG. 5. Top: Stable bound state of two CSs calculated for d3 =
0.2. Left CS is almost unaffected by the interaction while the right one
has larger peak power and is much stronger modified by the interaction
force. Note that for unstable bound states the peak power of the right
CS is smaller than that of the left one. Bottom: Frequency comb
envelope for a solitary pulse (black) and pulse bound state shown in
left panel (gray). The envelope modulation period of the bound state
comb is determined by the time separation of the two pulses. Other
parameters are the same as in Fig. 1.

013816-4



EFFECT OF CHERENKOV RADIATION ON LOCALIZED- … PHYSICAL REVIEW A 97, 013816 (2018)

FIG. 6. Formation of bound states of two (left) and five (right)
CSs calculated numerically for d3 = 0.2. Other parameters are the
same as in Fig. 1.

Long-range CS interaction Eqs. (11) indicate also that at
large τ the first CS is almost unaffected by the interaction, while
the second CS moves in the potential created by the first one.
The velocities dτ1,2/dt of the two interacting CSs calculated
using Eqs. (9) and (10) with d3 = 0.1 are shown in the top panel
of Fig. 4 as functions of the CS time separation τ . The velocity
of the first (left) CS defined by the right-hand side of Eq. (10)
is a monotonous, always positive and fast decaying function of
the CS time separation τ . By contrast, the velocity of the second
(right) CS is negative only at relatively small τ and becomes
slowly decaying and fast oscillating around zero at large τ . This
fast oscillating behavior is related to the Cherenkov radiation
and described by the n = 3 term in the right-hand side of
Eq. (9). It is responsible for the formation of CS bond states at
sufficiently large time separations τ . To find these states, we
plot the difference of the CS velocities dτ/dt as a function of τ

in the bottom panel of Fig. 4. Zeros of dτ/dt correspond to the
fixed points of the CS interaction equations. Stable (unstable)
CSs bound states calculated by direct numerical solution of the
model Eq. (1) are indicated by filled (empty) dots in this figure.
It is seen that they are in a good agreement with the results of
the asymptotic analysis. Furthermore, a stable bound state of
two CS and the corresponding frequency comb are shown in
Fig. 5. The envelope modulation period of the bound state
comb is determined by the time separation of the two pulses,
see, e.g., Ref. [16]. Finally, a space-time diagram in the (T , t)
plane illustrating the formation of two-soliton and five-soliton
bound states with different distances is shown in Figs. 6(a)
and 6(b).

IV. CONCLUSION

To conclude, we have investigated the effect of Cherenkov
radiation on the CS interaction in the generalized Lugiato-
Lefever model with the third-order dispersion term, which

is widely used to describe frequency comb generation in
optical microresonators and CS formation in fiber cavities.
We have developed an analytical asymptotic theory of the CS
interaction. The results of numerical simulation of the model
equation are in good agreement with analytical predictions.
We have shown that the third-order dispersion greatly enlarges
the CS interaction range and makes the interaction very
asymmetric. This allows for the stabilization of large number
of bounded states formed by CSs. The appearance of the bound
states is related to the long-range CS interaction mediated by
the Cherenkov radiation, while the short-range CS interaction,
which is only slightly modified by the Cherenkov radiation,
is responsible for the suppression of bound-state formation at
small distances between two CSs. As was mentioned above,
in the absence of the third-order dispersion, bound states are
hardly observable experimentally due to rather fast decay
and slow oscillation of the CS tail [8]. That is, considering
the system operating close to the zero dispersion wavelength
regime where the third-order dispersion comes into play,
one can facilitate experimental observation of the CS bound
states. Finally, we note that the form of the CS interaction
Eqs. (9), (10), and (11) depend on the symmetries of the
model equation and asymptotic behavior of the CS tails, but
not on the particular form of the nonlinear part of this equation.
Therefore, the results of our analysis are applicable to a broad
class of bistable optical systems with external driving beam.
The results presented here could be also useful for qualitative
understanding of the effect of the third and higher-order
dispersion on the interaction of temporal CS in mode-locked
lasers. However, due to the presence of an additional degree
of freedom associated with the CS phase difference in the
interaction equations, an in-depth theoretical analysis of this
effect in active laser systems will be a subject of further
research. Finally, the approach used here can be applied to
study not only to the localized structures interaction, but also
front interaction in bistable systems; see, e.g., Ref. [32].
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