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Intracavity second-harmonic generation: The steady-state solutions
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We study the steady states of a solid-state laser containing a birefringent frequency-doubling crystal such as
a YAG-KTP laser and assess their stability in a systematic way. We show that as the pump power is increased,
different scenarios arise: Hopf bifurcation to antiphased periodic regimes, mode hopping between different cw
states, and finally breakup of the multimode states for a single- or two-mode cw regime involving homoclinic
points.@S1050-2947~98!07610-0#

PACS number~s!: 42.65.Sf, 42.60.Mi, 42.55.Rz
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I. INTRODUCTION

Diode-pumped solid-state lasers with intracav
frequency-doubling crystal have proved to be efficie
sources of visible light. Therefore the problem of output
tensity stability is very important for these lasers. It w
shown theoretically and experimentally that when increas
the nonlinear coupling between the modes, the frequen
doubled laser can start to exhibit large amplitude oscillati
of modal intensities@1# due to sum-frequency generatio
These oscillations are undesirable in many applications s
they lead to a laser output with an intensity fluctuating
time ~the so-called green problem!. On the other hand, an
tiphase oscillations were shown to exhibit very pecul
properties@2–5# that also could have some applications@6#.

Most theoretical works on the antiphase oscillations w
devoted to their numerical study and analytical description
their onset associated with degenerate Hopf bifurcations
@3,5,7,8# the stability of the steady-state solutions was a
lyzed for a model of frequency-doubled laser. In particula
complete stability analysis of the two-mode laser is given
@7#. It was shown that the stable steady-state solution co
sponding to theN-mode regime for which all the modes in
given polarization have nonzero and equal intensities
exhibit both Hopf and steady-state bifurcations provided
pump parameter is large enough@3#. These papers were fo
cused on the Hopf bifurcations, since for the parameters t
cal of experimental situations, steady-state bifurcations
the N-mode solution usually take place after Hopf bifurc
tions. In an attempt to fill this gap, we describe the stea
state bifurcations in a laser with arbitrary total number
modesN. We show that these bifurcations play an importa
role in the laser dynamics even if they occur after the H
bifurcations. In particular, some of them can lead to sta
single- or two-mode operation. Thus, the results obtained
be used in order to stabilize the output intensity of
frequency-doubled laser.

II. LASER MODEL

To describe the modal interaction in a frequency-doub
solid-state laser we consider the model proposed in@1#:
PRA 581050-2947/98/58~4!/3320~8!/$15.00
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5I kS Gk2a1geI k22e(

r 51

N

mkrI r D , ~1!

dGk

dt
5g2GkS 11~12b!I k1b(

r 51

N

I r D . ~2!

I k (Gk) is the intensity~gain! of the modek. h5tc /t f ,
wheretc and t f are the cavity round-trip and fluorescen
lifetime, respectively.a is the cavity loss parameter,b is the
cross saturation parameter, andg is the linear gain param
eter. These three parameters are assumed to be the sam
all the modes. The total number of laser modes isN5M
1P, whereM andP are the numbers of the modes belon
ing to orthogonal polarizations. If the modesk andr have the
same polarization thenmkr5g and mkr512g otherwise.
The parametere describes the nonlinear coupling betwe
the modes due to the frequency sum generation in the K
crystal. For laser parameters typical of experimental situa
we havee, h!1 @1,9–12#. Therefore most analytical result
concerning antiphase oscillations in these lasers were
tained in the limite,h→0 @3,8,5#.

III. STABILITY ANALYSIS

A. N-mode solution

1. M5P5N/2

We consider the stability of the steady-state solution
which all modes in a given polarization have nonzero a
equal intensities and modal gains. Since forMÞP explicit
expressions for the stability boundaries of theN-mode solu-
tion are very cumbersome, we give them only for the ca
M5P5N/2>1. In this case the steady-state solution und
consideration is given by

I j5I .0, Gj5G ~ j 51, . . . ,N!. ~3!

The Hopf bifurcation conditions for the solution~3! were
derived in@3#. They are given by
3320 © 1998 The American Physical Society
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g5g1N
H 5

geI

h
@a1eI ~N2g!#, I 5

h/e

g2~h/e!DN
.0

~4!

and

g5g2N
H 5

eI

h
D1N@a1eI ~N2g!#, I 5

h/e

D1N2~h/e!DN
.0,

~5!

where DN511b(N21) and D1N5N(122g)1g. At the
bifurcation boundary~4! the linear stability analysis of the
solution~3! yieldsN22 pairs of pure imaginary eigenvalue
whereas Eq.~5! corresponds to a simple pair of pure imag
nary eigenvalues. Hence, forN.3 the condition~4! defines
a degenerate Hopf bifurcation. This bifurcation producen
periodic solutions wheren increases withN. The Hopf bi-
furcation~5! is nondegenerate for anyN and leads to a single
time-periodic solution referred to as AD4 in@5,8#: all the
modes in each polarization oscillate in phase, while the
polarizations oscillate in antiphase.

Let us introduce the coefficients

A5a1ge, B5ab12ge,

AN5a@11b~N/221!#1ge~N21!,

BN5abN/21Ne~12g!, ~6!

which describe mode interactions near the linear laser thr
old g5a. More precisely, the coefficientA (AN) is the self-
saturation coefficient for a solitary mode (N/2 identical
modes belonging to the same polarization!, while B (BN) is
the cross-saturation coefficient for two modes having
same polarization~two groups ofN/2 modes having differen
polarizations!. A25A. The coefficients~6! can be easily ob-
tained by adiabatically eliminating the variablesGk in Eq.
~2! and expanding the right-hand side of Eq.~1! into powers
of the small modal intensities near the lasing threshold
will be shown later that the stability conditions for stead
state solutions depend on the relations between the satur
and cross-saturation coefficients.

The steady-state~or pitchfork! bifurcations of the solution
~3! are defined by

g5g1N
S 5

g~12b!@aDN1~g2N!e#2

e@2gDN2N~12b1gb!#2
,

I 5
A2B

e@2gDN2N~12b1gb!#
.0, ~7!

g5g2N
S 5

~12b!D1N@aDN1~g2N!e#2

e@NbD1N22g~N21!~12b!#2
,

I 5
AN2BN

e@NbD1N22g~N21!~12b!#
.0, ~8!

where, according to Eq.~6!, we haveA2B5a(12b)2ge
and AN2BN5a(12b)2eD1N . The condition ~7! corre-
sponds to a degenerate bifurcation with (N22) zero eigen-
values. The number of steady-state solutions bifurca
o

h-

e

It

ion

g

from the N-mode solution at this degenerate bifurcation
creases withN. The condition~8! corresponds to a simple
pitchfork bifurcation with a single zero eigenvalue.

Finally, the stability conditions for the solution~3! with
N.2 are given by

g,g1N
H or h/e.g/DN , ~9!

g,g2N
H or h/e.D1N /DN , ~10!

g,g1N
S or b.

N22g

2g~N21!1N~12g!
for A.B,

~11!
g.g1N

S

and

b,
N22g

2g~N21!1N~12g!
for A,B,

g,g2N
S or b.

2g~N21!

ND1N12g~N21!
for AN.BN ,

~12!
g.g2N

S

and

b,
2g~N21!

ND1N12g~N21!
for AN,BN .

For N52 we only have the two stability conditions~10! and
~12!.

The Hopf bifurcation surface~9! @~10!# determines the
stability of theN-mode solution with respect to a Hopf b
furcation for g,1/2 (g.1/2). For h/e,1/(2DN) the two
Hopf bifurcation surfaces intersect atg51/2. Otherwise, if
h/e.1/(2DN), there exists an interval ofg where a Hopf
bifurcation is impossible for any value of the pump para
eterg. This is the case, e.g., when the number of the exc
modesN is large enough. In particular, for the parameters
@9# we needN.25 in order to suppress the Hopf bifurcatio
at g'1/2. For greater values ofe and/or smaller values ofh,
the Hopf bifurcation can be suppressed even in a laser w
few modes~see Fig. 3!.

Like the Hopf bifurcation boundaries, the steady-state
furcation surfaces~7! and ~8! intersect atg51/2 for b
.2(N21)/(3N22). Note, however, that stableN-mode op-
eration can be observed near the lasing threshold only if
self-saturation coefficients are greater than the cro
saturation coefficients:A.B, AN.BN . This is always true
in the limit h,e→0 which corresponds to the experiment
situation of@1,9–12#.

It follows from Eqs. ~4!–~8! that in the limit e→0, the
steady-state~Hopf! bifurcations of Eq.~3! take place forg
5O(1/e) @g5O(1)#. Hence, fore small enough, we usu
ally haveg1N

H ,g1N
S and g2N

H ,g2N
S and the solutions bifur-

cating from theN-mode solution at the steady-state bifurc
tion point are unstable@3#. Nevertheless, even in this case
is worthwhile to study them since they can be involved in t
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bifurcations leading to stable solutions. Specifically, t
pitchfork bifurcation~8! produces two branches of unstab
solutions:

I 15¯5I M[I a , I M115¯5I M1P[I b , I a.I b ,
~13!

I 15¯5I M[I a , I M115¯5I M1P[I b , I b.I a .
~14!

The differenceuI a2I bu increases away from the pitchfor
bifurcation point~8! and finally the quantityI b(I a) drops to
zero at the bifurcation point where the solution~13! @the
solution ~14!# collides with theM -mode (P-mode! steady-
state solution for which only one-half of the laser mod
belonging to the same polarization have nonzero intensi
After this collision theM -mode (P-mode! solution can be-
come stable.

Bifurcation phenomena associated with the degenerate
furcation~7! are more complicated. As in the case of nond
generate pitchfork bifurcation~8!, we have unstable steady
state solutions bifurcating from theN-mode solution. Some
of these solutions collide with the two-mode solutions, wh
can become stable after the collision. The other import

FIG. 1. Time dependence of the modal intensities and ph
portraits for a laser with two modes in orthogonal polarizations. T
parameters are close to a heteroclininic bifurcation responsible
the breakup of the antiphase oscillations:h51024, e5531024,
a51022. The pointsU1 and U2 indicate the positions of the un
stable single mode steady-state solutions.~a!,~b! g50.3, g50.04.
~c!,~d! g50.15, g50.4.
s
s.

bi-
-

nt

feature of the unstable solutions bifurcating from t
N -mode solution is that under certain conditions they can
involved in homoclinic bifurcations that lead to the transitio
from antiphase to stable cw operation~see Fig. 1!.

2. MÞP

For arbitrary M and P asymptotic expressions for th
Hopf bifurcation are given in@8#. Since the expressions fo
the steady-state bifurcations of theN-mode solution are too
complex, even in the limite,h→0, we do not present them
here. However, it is worth discussing qualitative changes
take place whenMÞP. It follows from the structure of the
characteristic polynomial for theN-mode solution~see@3#!
that for MÞP, M , P.1 and M1P.2, the degenerate
Hopf ~degenerate pitchfork! bifurcation surface defined by
Eq. ~4! @Eq. ~7!# splits into two separate bifurcation surfac
that correspond toM21 andP21 pairs of pure imaginary
eigenvalues ~zero eigenvalues!, respectively. For h/e

se
e
or FIG. 2. Antiphase oscillations in a laser with equal and uneq
mode numbers in different polarizations withh51026, e51025,
a51022, g50.7, b50.8. ~a! Time evolution of the mode intensi
ties for L53, P53, andg50.0335. ~b! Projections of the phase
trajectory corresponding to the solutions shown in~a!. ~c! Time
evolution of the modal intensities forL53, P52, andg50.0225.
~d! Phase portraits of the solutions shown in~c!. The modes 2 and
5 have different polarizations while the modes 1 and 2 belong to
same polarization.
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,1/(2DN) these surfaces intersect atg51/2. In the case of a
Hopf bifurcation, the distance between the two bifurcati
surfaces is very small since it is proportional to the sm
parametere. Therefore, the two bifurcations take place a
most simultaneously. However, even for smalle the splitting
of the Hopf bifurcation surfaces has an important con
quence: the two subsequent Hopf bifurcations correspon
slightly different frequencies. As a result, just after cross
the first Hopf bifurcation surface, a secondary instabil
leading to quasiperiodic behavior is to be expected. T
conclusion is illustrated by Fig. 2, where the time depe
dence of the modal intensities and phase portraits are sh
for Eqs. ~1! with M5P53 @Figs. 2~a!, 2~b!# and M53, P
52 @Figs. 2~c!, 2~d!#. The parameters are close to the Ho
bifurcation threshold. It is seen from Fig. 2 that forM5P
above the Hopf bifurcation threshold the laser demonstr
the usual AD1 regime@8,5# for which all the modal intensi-
ties exhibit identical oscillations with the phase shiftT/N
between the modes, whereT is the oscillation period. By
contrast, forMÞP the modes in different polarizations hav
unequal amplitudes and frequencies of oscillation. Theref
in this case we have the quasiperiodic regime@see Fig. 2~d!#.

B. Single-mode solution

Let M>1, P>0, andN5M1P>2. Consider the single
mode stationary solution of Eqs.~1!:

FIG. 3. Bifurcation loci for the steady-state solutions of Eqs.~1!
with L52, P52, h51024, e5531024, a51022, and b50.8.
The lineT indicates the linear laser thresholdg5a. The curvesS1K

andS2K (H1K andH2K) correspond to steady state~Hopf! bifurca-
tions of theK-mode solution withK/2 nonzero and equal mod
intensities in each polarization. The curvesS12* andS22* indicate the
steady-state bifurcations of the solution for which two modes in
polarization have nonzero and equal intensities. The boundarie
the stability domains are shown by solid lines. Dotted lines co
spond to bifurcations of the unstable solutions. Codimension-
points resulting from the interaction of steady state and Hopf bi
cations are labeledC14, C24, andC22.
ll
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I 1.0, I j50 for j 52, . . . ,M1P. ~15!

It is easy to check that the solution~15! cannot exhibit a
Hopf bifurcation. The stability boundaries for this solutio
are given by

g5g11
S 5

~12b!~a22ge!~ab2ge!

ge~2b21!2
,

I 15
A2B

ge~2b21!
.0, ~16!

and

g5g21
S 5

~223g!~12b!@a2~12g!e#~ab2ge!

e@2~12g!b2g#2
,

I 15
A2B2

e@2~12g!b2g#
.0, ~17!

where A, B, and B2 are the self- and the cross-saturati
coefficients defined by Eq.~6! with N52, A2B5a(12b)
2ge, A2B25a(12b)2(223g)e. At the bifurcation
boundary Eq.~16! @Eq. ~17!# the Jacobian matrix of Eqs.~1!
evaluated at the single-mode solution~15! has M21 (P)
zero eigenvalues.

For M.1 the two stability conditions for the single-mod
solution are

g.g11
S

and

b.1/2 for A.B,
~18!

g,g11
S or b.1/2 for A,B,

g.g21
S

and

b.
g

2~12g!
, for A.B2 ,

~19!

g,g21
S or b.

g

2~12g!
for A,B2 .

The first condition~18! describes the stability with respect t
small perturbations of theM21 modes having the same po
larization as the mode 1. The second condition~19! describes
the stability with respect to perturbations ofP modes having
orthogonal polarization. ForM51 (P50) there is only one
stability condition~18! @~19!#.

For typical experiments, we havea@e and, hence,A
@B,B2 . In this case the single mode solution becomes sta
only for sufficiently high pump levels provided the cros
saturation coefficientb is large enough. On the other hand,
the ratio of linear to nonlinear lossesa/e is large enough so
that the cross-saturation coefficients are smaller than the
saturation (A,B andA,B2), the laser can start to opera
in a single mode just after crossing the linear threshold.

e
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this case, unlike the casea@e, the single-mode operatio
becomes unstable with increasing of the pump paramete

The breakup of antiphase oscillations leading to a cw
eration was described for a two-mode laser with KTP crys
@1#. A similar transition to a single-mode regime that tak
place for sufficiently high gain level and that is referred to
‘‘breakup of multimode operation’’ was very recently ob
served experimentally in a diode-pumped LiNdP4O12 laser
without KTP crystal and studied theoretically@13,14#. It fol-
lows from our considerations that one mechanism that co
be responsible for the breakup is associated with the non
ear coupling between the modes due to intensity depen
losses.

C. Two-mode solution

Let M ,P.0. The steady-state solution with two lasin
modes having different polarizations is defined by

I 15I M115I .0, I j50 for

j 52, . . . ,M ,M12, . . . ,M1P. ~20!

First, let us consider the ‘‘internal’’ stability of this solu
tion, i.e., the stability with respect to small perturbatio
of the two lasing modes, having nonzero intensit
at the steady-state solution~20!. In other words we
study the stability within the invariant manifoldI j50
( j 52, . . . ,M ,M12, . . . ,M1P). The boundaries of this
‘‘internal’’ stability domain are defined by Eqs.~5! and ~8!
with N52:

g5g22
H 5

eI

h
~223g!@aD21eI ~22g!#,

I 5
h/e

223g2~h/e!D2
.0, ~21!

g5g22
S 5

~223g!~12b!@a~11b!1~g22!e#2

4@2~12g!b2g#2e
,

I 5
A2B2

2@2~12g!b2g#e
.0, ~22!

with D2511b. For the caseM1P.2, apart from this ‘‘in-
ternal’’ stability conditions, we have to satisfy ‘‘external
stability conditions which account for the small perturbatio
of the M1P22 modes having zero intensities at the stea
state solution~20!. The ‘‘external’’ stability boundary for
~20! is defined by

g5g12
S 5

g~12b!@aD222e#@2ab1~g22!e#

e@gD222~12b!#2
,

I 5
A2B

e@gD222~12b!#
.0.

This boundary corresponds toM1P22 zero eigenvalues o
the Jacobian matrix of Eqs.~1!.

The stability conditions for the two-mode solution of Eq
~1! with N.2 are defined by
-
l

s
s

ld
n-
nt

s

s
y

.

g,g22
H or

h

eg
.

223g

11b
, ~23!

g.g12
S

and

b.
22g

21g
for A.B,

~24!

g,g12
S or b,

22g

21g
for A,B,

g,g22
S or b,

g

2~12g!
for A.B2 ,

~25!
g.g22

S

and

b.
g

2~12g!
for A,B2 ,

while for M5P51 we have only ‘‘internal’’ stability con-
ditions ~25! and ~23!.

As in the single-mode regime, the stable two-mode so
tion ~20! can be observed only for a sufficiently high pum
level if a@e. However, it appears for greater values of t
parameterg when the cross-saturation between the mo
with orthogonal polarizations is weak enough.

D. M -mode solution

Let M.1,P>0. Consider the steady-state solution f
which all M modes in one polarization have positive a
equal intensities, while the remainingP modes with orthogo-
nal polarization have zero intensities

I 15I 25¯5I M5I .0, I j50

for j 5M11, . . . ,M1P. ~26!

As in the case of the two-mode solution, we have both ‘‘
ternal’’ and ‘‘external’’ stability conditions. The former~lat-
ter! ones describe the stability with respect to small pert
bations of nonzero~zero! intensity modes. The ‘‘internal’’
stability boundaries for Eq.~26! are obtained by the subst
tution N→M , g→1/2, e→2ge into Eqs.~4!–~8!. Since for
g51/2 the bifurcation set~4! @~7!# coincides with~5! @~8!#,
we get only two instability boundaries

g5g1M
H 5

geI

h
@a1geI ~2M21!#,

I 5
h/ge

12~h/ge!DM
.0, DM511b~M21! ~27!

and
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g5g1M
S 5

~12b!@aDM2ge~2M21!#2

ge@2DM2M ~22b!#2
,

I 5
A2B

ge@2DM2M ~22b!#
.0. ~28!

The coefficientsA andB are defined by Eq.~6!. The bifur-
cation set~28! @~27!# is characterized byM21 zero~pairs of
pure imaginary! eigenvalues.

The ‘‘external’’ stability boundary for the solution~26!
corresponds toP zero eigenvalues and is defined by

g5g2M
S

5
~12b!D1M@aDM12M ~g21!e#@Mab2~2M21!ge#

e@MbD1M2g~2M21!~12b!#2
,

I 5
AM2BM

e@MbD1M2g~2M21!~12b!#
.0,

D1M52M ~122g!1g,

whereAM andBM are obtained fromAN andBN in Eq. ~6!
by the substitutionN→2M . AM2BM5a(12b)2eD1M .

Finally, we get the following stability conditions

g,g1N
H or h/e.g/DM , ~29!

g,g1M
S or b.

2~M21!

3M21
for A.B,

~30!
g.g1M

S

and

b,
2~M21!

3M21
for A,B,

g,g2M
S or b.

g~2M21!

2MD1M1g~M21!
for AM.BM ,

~31!

g.g2M
S

and

b,
g~2M21!

2MD1M1g~M21!
for AM,BM ,

which for P50 are reduced to the ‘‘internal’’ stability con
ditions ~29! and ~30!.

It follows from Eqs.~30! and~31! that theM -mode solu-
tion can be stable only if the cross-saturation parameterb is
small enough and the nonlinear coupling between the mo
with different polarizations is stronger than that between
modes with the same polarization, which impliesg!1/2.
Similarly to the single-mode solution and the two-mode
es
e

-

lution in the limit a@e, the M -mode solution can be stabl
only for sufficiently high pump power levels.

E. Other steady-state solutions

In the preceding sections we have studied symme
steady-state solutions for which modal intensities in a giv
polarization are equal. We have considered four types
solutions and have shown that for certain parameters any
of them can be stable. All these solutions share the comm
property that they have 0, 1, or all nonzero mode intensi
in a given polarization. Simple considerations show that i
unlikely to find stable ‘‘symmetric’’ solutions that cannot b
assigned to any of the four types described above~we do not
consider here the trivial nonlasing solution!. Indeed, since all
the modes in Eq.~1! are identical, either none or one mod
or all the modes in each polarization can survive in t
course of the mode competition. A similar conclusion can
drawn on the basis of linear stability analysis in the limite,
h→0.

When the laser modes have different losses and/or g
the symmetry between the modes belonging to the same
larization is broken. In this case different single-mode so
tions should have different stability domains.

IV. BIFURCATION DIAGRAMS

Bifurcation curves for the steady state of solutions of E
~1! are shown in Figs. 3 and 4. Fig. 3 corresponds to a fo
mode laser with two pairs of modes in different polariz
tions. Here the curveH14 (H24) denotes a degenerat
~simple! Hopf bifurcations of the four-mode solution define
by Eqs.~4! @Eqs.~5!# with N54. The curveS14 (S24) defined
by Eqs.~7! @Eqs. ~8!# corresponds to a degenerate~simple!

FIG. 4. Bifurcation loci for the steady-state solutions of Eqs.~1!
with L52, P51, h5231023, e5531022, a5231022, and
b50.8. The notations are similar to those in Fig. 3.
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pitchfork bifurcation of the four-mode solution. The fou
mode solution is stable below the curvesS14, S24, H14, and
H24. It follows from Fig. 3 that with the increase of th
pump parameter depending on the value of the parametg
the four-mode solution can lose stability either via a Hopf
via a pitchfork bifurcation. At the pointsC14 and C24 both
Hopf and pitchfork bifurcations take place simultaneou
and lead to a higher-order degeneracy. When approac
these points along the Hopf bifurcation curve, the imagin
parts of the critical eigenvalues that define the frequency
the emerging periodic solutions tend to zero. Hence, the
riod of the antiphase oscillations diverges. This clarifies
mechanism of the antiphase oscillation breakup that ta
place near the pitchfork bifurcation curve. The period of t
pulsed regime arising after the Hopf bifurcation increa
with the pump parameterg. When approaching the pitchfor
bifurcation curve, this regime is transformed into a regim
similar to that referred as to mode hopping in@15#: the laser
exhibits different cw solutions alternating in time. If th
pump parameter is further increased the time interval
tween the hops increases and finally a cw operation beco
stable after a global bifurcation that takes place near
pitchfork bifurcation curve~see Fig. 1!. Note that, unlike the
case of two-mode laser for which the mode hopping is
ways periodic, in the case of a laser with more than t
modes the mode-hopping regime can be irregular.

The single-mode solution is stable above the curvesS11
andS21 defined by Eqs.~16! and~17!, respectively. The sta
bility conditions ~18! and ~19! do not depend on the tota
mode numberN. Hence, the stability domain of the single
mode solution shown in Fig. 3 is the same for a laser w
arbitrary mode number provided thatM5P in Eqs.~1! and
all the modes in each polarization are identical. It follow
from this figure and Eqs.~18!, ~19! that the single-mode
solution can be stable for sufficiently high pump levelsg
;a2/e) and only in a definite interval of the parameterg . If
the parameterg is small enough, the single-mode regime
unstable. In this case the competition between the
groups of modes having different polarizations is too stro
and the laser operates in all modes belonging to a sin
polarization. By contrast, when the parameterg is large
enough the competition between the modes with differ
polarizations is reduced and for sufficiently high pump lev
instead of a single-mode regime the laser demonstrat
regime with two modes having different polarizations.
Fig. 3 the stability domain of the two-mode solution is sit
ated to the left from the curvesS12, S22, and H22. The
intersection of the steady-state bifurcation curveS22 with the
Hopf bifurcation curveH22 produces the codimension-tw
point C22 that is characterized by a single zero and a pair
pure imaginary eigenvalues. This point is known to be as
ciated with chaotic behavior@16#.

Figure 4 presents the bifurcations of the steady-state
lutions for a three-mode laser described by Eqs.~1! with L
52, P51. The parameters are the same as in@4#. Unlike Fig.
3 for which the linear loss parametera is much larger than
the nonlinear coupling parametere, here we havea'e. As
a result, the three-mode solution is unstable just near
linear laser threshold indicated by the lineT. Above this line
the laser starts to operate either in a single-mode or on
modes. The stability domain of the single mode solution l
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below the curvesS11 andS21. The two-mode solution with
modes having orthogonal polarizations~the same polariza-
tion! is stable to the right~left! of the curvesS12, S22, and
H22 (S12* and H12* ). The codimension-two pointsCk2 (k
51,2) correspond to theZ2 symmetric Bogdanov-Taken
bifurcations @16,17#, which imply the existence of ho
moclinic bifurcations. The global bifurcations responsible f
the breakup of the antiphase oscillations are similar to th
in described for a bidirectional classB laser @18#. The
codimension-two pointC22 in Fig. 4 corresponds a simpl
zero and a pair of pure imaginary eigenvalues and is sim
to that shown in Fig. 3. Chaotic solutions associated with t
point were observed in numerical calculations of@4#.

V. CONCLUSION

We have studied the bifurcations of the steady-state s
tions in an intracavity frequency-doubled solid-state la
and have shown that for sufficiently large gains a breakup
multimode operation can take place, leading to a sta
single-mode or two-mode regime. For the laser parame
typical of experimental situations, theN-mode solution is
known to be stable only for rather low pump levels. With
increase of the pump parameter, it undergoes a Hopf bi
cation leading to antiphased regimes characterized by la
amplitude fluctuations of the output intensity. If the pum
parameter is further increased, the period of the antiph
pulsations grows and the so-called mode hopping ta
place. In the course of the mode hopping, the laser dem
strates switching between different cw solutions. Finally,
sufficiently strong pumping, the period of the antiphase p
sations diverges and a transition takes place to a cw reg
corresponding to a single- or a two-mode solution. Bifurc
tion mechanisms of the multimode antiphase pulsat
breakup are associated with global bifurcations involving h
moclinic connections. Here we have performed a deta
study of the bifurcations of the steady-state solutions of E
~1! and derived analytical conditions for the multimode o
eration breakup. We have shown that a stable cw operatio
possible in a frequency-doubled laser in the high gain
main provided the cavity losses are small enough. More p
cisely, it follows from Eqs.~18!, ~19! that in order for the
single mode solution to be stable in a certain interval ofg,
the inequalityg.a2 2b(12b)/e(2b21)2 has to be satis-
fied. In particular, for the parameters of@9# (a50.01, b
50.6, e5531025) we get the conditiong.24 for the ex-
istence of the stable single-mode solution. For smaller val
of a and/or greatere, the single-mode operation can appe
at lower gain levels. Note that, as a rule, the regimes t
appear at high gain levels have smaller nonlinear losse
the KTP crystal than theN-mode regime which is stable fo
small values of the pump parameter.

The transition to a single-mode operation in a two-mo
frequency-doubled laser was observed experimentally@1#.
Similar phenomena were observed in a multimode solid-s
laser even without a frequency-doubling crystal@13#. The
number of oscillating modes decreased with the increas
the pump parameter and for sufficiently high gain levels
laser demonstrated a single-mode operation. Although
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nonlinear losses due to sum frequency generation in the K
crystal that are responsible for the breakup of the multim
regime in a frequency-doubled laser were missing in the
periment described in@13# it seems likely that some othe
kind of nonlinear losses took place there. Here we h
shown that intensity-dependent losses can result in the t
sition from multimode to single-mode operation.
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