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Intracavity second-harmonic generation: The steady-state solutions
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We study the steady states of a solid-state laser containing a birefringent frequency-doubling crystal such as
a YAG-KTP laser and assess their stability in a systematic way. We show that as the pump power is increased,
different scenarios arise: Hopf bifurcation to antiphased periodic regimes, mode hopping between different cw
states, and finally breakup of the multimode states for a single- or two-mode cw regime involving homoclinic
points.[S1050-294{®8)07610-0

PACS numbg(s): 42.65.5f, 42.60.Mi, 42.55.Rz

I. INTRODUCTION dl, N
. _ o . na=lk(ek—a+gelk—2e2 pale, @
Diode-pumped solid-state lasers with intracavity r=1
frequency-doubling crystal have proved to be efficient
sources of visible light. Therefore the problem of output in- dG, N
tensity stability is very important for these lasers. It was gt - -Gyl 1+(1—-8) 1+ ﬂer Ir>. (2

shown theoretically and experimentally that when increasing
the nonlinear coupling between the modes, the frequency-
doubled laser can start to exhibit large amplitude oscillationsx (Gy) is the intensity(gain) of the modek. n=r7./7;,
of modal intensitied1] due to sum-frequency generation. where 7, and 7¢ are the cavity round-trip and fluorescence
These oscillations are undesirable in many applications sindifetime, respectivelya is the cavity loss parametes, is the
they lead to a laser output with an intensity fluctuating incross saturation parameter, agds the linear gain param-
time (the so-called green problemOn the other hand, an- eter. These three parameters are assumed to be the same for
tiphase oscillations were shown to exhibit very peculiarall the modes. The total number of laser modedNis M
propertieq 2-5| that also could have some applicatidis. +P, whereM andP are the numbers of the modes belong-
Most theoretical works on the antiphase oscillations werdng to orthogonal polarizations. If the modeandr have the
devoted to their numerical study and analytical description oame polarization them,,=g and u,,=1—g otherwise.
their onset associated with degenerate Hopf bifurcations. IThe parameteg describes the nonlinear coupling between
[3,5,7,9 the stability of the steady-state solutions was anathe modes due to the frequency sum generation in the KTP
lyzed for a model of frequency-doubled laser. In particular, acrystal. For laser parameters typical of experimental situation
complete stability analysis of the two-mode laser is given inwe havee, <1 [1,9-12. Therefore most analytical results
[7]. It was shown that the stable steady-state solution correconcerning antiphase oscillations in these lasers were ob-
sponding to theN-mode regime for which all the modes in a tained in the limite, »—0 [3,8,5).
given polarization have nonzero and equal intensities can
exhibit both Hopf and steady-state bifurcations provided the
pump parameter is large enoufl. These papers were fo-
cused on the Hopf bifurcations, since for the parameters typi-
cal of experimental situations, steady-state bifurcations of
the N-mode solution usually take place after Hopf bifurca- 1. M=P=N/2

t'?qs' tl)nf an e;ttempt to fII” this gt?]p’ Vk\;et desctn{)el the sgead);- We consider the stability of the steady-state solution for
staté biturcalions In a faser with arbitrary total nuUmber ol nicpy a1 modes in a given polarization have nonzero and
modesN. We show that these bifurcations play an important

le in the | d . it th fter the H fequal intensities and modal gains. Since Kbe: P explicit
role in the laser dynamics even It they occur after the Hop expressions for the stability boundaries of tenode solu-
bifurcations. In particular, some of them can lead to stabl

. ) X ion are very cumbersome, we give them only for the case
single- or mo-mode operation. Thus, the resul_ts obtgmed €3 = p=N/2=1. In this case the steady-state solution under
be used in order to stabilize the output intensity of a

frequency-doubled laser, consideration is given by

Ill. STABILITY ANALYSIS

A. N-mode solution

I,=1>0, G=G (j=1,...N). 3)
Il. LASER MODEL

To describe the modal interaction in a frequency-doubledrhe Hopf bifurcation conditions for the solutiof8) were
solid-state laser we consider the model proposedjn derived in[3]. They are given by
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_H _E 3 B nle
Y=YiNT 7 [(1+E|(N g)]1 I_g_(ﬂlf)DN>0
(4)
and
D et (N |= e,
Y=vn=, infat+el(N—g)], = D= (7/€)Dy (,)
5

where Dy=1+B(N—1) andDy=N(1-29)+g. At the

from the N-mode solution at this degenerate bifurcation in-
creases witiN. The condition(8) corresponds to a simple
pitchfork bifurcation with a single zero eigenvalue.

Finally, the stability conditions for the solutiof8) with
N>2 are given by

y<7¥in or nl/e>g/Dy, 9
’y< ’yl;N or 77/6>D1N/DN y (10)

N—2g

bifurcation boundary4) the linear stability analysis of the <S8 - -
solution(3) yieldsN — 2 pairs of pure imaginary eigenvalues, Y<7in OF B 2g(N=1)+N(1-9) for A>B,
whereas Eq(5) corresponds to a simple pair of pure imagi- (11)
nary eigenvalues. Hence, fd>3 the condition(4) defines y> ny
a degenerate Hopf bifurcation. This bifurcation produoes
periodic solutions whera increases witiN. The Hopf bi-  and
furcation(5) is nondegenerate for afy and leads to a single
time-periodic solution referred to as AD4 [15,8]: all the N—2g
modgs in each p_O|aI’IZf’itI0n _oscnlate in phase, while the two '8<Zg(N—1)+ N(1—g) for A<B,
polarizations oscillate in antiphase.
Let us introduce the coefficients 2g(N—1)
S
A=a+ge, B=af+2ge, Y<YaNOTB>Np TogiN=1) O AvT B,
(12
An=al[1+B(N/2—1)]+ge(N—1), y> 5,
Bny=aBN/2+Ne(1—g), ®  and
which describe mode interactions near the linear laser thresh- oa(N—1
old y= a. More precisely, the coefficiedt (Ay) is the self- g(N—1) for Ay<By.

saturation coefficient for a solitary modeNA2 identical
modes belonging to the same polarizajjomhile B (By) is

ND;y+2g(N—1)

the cross-saturation coefficient for two modes having thd=or N=2 we only have the two stability conditiori$0) and

same polarizatioftwo groups ofN/2 modes having different

polarizationg. A,=A. The coefficient§6) can be easily ob-
tained by adiabatically eliminating the variabl€g in Eq.
(2) and expanding the right-hand side of E#). into powers

(12).

The Hopf bifurcation surfac€9) [(10)] determines the
stability of theN-mode solution with respect to a Hopf bi-
furcation forg<1/2 (g>1/2). For n/e<1/(2Dy) the two

of the small modal intensities near the lasing threshold. IHopf bifurcation surfaces intersect gt=1/2. Otherwise, if
will be shown later that the stability conditions for steady- 77_/€> 1/.(2D_N),_ there exists an interval af where a Hopf
state solutions depend on the relations between the saturatidifurcation is impossible for any value of the pump param-

and cross-saturation coefficients.
The steady-stat@or pitchfork) bifurcations of the solution
(3) are defined by

_ s _9(1-p)laDy+(g—N)el?
TN 29Dy —N(1- B+ gB) P’

A-B

= E[ZQDN_N(l—B—I—gIB)]>O’ (7)
y=yS = (1-B)Din[aDy+(g—N)e]?
2N E[NIBDlN_Zg(N—l)(l—ﬁ)]Z'
I AN_BN (8)

= NADy—20(N-D)(1-pB)] O

where, according to Eq6), we haveA—B=a(1—8)—ge
and Ay—By=a(1—8)—€eDqy. The condition(7) corre-
sponds to a degenerate bifurcation with-2) zero eigen-

etery. This is the case, e.g., when the number of the excited
modesN is large enough. In particular, for the parameters of
[9] we need\>25 in order to suppress the Hopf bifurcation
atg~1/2. For greater values @fand/or smaller values of,

the Hopf bifurcation can be suppressed even in a laser with
few modes(see Fig. 3.

Like the Hopf bifurcation boundaries, the steady-state bi-
furcation surfaces(7) and (8) intersect atg=1/2 for 8
>2(N—1)/(3N—2). Note, however, that stabM-mode op-
eration can be observed near the lasing threshold only if the
self-saturation coefficients are greater than the cross-
saturation coefficientsA>B, Ay>By. This is always true
in the limit »,e—0 which corresponds to the experimental
situation of[1,9-12.

It follows from Egs.(4)—(8) that in the limite—0, the
steady-statéHopf) bifurcations of Eq.(3) take place fory
=0(1/e) [y=0(1)]. Hence, fore small enough, we usu-
ally have yi\ < y3y and yh\< 5y and the solutions bifur-
cating from theN-mode solution at the steady-state bifurca-
tion point are unstablg3]. Nevertheless, even in this case it

values. The number of steady-state solutions bifurcatings worthwhile to study them since they can be involved in the
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FIG. 1. Time dependence of the modal intensities and phase 1 1
1 5

portraits for a laser with two modes in orthogonal polarizations. The
parameters are close to a heteroclininic bifurce;tion responsjble for Fig 2. Antiphase oscillations in a laser with equal and unequal
e e b i it e el o o - 5 b flrnt poistons w0 <20

; - a=10"%, g=0.7, 8=0.8. (&) Time evolution of the mode intensi-
stable single mode steady-state solutidas(b) 9=0.3, y=0.04.  {je5 for =3, P=3, and y=0.0335. (b) Projections of the phase
(0),(d) g=0.15, y=0.4. trajectory corresponding to the solutions shown(@ (c) Time

. . . ) " evolution of the modal intensities far=3, P=2, andy=0.0225.
bifurcations leading to stable solutions. Specifically, the(d) Phase portraits of the solutions shown(@. The modes 2 and

pitchfork bifurcation(8) produces two branches of unstable 5 have different polarizations while the modes 1 and 2 belong to the
solutions: same polarization.

L= =Iy=la, lus1=""=lysp=lp, 1>1p,
! Mo M MrPee : b(lg) feature of the unstable solutions bifurcating from the

N -mode solution is that under certain conditions they can be
Li==Iy=la, lus1="=lysp=lp, 1p>1a. involved in homoclinic bifurcations that lead to the transition
(14)  from antiphase to stable cw operatisee Fig. 1

The differencel|l,—1,| increases away from the pitchfork
bifurcation point(8) and finally the quantity(l,) drops to
zero at the bifurcation point where the soluti¢hd) [the For arbitraryM and P asymptotic expressions for the
solution (14)] collides with theM-mode (P-mode steady- Hopf bifurcation are given if8]. Since the expressions for
state solution for which only one-half of the laser modesthe steady-state bifurcations of themode solution are too
belonging to the same polarization have nonzero intensities:omplex, even in the limik, »— 0, we do not present them
After this collision theM-mode P-mode solution can be- here. However, it is worth discussing qualitative changes that
come stable. take place whei # P. It follows from the structure of the

Bifurcation phenomena associated with the degenerate béharacteristic polynomial for thBl-mode solution(see([3])
furcation(7) are more complicated. As in the case of nonde-that for M#P, M, P>1 and M+P>2, the degenerate
generate pitchfork bifurcatiof8), we have unstable steady- Hopf (degenerate pitchfojkbifurcation surface defined by
state solutions bifurcating from thié-mode solution. Some Eq. (4) [Eq. (7)] splits into two separate bifurcation surfaces
of these solutions collide with the two-mode solutions, whichthat correspond td1 —1 andP—1 pairs of pure imaginary
can become stable after the collision. The other importaneigenvalues (zero eigenvalugs respectively. For /e

2. M#P
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035 ,>0, 1;=0 forj=2,... M+P. (15
single
030 | mod It is easy to check that the solutidd5) cannot exhibit a
two modes with Hopf bifurcation. The stability boundaries for this solution
025 orthogonal are given by
25 | » . polarizations s (1-B)(a—2ge)(aB—ge)
12 Y=7Y1u1™
020 |- » ge(28-1)°
b3
| two modes A—B
0.5 | with the same l1=—F5-—>0, (16)
polarization 9e(25-1)
0.10 | - S,, and
2 e 5 (2730 )l (1-g)el(ap—ge)
0.05 |- S =7Ya= '
S, ef2(1-9)B—gl?
24 T
o0 A-B,
0.0 0.2 0.4 0.6 038 1.0 0, 17)

R TE v

where A, B, and B, are the self- and the cross-saturation

FIG. 3. Bifurcation loci for the steady-state solutions of H43.  coefficients defined by Eq6) with N=2, A—B=qa(1- )
with L=2, P=2, n=10"% €=5x10"% =102 and$=08. —ge, A—B,=a(1—B8)—(2—3g)e. At the bifurcation
The lineT indicates the linear laser threshofe- . The curvesS, ¢ boundary Eq(16) [Eq. (17)] the Jacobian matrix of Eqél)
and S, (Hix andHy) correspond to steady staidopf) bifurca-  evaluated at the single-mode soluti¢tb) hasM —1 (P)
tions of theK-mode solution withK/2 nonzero and equal mode zerp eigenvalues.
intensities in each polarization. The cun&s and S5, indicate the For M>1 the two stability conditions for the single-mode
steady-state bifurcations of the solution for which two modes in oneyg|ytion are
polarization have nonzero and equal intensities. The boundaries of
the stability domains are shown by solid lines. Dotted lines corre-
spond to bifurcations of the unstable solutions. Codimension-two
points resulting from the interaction of steady state and Hopf bifur-;,q
cations are labele@,,, Cy,, andC,,.

S
Y=Y

pB>1/2 for A>B,

<1/(2Dy) these surfaces intersectgat 1/2. In the case of a (19
Hopf bifurcation, the distance between the two bifurcation y<yy or B>1/2 for A<B,

surfaces is very small since it is proportional to the small

parametere. Therefore, the two bifurcations take place al- Y>3

most simultaneously. However, even for smathe splitting
of the Hopf bifurcation surfaces has an important conseand
guence: the two subsequent Hopf bifurcations correspond to

slightly different frequencies. As a result, just after crossing B> g for A>B

the first Hopf bifurcation surface, a secondary instability 2(1—9g)’ 2

leading to quasiperiodic behavior is to be expected. This (19
conclusion is illustrated by Fig. 2, where the time depen- S

dence of the modal intensities and phase portraits are shown Y<vyz1 Or ﬁ>2(1—_g) for A<B,.

for Egs. (1) with M=P=3 [Figs. da), 2(b)] andM =3, P

=2 [Figs. Zc), 2(d)]. The parameters are close to the Hopfrpe first condition(18) describes the stability with respect to
bifurcation threshold. It is seen from Fig. 2 that fF=P  sma)| perturbations of th&! — 1 modes having the same po-
above the Hopf bifurcation threshold the laser demonstrategyization as the mode 1. The second conditid® describes
the usual AD1 regim¢8,5] for which all the modal intensi-  he stability with respect to perturbations Bfmodes having

ties exhibit identical oscillations with the phase shiftN orthogonal polarization. Favi=1 (P=0) there is only one
between the modes, whefk is the oscillation period. By  stapjlity condition(18) [(19)].

contrast, foM # P the modes in different polarizations have  For typical experiments, we haves>e and, henceA

unequal amplitudes and frequencies of oscillation. Therefore;. g B, "I this case the single mode solution becomes stable
in this case we have the quasiperiodic reglsee Fig. 20)].  only for sufficiently high pump levels provided the cross-
saturation coefficieng is large enough. On the other hand, if
the ratio of linear to nonlinear lossed e is large enough so
that the cross-saturation coefficients are smaller than the self-
LetM=1, P=0, andN=M + P=2. Consider the single- saturation A<B andA<B,), the laser can start to operate
mode stationary solution of Eqgél): in a single mode just after crossing the linear threshold. In

B. Single-mode solution
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this case, unlike the case> e, the single-mode operation
becomes unstable with increasing of the pump parameter.
The breakup of antiphase oscillations leading to a cw op-
eration was described for a two-mode laser with KTP crystal
[1]. A similar transition to a single-mode regime that takes
place for sufficiently high gain level and that is referred to as
“breakup of multimode operation” was very recently ob- and
served experimentally in a diode-pumped LiNGR, laser
without KTP crystal and studied theoreticalty3,14). It fol-
lows from our considerations that one mechanism that could
be responsible for the breakup is associated with the nonlin-
ear coupling between the modes due to intensity dependent

A. G. VLADIMIROV AND PAUL MANDEL

losses.

C. Two-mode solution

Let M,P>0. The steady-state solution with two lasing
modes having different polarizations is defined by

|1:IM+1:|>01 IJZO fOr

i=2,...M\M+2,... M+P. (20)

First, let us consider the “internal” stability of this solu-

tion, i.e., the stability with respect to small perturbations
of the two lasing modes, having nonzero intensities

at the steady-state solutiof20). In other words we
study the stability within the invariant manifold;=0
(j=2,...MM+2,... M+P). The boundaries of this
“internal” stability domain are defined by Eq$5) and (8)
with N=2:

el
y= y§2=;<2—3g)[a02+el(z—gn,

_ nle
'=2-3g-(nleD, 21
y=oy3 _(2-39)(1-p)[a(1+B)+(g—2)e]
% A[2(1—g)B—g]2e :
A_Bz
' 0, (22

T 2[2(1-9)p-gle

with D,= 1+ 8. For the caséM + P> 2, apart from this “in-
ternal” stability conditions, we have to satisfy “external”

stability conditions which account for the small perturbations,

of the M+ P—2 modes having zero intensities at the stead
state solution(20). The “external” stability boundary for
(20) is defined by

s _9(1=plaDe—2¢][2ap+(g-2)e]
1 e[gD,—2(1- B)]?

| = A-B >0
T egDy—2(1-8)]

This boundary corresponds ¥+ P —2 zero eigenvalues of
the Jacobian matrix of Eq$l).

The stability conditions for the two-mode solution of Egs.
(1) with N>2 are defined by

PRA 58
2—3g
H A
y<7yy, oOf €g> 173 (23
Y> Vs
279 for A>B
ﬁ>m or A>B,
(24)
<93 or,3<;g for A<B
<y or,8<L for A>B
Y=7Y22 2(1_9) Al
(25
Y>3,
and
B> g for A<B
2(1-9) 2

while for M=P=1 we have only “internal” stability con-
ditions (25) and (23).

As in the single-mode regime, the stable two-mode solu-
tion (20) can be observed only for a sufficiently high pump
level if a>e€. However, it appears for greater values of the
parametery when the cross-saturation between the modes
with orthogonal polarizations is weak enough.

D. M-mode solution

Let M>1,P=0. Consider the steady-state solution for
which all M modes in one polarization have positive and
equal intensities, while the remainifgmodes with orthogo-
nal polarization have zero intensities

ll:|2:.“:|M:|>Ov IJIO

for j=M+1,... M+P. (26)
As in the case of the two-mode solution, we have both “in-
ternal” and “external” stability conditions. The formdtat-
er) ones describe the stability with respect to small pertur-

Yoations of nonzerdzerg intensity modes. The “internal”

stability boundaries for Eq26) are obtained by the substi-
tution N—M, g—1/2, e—2ge into Egs.(4)—(8). Since for
g=1/2 the bifurcation set4) [(7)] coincides with(5) [(8)],
we get only two instability boundaries

gel
y="iw="_la+gel(2M-1)],

nlge

I:—
1—-(7n/ge)Dy

>0, Dy=1+BM-1) (27

and
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y=7; _(1—-p)laDy—ge(2M —1)]2
M ge[2Dy—M(2—B)]?

o A-B
 ge[2Dy—M(2-pB)]

The coefficientsA andB are defined by Eq(6). The bifur-
cation set(28) [(27)] is characterized bl — 1 zero(pairs of
pure imaginary eigenvalues.

The “external” stability boundary for the solutiof26)
corresponds td zero eigenvalues and is defined by

>0. (28

Y= 7§M
:(1—B)Dlm[aDM+2M(9—l)6][MaB—(2M —1)ge]
e(MBDy—g(2M—1)(1-B)]?

Aum—Bwm

' IMBDwm—g(2M—1)(1-B)]

>0,

Dim=2M(1-29)+g,

whereAy andB,, are obtained fronAy andBy in Eq. (6)
by the substitutioN—2M. Ay, —By=a(1—B)— €Dy -
Finally, we get the following stability conditions

y<v\ or nle>g/Dy, (29

2(M—1)

S
y<7yim Or B> M =1 for A>B,

s (30)
Y= Yim
and

2(M—1)

<3|V|——1 for A<B,

<vy5, orp> 9(2M—-1)
TSV OB MDDy g(M—1)

for Ay>Buy,
(3D
Y= 7§M
and

g(2M—-1)
“2MDy+tg(M—1)

for Ay<Bw,

which for P=0 are reduced to the “internal” stability con-

ditions (29) and (30).

It follows from Egs.(30) and(31) that theM-mode solu-

tion can be stable only if the cross-saturation parametisr
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FIG. 4. Bifurcation loci for the steady-state solutions of E3s.
with L=2, P=1, »=2X10"3, e=5%X10"2, a=2%X102, and
B=0.8. The notations are similar to those in Fig. 3.

lution in the limit a> €, the M-mode solution can be stable
only for sufficiently high pump power levels.

E. Other steady-state solutions

In the preceding sections we have studied symmetric
steady-state solutions for which modal intensities in a given
polarization are equal. We have considered four types of
solutions and have shown that for certain parameters any one
of them can be stable. All these solutions share the common
property that they have 0, 1, or all nonzero mode intensities
in a given polarization. Simple considerations show that it is
unlikely to find stable “symmetric” solutions that cannot be
assigned to any of the four types described abj@wedo not
consider here the trivial nonlasing solutjoindeed, since all
the modes in Eq(1) are identical, either none or one mode
or all the modes in each polarization can survive in the
course of the mode competition. A similar conclusion can be
drawn on the basis of linear stability analysis in the limit
7n—0.

When the laser modes have different losses and/or gains
the symmetry between the modes belonging to the same po-
larization is broken. In this case different single-mode solu-
tions should have different stability domains.

IV. BIFURCATION DIAGRAMS

Bifurcation curves for the steady state of solutions of Egs.
(1) are shown in Figs. 3 and 4. Fig. 3 corresponds to a four-
mode laser with two pairs of modes in different polariza-

small enough and the nonlinear coupling between the modd#®ns. Here the curveH,, (H,; denotes a degenerate
with different polarizations is stronger than that between thdsimple Hopf bifurcations of the four-mode solution defined

modes with the same polarization, which impligs<1/2.

by Egs.(4) [Eqgs.(5)] with N=4. The curveS,, (S,,) defined

Similarly to the single-mode solution and the two-mode so-by Egs.(7) [Egs. (8)] corresponds to a degenerdi#mple
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pitchfork bifurcation of the four-mode solution. The four- below the curvess;; andS,;. The two-mode solution with
mode solution is stable below the cun@g, S,,4, Hy4, and  modes having orthogonal polarizatiofthe same polariza-
H,,. It follows from Fig. 3 that with the increase of the tion) is stable to the rightleft) of the curvesS;,, S,,, and
pump parameter depending on the value of the parangeter H», (S, and H3,). The codimension-two point€, (k
the four-mode solution can lose stability either via a Hopf or=1,2) correspond to th&, symmetric Bogdanov-Takens
via a pitchfork bifurcation. At the point€,, and C,, both  bifurcations [16,17, which imply the existence of ho-
Hopf and pitchfork bifurcations take place simultaneouslymoclinic bifurcations. The global bifurcations responsible for
and lead to a higher-order degeneracy. When approachirifje breakup of the antiphase oscillations are similar to those
these points along the Hopf bifurcation curve, the imaginaryin described for a bidirectional clasB laser [18]. The
parts of the critical eigenvalues that define the frequency ofodimension-two pointC,, in Fig. 4 corresponds a simple
the emerging periodic solutions tend to zero. Hence, the pezero and a pair of pure imaginary eigenvalues and is similar
riod of the antiphase oscillations diverges. This clarifies theo that shown in Fig. 3. Chaotic solutions associated with this
mechanism of the antiphase oscillation breakup that takegoint were observed in numerical calculationg4f.
place near the pitchfork bifurcation curve. The period of the
pulsed regime arising after the Hopf bifurcation increases
with the pump parametey. When approaching the pitchfork
bifurcation curve, this regime is transformed into a regime
similar to that referred as to mode hoppind irb]: the laser
exhibits different cw solutions alternating in time. If the  We have studied the bifurcations of the steady-state solu-
pump parameter is further increased the time interval betions in an intracavity frequency-doubled solid-state laser
tween the hops increases and finally a cw operation becomegd have shown that for sufficiently large gains a breakup of
stable after a global bifurcation that takes place near thenultimode operation can take place, leading to a stable
pitchfork bifurcation curvesee Fig. 1 Note that, unlike the  single-mode or two-mode regime. For the laser parameters
case of two-mode laser for which the mode hopping is altypical of experimental situations, tHé-mode solution is
ways periodic, in the case of a laser with more than twoknown to be stable only for rather low pump levels. With an
modes the mode-hopping regime can be irregular. increase of the pump parameter, it undergoes a Hopf bifur-
The single-mode solution is stable above the cuiSgs cation leading to antiphased regimes characterized by large-
andS,, defined by Eqs(16) and(17), respectively. The sta- amplitude fluctuations of the output intensity. If the pump
bility conditions (18) and (19) do not depend on the total parameter is further increased, the period of the antiphase
mode numbeN. Hence, the stability domain of the single- pulsations grows and the so-called mode hopping takes
mode solution shown in Fig. 3 is the same for a laser withplace. In the course of the mode hopping, the laser demon-
arbitrary mode number provided thst=P in Egs.(1) and  strates switching between different cw solutions. Finally, for
all the modes in each polarization are identical. It followssufficiently strong pumping, the period of the antiphase pul-
from this figure and Eqs(18), (19) that the single-mode sations diverges and a transition takes place to a cw regime
solution can be stable for sufficiently high pump levels ( corresponding to a single- or a two-mode solution. Bifurca-
~ a?/€) and only in a definite interval of the parameter If tion mechanisms of the multimode antiphase pulsation
the parameteg is small enough, the single-mode regime is breakup are associated with global bifurcations involving ho-
unstable. In this case the competition between the twanoclinic connections. Here we have performed a detailed
groups of modes having different polarizations is too strongstudy of the bifurcations of the steady-state solutions of Egs.
and the laser operates in all modes belonging to a singlél) and derived analytical conditions for the multimode op-
polarization. By contrast, when the parametgris large  eration breakup. We have shown that a stable cw operation is
enough the competition between the modes with differenpossible in a frequency-doubled laser in the high gain do-
polarizations is reduced and for sufficiently high pump levelsmain provided the cavity losses are small enough. More pre-
instead of a single-mode regime the laser demonstrates @sely, it follows from Eqs.(18), (19) that in order for the
regime with two modes having different polarizations. Insingle mode solution to be stable in a certain intervay pf
Fig. 3 the stability domain of the two-mode solution is situ- the inequalityy> a?28(1— B8)/€(28—1)? has to be satis-
ated to the left from the curveS,,, Sy, andH,,. The fied. In particular, for the parameters (8] («=0.01, 8
intersection of the steady-state bifurcation cuBggwith the  =0.6, e=5x10 °) we get the conditiony>24 for the ex-
Hopf bifurcation curveH,, produces the codimension-two istence of the stable single-mode solution. For smaller values
point C,, that is characterized by a single zero and a pair ofof « and/or greatek, the single-mode operation can appear
pure imaginary eigenvalues. This point is known to be assoat lower gain levels. Note that, as a rule, the regimes that
ciated with chaotic behavidr6]. appear at high gain levels have smaller nonlinear losses in
Figure 4 presents the bifurcations of the steady-state sadhe KTP crystal than th&l-mode regime which is stable for
lutions for a three-mode laser described by Ed$.with L small values of the pump parameter.
=2,P=1. The parameters are the same dglinUnlike Fig. The transition to a single-mode operation in a two-mode
3 for which the linear loss parameteris much larger than frequency-doubled laser was observed experimen{dlly
the nonlinear coupling parameter here we haver~e. As  Similar phenomena were observed in a multimode solid-state
a result, the three-mode solution is unstable just near thlaser even without a frequency-doubling crysiaB]. The
linear laser threshold indicated by the lifeAbove this line  number of oscillating modes decreased with the increase of
the laser starts to operate either in a single-mode or on twthe pump parameter and for sufficiently high gain levels a
modes. The stability domain of the single mode solution liedaser demonstrated a single-mode operation. Although the

V. CONCLUSION
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