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Bifurcation analysis of a bidirectional class B ring laser
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Abstract

A model of a ring class B laser operating in two counterpropagating modes is considered. A set of reduced equations are
derived which provide the simplest mathematical description of this model. Homoclinic bifurcations leading to the
appearance of low-frequency regular and chaotic antiphase oscillations of the counterpropagating wave intensities are
described. The effect of symmetry breaking caused by weak backscattering on the laser dynamics is discussed. q 1998
Published by Elsevier Science B.V.

1. Introduction

Ring lasers have attracted considerable attention of
researchers due to their applications as laser gyro and their
complicated dynamics. In particular, bidirectional solid-
state and CO lasers can exhibit undamped regular and2

chaotic antiphase oscillations of counterpropagating wave
Ž . w xCPW intensities 1–15 . In the course of these oscilla-
tions CPW intensities are time-periodic with period T and
phase shift Tr2 between the waves. The total intensities of
the CPWs have a much smoother behavior than the intensi-
ties of individual waves. Therefore, they can be considered
as a particular case of antiphase oscillations described in

w xmultimode lasers 16 . Antiphase CPW oscillations in class
wB lasers were a subject of numerous experimental 1–

x w x3,6,7,9,14,15 and theoretical studies 1,3–6,8–13,15 . It
was found that linear coupling between the CPWs result-
ing from backscattering can lead to regimes with antiphase

Žnear sinusoidal pulsations of the CPW intensities self-
w x.modulation of the first kind 6,15 . On the other hand,

theoretical studies demonstrated that even in the absence
of linear coupling between the CPWs frequency detuning
can destabilize unidirectional operation of a class B laser
w x17 and give rise to undamped low-frequency alternation

w x Žof the CPWs 6,12,15 . Such pulsations self-modulation of
w x. Žthe second kind 6,15 were observed experimentally see,

w x.for example, Refs. 1–3,6,7,14,15 . They arise due to
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nonlinear coupling of CPWs caused by an induced grating
of the inversion in the active medium. It is well known that
the self-modulation of the first kind can appear after a
supercritical Hopf bifurcation of the ‘‘travelling-wave’’

Ž w x.solution see, for example, Ref. 13 . However, bifurca-
tion mechanisms leading to low-frequency self-modulation
of the second kind are not entirely known yet. In particu-

w xlar, in Ref. 12 a model of a bidirectional class B laser
without backscattering was studied theoretically. The
steady-state solution corresponding to unidirectional lasing
was found to lose stability via a Hopf bifurcation. How-
ever, the frequency corresponding to the imaginary parts of
the eigenvalues responsible for this instability is missing in
the spectrum of the intensity pulsations which appear after
the Hopf bifurcation. Therefore, the main goal of the
present paper is to investigate bifurcation mechanisms
leading to regular and chaotic self-modulation of the sec-
ond kind.

2. Laser model and basic equations

The model of a single-mode bidirectional class B laser
w xconsidered here is similar to that described in Ref. 6 . It is

given by the following set of four ordinary differential
equations,

d fq
sy 1ydy iD f q ir exp iu fŽ . Ž .X c q q q yd t

qLL 1q iD f n q f n ,Ž .Ž .q 0 y 2
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d fy
sy 1qdq iD f q ir exp iu fŽ . Ž .X c y y y qd t

qLL 1q iD f n q f n) ,Ž . Ž .y 0 q 2

dn0 2 2< < < <syg yAqn qLL f n q f nŽX 0 q 0 y 0d t
) )qf f n q f f n ,.q y 2 q y 2

dn2 2 2
)< < < <syg n qLL f n q f n q f f n ,Ž .X 2 q 2 y 2 q y 0d t

1Ž .

for dimensionless variables, which are the complex electric
Ž .field amplitudes of the CPWs f and the amplitudes of"

Žthe first two spatial harmonics of the inversion n and0
.n . The real variable n corresponds to the homogeneous2 0

component of the inversion. The complex variable n2

describes the induced grating of the inversion. The normal-
X Ž .ized time is t s tk , ks k qk r2, where k are theq y "

Ždumping rates of the CPWs. The parameters ds k yy
. Ž y q.k r2k and D s v yv r2k are the amplitude andq c c c

Ž "the phase nonreciprocity respectively v are the cavityc
.eigenfrequencies of the CPWs . The parameters

Ž .r exp iu sz rk describe the linear coupling be-" " "

tween the waves due to backscattering. gsg rk is the< <

normalized longitudinal relaxation constant, D is the nor-
malized frequency detuning from the line center. A is the

Ž 2.y1pump parameter and LLs 1qD .
If the pump parameter A slightly exceeds its threshold

Ž .value 1)A LLy1'´)0 then, introducing the new set
of variables

iu n LLy10X'z s f LLr´ exp yiDt q , N s ," " 0ž /2 'g´

n LL2 X'N s , ts t g´ ,2 'g´

Ž .we can rewrite 1 in the form

d zq
s Bq iC z q iR exp iu zŽ . Ž .q q ydt

q 1q iD z N qz N ,Ž .Ž .q 0 y 2

d zy
sy Bq iC z q iR exp iu zŽ . Ž .y y qdt

q 1q iD z N qz N ) ,Ž . Ž .y 0 q 2

d N0 2 2< < < <syG N q1y z y z ,0 q ydt

d N2
)syG N yz z . 2Ž .2 q ydt

' ' 'Here Gs gr´ , Bsdr g´ , CsD r g´ , R sc "

Ž .'r r g´ , and us u qu r2. We have neglected in" q y

Ž . '2 the third order terms proportional to ´Gs g´ . Since
the values of the parameter g typical of solid-state and

'CO lasers are very small, we obtain g´ <1.2

w xIn Refs. 18–20 the equations for a class A laser with
two and three transverse modes were derived. For a laser
operating in two Gauss-Laguerre modes with angular in-
dices "n these equations are similar to those describing
CPW interaction in a bidirectional ring class A laser.

Ž .Starting from this result and comparing 2 with the equa-
w xtions obtained in Ref. 21 for a multi-transverse-mode

Ž .class B laser one can easily conclude that Eqs. 2 can be
also applied to study the dynamics of a class B laser
operating in two Gauss-Laguerre modes with opposite
angular indices "n. In particular, if these two modes have
equal cavity eigenfrequencies and losses then BsCs0

Ž .in Eqs. 2 .
Ž .The vector field defined by Eqs. 2 is invariant under

Ž . Ž .the transformation z ™z exp ic . For R s0, Eqs. 2" " "

have an additional symmetry group generated by

z ™z exp "if , N ™N exp 2 if . 3Ž . Ž . Ž ." " 2 2

Here f and c are arbitrary constants. Moreover, for
Ž .R s0 Eqs. 2 are invariant under the transformations"

z , N , B ,C ™ z , N ) ,yB ,yC ,Ž . Ž ." 2 . 2

z , B ,D ™ z ) ,yB ,yD . 4Ž .Ž . Ž ." .

Ž .It follows from the symmetry properties 4 that for R s"

Ž .BsCs0 the vector field, defined by 2 is invariant
under Z symmetry group action2

z ™z , N ™N ) . 5Ž ." . 2 2

Ž .The symmetry property 5 reflects the equal status of the
CPWs in the absence of nonreciprocity. Due to the symme-

Ž .try properties 4 we restrict our consideration to the case
when DG0 and BG0.

Let us consider the case when there is no backscatter-
Ž Ž ..ing in the laser R sR s0 in Eqs. 2 . The two solu-q y

Ž .tions of Eqs. 2 corresponding to cw unidirectional laser
< < 2operations are S : z s1"G B, z s0, N syB," " . 0

N s0. The linear stability analysis of the solutions S2 "
" Ž w x.yields the relaxation frequencies v see Ref. 6R

"vR 2(s 2 1"G B yG r4 . 6Ž . Ž .'k g´

For Bs0 these frequencies coincide with the well-known
relaxation frequency of a single-mode class B laser. The
unidirectional solution S is stable when D -D-D ;q y q
otherwise it is unstable and the laser starts to operate in
two CPWs. Here

y1 2'D s 1qG B " Gq2 B 1q3G BqCŽ . Ž ."

yC Gy2 B . 7Ž . Ž .

Ž .It follows from the invariance of 2 under the transforma-
Ž .tions 4 that the instability threshold for the solution Sy

Ž .can be obtained from 7 by means of the substitution
Ž . Ž .B,C ™ yB,yC .
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Fig. 1. Branches of the solutions S , S , S , S , and S .q y 1 2 3
Ž . Ž . Ž .R s R s0, Ds0.5. a BsCs0; b Bs0.1, Cs0; cq y

Ž . Ž .Bs0, Cs0.1. Thick thin lines correspond to stable unstable
solutions.

Ž .Apart from the solutions S and S , Eqs. 2 possessq y
three branches of solutions with time-independent CPW
intensities. We label these solutions S . Consider the1,2,3

Ž .case without cavity nonreciprocity BsCs0 . Then the
explicit expressions for the solutions S are given by1,2,3

1 2
2 2 1< < < <S : z s z s , N s , N s , 8Ž .2 q y 0 23 23G 9G

d D 1
2 '< <S : z s 1" 3dy2 , N s 1yd ,Ž .1,3 " 0ž /2 2 G G

d
N s 1yd , 9Ž . Ž .2 2G

Ž 2. Ž 2. Ž .where ds 2yG r 2yD . Eqs. 8 correspond to the
standing-wave solution with equal CPW intensities, while
Ž .9 corresponds to the solutions with unequal nonzero
CPW intensities. These solutions were not described ear-
lier for a bidirectional class B laser. However, as it will be
shown in the following section, they play an important role
in the appearance of the self-modulation regime of the

Ž .second kind. The standing-wave solution 8 is stable for
2 2'G ) 3r4 and D ) 3G r2y 1. The conditions G

's 3r4 and D)1 correspond to a Hopf bifurcation of
this solution. The condition D2 s3G 2r2y1 corresponds

Ž .to a pitchfork bifurcation point where the solutions 9
Ž . Ž .bifurcate from 8 see Fig. 1a . The codimension-two

Ž .'point Gs 3r4 , Ds1 corresponds to Z symmetric2

Bogdanov-Takens bifurcation where the characteristic
Ž .equation determining the stability of 8 has a double zero

Ž . Ž .root. The solutions 9 are always unstable. S S bifur-3 2
Ž .cates from S S at the points Ds"G , which areq y

Ž . Ž .obtained by substituting BsCs0 into 7 see Fig. 1a .
Ž .In the presence of nonreciprocity B/0 andror C/0

Ž . Ž .Z symmetry 5 of Eqs. 2 is broken and the pitchfork2

bifurcation is destroyed. As it is shown in Figs. 1b, 1c, this
Ž w xbifurcation is replaced by a saddle-node one see Ref. 22
.for the description of imperfect bifurcations .

3. Bifurcation diagrams

Ž .Bifurcations of Eqs. 2 with R sR s0 have beenq y
studied numerically using the programs LINLBF and LIN-
BAS which were designed to calculate bifurcation curves

w xof steady-state and limit cycle solutions respectively 23 .
w xThe program INTSEP 24 has been used to calculate

one-dimensional unstable manifolds of steady-state solu-
tions.

Ž . Ž .Several bifurcation curves of Eqs. 2 in the D,G -
Ž .plane for the case without nonreciprocity BsCs0 are

Ž 2 2 .shown in Fig. 2. Here the curve p D s3G r2y1
corresponds to a pitchfork bifurcation of the solution S ,2

and the line H corresponds to a supercritical Hopf bifurca-
Ž .tion of this solution. The curve t DsG corresponds to

Ž .Fig. 2. Bifurcation curves for Eqs. 2 with R s R s BsCs0q y
Ž .in G , D -plane. The lines H, t, p, and h correspond to Hopf,

steady-state, pitchfork, and heteroclinic bifurcation, respectively.
The point TB is the codimension-two Bogdanov–Takens bifurca-
tion point. The point SF divides the curve h into two parts. The

Ž .upper lower part of the curve h corresponds to a pair of
Ž .heteroclinic orbits connecting two saddles saddle-foci .
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Ž .the points where the unstable steady-state solution S S3 1
Ž . Ž .bifurcates from the solution S S see Fig. 1a . Forq y

D2 -2 the solutions S and S are unstable below thisq y
line. The point TB in Fig. 2 is a codimension-two bifurca-

w xtion point of Bogdanov-Takens type 25,26 . Due to the
Ž .symmetry property 5 this is Z -symmetric bifurcation. A2

point of Bogdanov-Takens bifurcation with Z symmetry2

is known to be a limit point for either the heteroclinic or
w xhomoclinic bifurcation line 25,26 . In Fig. 2, curve h

terminating at the point TB corresponds to a heteroclinic
loop connecting S and S . The point SF divides h into3 1

two parts. On the upper part the solutions S and S are3 1

saddles whereas on the lower part they are saddle-foci. A
stable limit cycle emerges from the homoclinic loop when
crossing the line h from above. This limit cycle corre-
sponds to the low-frequency antiphase pulsations of the

ŽCPW intensities self-modulation regime of the second
.kind . When approaching the heteroclinic bifurcation line h

from below the period of the limit cycle tends to infinity.
The phase portrait of this cycle is shown in Fig. 3a for the
parameter values close to heteroclinicity. In the region
between the lines h and t stable antiphase pulsations
coexist with the stable solutions S . Note, however, that"

for G ,D<1 the bistability region is extremely narrow.
Below the line t the solutions S are unstable."

Ž .As it was mentioned in Section 2, Z symmetry 5 of2
Ž .Eqs. 2 is broken in the presence of nonreciprocity.

Ž .Fig. 3. Limit cycles of Eqs. 2 with R s R s0 correspondingq y
to antiphase pulsations of the CPWs. Parameter values are close to

Ž . Ž .heteroclinic homoclinic bifurcation. a G s0.741, Ds0.7, B
Ž .sCs0; b G s0.315, Ds0.8, Bs0.25, Cs0.

Ž .Fig. 4. Bifurcation curves for Eqs. 2 with R s R s Bs0 andq y
Cs0.2. The lines H , s , and t , correspond to Hopf, saddle-1,2 " "

node, and steady-state bifurcations, respectively. The point CT is a
codimension-two bifurcation point with a single zero and a pair of
pure imaginary eigenvalues.

Therefore, the pitchfork bifurcation of S that exists for2

BsCs0 is replaced by a saddle-node bifurcation. For
small nonzero B andror C heteroclinic bifurcation lead-
ing to the appearance of the antiphase pulsations is re-

Ž .placed by a homoclinic one see Fig. 3b . Bifurcation
Ž . Ž .curves of Eqs. 2 in the D,G -plane for the case with

Ž .cavity phase nonreciprocity Bs0, Cs0.2 are presented
in Fig. 4. For D2 -2, the solutions S and S exist below1 2

the saddle-node bifurcation curve s. They collide with each
other and disappear on this curve. The solution S is1

always unstable, while S is stable between the curves s2

and H . Here H corresponds to the supercritical Hopf2 2

bifurcation of S . A stable limit cycle bifurcates from S2 2

when crossing the line H from above. The line H2 1

corresponds to the subcritical Hopf bifurcation of the
unstable solution S . This bifurcation leads to the emer-1

gence of an unstable limit cycle below the line H . The1
Ž . Ž .solution S S is stable above the line t t corre-q y q y

sponding to steady-state bifurcation points. At these points
Ž .the unstable solution S S bifurcates from the solution3 1

Ž .S S . The curves H and H terminate at the codimen-q y 1 2

sion-two point CT which is characterized by a single zero
and a pair of pure imaginary eigenvalues. It was shown
that this kind of bifurcation can lead to the appearance of
two-dimensional tori and, in generic case, to their break-up
resulting in chaotic phenomena that includes Shil’nikov’s

w xhomoclinic behavior 26,27 .
Fig. 5 displays the enlarged vicinity of the point CT in
Ž .the G ,D -plane. The line T corresponds to a bifurcation1
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Fig. 5. Enlarged vicinity of the codimension-two point CT from
Fig. 4. The lines T and T correspond to bifurcations of limit1 2

cycles into two-tori. The lines D and D correspond to period-1 2
Ž .doubling bifurcations. The solid dashed parts of D and D1 2

Ž .indicate period-doubling bifurcations of a stable unstable limit
cycle.

into a two-torus of a limit cycle emerging from the Hopf
bifurcation on the line H . The lines D and D corre-2 1 2

spond to the first two bifurcations of the period-doubling
Žsequence starting from this limit cycle the left dashed

parts of these lines correspond to a period-doubling of
.unstable cycles . The line T corresponds to the bifurcation2

of a period-two cycle into a period-two torus. Truncated
normal form equations for the bifurcation point with a
single zero and a pair of pure imaginary eigenvalues
together with different types of unfolding diagrams pro-

w xduced by these equations can be found in Ref. 26 .

4. The effect of small backscattering

For R s0 and BsCs0 the self-modulation regime"

of the second kind that emerges from the homoclinic loop
connecting the saddle-foci S and S is expected to exhibit3 1

oscillations with two basic frequencies. The first of them
corresponds to a slow alternation of the CPWs. When
approaching the homoclinic bifurcation point this fre-
quency tends to zero. The second frequency corresponds to
the revolutions of the phase trajectory around the solutions

Ž .S and S . The complex eigenvalue of S S with3 1 3 1

smallest absolute value of its real part is determined. For
small G this frequency is very close to the relaxation

Ž .frequency defined by Eq. 6 . For small G and D the

homoclinic bifurcation curve is in a close proximity to the
Žtranscritical bifurcation curve see curves h and t in Fig.

.2 . Hence, when the homoclinic bifurcation takes place,
Ž . Ž .the solution S S is very close to S S . A pair of3 1 q y

Ž .complex eigenvalues of S S with smallest absolute3 1

value of the real part differs slightly from the eigenvalues
Ž .of the solution S S which have the imaginary partsq y

Ž .defined by Eq. 6 .
Ž .Linear coupling between the CPWs R /0 breaks"

Ž . Ž .the symmetry 3 of Eqs. 2 . As a consequence of this, the
unstable solutions S and S that exist for R s0 and1 3 "

correspond to stationary CPW intensities are transformed
into saddle limit cycles, LC and LC , corresponding to1 3

time-periodic CPW intensities. Steady-state bifurcations of
the solutions S and S are transformed into Hopf bifur-q y
cations. Since there exists a bifurcation set where S and1

S possess heteroclinic orbits, for sufficiently small nonzero3
Ž .values of R the stable unstable manifold of the cycle"

Ž .LC and the unstable stable manifold of the cycle LC2 3

are expected to intersect in a certain domain of parameter
space. It is known that this kind of intersection leads to a
very complicated behavior. Recently, a laser with a sat-

w xurable absorber was shown to exhibit similar behavior 31 .
Thus, symmetry breaking associated with weak linear cou-
pling between CPWs may lead to the transition from
regular antiphase pulsations to irregular ones.

5. Conclusion

Global bifurcations leading to the emergence of low-
frequency antiphase pulsations of the CPW intensities
Ž .self-modulation regime of the second kind in a model of
a single-mode bidirectional ring class B laser without
backscattering have been described. The new branches of
unstable solutions corresponding to stationary CPW inten-

Ž .sities, S and S see Section 3 , have been found. These1 3

are precisely the solutions that play a crucial role in the
origin of the self-modulation regime of the second kind. It
has been shown that the limit cycle corresponding to
periodic antiphase oscillations emerges either from the

Žhomoclinic loop connecting S and S in the case without1 3
.nonreciprocity or from the orbit homoclinic to one of
Ž .these solutions in the case with small nonreciprocity . A

bistability region in parameter space where undamped
antiphase pulsations coexist with unidirectional cw opera-
tion has been found. A codimension-two bifurcation point
leading to the appearance of two-tori and chaotic phenom-
ena associated with their break-up has been shown to exist
in the laser parameter space. In the presence of weak
backscattering mechanisms of the antiphase pulsations ap-
pearance become more complicated and they include
chaotic phenomena associated with the intersection of
stable and unstable manifolds of the saddle cycles. It is
likely that this is why self-modulation regime of the

w xsecond kind may not be strictly periodic 10,13,15 .
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As it was already mentioned in Section 2, the results
obtained can be applied to study the dynamics of a class B
laser operating in two transverse modes. It was shown in
experiment that a bimode CO laser with a saturable2

absorber can exhibit ‘‘mode-hopping’’, that is periodic
w xjumps from one transverse mode to another one 28 . The

phase trajectory obtained by the phase-space reconstruc-
tion method was found to make revolutions around
‘‘pure-mode’’ solutions corresponding to laser operation in
a single transverse mode. The regimes periodic alternating
between transverse modes were also observed experimen-

w x Žtally 29–31 and found numerically see Fig. 10 in Ref.
w x.32 . These regimes are very similar to those emerging
from the heteroclinic bifurcation described in Section 3.
According to the results obtained, homoclinic loop con-

Ž .nects the unstable ‘‘mixed-mode’’ solutions S and S1 3
Ž .rather than the ‘‘pure-mode’’ ones S and S . There-q y

fore, the phase trajectory must revolve around these
‘‘mixed-mode’’ solutions. Note, however, that for small
values of the parameter G typical of class B lasers the

Ž .‘‘mixed-mode’’ solutions S S are in close proximity to1 3
Ž . Žthe ‘‘pure-mode’’ one S S see Fig. 2, where theq y

heteroclinic bifurcation curve h tends to the steady-state
.bifurcation curve t as G™0 . It seems likely that for this

reason ‘‘mixed-mode’’ solutions were not detected in the
w xexperiment of Ref. 29 .
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