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Abstract

We study the dynamics of a nonrotating class-A bidirectional ring laser with backscattering. A pair of new bistable time-
dependent regimes with opposite values of beat frequency of counterpropagating waves is described. These regimes exist for

certain cavity detunings.

1. Introduction

In the past three decades the bidirectional ring laser
(BRL) has been attracting much attention of research-
ers, see Refs. [1-21]. It is well known that regimes
with time-dependent intensities of the counterpropa-
gating waves (CPWs) in nonrotating class-B BRL
arise because of their coupling due to spatial modula-
tion of the inversion in an active medium and due to
backscattering from intracavity inhomogeneities [ 8-
12]. Since the inversion relaxation time in a class-A
BRL is small, the regimes with the time-dependent
wave intensities can arise only in presence of back-
scattering [3-6,13-19]. Here we consider a nonrotat-
ing detuned classs-A BRL with equal cavity
eigenfrequencies and losses of the CPWs. Pump para-
meters and backscattering coefficients of the CPWs are
assumed to be equal. The equations describing this
model are invariant under the transformation

(E.,E)—(E_.E,). (D
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Here E, (E_) isthe electric field envelope of the clock-
wise (counterclockwise) wave. The symmetry prop-
erty (1) reflects the equivalence of clockwise and
counterclockwise directions of propagation.

The three kinds of regimes of a class-A BRL were
described earlier. (i) The regimes with time-independ-
ent and approximately equal intensities of the CPWs.
Below they will be named the standing wave regimes.
(ii) The regimes with time-independent and unequal
intensities of the CPWs. Below they will be named the
running wave regimes. (iii) The time-dependent
regimes characterized by the antiphase oscillations of
the CPW intensities and the oscillations of the phase
difference of the CPWs u(t) =arg(E,) —arg(E_).
Note that in a nonrotating BRL only such regimes for
which the beat frequency

T
_ 1 (de®
A= o | =5 dr, (2)

0

is equal to zero, were earlier described. Here T is the
period of the CPW intensities oscillations. The first two
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regimes (i) and (ii) exist in lasers with and without
backscattering, see Refs. [2-5,12-21], whereas the
third regime (iii) was caused by backscattering, see
Refs. [3-6,14-19]. The antiphase oscillations of the
CPW intensities may be interpreted as frequency split-
ting of two standing waves, sin kz and cos kz, see Refs.
[ 16-18]. This splitting is proportional to the absolute
value of backscattering coefficients, see Refs. [3,4,17~
19].

The running wave regimes (ii) are usual for a single-
isotope HeNe laser tuned to the small vicinity of the
line center [3,21,22] and for a dye laser [15,18]. The
transition from a standing wave regime to a running
wave regime is an example of spontaneous symmetry
breaking. The two running wave regimes exist simul-
taneously due to the symmetry property (1). One of
these two regimes corresponds to |E, |*> |E_|? and
the other corresponds to |E ., |?< | E_ |*. The sponta-
neous symmetry breaking phenomenon was recently
reported for a laser operating in several transverse
modes, see Refs. [23-25]. When some controlling
parameter is changed a mode with cylindrical symme-
try bifurcates into two modes that are bistable and do
not possess this symmetry [23]. As it was shown in
Ref. [26], the symmetry breaking bifurcation in a sys-
tem of two identical coupled oscillators can be followed
by the bifurcations leading to chaotic behavior.

This paper is organized as follows. In section 2 we
describe the model of a bidirectional class-A laser. In
section 3 we present the results of numerical analysis
of steady-state and periodic solutions. We show that a
pair of stable periodic solutions with nonzero beat fre-
quencies exist for certain cavity detunings. For one of
these solutions the beat frequency is A=2/T and for
the other A= — 277/ T. The transition to the regime with
nonzero beat frequency in a BRL for which clockwise
and counterclockwise directions are equivalent we
have named a spontaneous phase symmetry breaking.
In section 4 the concluding remarks are given.

2. Laser equations

In the weak-field approximation the equations
describing a single-frequency operation of a class-A
BRL with backscattering are (see Refs. [1-7])

(8, +Y)E, =mla—B|E, >~ E_|’|E,
+iRE_ exp(iy) ,

(3, +¥)E_ =nla—BIE_ |2~ 9|E, |*1E_
+iRE, exp(iy) , (3)

where £, are the slowly-varying electric field enve-
lopes of the CPWs; % is the amplification at the line
center; v, is the cavity decay rate; R and ¢ are the
amplitude and the phase of backscattering. o, 8, and ¢
are the complex coefficients depending on the detuning,
inhomogeneous and/or homogeneous linewidths and

on the inversion relaxation time of an active medium
a=a'+ia”, B=F+if’, I=%+id",

where 8’ and ' are the self- and cross-saturation coef-
ficients of the CPWs,
The total field in the BRL is

Exot=[|E+| exp(ip, (1) +ikz)
+ IE— | exp(ip_(2) —ikz) ] exp( —iwt) +c.c.,

where w is the optical frequency, z is the coordinate
along the cavity axis, k is the wave number and p , are
the slowly varying phases of the CPWs.

Let R+0. Then, passing to the variables amplitude-
phase in the set (3) we obtain

0.1E, | =[A—|E, |*~ |E_|*~Scos ¢(|E, |
—E_|)1|E. | +sin(u-9)|E_|,

8, 1E_|=[A—|E, >~ |E_ |>+Scos ¢( | E, |
—|E_[)11E- | —sin(u+) |E, |,

8.u=—2Ssind(|E, |>~ |E_|?)

+ £ | cos(p— p) — £, | cos(p+pu), (4)
E. | |E|
where
_ _ne'= iy = £
T=ItR, A 7 S exp(i¢) B+

EXOE
|Ei1=\/”3—m)ﬂusi|, p=py . (5)

The parameter A is the ratio of the pump parameter and
the backscattering amplitude and it can be varied in a
wide range in experimental conditions. The parameter
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rdescribes the phase of backscattering. If iy= M with
integer M, the coupling of the CPWs is conservative
and if Y= 7(1/2+ M) it is dissipative, see Ref. [ 18].
The parameter ¢y may be easily controlled in an exper-
iment with the help of two outer mirrors, see Refs.
[1,19]. The parameters S and ¢ are real. If ¢ & [ 77/2,
37/2] then B’ < §'. This relation holds for a single-
isotope HeNe BRL tuned to a small vicinity of the line
center [3,21] and for a dye BRL [17]. If ¢ [0, 7/
21, [37/2, 27] then B'> &'. This relation holds for a
single-isotope HeNe BRL operating far from the line
center and for a HeNe BRL with two-isotope mixture
[3]. For example, when the cavity detuning in a single-
isotope HeNe laser is changed from + to —c, the
parameter ¢ changes from 27 to 0.

Note, that for B=1, 9=2, Egs. (1) are transformed
into the equations that were derived in Ref. [27] to
describe the operation of a CO, laser in two transverse
modes. Thus, the results presented here can be applied
to study the dynamics of this laser.

For the variables amplitude-phase (5) the symmetry
property (1) can be rewritten as

(IE¢ |, 1E-l, W)= (IE- |, |Ex], —p) . (6)

Since Egs. (4) are invariantunder the transformation
p— -+ 27, their phase space is a cylinder. Therefore,
Eqs. (4) may possess two kinds of limit cycles differ-
ing in their topological properties. The limit cycle of
the first kind can be continuously shrunk to a point on
a cylinder. For such cycles the phase difference p oscil-
lates around certain mean value and, hence, the beat
frequency (2) is equal to zero. The limit cycles of the
second kind cannot be shrunk to a point on a cylinder.
These cycles correspond to regimes with nonzero beat
frequency of the CPWs. We have found that Eqgs. (4)
possess stable limit cycles of both kinds (see below).
Some further comments concerning these two kinds of
limit cycles are given in the Appendix.

3. Steady-state and time-dependent regimes

Egs. (6) have seven branches of steady-state solu-
tions describing the regimes with time-independent
intensities of the CPWs. The trivial solution
|E, | = | E_| =0 with undefined u corresponds to the
laser off. It is unstable for A> — |sin |.

There are two branches of steady-state solutions,
SW1 and SW2, corresponding to the standing wave
regimes:

SWI1: |E, |>=|E_|*=A— siny, p=27N,
SW2: |E, |>=|E_|*=A+ sin ¢,
u=m(2N+1}, (7

where N is integer. The transitions from one standing
wave to another and the accompanying 7-jumps of the
phase difference u were investigated in Refs. [17,19].

There are four branches of the steady-state solutions
(RW1, RW2, RW3, and RW4) corresponding to the
running wave regimes. Explicit expressions for these
solutions and some results concerning bifurcations of
steady-states are given in the Appendix.

The bifurcation diagram in (A, ¢) plane for S=0.7
and = 7/3 is presented in Fig. 1. This diagram was
calculated using the programs LINLBF and LINBAS,
see Ref. [28]. The first of them is designed for calcu-
lation of steady-state bifurcations in a system of ordi-
nary differential equations. It is based on the Newton’s
method applied to solve a set of nonlinear algebraic
equations and on a specially designed algorithm used
to trace bifurcation curve in parameter space. The sec-
ond program, LINBAS, is similar to LINLBF, but it

Fig. 1. Bifurcation diagram for Eqs. (4).$=0.7, ys= 7/3. The stable
limit cycle LC1 exists in the region cbxuc. The stable limit cycles
LC3 and LC4 exist in the region uxzoqu. The beat frequencies of the
CPWs are nonzero for LC3 and LC4 in the dashed region.
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deals with fixed points of the Poincaré section, which
correspond to periodic solutions.

The solution SW1 (SW2) exists for A>sin
(A> —sin ¢). SW1 is stable in the region gabcg. SW1
undergoes supercritical (subcritical) pitchfork bifur-
cation on the lines ij and mn (jag and myr) . Itundergoes
supercritical (subcritical) Hopf bifurcation on the line
bc (ab). The stable limit cycle LC1 emerges from SW1
on the line bc. The CPW intensities and phase differ-
ence versus time for LC1 are shown in Figs. 2a, b. LC1
exists in the region cbxuc. .C1 disappears on the line
bx (ux) in the heteroclinic orbit connecting RW3 and
RW4 (in the homoclinic figure eight orbit with a center
in SW2). The unstable limit cycle arising on the line
ab exists in a very small region near ab. SW2 is stable
outside the curve sxkldef and above the line
A= —sin . SW2 undergoes supercritical (subcritical )

Intensity

T

—
o

~

Fig. 2. Time evolution of the CPW intensities and their phase differ-
ence for a limit cycle LC1. A=6, S=0.7, y=7/3, $=041m. (a)
Thick (thin) line corresponds to |E, [ (|E_}?). (b) Solid line
corresponds to u(7), dashed line = — 2 indicates the unstable
steady-state SW1.

pitchfork bifurcation on &/ (sxk and Idh), and super-
critical (subcritical) Hopf bifurcation on de (ef). The
stable limit cycle LC2 arising on the line de exists in
an extremely narrow domain. We do not show it in Fig.
1. Dependencies of the CPW intensities and phase dif-
ference on the time for LC2 are similar to those for
LCI1. The unstable limit cycle arising via subcritical
Hopf bifurcation on the line ef exists in the region feyuf.
For both the limit cycles, LC1 and LC2, arising via
Hopf bifurcations of the standing waves SW 1 and SW2,
the beat frequencies of the CPWs are equal to zero, i.e.,
A=0.

The running wave solutions, RW1 and RW2 (RW3
and RW4), arise after supercritical (subcritical) pitch-
fork bifurcation of SW1 and SW2. RW3 and RW4 exist
in the domains gajokxsg and hdlpmyth, and they are
always unstable. RW1 and RW2 exist above the curve
ijoklpmn. They are stable in the domain gokiprq. RW3
(RW4) and RW1 (RW2) merge and disappear via a
saddle-node bifurcation on the lines jok and Ilpm. Due
to the symmetry property (6) RW1 and RW2 undergo
all their bifurcations simultaneously. Supercritical
(subcritical) Hopf bifurcations of RW1 and RW2
occur on the curve og (pr). The unstable limit cycles
arising on the line pr exist in the region vyprv. The
stable limit cycles LC3 and L.C4 arising after super-
critical Hopf bifurcations of RW1 and RW2 exist in the
domain uxoqu. LC3 and LC4 vanish on the line ux in
the homoclinic figure eight orbit with a center in SW2.
After this homoclinic bifurcation the limit cycle LC1
arises. LC3 (LC4) vanishes on the line xo where the
steady-state RW3 (RW4) has a homoclinic orbit. The
limit cycles LC3 and LC4 emerging via a Hopf bifur-
cation on the line og and via a homoclinic bifurcation
on the line oz correspond to zero beat frequency, A =0.
LC3 (LC4) touches the subspace |E. | =0(|E_|=
0) of the phase space on the line starting at the point z
and asymptotically approaching to the line og, see Fig.
1. This tangency results in changing of the limit cycle
topology and it is accompanied by the beat frequency
jump from zero to 27/ T ( —2#/T) for LC3 (LC4),
see Fig. 4. Similar mechanism of the beat frequency
appearance was described in Refs. [7,20] for a rotating
class-A BRL. The regimes with nonzero beat frequency
exist in the dashed region in Fig. 1. They are shown in
Fig. 3. This region is bounded from the left by the
homoclinic bifurcation lines zx and xu.
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(a) LC3

Intensity

(b)

(T T

T

Fig. 3. Time evolution of the CPWs intensities and their phase dif-
ference for the limit cycles LC3 and LC4. A=6, $=0.7, = /3,
¢=0.457. (a) Thick (thin) line corresponds to | £ |2 (|E_|?) for
a laser operating in LC3 regime. For LC4 regime the thick and the
thin line must be interchanged. (b) w(7) for the limit cycles LC3
and LC4.

4. Conclusion

We have shown that a nonrotating class-A bidirec-
tional laser with backscattering can demonstrate time-
dependent regimes with nonzero beat frequency of the
counter-propagating waves, see Figs. 3b, 4, even if the
clockwise and counterclockwise directions of propa-
gation are equivalent. Regimes with nonzero beat fre-
quency were described earlieronly in alaser with cavity
phase nonreciprocity, see Refs. [1,2,5,7,20].

Christian and Mandel [ 14], carried out experimental
measurements of the dependence of the counterpropa-
gating wave intensities on the detuning in a single-
isotope HeNe ring laser with a scattering diaphragm.
For small pump parameters they observed a standing
wave operation for any detuning and for greater pumps
— a running wave regime. The running waves had

8
4 =
% o L RW1
< RWZ2
-4 |
-8 . 1 " 1
0.36 0.43 0.49 0.56

9/x

Fig. 4. Beat frequency as a function of the parameter ¢. Curves [
(curves 2) correspond to A=4.5 (A=6). 5=0.7, y= /3. Homo-
clinic bifurcation occurs at the point f| (f,). At the point &, (h,) the
limit cycle LC3 (LC4) touches the subspace |E, | =0 (|E_|=0).
For A=4.5 the steady-state solution SW?2 is stable on the line zf;.
For A =6 the limit cycle LC1 is stable on the line zf5.

undergone instability and a regime with time-depend-
ent intensities of the counterpropagating waves arose
in a definite interval of detunings. This interval was
situated on the one side of the amplification line, see
Fig. 9a in Ref. [ 14]. Our results are in agreement with
this experiment. We obtained a stable standing wave
operation for small pumps and running waves or time-
dependent regimes for greater pumps. The stable time-
dependent solutions exist on the one side of the
amplification line (see Fig. 1, where ¢= mcorresponds
to the laser operating at the line center).

Appendix

Let us make the following change of variables in the
laser equations (4)

x=|E, >~ |E_|*, x,==2|E_||E,|sinpu,
x3=2|E_||E, | cos ,
x,=|E, |>*+|E_|*. (A1)

The variables (A.1) were used in Refs. [5,7] and they
are suitable for analytic and numeric investigation of
the laser dynamics. In the new variables Eqs. (4) take
the form
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A —cos ¢ 0 0
3y = cos i A 0 0 x
v 0 0 A —sin ¢
0 0 —sin ¢ A

x,x4(1+S cos @)

XX, — X1 X35 sin ¢

X3X4 +x, xS sin p |
x2+x3S cos ¢

(A2)

Herex = (x,, X2, X3, X;) " and 7/ =27. Using the relation
O=x?+xi+xi—-xi=d(x), (A3)

which can be easily obtained from (A.1), the dimen-
sion of Egs. (A.2) can be reduced from four to three.
Here @(x) =0 is a hypercone. For Egs. (A.2) the
symmetry property (1), (6) is transformed into

(Xy, X2, X3, Xg) = (—X1, — X, X3, Xg) . (A.4)
The standing wave solutions (7) can be rewritten as
SWI1: x,=0,x,=0,x3=A—sin {, x;, =A—sin ¢,
SW2: x,=0,x=0,x3=—A—sin ¢,

X, =A+sin . (A.5)

The stability of SW1 and SW2 on the hypercone
d(x) =0 is determined by the roots A; of the charac-
teristic polynomial

(A+A+sin ) (A2 — A+ uy) =0. (A.6)
Here

= £2sin Yy+S(Atsin ) cos ¢,

sy =1+ S(Asin ) sin (¢—¢) . (A7)

The lower (upper) signs in (A.6) and (A.7) corre-
sponds to SW1 (SW2). The equation A=sin
(A= —sin ) defines the threshold for SW1 (SW2).
The conditions u; =0 and u, > 0 correspond to a Hopf
bifurcation. This bifurcation occurs on the line abc for
SW1 and on the line def for SW2, see Fig. 1. The
condition u, = 0 corresponds to a pitchfork bifurcation.
It occurs on the lines ijag and nmyt for SW1 and on the
line sxkidh for SW2, see Fig. 1. When both the condi-
tions p; =0 and u, =0 are satisfied simultaneously we
have a codimension-two bifurcation point of the Tak-
ens-Bogdanov type [29]. The Takens-Bogdanov

bifurcation point of the solution SW1 (SW2) is labeled
a(d) in Fig. 1.

The running wave solutions RW1 and RW3 are
given by

\/A,Q —sin ¢ x; —x2
X =

S cos ¢ ’
_ x[A=x,(1+S cos ¢)]
2 cos ’

X3= S—ii’;_—w)-(cos Y- ZA;U (ASi\/Z)),

_ Atcos ¢ (AS£VZ)/2U
4= 1+S cos ¢ ’ (A8)
here
U=cos(¢p— ) —Ssin ¢ sin(p—~¢) ,
Z=A%$*—4U(1+S cos ¢) cos(Pp— ) . (A9)

The sign plus (minus) in (A.8) corresponds to RW1
(RW3). The solution RW2 (RW4) can be obtained
from RW! (RW3) using the symmetry property
(A.4). Saddle-node bifurcation of RW1 and RW3
(RW2 and RW4) occurs when Z= 0, see lines jok and
Ipm in Fig. 1. Hopf bifurcations of the running wave
solutions, homoclinic and heteroclinic bifurcations
were calculated numerically, see section 3. The Takens-
Bogdanov bifurcation point of RW1 (RW2) is labeled
o (p) inFig. 1.

As it was already mentioned, in section 2 the laser
model considered can exhibit two kinds of limit cycles.
In the phase space of Eqgs. (A.2) they can be distin-
guished by their projections on the plane (x5, x3). (1)
If the projection of a limit cycle on this plane surrounds
the origin x,=x3=0 then the phase difference of the
CPWs p is unbounded in time and the beat frequency
isA= +27/T,see (2).Here Tis the period of the limit
cycle and the sign plus (minus) corresponds to a coun-
terclockwise (clockwise) round trip. (ii) If the projec-
tion of a limit cycle does not surround the origin then
1 is a bounded function of time and A =0. The limit
cycles LC1 and LC2 described in section 3 are always
the cycles of the second kind (ii). The limit cycles LC3
and LC4 are the cycles of the firstkind (1) in the dashed
region in Fig. 1. For arotating laser limit cycles of both
kinds were described in Ref. [7]. In Ref. [30] two
different kinds of limit cycles were found in the Max-
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well-Bloch equations with an additional term describ-
ing an injected field. It was shown that limit cycle
projection on the plane real-imaginary part of the field
amplitude can surround or not surround the origin.
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