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We study the dynamics of a laser with a saturable absorber for parameter values close to a multiple bifurcation point. We show 

that different chaotic attractors exist in a small vicinity of the zero-intensity steady state near the laser threshold. 

1. Introduction 

It is well known that the Maxwell-Bloch equations for a single-mode ring laser exhibit the Lorenz instability 
leading to chaotic dynamics [ 11. However, the threshold for this instability (the second laser threshold) re- 

quires a set of parameter values that are not very accessible in experiments. In several recent studies it has been 
shown by means of numerical calculations that adding a saturable absorber into the laser resonator may pro- 
duce a substantial reduction of the second threshold (see, for example, refs. [ 2-61). We demonstrate here that 
for suitable parameter values the Maxwell-Bloch equations for a laser with a saturable absorber (LSA) can 
exhibit small-intensity chaotic solutions near the lasing threshold (first laser threshold). In ref. [ 7 ] this kind 
of chaotic solutions was called an asymptotic chaos. Our investigation also provides a qualitative understanding 
of the bifurcation sequences leading to chaos in LSA equations. 

We study the simplest theoretical model of a ring single-mode LSA in which each atomic species is modeled 
by a set of homogeneously broadened two-level atoms. For this model the semiclassical theory yields live mean- 
field ordinary differential LSA equations for three complex and two real variables [ 6,8,9]. Neglecting the phases 
of the electric field and atomic polarizations in the case of perfect tuning we have five real LSA equations [ 9 1. 

We consider the bifurcation points in the parameter space, for which the jacobian matrix of the perturbations 
of the real LSA equations evaluated at the zero-intensity steady state has a triply degenerate zero eigenvalue 
with geometrical multiplicity two. In the vicinity of these points the application of normal form theory yields 
the reduced equations which describe the local dynamics of LSA equations. We investigate the bifurcations 
leading to chaotic oscillations in the reduced equations. We show that there exists a case in which the reduced 
equations may be transformed into the Shimizu-Morioka equations [ lo]. It is known that the Shimizu-Mo- 
rioka equations which were proposed in ref. [ 111 exhibit various kinds of chaotic behavior. The bifurcation 
phenomena in these equations have been studied in great detail as reported in ref. [ 12 1. 

We discuss the influence of the phases of the electric field and the atomic polarizations in the LSA equations 

0030~4018/93/$06.00 0 1993 Elsevier Science Publishers B.V. All rights reserved. 351 



Volume 100. number I ,2.3,4 OPTICS COMMUNICATIONS 1 July 1993 

on the stability of the solutions under consideration. We show that the LSA equations exhibit two kinds of 
chaotic solutions. One of them is stable with respect to phase variables and the other is unstable. 

2. Laser model and reduction to normal form 

The LSA model studied is similar to that considered in refs. [ 8,9]. In the case of perfect tuning it is given 
by the following set of five ordinary differential equations: 

dE/dt= -E+P, +Pz, dP,ldt=-P,6,-E(M,,,+M,), dPJdt=-PP,&--E(M,,+M,), 

dM,/dt=-p,M, +(ErP,+P;E)/2, dM,/dt= -p,M,+P(E*P,+P;E)/2, (1) 

for dimensionless variables, which are the electric field amplitude E, the atomic polarization amplitudes Pk, 

and the deviations of the population differences M, from their values MOk without the laser field. Here the 
subscript k= 1 pertains to the amplifying medium and k= 2 pertains to the absorbing medium. M,, ~0, Mo2> 0. 

The variables E, P,, and Pz are complex, the variables Ml and Mz are real, The parameters & and pk are trans- 
versal and longitudinal relaxation constants divided by the resonator halfwidth which has been used to re- 
normalize the time t. The parameter p is the ratio of the saturation intensity in the amplifying medium to the 
saturation intensity in the absorbing medium. Note that the LSA equations ( 1) are equivariant under the 0 (2) 
symmetry group action generated by (E, P,, P2)+exp(i@) (E, P,, Pz) and (E, P,, Pz)+(E*, P:, P:). 

A linear stability analysis of the zero-intensity stationary solution E= Pk= M,=O (k= 1, 2 ) of eqs. ( 1) leads 
to the characteristic equation of the form 

(~3+A2~2+A,~+AO)(~+P,)(/Z+PZ)=0, (2) 

where 

&=&&+&MO, +6,Mo2, A,=S,+82+6162+Mol+h~02, A2=1+6,+cY2. (3) 

Note that &= 0 corresponds to the linear laser threshold whereas A iA2 -&= 0 and A, < 0 correspond to the 
Hopf bifurcation of the zero-intensity steady state. If two conditions Ao=O and A, =0 are satisfied simulta- 
neously then we have bifurcation of the Takens-Bogdanov type corresponding to double zero 2 in eq. (2). This 
bifurcation in LSA equations was studied in refs. [ 13,141. Here we consider two multiple bifurcation points 
with the codimension greater than that of the Takens-Bogdanov bifurcation. They are determined by three 
conditions 

&=O, A,=O, p,=Oorp,=O. (4) 

At these points the jacobian matrix J of eqs. ( 1) (with real E and Pk) evaluated at the zero-intensity stationary 

solution has a triply degenerate zero eigenvalue with geometrical multiplicity two. 

Let us select MO,, Mo2, and p, (Mel, Mo2, and p2) as our bifurcation parameters. Then, taking into account 
eqs. (3), we conclude that two bifurcation points (4) exist when 6, > 6, and they are given by 

M,,=it&, , M,.,2=1%,2. p,=O, (sa) 

and 

A&,=X%,,, , M,,=&,,, ~2=0, (5b) 

where 

MO, = -s:( 1+6,)/(6, -6,) ) M,,=d:( 1 +s,)/(6, -8,) . 

Consider the LSA equations ( 1) with the bifurcation parameters fixed by eqs. (5a) (eqs. (5b) ). In order to 
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obtain the reduced form of eq. (1) we first introduce a linear change of variables (E, Pi, P2, MI, M*)+ 

(u’, u’, w’, i;, ii), 

E=u’+v’+w’ ) P,=[u’6,(B~+1)+v’(6,-1)(8~+1)-w’6:]/6,-62), 

P*=-[u’6,(6,+l)+v’(6,-1)(6,+l)-w’6:]/(6,-6*), Mk=&(k=1,2), 

which transforms the jacobian matrix J of eqs. ( 1) at the bifurcation points (5a, b) into the Jordan normal 

form 

010 0 0 

000 0 0 

000 0 0, 

0 0 0 -n, 0 

0 0 0 0 -/tz 

where/1i=l+6i+&>O, /12=p2>0 (,42=pI>O) for the bifurcation point (5a) (bifurcation point (5b)). 

Next, using the center manifold theory, we eliminate the variables w’, ii (i’, ) corresponding to the negative 
eigenvalues --ill and -A, and we apply the normal form technique [ 15,161 to eliminate certain nonlinear 

terms by the transformation preserving 0 (2) symmetry 

V=V’+~[R~~~U~~+R~~(U*U+U*V)+R~~~~+R~~~~]+U[R,~IUI*+R~~(Y*U+U*V)+R~~~~+R,~~~~] , 

i~=~;+I~12(R~~k+R,~ki~)+(V*~+~*v)(R,3k+R,4ki~). 

Here k= 1 (k=2) corresponds to the bifurcation point (5a) (bifurcation point (5b)). Real coefficients RJk, 

(j= 1, 14; k= 1, 2) depend on the parameters of the LSA equations. We do not present explicit expressions 
for these coefficients since they are very cumbersome and irrelevant in further analysis. The resulting normal 

form equations calculated up to the third order terms are given by 

du/dt=v+0(4), dv/df=Fk(u, u*, V> v*, ik)+o(J) > dt-k/dt=Gk( iui*, ik)+o(d) a (6) 

where 0( 4) denotes quartic and higher-order terms in (u, u*, v, v*, &) and 

Pk(U, u*, v, v*, ‘&)= -akiku--krkv+dkUIU1*+ekvlu1*+fkuIvl2+gkU2V*+hki:U+r,i:v. 

Gk(IU12,ik)=CkIU12+SkIU121k (k=l,2). 

(7) 

Explicit expressions for the coefficients ak, bk, ck, dk, ek, fkr &, hk, rk, and Sk are given in the Appendix. 
Now let us take into account small deviations of the parameters MO,, Mo2, and pi (p2) from the bifurcation 

points given by eqs. (5a, b). To do this we introduce linear unfolding terms into eqs. (6) according to standard 
approach [ 15,161. Omitting 0( 4) terms we have 

duldt=v, dv/dt=t,u+e2v+Pk(u, U*, V, v*, [k), d&..dt=-y&+G,( ]U]*, [k) . (8) 

In the case of perfect tuning the unfolding parameters cl, t2, and yk are real. They describe small perturbations 
of the coefficients in the characteristic equation determining the linear stability of the zero-intensity stationary 
solution u= v= w= 0 of eqs. (8). This equation is given by 

and its solutions are equal to those solutions of eq. (2) which vanish at the bifurcation points (5a, b). Using 
this fact and neglecting the second order terms with respect to small deviations of the parameters MO, and MO2 
from their bifurcation values we obtain 
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In the next section we shall restrict our consideration to the specially chosen e-neighborhood of the zero- 
intensity steady state where the term - bkikv and the qubic terms in the normal form equations can be neglected 
since they are much smaller then the other terms of eqs. (8)) (7). However, for certain values of the param- 
eters, small amplitude solutions of eqs. ( 1) which are not contained in this neighborbood also can bifurcate 
from the trivial steady state at the points (5). We do not consider such solutions but we note that some of the 
terms neglected here can be necessary to analyze them. 

3. Small amplitude chaotic solutions 

The equations (8) describe the small amplitude dynamics of the original LSA equations in the small t-neigh- 
borhood of the bifurcation points (5a, b). We define this neighborhood as 

ei =sign(ei)e’, c2=pc, yk=(Ykt>O, t>O, (9) 

where P and (Yk (k = 1, 2 ) do not depend on E. Let ak # 0 and ck # 0 in eqs. (7 ). Balancing the low-order terms 
by resealing the variables in eqs. (8) 

U=xt3’2/,/m, u=y65’2/dm, [k=ze2sign(ck)/ak, t=S/c, (10) 

and neglecting 0( 6) terms we have the reduced equations 

dx/dr= y , dy/dT=Si@l(c,)X+~y-Sign(Ck)Xz, dz/dT= --(Ykz+ 1x1’. (11) 

Let sign( t, ) = 1 and x, y be real. These conditions correspond to laser operation above the linear threshold 
and to the neglect of the phases of the electric field and the atomic polarizations in the LSA equations ( 1). 
Consider eqs. ( 11) for the bifurcation point (5a) (k= 1). It follows from the formulas given in the Appendix 

that sign (c, ) = 1. Hence, instead of eqs. ( 11)) we have 

dx/dr= y , dy/dr=x+py-xz, dz/dr= -a,z+x2. (12) 

These equations have three stationary solutions which we denote as S, and S,. The stationary solution S, 
(x= y=z= 0) corresponds to laser being off. The solutions S+ correspond to stationary laser operation and 
aregivenbyx=$&,y=O , z= 1. For ,u < 0, eqs. ( 12) are equivalent to the Shimizu-Morioka equations which 
were obtained from the well known Lorenz equations in the limit of large Rayleigh numbers (Ra+a) [ 111. 
The dynamics of the Shimizu-Morioka equations has been extensively studied. It has been shown that eqs. 
( 12) demonstrate period-doubling cascades, an infinite number of various homoclinic and heteroclinic con- 
nections, Lorenz-like attractors, and chaotic quasi-attractors [ 12 1. 

Figure 1 represents the x-z projections of the phase trajectories of the Shimizu-Morioka equations ( 12) for 
several values of the parameter ,D and (Y, = 0.3. Figs. 1 a-e illustrate the period-doubling transition from a sym- 
metric (invariant under the transformation x--t -x, y+ -y) limit cycle to a pair of asymmetric chaotic quasi- 
attractors with the increase of the parameter -,u. At still higher values of -,u the asymmetric chaotic quasi- 
attractors undergo a symmetry-restoring crisis leading to a single symmetric quasi-attractor, which is shown 
in fig. If. The projections of the phase trajectories corresponding to the spiral chaotic quasi-attractor and the 
Lorenz attractor are shown in fig. lg and fig. lh, respectively. 

A detailed investigation of the bifurcation set for the Shimizu-Morioka equations has been made by AL. 
Shil’nikov [ 12 1. We have calculated only a few of the bifurcation curves for eqs. ( 12 ) (see fig. 2 ), TO calculate 
the bifurcations of the periodic solutions a specially designed program [ 171 has been used. In fig. 2 the curve 
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a. H=-0. 200 

e _ r=-O. c115 

x 
Fig. 1. Numerical solutions of eqs. (8) with (Y, =0.3. (a) Sym- 

metric limit cycle, (b) period-one asymmetric limit cycle, (c) 

period-two limit cycle, (d) period-four limit cycle, (e), (f), (g), 

(h) chaotic attractors. Crosses indicate the positions of the sta- 

tionary solutions So and Sk. 

Fig. 2. Bifurcation curves for eqs. (8). The curve Hb corresponds 

to the Hopf bifurcation of the stationary solutions Sk. Dashed 

line Do (Di ) corresponds to pitchfork (period-doubling) bifur- 

cations of periodic solution. Solid lines Ho and Hi correspond to 

homoclinic bifurcations. 

of principal homoclinic orbits is denoted by the symbol Ho and corresponds to a homoclinic “butterfly” which 
is shown in fig. 3a. The “butterfly” consists of two orbits homoclinic to the trivial stationary solution S,,. For 
sufficiently large values of cwi this “butterfly” transforms into the homoclinic “figure-eight” which has been 
shown to exist near the Takens-Bogdanov bifurcation point [ 15,161. The truncated normal form equations 
for this bifurcation can be obtained by the elimination of the variable ik from the eqs. (8) using the center 
manifold theorem. 

It can be shown that the periodic solutions emerging from the homoclinic orbits forming the “butterfly” are 
unstable if the “saddle quantity”, a=/2, +A,, is positive. Here ;1, >A2>A3 are the eigenvalues of S,,. Using eqs. 
( 12) we obtain cr= -aI + (~+m)/2. The condition o> 0 is fulfilled for the lower part of the curve Ho 
lying between the points A and B. When crossing this part of Ho from the right, the invariant hyperbolic chaotic 
set arises [ 18 1. The codimension-two points A and B are the limit points for an infinite number of bifurcation 
curves. The point B ( CY, =O, pz - 2.153) is the limit point for the cu’rves corresponding to multi-circuited ho- 
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il-:_im 
Fig. 3. Orbits homoclinic to the stationary solution So of eqs. (8) 

a. fi=-1.31102 8. r=-O. 69386 with 01, =0.3. (a) Homoclinic “butterfly”, (b) double-circuited 

x 

homoclinic orbits. Crosses indicate the positions of the station- 
ary solutions. 

moclinic orbits. The bifurcation phenomena near point A (g= 0) in the parameter space has been considered 

in ref. [ 121. It has been shown that Lorenz-like attractors exist in the vicinity of the point in the a,-~ plane. 
TWO of the curves starting from the point A are shown in fig. 2. The curve Do corresponds to a pitchfork bi- 
furcation of the symmetric periodic solution into a pair of asymmetric periodic solutions (see figs. 1 a, b). The 
curve H, corresponds to the existence of two double-circuited orbitals homoclinic to the stationary state S,,. 
These orbits are shown in fig. 3b. The curve Dr indicates the first bifurcation of the period-doubling sequence 
starting from the periodic solution which is shown in fig. lb. The point C on the curve H, is the limit point 
for the curve Dr. Together with the point A this point belongs to the boundary of the existence of the Lorenz 
attractor [ 121. The curve Hb corresponds to the Hopf bifurcations of the solutions Sk. This bifurcation is su- 
percritical (subcritical) for (Y! > @ (cr, < (Y ), where c% Y 0.1 1248. 

NOW let US consider the eqs. ( 11) for the bifurcation point (5b) (k= 2, sign(c*) = - 1). Let x and y be real 
and sign ( E, ) = - 1 (laser operation below the linear threshold). Then instead of eq. ( 11 ) we have 

dx/dz= y , dy/dr= -x+~y+x,_, dz/dr= -(w~z+.\-~. (13) 

Note that equations equivalent to eq. ( 13) were obtained in ref. [ 191 from the equations describing two-di- 
mensional thermosolutal convection in a Boussinesq fluid by a different method. The relationship between the 
LSA equations and the equations describing convective instabilities in a two-component fluid was established 
earlier [ 21. As do the Shimizu-Morioka equations, the eqs. ( 13 ) have three steady state solutions. One of them 
(S,) is located at the origin x=y=z=O. The other two solutions (S,) are given by x= ?&, y=O, z= 1. 
The origin x=y=z=O is stable for PL< 0 and looses its stability at p=O via a Hopf bifurcation leading to the 
emergence of a symmetric periodic solution which is shown in fig. 4a. It appears from the information of fig. 
4 that the increase of the parameter p in eqs. ( 13) leads to the chaotic behavior associated with period doubling 
cascades (see figs. 4b-f ). Thus the small amplitude chaotic solutions exist near the bifurcation point (5b) as 
well as near the bifurcation point (5a). For sufficiently large positive values of the parameter ,u, solutions of 
eqs. ( 13 ) become unbounded. This means that no attractor of real LSA equations lies in the neighborhood 
defined by eqs. (9) and (10). 

Figure 5 represents several bifurcation curves for the solutions of eqs. ( 13) in the ,~-a~ plane. The curves 
Do and D, are similar to those in fig. 2 and indicate the pitchfork bifurcation and the first bifurcation of period 
doubling sequences. The parts of these curves lying below the line a2 = p correspond to the bifurcations of un- 
stable periodic solutions. The curve of the principal heteroclinic loop H,, corresponds to the existence of a pair 
of orbits connecting two saddle-foci S+. This orbits are shown in fig. 6a. For large values of a2 the principal 
loop transforms into the orbit connecting two saddles with real eigenvalues. The chaotic set arises when crossing 
the lower part of the curve Ho for which Shil’nikov’s criterion [ 181 is fulfilled. This part of Ho is limited by 
the codimension-two point A corresponding to the zero “saddle quantity” of Sk (a= ,I 1 + Re ,12,3 = 0). The curve 
H, corresponds to the existence of homoclinic orbits connecting two saddle-foci St. One of these orbits is shown 
in fig. 6b. 
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a. r=o. 1200 8. fi=O. 1600 

-- 
c. p=O. 1690 d. )r=o. 1699 

e. )1=0.1717 

x 
Fig. 4. Numerical solutions of eqs. (9) with (r,=O.5. (a) Sym- 

metric limit cycle, (b) period-one asymmetric limit cycle, (c) 

period-two limit cycle, (d) period-four limit cycle, (e), (f ) cha- 

otic attractors. Crosses indicate 

solutions. 
the positions of stationary 

a. p=O. 283180 

x 
4. The case with phases 

1 I 

6. ),=O. 2803W 

P 

Fig. 5. Bifurcation for (9). line (D, cor- 

to (period-doubling) ofperiodic 

Below line p vector given the 

(8) negative In region and indicate 

of solutions. line (H, corre- 

to (homoclinic) 

Fig. Heteroclinic homoclinic of (8) 

(~,=0.5. Orbits to solutions (b) 

homoclinic stationary S_. indicate 

positions stationary 

consider the eqs. ( 11) with complex x and y. The phase space of these equations contains the flow 
invariant set given by Q=xy*- yx*=O, in which x and y may be considered as real variables 
(arg(x) -arg(y) = * zN, N=O, 1, 2, . ..). Differentiating 8 with respect to time we from (11) 

/L@. 

It from ( that invariant @=O the space eqs. 11) always for 0. 
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This condition is fulfilled for the Shimizu-Morioka equations. Thus, all solutions of the complex Shimizu- 
Morioka equations (eqs. ( 1 1 ) with sign (t, ) = sign ( ck) = 1 and p< 0) tend to the asymptotically stable invar- 
iant set O=O. This property of the complex Shimizu-Morioka equations is identical to that of the complex 
Lorenz equations [ 201. Since eqs. ( 11) are equivariant under the 0 (2 ) action generated by (x, y) --texp (i@) (x, 
y) and (x, y)+ (x*, y*), every solution of the complex Shimizu-Morioka equations on this set has the form 
(x(s)exp($),y(r)exp(i@),~(~)) with@constant.Here (x(r),y(7),z(s)) isthesolutionoftherealShim- 
izu-Morioka equations. Thus the small amplitude chaotic solutions of the LSA equations ( 1) near the bifur- 
cation point (5a) are stable with respect to phase variables, but they are not asymptotically stable because the 
perturbations in the phase @ correspond to a zero eigenvalue. Here we do not consider the case of nonzero 
values of the detuning parameters. For the complex Lorenz equations this case was studied in refs. [ 2 l-241. 

Another situation appears in the vicinity of the bifurcation point (5b) where the small amplitude chaotic 
solutions correspond to laser operation below the linear threshold (sign( e,) = - 1 and ,UU> 0 in eqs. ( 11 ). It 
follows from eq. ( 14) that for ,UU> 0 the invariant set O= 0 of eqs. ( 11) is unstable. Thus the chaotic solutions 
emerging from the bifurcation point (5b) are unstable with respect to phase variables. This kind of chaotic 
solutions was calculated numerically in ref. [ 25 1. 

5. Conclusion 

We have shown that the small intensity chaotic solutions of the LSA equations ( 1) exist in the vicinity of 
the bifurcation point (5a). Thus solutions emerging above the linear laser threshold are similar to those in the 
Lorenz equations, which describe the single-mode laser, and they are stable with respect to the phase variables. 
In contradistinction to the Lorenz equations, the bifurcation point (5a) leading to the emergence of chaotic 
solutions in the LSA equations corresponds to finite LSA parameter values. This gives a qualitative under- 
standing of the phenomenon of the second threshold reduction in a laser with a saturable absorber. We have 
shown that as distinct from the complex Lorenz equations the LSA equations ( 1) possess chaotic solutions 
which emerge below the linear laser threshold from the bifurcation point (5b) and that these solutions are 
unstable with respect to phase variables. Note that the multiple bifurcation points (5a, b) persist when po- 
larization in the amplifier is adiabatically eliminated. 

Though our bifurcation analysis is local in the parameter space the results of it in many cases remain qual- 
itatively correct for parameter values that are sufficiently removed from the original bifurcation points (5a, 
b). Therefore the reduced equations ( 11) provide the simplest mathematical description of the qualitative 
aspects of low-dimensional chaotic dynamics in the LSA equations as well as in several other laser equations 
which possess the symmetries of the Lorenz equations (see refs. [ 26-3 1 ] for the examples of laser equations 
for which the analysis described here could be applied). 
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Appendix 

Coefficients ak, bk, ck, dk, ek, fk, gk, hk, r,, and sk in eqs. (7) are given below. Here the subscript k= 1 pertains 
to the bifurcation point (5a) and k=2 pertains to the bifurcation point (5b). 
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