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Properties of the phase space and bifurcations in the complex Lorenz model
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The geometrical structure of the phase space and bifurcations in the complex Lorenz model are
investigated. It is shown that the hierarchy of bifurcations in a single-mode laser with
detuning of the resonator frequency from the frequency of a spectral line is similar to the hierarchy
of bifurcations of the logistic map. ©1998 American Institute of Physics.
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INTRODUCTION

The complex Lorenz equations, or complex Lore
model

ẋ52s~x2y!,

ẏ52~12 id!y1~r 2z!x,

ż52bz1
1

2
~x* y1xy* !, ~1!

was first introduced by Gibbon and McGuinness1 as a gen-
eralization of the standard Lorenz model.2,3 The complex
Lorenz model differs from the latter in thatx andy are com-
plex. Formally, this complexity stems from the presence
the real parameterd and the complex parameterr 5r 11 ir 2,
which are not a part of the original Lorenz model. The co
plex Lorenz model has important bearing on nonlinear
namics because it is a universal finite-dimensional appr
mation for the class of distributed systems that exhibit
called dispersion instability of a steady-state solution a
point of parameter spacem5mc ~Ref. 1!. For such systems i
has been shown1 that the expansion of the vector represe
ing the perturbation of the steady-state solution in powers
the small parameter«5(um2mcu)1/2 in a certain approxima-
tion leads to a system of equations, equivalent to~1!, for the
coefficients of the expansion. As an example, the model
baroclinic instability in the atmosphere4,5 is investigated in
Ref. 1.

The variables in Eqs.~1! are the perturbation amplitude
relative to a spatially homogeneous solution of partial diff
ential equations and, as such, do not admit a clear-cut ph
cal interpretation in application to a baroclinic instabilit
However, there are systems for which the variables of
complex Lorenz model are observable quantities. These
tems are lasers and masers, for whichx andy represent the
slowly varying complex amplitudes of the electric field a
polarization of the medium, respectively, andz denotes the
population difference between the energy levels of the wo
ing transition. In reality Eqs.~1! appeared in quantum elec
tronics long before their ‘‘discovery’’ by Gibbon an
8771063-7842/98/43(8)/8/$15.00
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McGuinness1 ~see, e.g., Ref. 6!. The direct observability of
the variables makes lasers the most suitable object for
perimental implementation of the dynamics associated w
the complex Lorenz model. Indeed, the results of exp
ments with single-mode, far-infrared lasers have been fo
to best match the results of numerical integration of the s
tem ~1! ~Ref. 7!. And even though Eqs.~1! provide the most
realistic description of this type of laser exclusively, they a
the simplest model reflecting such fundamental laser pro
ties as the threshold character of lasing, frequency pull
and the capability of generating complex wave modes.

However, despite a wealth of papers on the comp
Lorenz model,1,8–17 to this day it has not received the atte
tion that it deserves. The investigations of this model
concerned primarily with the analysis of particular regime
usually by numerical methods. In our opinion, the most
cisive results have been obtained in Refs. 10 and 11 in reg
to the stability analysis of simple periodic solutions corr
sponding to steady-state lasing. The objective of the pre
study is to investigate the geometrical structures of the co
plex Lorenz model and certain global properties of its so
tions in connection with distinctive features of this structu

An important geometrical property of the complex L
renz model is its invariance under the transformation

S x

y

z
D→S xeic

yeic

z
D , ~2!

wherec is an arbitrary phase constant.
This transformation corresponds to the groupU(1) act-

ing in that subspaceC2 of the total phase spaceH which
refers to the variablesx andy. To picture the role ofU(1) —
the symmetry for the structure of the limit sets in the pha
space of the complex Lorenz model, it is sufficient to co
sider the cased5r 250. It can be shown17 that in this case
any trajectory inH is attracted to the invariant three
dimensional hyperspace

Re~x!

Im~x!
5

Re~y!

Im~y!
5const, ~3!
© 1998 American Institute of Physics
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where the constant on the right side depends on the in
conditions.

On this hypersurface the real and imaginary parts ox
andy vary synchronously with time, satisfying the equatio
of the original Lorenz model. Even under these conditio
however, the attractors of the original Lorenz model and
complex generalization are not identical. Indeed, if a giv
trajectory is attracted to a given limit set situated on
hypersurface defined by Eqs.~3!, it follows from the sym-
metry property~2! that a trajectory that differs from th
given trajectory by a certain common phase ofx andy will
be attracted to a set that is the image of the given set u
the action~2! with the corresponding phasec. Consequently,
an attractor of the Lorenz model in the given situation re
resents the direct sum of an infinite number of sets isom
phic to an attractor of the original model.

This example graphically demonstrates the more co
plex structure of the phase space of the complex Lor
model in comparison with the original model and the role
symmetry in this greater complexity. However, it will b
shown below that symmetry is not a tool that can be use
simplify the problem. Here we note an interesting analo
between the role of symmetry for physical systems descri
by the complex Lorenz model and for quantum systems
scribed by a wave function. For neither system does the g
eral phase of the state vector~which would be the vector
with componentsx andy in the case of the complex Loren
model! carry any information about the physical state;
merely characterizes the result of interference of a gi
state with certain other states. In quantum mechanics ‘‘s
rious’’ information can be filtered out by application of th
density matrix formalism. If a given state vector in a Hilbe
space is described byN complex numbers, the correspondin
density matrix is characterized by 2N21 real numbers.

The indicated analogy permits this approach to be
plied to the complex Lorenz model. In Sec. 1. we introduc
special projective space, in which states differing by
common phase ofx andy are treated as equivalent, and w
derive equations of motion for the complex Lorenz model
this space. We also show how all information on the phys
state of a system and phase evolution can be reproduce
means of these equations. In Sec. 2. we use these equa
to analyze the boundedness properties of the limit sets o
complex Lorenz model in the projective space, and we sh
how these properties are related to prominent features o
phase dynamics and homoclinic bifurcations. In particu
the well-known bifurcation of generation of a homoclin
‘‘butterfly’’ in the original Lorenz model is found to have
codimensionality 2 in the complex model. On the basis
these results, in Sec. 3. we construct and analyze a
dimensional map in the vicinity of a homoclinic bifurcatio
point for the domain of parameters of the complex Lore
model. The results of our analysis of the map are compa
with the results of a direct numerical investigation of bifu
cations.
al
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1. NORMAL FORM OF THE EQUATIONS AND THE
PROJECTIVE SPACE

It will be advantageous below to use another system
variables in addition tox, y, andz. Let

s~r 121!2
d2

4
[h.0, b,2s. ~4!

We introduce the change of variables

x85h23/4ax, y85h25/4saS y2S 11
id

2s D xD ,

z85h21sS z2
xx*

2 D , t85tAh, ~5!

where

a5e2 idt/2A2s2b

2
.

After this substitution, which is similar to one propose
in Refs. 18 and 19 for the Lorenz model, Eqs.~1! assume the
form

dx8

dt8
5y8,

dy8

dt8
5~11 in!x82my82x8z82%x8ux8u2,

dz8

dt8
52bz81ux8u2. ~6!

Here

n5
2r 2s1d~s21!

2h
, m5

11s

Ah
,

%5
Ah

2s2b
, b5

b

Ah
. ~7!

The Jacobian of the substitution~5! is equal to
uau4s3/h5. Consequently, forh.0 andb,2s the change of
variables~5! specifies a one-to-one continuous map~diffeo-
morphism! of the phase space of the system~1! H onto the
phase space of the system~6! H8 and vector fields, specified
by the systems~1! and ~6!, which are topologically equiva-
lent. In other words, when the conditions imposed on
values of the parameters are satisfied, the dynamics of
system ~6! is equivalent to the dynamics of the comple
Lorenz model.

If we ignore the term%xuxu2 in ~6!, we obtain a complex
generalization of the Shimizu–Morioka equations, whi
have been investigated in detail in Ref. 20. It has be
shown21,22 that in a certain approximation the Shimizu
Morioka equations are also the normal form of the equati
describing the chaotic dynamics near a bifurcation point w
a triple zero eigenvalue having geometric multiplicity 2. W
note that in~6! all the coefficients are real whenn50, i.e.,
when condition~33! holds ~see below!.

We consider the mapP: H(x,y,z)→P, whereP is a
projective space with Cartesian coordinatesu,v,w,z:

u5~ uxu22uyu2!/2, v5Re~x* y!, w5Im~x* y!. ~8!
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The idea of using this map is based on the analogy of
complex Lorenz model with a two-level quantum
mechanical system. If we regard the variablesx and y as
components of a Schro¨dinger state vector, we can express t
corresponding density matrix in terms of a linear combin
tion of Pauli matrices withu, v, andw as the coefficients o
this expansion. Note that

uxu25R1u, uyu25R2u, x* y5v1 iw, ~9!

where

R5~u21v21w2!1/25~ uxu21uyu2!/2. ~10!

It is evident from Eqs.~9! that the variablesu, v, w, and
z contain the sum-total of information about the state of
system in the sense discussed in the Introduction. The maP
associates with each point ofH that differ only by the com-
mon phase ofx andy the mapP associates the same point
P, whereas the images of states that differ by the amplitu
and/or the phase difference ofx andy differ. We shall bor-
row the termray from geometry23 to designate the set o
points ofH corresponding to the same point ofP, and we
shall refer toP as ‘‘ray space.’’

Differentiating Eqs.~8! with respect to the time and
making use of Eqs.~1!, we obtain the equations of motion i
ray space

u̇52~s11!u1~s2r 11z!v2r 2w2~s21!R,

v̇52~s11!v2dw2~s2r 11z!u1~s1r 12z!R,

ẇ52~s11!w1dv1r 2~R1u!, ż52bz1v. ~11!

Accordingly, the image of system~6! under the mapP:
H8(x8,y8,z8)→P8, whereP8 is a projective space equiva
lent toP, is the system of equations

u̇85v81m~R82u8!2nw82v8~12z82r~R81u8!!,

v̇852mv81R82u81~R81u8!~12z82r~R81u8!!,

ẇ852mw81n~R81u8!, ż852bz81~R81u8!.
~12!

We note that in phase spacesH andH8 the setsZ and
Z8 of points on thez and z8 axes are invariant under th
flows specified by the systems of equations~1! and ~6!, re-
spectively. The same is true of the corresponding point
in spacesP andP8. It follows, therefore, that the point set
H/Z, H8/Z8, P/Z, andP8/Z8 are also invariant under th
flows specified by~1! and ~6!.

Before using Eqs.~11! and ~12! in place of~1! and ~6!,
we need to find a way to obtain information about the mot
in H from the solutions of Eqs.~11!. We consider the rela
tion between such characteristics of the dynamical state
the system inH and in P as the Lyapunov characterist
exponents and fractal dimensionality of an attractor. Fo
given trajectory X0(t) of the dynamical systemdX/dt
5F(X) the spectrum of Lyapunov exponentsL i is defined
as

L i5 lim
t→`

t21 lnS uei~ t !u
uei~0!u D , ~13!
e

-

e

es

ts

n

of

a

whereei(t) denotes the fundamental solutions of the line
system of equations

dY

dt
5

]F

]X U
X5X0~ t !

Y. ~14!

We introduce local coordinatesj i in a neighborhood of a
point X0PH/Z:

j15u~x,y!, j25v~x,y!, j35w~x,y!,

j45z, j55
Im~^X0 ,X&!

^X0 ,X0&
. ~15!

From now on we use angle brackets to denote the Hermi
scalar product defined onC2. The Jacobian of the transfor
mation at the pointX5X0 is equal toux0u21uy0u2.0, so that
~15! is a diffeomorphism in a certain neighborhood ofX0.

Writing Eqs.~14! for the system~1! in the local coordi-
natesj(j1), . . . ,j5) defined by~15!, we obtain

dj

dt
5S S ÂD

0,0,0,0

0

0

0

0

0

D j, ~16!

where Â is the Jacobian matrix of the system of equatio
~11!, evaluated at the pointP(X0(t))

It is evident from Eq.~16! that the matrixÂ specifies the
evolution of perturbations orthogonal toj5 in X0(t), whereas
perturbations alongj5 remain neutral. Since (15) is a diffeo
morphism, it follows from Eqs.~13! and ~16! that the spec-
trum of Lyapunov exponents for a trajectory inH/Z differs
from the spectrum for its projection inP only by the pres-
ence of a single additional null exponent. In particular, t
implies that if a given set inH/Z is an attractor with
Lyapunov dimensionalityDL , its image inP is an attractor
with Lyapunov dimensionalityDL—1. This relation is also
valid for fractal dimensionalities of a limit set inH/Z and its
projection inP/Z. The latter result follows from the fact tha
every limit set inH/Z can be represented locally~in a neigh-
borhood of the given ray! by the direct product of a set in
P/Z and the ray, i.e., the setR 1.

Another piece of physical information associated w
the trajectories inH and, in our opinion, missing from Eqs
~11! is the relative phase of two states. A rule for compari
the phases of two states of a physical system described
complex state vector has been introduced by Pancharat
for the states of classical polarized light24 and has subse
quently been generalized to the case of quantum systems25,26

It can be stated as follows from the complex Lorenz mod
Two statesX1 and X2 are said to be in phase if the norm
iX11X2i is the maximum of all possible values of the tot
phases ofX1 andX2. We note that this rule can be used
compare the phases of states associated with different r
The value of the norm for two given rays is defined as
phase of the complex number^X1 ,X2&. This phase is called
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Pancharatnam’s phase. Drawing on the analogy between
complex Lorenz model and the Schro¨dinger equations, Tor-
onov et al.15 have shown that Pancharatnam’s phase occ
naturally in the laser dynamics problem. We now discuss
problem briefly from the standpoint of differential geometr

The triplet (H/Z,P/Z,P) forms a fiber bundle ‘‘2’’
~Refs. 23 and 27!, for whichH/Z is the fiber bundle space
P/Z is the base, a fiber is a ray, and the structural grou
U(1). We note that this fiber bundle is nontrivial, i.e., th
entire spaceH/Z cannot be represented as a direct produc
the base and a ray. The equation

j550 ~17!

defines the complexity on the fiber bundle. According to
conventional terminology of differential geometry, a curve
H is said to be horizontal~relative to a given complexity! if
its velocity vector at every point is directed along the tang
to the surfacej550. The complexity defined by Eq.~17!
ensures the uniqueness of a horizontal curve inH that is
projected onto a given curve inP and passes through a give
point. For the given type of fiber bundles and for the evo
tion of the state vector along a horizontal trajectory~relative
to the given type of complexity! it has been shown25,26 that
Pancharatnam’s phase for two states on a given trajec
X(t) can be expressed in the form

g52 R
GT

Asds, ~18!

where

As5Im~^X~s!ud/dsuX~s!&!/^X~s!uX~s!&, ~19!

GT is the closed contour inH formed by the segmentT
of the trajectory between two states and a curveG whose
projection is geodesic inP.

The integral in~12! has a nonzero value if the state ve
tor of the system inH does not return to the initial point afte
transition around the closed contourGT in P. This possibil-
ity reflects the nontriviality of the fiber bundle.25,26

We note that a transformation of the type~2! but with
time-dependentc

c~ t !5E
0

t

h~t!dt,

whereh(t) is a time function, takes~1! into the system of
equations

ẋ52~s1 ih~ t !!x1sy,

ẏ52@11 i ~h~ t !2d!#y1~r 2z!x,

ż52bz1
1

2
~x* y1xy* !, ~20!

which is homeomorphic to~1! if h(t) is continuous@in a
laser experimenth(t) is the phase difference of the referen
signal used in heterodyne measurements7 from a monochro-
matic signal having the frequency of the empty-cav
mode#.

The horizontal curve whose image is the given traject
in P is the trajectory of a dynamical system~20! with
the

rs
is
.

is

f

e

t

-

ry

y

h(t)5Im(^X,F(X)&/^X,X&, whereF(X) is the phase veloc-
ity vector of the system of equations~1! @see definition~17!#.
It follows from the connection of systems~1! and~20! by the
transformation~2! that for arbitraryh(t) the total lead of the
common phase of variablesx and y in ~20! can be repre-
sented by the two-term sum

g5gd1gg , ~21!

where

gd5E
0

t

@h~t!1Im~^X,F~X!&!/^X,X&#dt ~22!

is the dynamical phase, and the geometric phasegg is given
by Eq. ~18!.

We now show that whenh(t) is a given time function or
a constant, the phase lead can be determined by solving
system~11! without reference to Eqs.~1!. In fact, the dy-
namical phase is given by the time integral of the functio

Im~^X,F~X!&!

^X,X&
5

@d~R2u!2~s1r 12z!w#

R
,

expressed in terms of the coordinates of a point inP.
To prove this statement for the geometrical part, inP we

introduce spherical coordinates

u5r cosu, v5r sin u cosf, w5r sin u sin f.

According to ~8!, x5r1/2 cos(u/2)exp@i(Q)#, and
y5r1/2 sin(u/2)exp@i(Q1f)#, where Q is the common
phase. ExpressingAs in ~18! in terms of the spherical coor
dinates, we obtain

gg5 R
GT

sin2~u/2!df, ~23!

where the integral is evaluated inP around the contour
formed by the trajectory and a geodesic.

It is evident that the right side of~23! is just equal to
one-half the solid angle subtended by the contour.27

This discussion of the characteristics of phase evolut
makes it clear that when a trajectory of the system inH
represents the image of a limit cycle inP, it is closed only
for a special choice of coordinate system~carrier signal! de-
fined by the functionh(t). This result is consistent with the
following assertion deduced from the relations between
dimensionalities of the limit sets inH and P: A periodic
attractor inP must correspond to a torus inH. The projec-
tion of the torus onto a limit cycle is but one example of ho
the analysis of system dynamics is simplified by the int
duction of the projective spaceP. In the next section we
employ the representations of the complex Lorenz mode
P ~11! and inP8 ~12! to reveal some general properties of
solutions.

2. BOUNDEDNESS OF LIMIT SETS IN A HOMOCLINIC
BIFURCATION

For the Lorentz model it is a well-known fact2 that all
the limit sets of trajectories in phase space are bounded
the sphere
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x21y21~z2s2r !22K2~s1r !250,

where

K2>
1

4
1

b

4
max~s21,1!.

We now show that this property is preserved in the co
plex Lorenz model, i.e., the limit sets inH are bounded by
the hypersphere

uxu21uyu21~z2s2r 1!22K2~s1r 1!250 ~24!

with the sameK as for the original Lorenz model.
Let us consider the one-parameter family of spheres

VM[uxu21uyu21~z2s2r 1!22M250, ~25!

whereM is the parameter, and the time derivatives are

V̇M522suxu222uyu222bS z2
s1r 1

2 D 2

1b
~s1r 1!2

2
,

~26!

since

V̇MuVM505~F,¹VM !, ~27!

whereF is the phase velocity vector; the trajectories on
sphereVM50 are directed into or out of the sphere if th
right side of Eq.~26! has positive or negative values, respe
tively, on the sphere. It is evident from~26! that this function
does not depend on the parametersd and r 2. We can there-
fore use a result obtained2 for the Lorenz model: The given
function is positive on any sphereVM50 having a radius
greater than the radius of the sphere~24!.

An equation describing the bounding surface for lim
sets inP, corresponding to the hypersphere~24!, can be ob-
tained by making the substitutionuxu21uyu252R in ~24!,
which gives the equation of a spheroid

S:2R1~z2s2r 1!22K2~r 11s!250. ~28!

We now consider the hypersurface inP specified by the
equation

Q~u,v,w,z![u2
2s

d
w1R50. ~29!

In the subspaceR 3 of variablesu,v,w Eq. ~29! specifies
a two-dimensional half cone with vertex at the origin,
symmetry axis directed along the unit vector (a,0,b), where
a5@11(2s/d)2#21/2 and b5(2s/d)a. The cosine of the
angle between the axis and the generatrix of the cone is e
to a. Ford.0 the cone degenerates into the planew50. For
d,0 the surface is situated in the region of negativew. In
spaceP8 the surfaceQ50 corresponds to the hyperplane

w850.

HereQ.(,) 0 corresponds tow8.(,) 0. It is evident
from Eq. ~12! that for w850 we have ẇ85n(R81u8)
5nux8u2. The derivativeẇ8 is therefore nonnegative fo
n.0 and is nonpositive for negativen. Consequently, for
n.(,) 0 trajectories on the surface are tangent to it or
directed toward the regionP, where Q.(,) 0 @w8.
(,) 0 in P8].
-

e

-

al

e

It follows from ~12! that the surface~29! is globally
stable and invariant against flow forn50. This condition
can be rewritten in the form

r 25r 2c5d
12s

2s
. ~30!

We now show that forr 2.(,)r 2c every trajectory be-
ginning in the regionQ,(.) 0 @w8,(.) 0# tends toward
the region whereQ>(<) 0 @w8>(<) 0#. Let r 2.r 2c (n
.0). We consider the family of hyperplanes inP8: w85C

,0. It is evident from~12! that forn.0 we haveẇ8.0 on
these surfaces~since m is always positive!. Consequently,
every trajectory emanating from the regionw8,0 (Q,0)
intersects each of these surfaces in succession and even
ends up on the surfacew850 (Q50) or in the region
w8.0 (Q.0). More precisely, there exists a set of traje
tories, having measure zero, which tends to the origin
t→` ~see below!. All other trajectories enter the regio
w8.0 (Q.0) earlier or later.

To show that forr 2,r 2c every trajectory tens to the se
of points inP for which Q<0 (w8<0), we need to analyze
the family of surfacesw85C.0. We omit this proof, which
is easily done by the same approach as forr 2.r 2c .

We now look at some important consequences of
existence of the bounding surfaceQ50. First of all, we note
that for a laser (r 250) all attractors are located in the regio
of P where Q>0 or d.0 and in a symmetric region fo
d,0 ~see Fig. 1!. If the discussion is confined to the sub
space of variables (u,v,w), the region in question is the
region of the solid angleV subtended by the half con
Q50. Consequently, for a trajectory associated with a c
tain attractor the solid angle subtended by the contourGT
@see~18!# is not greater thanV. In the limit d→60 the cone
is transformed into the flow-invariant planew50, which is
globally stable in this case, so that the solid angle cor
sponding toGT tends to the limiting value62p. This result
explains the resonance jump of the average slope of
phase of a laser field by an amount equal to the character
average frequency of the intensity fluctuations 2p/t (t is the

FIG. 1. Bifurcation diagram for the system of equations~11! on the plane of
the parameter (d,r ); s53, r 250, b51/9. The values of the parameterr are
plotted in logarithmic scale.T) stability threshold of the trivial equilibrium
state; H) Hopf bifurcation curve;S) saddle–node bifurcation curve;D)
period-doubling bifurcation curve;M ) curves(r 21)2d2/450.
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average period of the intensity fluctuations, which coincid
with the average time for the representative point to
around the origin on the planew50). It is interesting to note
that this jump was first discovered in numeric
calculations13 and was interpreted as a manifestation of
geometric phase in laser dynamics on the basis of a num
cal analysis of the behavior of trajectories in ray space.16

Another consequence of the existence of the bound
surfaceQ50 (w850) is an additional constraint on the va
ues of the system parameters in homoclinic bifurcation. S
sitive ~nonrobust! homoclinic loops of the separatrix ar
known to form a very important structure responsible for
formation of a chaotic set of trajectories in the original L
renz model.3 Since the complex Lorenz model subsumes
original Lorenz model as a special case ford50 andr 250,
corresponding homoclinics also occur in the complex mod
A necessary condition for their existence is the intersec
of stable and unstable invariant manifolds of the saddle p
located at the origin.28,29

The local structure of the invariant manifolds in the v
cinity of the saddle point can be determined from a line
analysis of Eqs.~1! or ~6! in the vicinity of the solution
x5y5z50 (x85y85z850).

The trivial solution of Eqs.~6! x85y85z850 is un-
stable and is a saddle point when

r 1.11
d22r 2s1dr 2~12s!

~11s!2
.

Its eigenvalues are

l152
m

2
1A11

m2

4
1 in,

l252
m

2
2A11

m2

4
1 in,

l352b, ~31!

wherem, n, andb are defined in Eq.~7!.
They correspond to the eigenvectors

V15N1
21S 1

l1

0
D , V25N2

21S 1

l2

0
D , V35S 0

0

1
D ,

whereN1,25A11ul1,2u2.
It follows from Eqs.~31! that for sufficiently smalln we

have Rel1.0, Rel2,0, andl3,0. Moreover, forn.0

Im l152Im l2.0. ~32!

We shall consider only the caseul3u,uRel2u, because it
corresponds to the possibility of the occurrence of a Lor
attractor.

The coordinates of points of spaceP8 belonging to the
unstable linear subspaceEu5span$V1% and to the stable lin-
ear subspaceEs5span$V2 ,V3% satisfy the equations

Eu: y85x8l1 , z850,

Es: y85x8l2 .
s
o

e
ri-

g

n-

e

e

l.
n
nt

r

z

The unstable~stable! manifold Wu (Ws) of the origin is
tangent toEu (Es) at x85y85z850. Inasmuch as thez8
axis is flow-invariant and belongs toWs, points of these
manifolds situated in a sphere of small radius« satisfy the
equations

Wloc
u : y85x8$l11O~«!%, z85O~«2! ~33!

and

Wloc
s : y85x8$l21O~«!%. ~34!

We now consider the projections of the invariant ma
folds Wu andWs ontoP8. Since they are flow-invariant, the
must map into themselves under the action of the gro
U(1). Consequently,P mapsWs andWu onto~respectively!
a two-dimensional manifold and a one-dimensional manif
in P8. From Eq.~8!, replacingx,y,z,w by x8,y8,z8,w8, and
from Eqs.~33! and ~34! we obtain

w8uP~W
loc
u !5ux8u2$Im l11O~«!%,

w8uP~W
loc
s !5ux8u2$Im l21O~«!%. ~35!

Taking Eq. ~32! into account, we conclude that fo
n.0 all points ofP(Wloc

u ) lie in the half spacew8>0. Next,
we infer from the formal solution of the third equation of th
system~12!

w8~ t8!5w8~0!1ne2mt8E
0

t8
~R8~s!1u8~s!!ds ~36!

that all points ofP(Wu) lie in this half space. Indeed, sinc
the integrand of Eq.~36! is nonnegative,w8(t8) is always
nonnegative ifw8(0).0. In this regard, it follows from~35!
that all points ofP(Wloc

s ) except those on thez8 axis lie in
the half spacew8,0. Consequently,P(Wu) and P(Wloc

s )
can intersect only on thez8 axis. But this is impossible
because thez8 axis does not belong toWu. Therefore, for
n.0 Eqs. ~1! and ~6! do not admit trajectories doubly
asymptotic to the origin. Making use of the property of i
variance of the system~12! under the substitution

n→2n, w8→2w8 ~37!

and proceeding in the same way, one can easily show
such trajectories are also nonexistent forn,0. Thus,n50
or

r 25
d~12s!

2s

is a necessary condition for the existence of a homocl
Lorenz butterfly.

3. ONE-DIMENSIONAL MAP

Let the following relation hold forn50:

k52
l3

l1
,1,

wherel1 andl3 are defined in Eq.~31!.
This inequality corresponds to the case where the di

tegration of a butterfly ford5r 250 is followed by the emer-
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gence of a strange invariant set. In the original Lorenz mo
the corresponding bifurcation is described by the o
dimensional map30

j→sign j~2«11sign Aujuk!,

0,uju!1, 0<«1!1, ~38!

wherej is a real variable,A is a separatrix variable, and«1

describes a small deviation from the point of homoclin
bifurcation in parameter space~we shall assume from now
on thatA is positive!.

We wish to construct a similar map for the compl
Lorenz model. Letx8 and y8 be complex andn50 in Eqs.
~6!. Then, as shown above, a limit set of trajectories of
system belongs to the globally stable hypersurfacex8* y8
2x8y8* 5w50. The solution corresponding to each traje
tory on this hypersurface has the for
(x8(t8)eic,y8(t8)eic,z8(t8)), where (x8(t8),y8(t8),z8(t8))
is the solution of the system~6! for real-valuedx8 and y8,
and c is a constant that depends on the initial conditio
This result enables us to write the map for complex-valu
x8 andy8 ~for n50):

j→ei argj~2«11ujuk!. ~39!

Here, in contrast with~38!, j is complex, andA is set equal
to unity, which is made possible by the renormalization ofj.
The change of variables~8! transforms the homoclinic but
terfly into a single homoclinic loop in the projective spaceP.
A one-dimensional map describing the dynamics of the s
tem in the vicinity of this loop in the spaceP can be obtained
from Eq. ~39!:

J→~2«11Jk/2!2, 0,J!1, 0<«1!1. ~40!

Here J5uju2. As in ~39!, the map~40! is valid only for
n50. FornÞ0 we have

J→G~J,«1 ,n!, 0,J!1, 0<«1!1, ~41!

whereG(J,«1 ,0)5(2«11Jk/2)2.
Assuming that the derivative

Gnn~J,«1,0!5S ]2G~J,«1 ,n!

]n2 D
n50

exists for smallJ and small«1, we obtain the following
from Eq. ~41! for small n:

J→G~J,«1,0!1
n2

2
Gnn~J,«1,0!1O~n4!, ~42!

whereG(J,«1 ,0) is defined in Eq.~40!.
By virtue of the symmetry property~37! of the system

~12!, Eq.~42! does not contain any terms linear or cubic inn.
Inasmuch asJ,«1!1, the dependence ofGnn(J,«,0) onJ
and «1 can be disregarded. Then, omitting small ter
O(n4) in Eq. ~42!, we obtain the map

J→~2«11Jk/2!21«2
2 ,

0,J!1, 0<«1 ,«2!1, ~43!

where«2
25(n2/2)Gnn(0,0,0).
el
-

e

-

.
d

s-

s

Since the variable J is nonnegative, we have
G(J,«1 ,n)>0 andG(0, 0, 0)50, so thatGnn(0, 0, 0)>0.
We shall assume thatGnn(0, 0, 0).0. We note that the
point «15«250 corresponds to a homoclinic bifurcation o
codimensionality 2, and the parameter«2 is proportional to
the small quantityn. The substitution of

J5«1
2/kH 11

2l

k2
~122z!«1

2~12k!/kJ
and

«25«1
1/kH 11

l~22l!

2k2
«1

2~12k!/kJ ~44!

into ~43! produces the logistic map

z→lz~12z!1O~«1
2~12k!/k!.

Consequently, the bifurcations in the map~43! are simi-
lar to the bifurcations of the logistic map. Moreover, in
small neighborhood of a bifurcation point of codimension
ity 2 («150, «250) asymptotic expressions can be obtain
for the bifurcation sets of the map~43! by substituting the
bifurcation values of the parameterl of the logistic map into
Eq. ~47!. In particular, the first two bifurcations of the logis
tic map are saddle–node (l51) and period-doubling (l
53) types. The asymptotic expressions for the bifurcat
curves corresponding to these bifurcations on the plane
the parameters («1 ,«2) are

«25«1
1/kH 11

1

2k2
«1

2~12k!/k1O~«1
4~12k!/k!J ~45!

and

«25«1
1/kH 12

3

2k2
«1

2~12k!/k1O~«1
4~12k!/k!J , ~46!

respectively.
To verify the conclusions drawn using the on

dimensional map~43!, we have numerically plotted severa
bifurcation curves for the complex Lorenz model with realr,
consistent with the model of a single-mode laser. Figur
shows these curves on the (d,r ) plane. Inequality~4!, which
is the condition for replacing the system~1! by the system
~6!, is satisfied above curveM @s(r 121)2d2/450#. Curve
T represents the stability threshold of the trivial steady-st
solutionx85y85z850, which becomes unstable above th
curve. Pointh corresponds to a homoclinic bifurcation o
codimensionality 2. Because the resulting one-dimensio
map is identical to the logistic map, this point must be a lim
point for an infinite number of bifurcation curves. Some
these curves shown in the figure do in fact go to pointh.
Curve S corresponds to the saddle–node bifurcation~45!.
The intersection of this curve with the parametric vec
from the right in projective spaceP is accompanied by the
onset of two limit cycles, one stable and the other unsta
As the parameterd is further decreased, the stable limit cyc
undergoes a series of period-doubling bifurcations, mak
the transition to chaos. A numerical analysis shows that
corresponding curves~curveD in Fig. 1 corresponds to the
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first doubling bifurcation! converge to pointh. This result is
in complete agreement with results based on an analys
the above-derived map~43!. Curve H in the figure corre-
sponds to a Hopf bifurcation of a ‘‘nonzero’’ steady-sta
solution of the equations of motion in projective spaceP.
The dashed and solid segments of the curve represen
subcritical and supercritical parts, respectively. We note
the intersection of curveH with the r axis corresponds to a
subcritical Hopf bifurcation, which is a well-known occu
rence in the original Lorenz model.

CONCLUSION

We have shown that all the dynamical properties o
system, including the salient characteristics of its phase
namics, can be obtained directly from the representation
the complex Lorenz model in ray space. We note that
representation does not contain singularities for certain
ues of the parameters, contrary to the analogous repres
tion used in Ref. 10, and it provides an effective, simp
method for studying the properties of the complex Lore
model. We have established a correspondence betwee
properties of the limit sets in the initial phase space and
ray space, and we have elucidated the boundedness pr
ties of the limit sets in these spaces. We have shown
these properties are responsible for the singular behavio
previously observed in a numerical simulation13 — of the
curve representing the mean slope of the phase of a l
field as a function of the detuning. We have proved that
homoclinic bifurcation of the separatrix of a saddle point
the complex Lorenz model has codimensionality 2. For v
ues of the parameters close to the homoclinic bifurcat
point we have constructed a one-dimensional map for po
of phase space near the separatrix. Forr 2Þr 2c @see~30!# the
resulting map~unlike the Lorenz map! is smooth and equiva
lent to the logistic map. This result lends support to the
sertion that a ‘‘true’’ Lorenz attractor, which contains on
saddle limit cycles, can exist in the complex Lorenz mo
only for r 25r 2c . We have demonstrated numerically th
correspondence between the hierarchy of bifurcations in
single-mode laser model on the plane of the pump-detun
parameters and the sequence of bifurcations of the log
map.
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