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The geometrical structure of the phase space and bifurcations in the complex Lorenz model are
investigated. It is shown that the hierarchy of bifurcations in a single-mode laser with

detuning of the resonator frequency from the frequency of a spectral line is similar to the hierarchy
of bifurcations of the logistic map. €998 American Institute of Physics.
[S1063-784298)00108-1

INTRODUCTION McGuinness (see, e.g., Ref.)6 The direct observability of
the variables makes lasers the most suitable object for ex-
perimental implementation of the dynamics associated with
the complex Lorenz model. Indeed, the results of experi-
ments with single-mode, far-infrared lasers have been found
to best match the results of numerical integration of the sys-
tem (1) (Ref. 7. And even though Eq$1) provide the most
realistic description of this type of laser exclusively, they are

The complex Lorenz equations, or complex Lorenz
model

X=—a(x—y),

y=—(1-i8)y+(r—2z)x,

) 1 the simplest model reflecting such fundamental laser proper-

z=—bz+ E(X*y+xy*), (1)  ties as the threshold character of lasing, frequency pulling,
and the capability of generating complex wave modes.

was first introduced by Gibbon and McGuinnkss a gen- However, despite a wealth of papers on the complex

eralization of the standard Lorenz modélThe complex Lorenz modef;®~*"to this day it has not received the atten-
Lorenz model differs from the latter in thatandy are com-  tion that it deserves. The investigations of this model are
plex. Formally, this complexity stems from the presence ofconcerned primarily with the analysis of particular regimes,
the real parametef and the complex parametes=r,+ir,,  usually by numerical methods. In our opinion, the most in-
which are not a part of the original Lorenz model. The com-cisive results have been obtained in Refs. 10 and 11 in regard
plex Lorenz model has important bearing on nonlinear dyto the stability analysis of simple periodic solutions corre-
namics because it is a universal finite-dimensional approxisponding to steady-state lasing. The objective of the present
mation for the class of distributed systems that exhibit sostudy is to investigate the geometrical structures of the com-
called dispersion instability of a steady-state solution at @lex Lorenz model and certain global properties of its solu-
point of parameter spage= u. (Ref. 1). For such systems it tions in connection with distinctive features of this structure.
has been showrthat the expansion of the vector represent-  An important geometrical property of the complex Lo-
ing the perturbation of the steady-state solution in powers ofenz model is its invariance under the transformation
the small parameter= (|u— u|)*? in a certain approxima-
tion leads to a system of equations, equivalentljo for the .
coefficients of the expansion. As an example, the model of a y || ye?
baroclinic instability in the atmosphérgis investigated in
Ref. 1.

The variables in Eqg1) are the perturbation amplitudes where is an arbitrary phase constant.
relative to a spatially homogeneous solution of partial differ- ~ This transformation corresponds to the grdufl) act-
ential equations and, as such, do not admit a clear-cut physing in that subspac€? of the total phase spack which
cal interpretation in application to a baroclinic instability. refers to the variablesandy. To picture the role o) (1) —
However, there are systems for which the variables of thehe symmetry for the structure of the limit sets in the phase
complex Lorenz model are observable quantities. These syspace of the complex Lorenz model, it is sufficient to con-
tems are lasers and masers, for whicandy represent the sider the casé=r,=0. It can be showH that in this case
slowly varying complex amplitudes of the electric field andany trajectory inH is attracted to the invariant three-
polarization of the medium, respectively, andlenotes the dimensional hyperspace
population difference between the energy levels of the work-
ing transition. In reality Eqs(1) appeared in quantum elec- Re(x) Rey)
tronics long before their “discovery” by Gibbon and Im(x)  Im(y)

X xe?

: )

z V4

=const, 3
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where the constant on the right side depends on the initisl. NORMAL FORM OF THE EQUATIONS AND THE
conditions. PROJECTIVE SPACE

On this hypersurface the rgal and_lmgglnary parts<_ of It will be advantageous below to use another system of
andy vary synchronously with time, satisfying the equations, g iapjes in addition ta, y, andz Let
of the original Lorenz model. Even under these conditions, )
however, the attractors of the original Lorenz model and its o(ry—1)— 5_5 7>0, b<20. @)
complex generalization are not identical. Indeed, if a given 4
trajectory is attracted to a given limit set situated on thewe introduce the change of variables

hypersurface defined by Eg&3), it follows from the sym-

metry property(2) that a trajectory that differs from the X' =75 ¥ax, y' =y Ygaly— 1+ﬁ x),
given trajectory by a certain common phasexaindy will 20
be attracted to a set that is the image of the given set under xxX*
the action(2) with the corresponding phase Consequently, 2'=n"to|z- 7) . U=ty 5
an attractor of the Lorenz model in the given situation rep-
resents the direct sum of an infinite number of sets isomor/here
phic to an attractor of the original model. ‘ 20—Db
This example graphically demonstrates the more com- a=e 7 B

plex structure of the phase space of the complex Lorenz

model in comparison with the original model and the role of RAIterlg"S Zuf;tfituti(r)]n, IiNhiCh is Si(;nillaé to one prop?]sed
symmetry in this greater complexity. However, it will be INRes. 1oan or the Lorenz model, E¢B. assume the

shown below that symmetry is not a tool that can be used tg)orm

simplify the problem. Here we note an interesting analogy  dx’ . dy’
between the role of symmetry for physical systems described W =Y. W
by the complex Lorenz model and for quantum systems de-

scribed by a wave function. For neither system does the gen- dz’ , 2
eral phase of the state vectwhich would be the vector W:_IBZ +x'|% (6)
with componentx andy in the case of the complex Lorenz

mode) carry any information about the physical state; it Here

=(A+iv)x' —upy —x'z'—ox'|x'|?,

merely characterizes the result of interference of a given 21,0+ 8(o—1) 1+ o

state with certain other states. In quantum mechanics “spu- v= — %, ' KT

rious” information can be filtered out by application of the g Vn

density matrix formalism. If a given state vector in a Hilbert \/; b

space is described By complex numbers, the corresponding o= 30-b" B= \/—_7’ @

density matrix is characterized byN2- 1 real numbers.
The indicated analogy permits this approach to be ap- The Jacobian of the substitutios) is equal to
plied to the complex Lorenz model. In Sec. 1. we introduce da|*o>/ »°. Consequently, fory>0 andb<2o the change of
special projective space, in which states differing by thevariables(5) specifies a one-to-one continuous nafifeo-
common phase of andy are treated as equivalent, and we Mmorphism of the phase space, of the Systélq)n ‘H onto thg
derive equations of motion for the complex Lorenz model inPhase space of the systéf) ' and vector fields, specified
this space. We also show how all information on the physicaPy th? sysrt]em$l) Snd (63]’ Wh'ﬁh are Jppologlcally eguwa—h
state of a system and phase evolution can be reproduced ﬂ) t. In other words, when the con ftions Imposed on the
. . Values of the parameters are satisfied, the dynamics of the
means of these equations. In Sec. 2. we use these equations . . !
. - system(6) is equivalent to the dynamics of the complex
to analyze the boundedness properties of the limit sets of thE

. e orenz model.
complex Lorenz model in the projective space, and we show  ¢\va ignore the termpx|x|2 in (6), we obtain a complex

how these properties are related to prominent features of theaperalization of the Shimizu—Morioka equations, which
phase dynamiCS and homoclinic bifurcations. In partiCUlarhave been investigated in detail in Ref. 20. It has been
the well-known bifurcation of generation of a homoclinic showrf*?? that in a certain approximation the Shimizu—

“pbutterfly” in the original Lorenz model is found to have Morioka equations are also the normal form of the equations
codimensionality 2 in the complex model. On the basis ofdescribing the chaotic dynamics near a bifurcation point with
these results, in Sec. 3. we construct and analyze a oné-triple zero eigenvalue having geometric multiplicity 2. We
dimensional map in the vicinity of a homoclinic bifurcation note that in(6) all the coefficients are real when=0, i.e.,
point for the domain of parameters of the complex Lorenz2Vhen condition(33) holds (see below.

model. The results of our analysis of the map are compared W€ consider the mapl: #(x,y,z) —P, whereP is a
with the results of a direct numerical investigation of bifur- projective space with Cartesian coordinates, w,z:

cations. u=(|x|2=1y|>/2, v=Reax*y), w=Im(x*y). (8)
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The idea of using this map is based on the analogy of thevheree;(t) denotes the fundamental solutions of the linear
complex Lorenz model with a two-level quantum- system of equations
mechanical system. If we regard the variableandy as

components of a Schdinger state vector, we can express the d_Y _9F

, : > : : = Y. (14
corresponding density matrix in terms of a linear combina- ~ dt  dX X=Xq()
tion of Pauli matrices withu, v, andw as the coefficients of
this expansion. Note that We introduce local coordinatés in a neighborhood of a
) point Xge H/Z:
Ix|2=R+u, |y|?’=R-u, x*y=v+iw, 9
Where §1=U(XyY)a §2=U(Xay)a §3=W(va)1
R=(u?+v2+w?)¥2=(|x|2+|y|2)/2. (10 _ _Im((Xo.X))
g — 4 57 (15)
(X0, Xo)

It is evident from Eqs(9) that the variables, v, w, and
z contain the sum-total of information about the state of theFrom now on we use angle brackets to denote the Hermitian
system in the sense discussed in the Introduction. Thelinap scalar product defined o@?. The Jacobian of the transfor-
associates with each point ®f that differ only by the com- mation at the poinK= Xy is equal tgxo|?+ |yo|?>>0, so that
mon phase ok andy the mapll associates the same pointin (15) is a diffeomorphism in a certain neighborhood>X.
‘P, whereas the images of states that differ by the amplitudes Writing Egs.(14) for the systen(1) in the local coordi-
and/or the phase difference wfandy differ. We shall bor-  natesé(é,), .. . ,&s) defined by(15), we obtain
row the termray from geometry® to designate the set of

points of H corresponding to the same point Bf and we 0
shall refer toP as “ray space.” 1o
Differentiating Egs.(8) with respect to the time and dé A
making use of Eqg.1), we obtain the equations of motion in — = 0] ¢, (16)
ray space dt 0

u=—(o+1)u+(o—ri+2v—r,w—(oc—1)R,
(c+ut(o—ritzjv—row—(o—1) 0.0.0.00

i):—(a+1)v—&N—(a—rl+z)u+(o+rl—z)R, o ) ) )
where A is the Jacobian matrix of the system of equations

W= —(o+1)W+Sv+ry(R+u), z=-bz+tv. (11) (11, evaluated at the poirl (Xq(t))

It is evident from Eq(16) that the matrixA specifies the
evolution of perturbations orthogonal £g in Xy(t), whereas
perturbations alongs remain neutral. Since (15) is a diffeo-
morphism, it follows from Eqs(13) and(16) that the spec-

Accordingly, the image of systeli®) under the magl:
H' (X',y',2’)—P', whereP' is a projective space equiva-
lent to P, is the system of equations

u=v'+u(R —u")—ww' —v'(1-2'—p(R' +u")), trum of Lyapunov exponents for a trajectory #yZ differs
) from the spectrum for its projection i® only by the pres-
v'=—pv' +R —u'+(R'+u’)(1-2'—p(R"+u")), ence of a single additional null exponent. In particular, this

: : implies that if a given set inH/Z is an attractor with
w'=—puw' +p(R' +U'), 2'=-Bz"+(R'+u’). Lyapunov dimensionalityd, , its image inP is an attractor
(12 with Lyapunov dimensionalityp, — 1. This relation is also
We note that in phase spacksandH’ the setsZ and  valid for fractal dimensionalities of a limit set iH/Z and its
Z' of points on thez andz’ axes are invariant under the projection inP/Z. The latter result follows from the fact that
flows specified by the systems of equatidqfis and (6), re-  every limit set inH/Z can be represented locally a neigh-
spectively. The same is true of the corresponding point setiorhood of the given rayby the direct product of a set in
in spacesP andP'. It follows, therefore, that the point sets P/Z and the ray, i.e., the s@ ®.
HIZ, H'IZ', PIZ, andP'/Z’ are also invariant under the Another piece of physical information associated with
flows specified by(1) and(6). the trajectories irf{ and, in our opinion, missing from Egs.
Before using Egs(11) and(12) in place of(1) and (6), (12) is the relative phase of two states. A rule for comparing
we need to find a way to obtain information about the motionthe phases of two states of a physical system described by a
in H from the solutions of Eqg11). We consider the rela- complex state vector has been introduced by Pancharatnam
tion between such characteristics of the dynamical state dbr the states of classical polarized lighand has subse-
the system inH and in P as the Lyapunov characteristic quently been generalized to the case of quantum systeffis.
exponents and fractal dimensionality of an attractor. For dt can be stated as follows from the complex Lorenz model:
given trajectory Xy(t) of the dynamical systemdX/dt  Two statesX; and X, are said to be in phase if the norm
=F(X) the spectrum of Lyapunov exponems is defined ||X;+X,| is the maximum of all possible values of the total
as phases ofX; andX,. We note that this rule can be used to
compare the phases of states associated with different rays.
lei(t)] The value of : i defi
iniiend (13) e value of the norm for two given rays is defined as the
|€i(0)] phase of the complex numbéx,,X,). This phase is called

Ai=lim t1iIn

t—oo
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Pancharatnam’s phase. Drawing on the analogy between tigt) = Im((X,F(X))/(X,X), whereF(X) is the phase veloc-

complex Lorenz model and the Schinger equations, Tor- ity vector of the system of equatioli®) [see definitior(17)].

onov et al!® have shown that Pancharatnam’s phase occurg follows from the connection of systent$) and(20) by the

naturally in the laser dynamics problem. We now discuss thigransformation(2) that for arbitraryh(t) the total lead of the

problem briefly from the standpoint of differential geometry. common phase of variablesandy in (20) can be repre-
The triplet (H/Z,P/Z,IT) forms a fiber bundle “2” sented by the two-term sum

(Refs. 23 and 27 for which H/Z is the fiber bundle space,

PIZ is the base, a fiber is a ray, and the structural group is 7~ 4™ Yo (22)
U(1). We note that this fiber bundle is nontrivial, i.e., the where

entire spacé{/Z cannot be represented as a direct product of .

the base and a ray. The equation V4= fo[h(T)"_Im(<XaF(X)>)/<X;X>]dT (22)

§=0 17
i ° ) i i is the dynamical phase, and the geometric phgsis given
defines the complexity on the fiber bundle. According to theoy Eq. (18).

conventional terminology of differential geometry, a curve in We now show that wheh(t) is a given time function or
M is said to be horizontdrelative to a given complexityif 5 constant, the phase lead can be determined by solving the
its velocity vector at every point is directed along the tangengystem(ll) without reference to Eqq1). In fact, the dy-

to the surface¢s=0. The complexity defined by Eq17)  hamical phase is given by the time integral of the function
ensures the uniqueness of a horizontal curvéHirthat is

projected onto a given curve M and passes through a given ~ IM(X,F(X)))  [8(R—u)—(o+r;—-2)w]
point. For the given type of fiber bundles and for the evolu- (X, X) B R '
tion of the state vector along a horizontal traject@slative
to the given type of complexilyit has been show2® that
Pancharatnam’s phase for two states on a given trajectori}(Itr
X(t) can be expressed in the form

expressed in terms of the coordinates of a poirPin
To prove this statement for the geometrical partPiwe
oduce spherical coordinates

u=p cosh, v=psinfhcosep, w=p siné sin¢.

== §£FTAsty (18 According to (8), x=pY2cos@l2)exdi(®)], and
y=p2 sin(@l2)exdi(®+¢)], where ® is the common
where phase. Expressing, in (18) in terms of the spherical coor-
As=Im((X(s)]d/ds|X($))/(X(S)X(S)), (19 ~ dinates, we obtain
I'Tis .the closed contour ifit formed by the segmerit o= 3£ SirA(6/2)d ¢, (23
of the trajectory between two states and a cufvevhose rT

projection is geodesic ifP.

The integral in(12) has a nonzero value if the state vec-
tor of the system irt{ does not return to the initial point after
transition around the closed contddfl in P. This possibil-
ity reflects the nontriviality of the fiber bundfé:?®

We note that a transformation of the ty@® but with
time-dependeni

where the integral is evaluated iR around the contour
formed by the trajectory and a geodesic.

It is evident that the right side df3) is just equal to
one-half the solid angle subtended by the confdur.

This discussion of the characteristics of phase evolution
makes it clear that when a trajectory of the systenf+n
represents the image of a limit cycle ® it is closed only

t for a special choice of coordinate systéoarrier signal de-
P(t)= Joh(T)dT: fined by the functiorh(t). This result is consistent with the
following assertion deduced from the relations between the
whereh(t) is a time function, takesl) into the system of dimensionalities of the limit sets ifY and P: A periodic
equations attractor in? must correspond to a torus #. The projec-
tion of the torus onto a limit cycle is but one example of how
the analysis of system dynamics is simplified by the intro-
y=—[1+i(h(t)— &) ]y+(r—2)x, duction of the projecti\{e spacP. In the next section we _
employ the representations of the complex Lorenz model in
P (11) and inP’ (12) to reveal some general properties of its
solutions.

x=—(o+ih(t))x+ oy,

. 1
z=-bz+ E(x*y+xy*), (20

which is homeomorphic t@l) if h(t) is continuous[in a
laser experimerii(t) is the phase difference of the reference
signal used in heterodyne measureméfrtsm a monochro-
matic signal having the frequency of the empty-cavity
modg. For the Lorentz model it is a well-known f&cthat all

The horizontal curve whose image is the given trajectorythe limit sets of trajectories in phase space are bounded by
in P is the trajectory of a dynamical syste20) with  the sphere

2. BOUNDEDNESS OF LIMIT SETS IN A HOMOCLINIC
BIFURCATION
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X2+y?+(z—o—1)2=K*(o+r)?=0,

where

ko= 1
=7 4ma>(a 1.

We now show that this property is preserved in the com-

plex Lorenz model, i.e., the limit sets iH are bounded by

the hypersphere
IX|2+|y|2+ (z— 0 —r1)?—K3(o+1)%2=0 (24

with the sameK as for the original Lorenz model.
Let us consider the one-parameter family of spheres

(25)
whereM is the parameter, and the time derivatives are

Vu=|x2+|y|?+(z—o—r1)2—M?=0,

- +r,\? +ry)?
Vin=—20|x]2—2|y|2—2b| 2= Z 1) RS CAREY ,
2 2
(26)
since
Vilv, 0= (F.VVy), (27)

whereF is the phase velocity vector; the trajectories on the
sphereVy,=0 are directed into or out of the sphere if the
right side of Eq.26) has positive or negative values, respec-

tively, on the sphere. It is evident fro(@6) that this function

does not depend on the parametérandr,. We can there-
fore use a result obtainédor the Lorenz model: The given
function is positive on any sphei,,=0 having a radius
greater than the radius of the sph¢pd).
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FIG. 1. Bifurcation diagram for the system of equati¢h$) on the plane of
the parameterd,r); o=3,r,=0,b=1/9. The values of the parameteare
plotted in logarithmic scal€eTl) stability threshold of the trivial equilibrium
state;H) Hopf bifurcation curve;S) saddle—node bifurcation curv®)
period-doubling bifurcation curvev) curve o(r —1)— 6%/4=0.

It follows from (12) that the surfacg29) is globally
stable and invariant against flow for=0. This condition
can be rewritten in the form

51—0’
P
We now show that for,>(<)r,. every trajectory be-
ginning in the regiom@<(>) 0 [w’'<(>) 0] tends toward
the region whereQ=(<) 0 [w'=(=<) 0]. Let ry>r, (v
>0). We consider the family of hyperplanes®i: w'=C
<0. It is evident from(12) that for »>0 we havew’>0 on

(30

An equation describing the bounding surface for limit yaqe surfacessince u is always positive Consequently,

sets inP, corresponding to the hypersphégal), can be ob-

tained by making the substitutiofx|2+|y|?=2R in (24),

which gives the equation of a spheroid
S:2R+(z—o—r1)2—K2(r;+0)?=0. (29

We now consider the hypersurfacefhspecified by the
equation

20
Q(u,v,w,z2)=u— —w+R=0.

5 (29

In the subspac®  of variablesu,v,w Eq. (29) specifies

a two-dimensional half cone with vertex at the origin, its

symmetry axis directed along the unit vectar,Q, 8), where
a=[1+(20/6)?]*? and B=(20/8)a. The cosine of the

every trajectory emanating from the regiari <0 (Q<0)
intersects each of these surfaces in succession and eventually
ends up on the surface’=0 (Q=0) or in the region
w’'>0 (Q>0). More precisely, there exists a set of trajec-
tories, having measure zero, which tends to the origin as
t—oo (see below All other trajectories enter the region
w’'>0 (Q>0) earlier or later.

To show that for,<r,. every trajectory tens to the set
of points inP for which Q<0 (w’=<0), we need to analyze
the family of surfacesv’ =C>0. We omit this proof, which
is easily done by the same approach asrforr,..

We now look at some important consequences of the
existence of the bounding surfa@e= 0. First of all, we note
that for a laseri(,=0) all attractors are located in the region

angle between the axis and the generatrix of the cone is equg} » where Q=0 or 5>0 and in a symmetric region for

to a. For 6>0 the cone degenerates into the plane0. For

6<0 the surface is situated in the region of negatiweln

spaceP’ the surfaceQ =0 corresponds to the hyperplane
w’'=0.

HereQ> (<) 0 corresponds tav' > (<) 0. It is evident
from Eq. (12) that for w'=0 we havew’=p(R’+u’)
=v|x'|2. The derivativew’ is therefore nonnegative for
v>0 and is nonpositive for negative. Consequently, for

6<0 (see Fig. L If the discussion is confined to the sub-
space of variablesu,v,w), the region in question is the
region of the solid angld) subtended by the half cone
Q=0. Consequently, for a trajectory associated with a cer-
tain attractor the solid angle subtended by the coniotr
[see(189)] is not greater thaf. In the limit 5— *+ 0 the cone

is transformed into the flow-invariant plame=0, which is
globally stable in this case, so that the solid angle corre-
sponding ta' T tends to the limiting value- 2. This result

v>(<) 0 trajectories on the surface are tangent to it or areexplains the resonance jump of the average slope of the

directed toward the regior?, where Q>(<)0 [w'>
(<)0inP1].

phase of a laser field by an amount equal to the characteristic
average frequency of the intensity fluctuations/2 (7 is the
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average period of the intensity fluctuations, which coincides
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The unstablgstable manifold W* (W®) of the origin is

with the average time for the representative point to gaangent toE" (E®) at x’=y’'=z"=0. Inasmuch as the’
around the origin on the plarve=0). It is interesting to note axis is flow-invariant and belongs t&/, points of these

that this jump was first discovered

in  numerical manifolds situated in a sphere of small radiusatisfy the

calculation$® and was interpreted as a manifestation of theequations

geometric phase in laser dynamics on the basis of a numeri-

cal analysis of the behavior of trajectories in ray sp&ce.

Wi.: Yy =x'{\+0(e)}, z'=0(e? (33

Another consequence of the existence of the boundingnd

surfaceQ=0 (w’=0) is an additional constraint on the val-
ues of the system parameters in homoclinic bifurcation. Sen-
sitive (nonrobust homoclinic loops of the separatrix are

Wie: ¥ =x'{A+0(e)}. (34)

We now consider the projections of the invariant mani-

known to form a very important structure responsible for thefolds WY andW? ontoP’. Since they are flow-invariant, they
formation of a chaotic set of trajectories in the original Lo- must map into themselves under the action of the group
renz modef Since the complex Lorenz model subsumes theJ(1). ConsequentlylT mapswWs andW" onto (respectively

original Lorenz model as a special case &0 andr,=0,

a two-dimensional manifold and a one-dimensional manifold

corresponding homoclinics also occur in the complex modelin P’. From Eq.(8), replacingx,y,z,w by x",y’,z",w’, and
A necessary condition for their existence is the intersectiorirom Egs.(33) and(34) we obtain

of stable and unstable invariant manifolds of the saddle point

located at the origiR®2°

The local structure of the invariant manifolds in the vi-
cinity of the saddle point can be determined from a linear

analysis of Eqs(1) or (6) in the vicinity of the solution
x=y=z=0 (xX'=y'=2z'=0).

The trivial solution of Eqgs.(6) x'=y’'=z"=0 is un-
stable and is a saddle point when

2 —ry0+ 8ry(1—0)
(1+0)?

ry>1+

Its eigenvalues are

2
A I
N=— 5\ 1+ i,
2
N N T
=—=—\/1+—+
)\2 2 1 4 v,

A3=—8,

whereu, v, and B are defined in Eq(7).
They correspond to the eigenvectors

(31

1 1 0
Vi=N7H M|, Vo=N' N2 |, Va=|0],
0 0 1

Where N1’2: \ 1+ |)\1’2| .
It follows from Eqgs.(31) that for sufficiently smallb we
have Ra >0, Re\,<0, and\3<0. Moreover, forv>0

Im A;=—1Im A,>0. (32

We shall consider only the cafe;|<|Re\,|, because it
corresponds to the possibility of the occurrence of a Lorenz

attractor.
The coordinates of points of spa@® belonging to the

unstable linear subspaé&g,=spafV,} and to the stable lin-

ear subspacE®=spanV,,V3} satisfy the equations
EY: y'=x'\;, Z'=0,

ES: y'=x'\,.

W,|H(W|l‘(')c): |X,|2{|m }\1+ 0(8)},

W,|H(W|SOC):|X,|2{Im Ao+ O(e)}. (39

Taking Eq. (32) into account, we conclude that for
v>0 all points of[T(W,,) lie in the half spacev’ =0. Next,
we infer from the formal solution of the third equation of the
system(12)

t/

w’(t’)=w’(0)+ve—m’J (R'(s)+u'(s))ds  (36)
0

that all points of[I(W") lie in this half space. Indeed, since
the integrand of Eq(36) is nonnegativew’(t’) is always
nonnegative ifv’' (0)>0. In this regard, it follows fron{35)
that all points of[I(W},.) except those on the’' axis lie in
the half spacen’ <0. ConsequentlyIT(W") and IT(W; )
can intersect only on the’ axis. But this is impossible,
because the' axis does not belong tv". Therefore, for
v>0 Egs. (1) and (6) do not admit trajectories doubly
asymptotic to the origin. Making use of the property of in-
variance of the systertl2) under the substitution

w' ——w’

37

and proceeding in the same way, one can easily show that
such trajectories are also nonexistent for0. Thus,v=0
or

v— — v,

5(1-o0)
2T 0

is a necessary condition for the existence of a homoclinic
Lorenz butterfly.

3. ONE-DIMENSIONAL MAP

Let the following relation hold fow=0:
)\3
=— "<
k x 1,

where\,; and\ 3 are defined in Eq(31).
This inequality corresponds to the case where the disin-
tegration of a butterfly fo6=r,=0 is followed by the emer-
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Since the variable Z is nonnegative, we have

the corresponding bifurcation is described by the oneG(E,e1,v)=0 andG(0, 0, 0)=0, so thatG,,,(0, 0, 0)=0.

dimensional ma}?
g—sign é(—e1+sign Al ¢,

0<|gl<1, O<e;<1, (39)

where¢ is a real variableA is a separatrix variable, ang

describes a small deviation from the point of homoclinic
bifurcation in parameter spadwe shall assume from now

on thatA is positive.

We wish to construct a similar map for the complex

Lorenz model. Lex’ andy’ be complex and’=0 in Egs.

(6). Then, as shown above, a limit set of trajectories of the

system belongs to the globally stable hypersurfatey’

—x'y’* =w=0. The solution corresponding to each trajec-
form

tory on this hypersurface has the
(x'(t)e'y’'(t)e',z'(t')), where &'(t')y’'(t),Z'(t'))
is the solution of the syster6) for real-valuedx’ andy’,

We shall assume thab,,(0,0,0)>0. We note that the
point e,=¢g,=0 corresponds to a homoclinic bifurcation of
codimensionality 2, and the parameteris proportional to
the small quantityy. The substitution of

2\ .
:=s§’k[ 1+ F(l—zg)aﬁ(l "W]

and
N2-N\)
_ 1k
€2=8&q { 1+ T
into (43) produces the logistic map
{=N(1=0)+0(]*),

Consequently, the bifurcations in the mg8) are simi-
lar to the bifurcations of the logistic map. Moreover, in a

Si(lk)/k] (44)

and ¢ is a constant that depends on the initial conditions.gmg|| neighborhood of a bifurcation point of codimensional-
This result enables us to write the map for complex—valueqty 2 (e,=0, &,=0) asymptotic expressions can be obtained

x" andy’ (for v=0):

E—el M98 (=g +[¢]"). (39

Here, in contrast with{38), £ is complex, andA is set equal
to unity, which is made possible by the renormalizatiorg of
The change of variable@) transforms the homoclinic but-
terfly into a single homoclinic loop in the projective spde

for the bifurcation sets of the ma@3) by substituting the
bifurcation values of the parameterof the logistic map into

Eq. (47). In particular, the first two bifurcations of the logis-
tic map are saddle—node\€1) and period-doubling N
=3) types. The asymptotic expressions for the bifurcation
curves corresponding to these bifurcations on the plane of
the parameterse(; ,&,) are

A one-dimensional map describing the dynamics of the sys-

tem in the vicinity of this loop in the spad@can be obtained
from Eq. (39):
E—(—e,+EY%)2, 0<E<I1,

Here Z=|¢&|%. As in (39), the map(40) is valid only for
v=0. Forv#0 we have

0<E<1, 0sg<1, (41

E—G(E,eq,v),

whereG(E,e,,0)=(—¢g,+EX?)2.
Assuming that the derivative

_ #PG(E,eq1,v)
va(:!8110)2<—2
v =0

exists for smallE and smalle;, we obtain the following
from Eq. (41) for small v:

2
14
E—>G(E,sl,0)+?GW(E,sl,O)JFO(V“), (42)
whereG(E,&4,0) is defined in Eq(40).
By virtue of the symmetry propert{37) of the system
(12), Eq.(42) does not contain any terms linear or cubiain
Inasmuch a& ,e,<1, the dependence &,,(E,£,0) on=E

szzsi/k 1+ isi(l—k)/k+o(8£11(l—k)/k) (45)
2k?
and
1k 3 2(1—Kk)/k 4(1—Kk)/k
gy=ge; ) 1— %81 +0(e] ) (> (46)

respectively.

To verify the conclusions drawn using the one-
dimensional mapg43), we have numerically plotted several
bifurcation curves for the complex Lorenz model with real
consistent with the model of a single-mode laser. Figure 1
shows these curves on thé,() plane. Inequality4), which
is the condition for replacing the systeth) by the system
(6), is satisfied above curvd [o(r;—1)— §2/4=0]. Curve
T represents the stability threshold of the trivial steady-state
solutionx’ =y’ =z'=0, which becomes unstable above this
curve. Pointh corresponds to a homoclinic bifurcation of
codimensionality 2. Because the resulting one-dimensional
map is identical to the logistic map, this point must be a limit
point for an infinite number of bifurcation curves. Some of
these curves shown in the figure do in fact go to pdint
Curve S corresponds to the saddle—node bifurcatids).

and e, can be disregarded. Then, omitting small termsThe intersection of this curve with the parametric vector

O(v*) in Eq. (42), we obtain the map
E—(—e,+EY)%+3,
0<E<1,

wheree3=(1%/2)G,,(0,0,0).

O<eq,e,<1, (43

from the right in projective spacf is accompanied by the
onset of two limit cycles, one stable and the other unstable.
As the parametef is further decreased, the stable limit cycle
undergoes a series of period-doubling bifurcations, making
the transition to chaos. A numerical analysis shows that the
corresponding curvegurve D in Fig. 1 corresponds to the
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