
Abstract. Atheoretical investigation ismade of the dynamics

of a class-B laser emitting the transverse modes TEM00,

TEM10, and TEM01. Bifurcation mechanisms of transitions

between several lasing regimes are investigated for various

intermode intervals and values of the excess above the

threshold .

In spite of the fact that nontrivial lasing dynamics, resulting

from the interaction of transverse modes, was discovered

back in the sixties [1], right up to the late eighties the major-

ity of the investigations of dynamic instabilities in lasers were

being made in the plane-wave approximation [2], i.e. ignor-

ing inhomogeneities of the spatial distribution of the

electromagnetic field perpendicular to the optic axis. The

recent upsurge of interest in the mechanisms of the forma-

tion and annihilation of transverse structures in lasers [3, 4]

is associated with the fundamental problems of transition to

spatiotemporal chaos (turbulence) and of spontaneous for-

mation of transverse structures [5]. Moreover, there are also

potential applications such as the use of multistable trans-

verse structures in the fabrication of optical memories [6].

A nonlinear system of the Maxwell ^ Bloch equations in

terms of partial derivatives, describing the dynamics of a laser

andtakingaccountof the transversedistributionof the electro-

magnetic field in the cavity, can either be solved directly or it

can be reduced to a system of ordinary differential equations

by expanding in terms of the empty-cavity modes.The former

approach is best suited to wide-aperture systems [7, 8] in

which excitation of a large number of transverse modes is

possible. In the case of narrow-aperture systems with a small

number of excited transverse modes, it is convenient to use

these modes as the basis functions [4, 9, 10].

We shall use this approach in a study of dynamic insta-

bilities of generation of the fundamental TEM00 mode in a

class-B laser (such as an Nd :YAG laser, CO2 laser, etc.)

when this mode interacts with the modes TEM10 and

TEM01 which are closest in frequency. The complex spatio-

temporal dynamics of a laser observed at large Fresnel

numbers for a considerable excess above the threshold

[7, 8] will not be considered. Our attention will be concen-

trated on the range of the small excess of the pumping rate

above the threshold. Transverse inhomogeneities in the pop-

ulation inversion distribution are the main source of

nontrivial dynamics in the case we shall consider.

We shall assume that one longitudinal mode and a corre-

sponding set of transverse modes are excited in a laser. We

shall consider unidirectional emission from a ring laser in

order to avoid the influence of the inversion dips along the

optic axis on laser dynamics and to concentrate on the trans-

verse effects. In the derivation of the main equations we shall

assume that the diffraction losses are the same for all the

modes. The relevant parameters can then be introduced read-

ily into the investigated equations.

We shall represent the field E and the polarisation P as:

E �
X

m; n

Emn�x, y, z�cmn�t� exp�ÿitomn� ,
(1)

P �
X

m; n

Emn�x, y, z�fmn�t� exp�ÿitomn� .

Here, x and y are the transverse coordinates; z is the coordi-

nate along the optic axis; Emn are the Hermite ^Gauss modes;

omn are the frequencies of the Hermite ^Gauss TEMnm

modes. We shall use the approximation of class-B lasers

(g?4 K, gk) in order to simplify the material equations, i.e.

we shall assume that qtfmn � 0. Here, K, gk, and g? are the

decay constants of the electromagnetic field, of the population

inversion, and of the polarisation, respectively. In a nonastig-

matic cavity, the modes with the same sum of indices

m� n � q are frequency-degenerate. Astigmatism lifts this

degeneracy.We shall assume that the frequency interval occu-

pied bya family of transversemodeswith the specific index q is

much less than the interval do between the adjacent mode

families. We shall make two more assumptions, which are

usually satisfied in practice: jKÿ nthj5 do and gk5 do

(where nth is the unsaturated population inversion). Then,

in the lasing equations we can ignore the term that oscillates

at a frequency om1n1
ÿ omn such that m1 � n1 6� m� n. This

means that we are neglecting the phase coupling between

different transverse-mode groups and ignoring locking of

their frequencies (transverse mode locking) [11].

The Maxwell ^ Bloch system of equations can now be

reduced to [12]

�qt �K�cmn� Lmn�1ÿ iDmn�
�

nthcmn �
X

m1; n1�m1�n1�m�n�

cm1n1
Nmnm1n1

�

,

(2)

�qt � gjj�Nmn m1n1
� ÿnth

X

m2n2;m3n3�m2�n2�m3�n3�

Lm3n3
cm2n2

c�
m3n3

Ym2n2 m3n3
mn m1n1

.
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Here,

Lmn �
1

g?�1� D2
mn�

; Dmn �
oab ÿ omn

g?
;

Nmnm1n1
�

�

V

dVE �
mnNEm1n1

;

Ym2n2 m3n3
mnm1n1

�
�

V

dVE �
mnEm1n1

E �
m2n2

Em3n3
;

oab is the frequency of a lasing transition.

When the TEM00, TEM10, and TEM01 modes are gener-

ated, the total field in a transverse cross section is

E � 1
���

p
p

�

c00�t� exp�ÿio00t� �
���

2
p

�xc10�t� exp�ÿio10t�

� yc01�t� exp�ÿio01t��
	

exp�ÿ 1
2
�x2 � y2�

�

� c:c: .
(3)

The coordinates x and y are assumed to be normalised to the

corresponding beam radii wx and wy. The exponential factors

which govern thewavefront curvature are unimportant forour

analysis and, therefore, they are omitted.Going over from the

Cartesian to the polar coordinates in accordance with the for-

mulas x � r cos#, y � r sin#,we obtain the field distribution
not in the Hermite ^Gauss mode basis, as in expression (3),

but the field in the Laguerre ^Gauss mode basis:

E � 1
���

p
p

�

c00�t� exp�ÿio00t� �
r
���

2
p �c��t� exp�i#�

�cÿ�t� exp�ÿi#�� exp
�

ÿ i
�o10 � o01�t

2

��

� exp

�

ÿ r2

2

�

� c:c: , (4)

where

c� � c10 exp

�

i
�o10 ÿ o01�t

2

�

� ic01 exp

�

i
�o01 ÿ o10�t

2

�

.

The Laguerre ^Gauss modes with the amplitudes c� are

usually denoted by TEM�
10 and TEM�

01. We can easily dem-

onstrate that the splitting of the frequencies of the TEM10

and TEM01 modes in an astigmatic cavity means that there is

a linear coupling between the TEM�
10 and TEM�

01 modes.

This case is analogous to a bidirectional ring laser in

which the total field can be represented on the basis of stand-

ing or travelling waves [13].

If we ignore the difference between D10 and D01 (because

of the large width of the gain line), and if we introduce new

variables and parameters

e0 � L00nth ÿ K , e1 � L10nth ÿ K , t � t�e1gjj�1=2 ,

F0 � c00L10

�

nthY
0110
1001

e1gjj

�1=2

exp�ÿiKD00t� ,

F� � c�L10

�

nthY
0110
1001

e1gjj

�1=2

exp�ÿiKD10t� , (5)

M0 �
L10N0000 � e0

�e1gjj�1=2
, N0 �

L10N1010 � e1

�e1gjj�1=2
,

N2 �
L10N1001

�e1gjj�1=2
, L � L00

L10

� 1� D2
10

1� D2
00

, e� e0

e1
, g �

�

gjj
e1

�1=2

,

and calculate the overlap integrals Ym2n2m3n3
mnm1n1

, we obtain the

following system of equations:

qtF0 � 2L�1ÿ iD0�F0M0 ,

qtF� � �1ÿ iD1��F�N0 � FÿN2� � iR exp�ic�Fÿ ,

qtFÿ � �1ÿ iD1��FÿN0 � F�N
�
2 � � iR exp�ic�F� , (6)

qtM0 � eÿ gM0 ÿ 2LjF0j2 ÿ jF�j2 ÿ jFÿj2 ,

qtN0 � 1ÿ gN0 ÿ LjF0j2 ÿ jF�j2 ÿ jFÿj2 ,

qtN2 � ÿgN2 ÿ F�F
�
ÿ .

Here and later, we have D00 � D0, D10 � D1. The system of

equations (6) implies that the losses can be different for each

of the three modes. The parameter e represents the ratio of

the excess of the gain above the fundamental-mode losses to

the average excess for the TEM10 and TEM01 modes. The

quantities R cosc and R sinc characterise respectively the

difference between the frequencies and between the losses of

the TEM10 and TEM01 modes. If c � 0, then R � jo10ÿ
o01j=2�e1gk�1=2. It should be mentioned that if F0 � 0, the

system of equations (6) becomes identical with the system

describing generation of counterpropagating waves in a ring

laser with backscattering [14].

The solutions of the system of equations (6) can be sep-

arated into two classes: with zero and nonzero intensities

of the TEM00 mode. We shall consider only the situation

when jF0j 6� 0. A detailed study of the generation of the

two modes TEM�
10 and TEM�

01 will be published elsewhere.

We shall first consider the steady-state solutions. The sol-

ution corresponding to the generation of the TEM00

fundamental mode is

jF0j2 �
e

2L , F� � 0 .

A pair of solutions of the standing-wave type, correspond-

ing to simultaneous generation of the TEM00, TEM
�
01, and

TEM�
10 modes, is

jF0j2 �
1

2L

�

3e

2
ÿ 1� gR sinc

�

,

jF�j2 � jFÿj2 �
1

2

�

1ÿ e

2
� gR sinc

�

.

The upper (lower) sign corresponds to argF� ÿ argFÿ �
0(p). The total intensity of the radiation generated by a

laser under these conditions is modulated at a frequency

j 1
2
(o10 � o01)ÿ o00j. We shall refer to these solutions as

the modulated standing waves MSW1 and MSW2.

If R � 0, analytic formulas for solutions of the jF0j 6� 0,

jF�j 6� 0, Fÿ � 0 and jF0j 6� 0, F� � 0, jFÿj 6� 0 type can be

obtained quite readily. Astigmatism transforms these solu-

tions to those of the jF0j 6� 0, jF�j > jFÿj and jF0j 6� 0,

jF�j < jFÿj type, where jF�j 6� 0. They will be called the

modulated travelling waves (MTW1 and MTW2). It is clear

from numerical calculations that if astigmatism is weak, these

solutions are stable in a wide range near the centre of the gain

line.

We shall now assume that the frequency of the TEM00

mode is in resonance with the frequency of a laser transition

(D0 � 0), so that the parameter D1 represents the frequency

interval between the adjacent mode families and that D1 is

always positive. The parameter e can be controlled experi-

mentally with the aid of an aperture and c will be

assumed to be always p=10, which takes account of the slight

difference between the losses of the TEM�
10 and TEM�

01

modes. We shall now estimate the parameters occurring in
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the investigated equations and corresponding to, for example,

CO2 and Nd :YAG lasers for which the above approx-

imations are valid: gk � 102 ^ 104 Hz, g? � 109 ^ 1011 Hz,

K � 106 ^ 108 Hz, jo10 ÿ o00j � 108 Hz. Splitting of the fre-

quencies of the TEM�
10 and TEM�

01 modes is governed

by the cavity astigmatism and it does not usually exceed

106 ^ 107 Hz.

We investigated numerically the stability of the steady-

state solutions. A bifurcation diagram in the (e, R ) plane

is plotted in Fig. 1 for D1 � 0:05, g � 0:1. Small changes in

D1 near zero do not alter qualitatively this diagram. The first

instability of the TEM00 mode, which appears on reduction

in e, is a transcritical bifurcation which occurs on the AB

line. This bifurcation ensures stability of the MSW1 solution,

forwhich the total intensityof theTEM�
01 andTEM

�
10modes is

higher than for MSW2. In turn, the solution MSW1 becomes

unstable as a result of a supercritical Hopf bifurcation on the

AC line. In the region FEGDAF the pair of solutions MTW1

and MTW2 is stable. On the EF and AD lines these solutions

experience subcritical Hopf bifurcations and in the segment

GD they undergo supercritical bifurcations. The point D rep-

resents a bifurcation of codimensionality of 2.

Bifurcation phenomena in the vicinity of the point of

intersection of two Hopf bifurcation lines are extremely

varied and their detailed investigation requires an analysis

of what are known as the normal forms [15] of the set of

equations (6). In general, there may be quasiperiodic and

chaotic attractors in the vicinity of the point of intersection

of two Hopf bifurcation lines [15]. On the EF line the solu-

tions MTW1 and MTW2 undergo transcritical bifurcations

with the result that the stable pair of solutions is F0 � 0,

jF�j > jFÿj and, correspondingly, F0 � 0, jF�j > jFÿj.

We shall call them the travelling waves TW1 and TW2. These

solutions in turn experience a subcritical Hopf bifurcation on

the HE line.

A characteristic feature of a laser generating the TEM00,

TEM�
10, and TEM

�
01 modes is the possibility of existence of an

optical vortex in a transverse cross section of the laser beam

[4]. The coordinates of this vortex xv and yv are found by

equating to zero the real and imaginary parts of the field

intensity in the laser:

xv � iyv �
FÿF

�
0 exp

�

it�ÿ 1
2
�o10 � o01� � o00�

	

���

2
p ÿ

jF�j2 ÿ jFÿj2
�

ÿF �
�F0 exp

�

it�ÿ 1
2
�o10 � o01� � o00�

	

���

2
p

ÿ

jF�j2 ÿ jFÿj2
�

. (7)

It is evident from the above expression that when the TEM00

mode is not excited, the vortex is on the optic axis. If the

regimes with jF�j � jFÿj are excited, there is no vortex in a

transverse section, or, more exactly, the vortex is at infinity.

In the range of stability of MTW1 and MTW2 the vortex

rotates about the optic axis at a frequency 1
2
(o10 � o01)ÿ o00

(Fig. 2). In the vicinity of the point D there is an interesting

bistability of the vortex motion. For example, for e � 1:3 and
R � 0:25 the initial condition is assumed to be the solution

MSW1, a quasiperiodic regime shown in Fig. 3a is found to
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Figure 1. Bifurcation diagrams of stationary solutions in the (e, R ) (a)

and (D1, R ) (b) planes.
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Figure 2. Bistability of the motion of an optical vortex, calculated for

e � 1:3, R � 0:25, g � 0:1, c � p=10, D1 � 0:05. The points represent the
position of the vortex at consecutive moments in time.
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be stable. The corresponding positions of the vortex during a

time interval dt � 1000 s are represented by the points in

Fig. 2b, spaced in steps of 0.5.

At the moments when jF�j � jFÿj, the vortex escapes to

infinity. For the same values of the parameters the stable sol-

utions are MTW1 and MTW2. They correspond to the

motion of a vortex on a circle (Fig. 2a). If e � 1:34 and

R � 0:385, the regimes shown in Fig. 4 are bistable. The cor-

responding vortex motion is similar to that shown in Fig. 2.

Numerical calculations show that when astigmatism is

strong, i.e. above the HEGD line, and for l < t < 2 the stable

dynamic transverse structure is similar to that shown in

Fig. 2b, but it has very definite mutually orthogonal direc-

tions along which the vortex is moving.

We shall now consider a bifurcation diagram in the

(D1, R ) plane when e � 1:2. The MTW1 and MTW2 solu-

tions are stable in the region ABCA and they experience

a subcritical Hopf bifurcation on the BC line. In the region

where they are unstable, corresponding to small R, typical

behaviour is represented by the regime shown in Fig. 5.

In respect of the nature of antiphase oscillations of the

TEM�
10 and TEM�

01 modes, this regime is similar to a

self-oscillatory regime of the second kind in a ring class-B

laser [14]. At high values of R there is a regime similar to

that shown in Fig. 2b. A comparison of the paths of motion

of a vortex in the case of strong and weak astigmatism

shows that in the former case the vortex moves along two

orthogonal directions, whereas in the latter case the vortex

motion is almost uniformly smeared out over all the angles

#.
An approach to a study of the interaction of several

transverse modes more rigorous than that adopted above

involves reducing the Maxwell ^ Bloch system to a system of

integrodifferential equations [4, 9]. However, the system (2)

of ordinary differential equations makes it possible to analyse

a

b

0

0.2

0.4

0.6

0.8

jF j2 (rel. units)

650 670 690 710 730 750 770 t

1

2

3

Figure 3. Quasiperiodic time dependences of the intensities jF j2 of the

TEM�
10 (1 ), TEM�

01 (2 ), and TEM00 (3 ) modes, corresponding to the

motion of a vortex in Fig. 2b (a) and the transverse intensity profile for

structures with a rotating vortex at a fixed moment in time (b).
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Figure 4. Bistable regimes predicted for the TEM�
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and TEM00 (3 ) modes, calculated for e � 1:34, R � 0:385, g � 0:1,
c � p=10, D1 � 0:05.
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Figure 5. Intensities of the TEM�
10 (1 ), TEM�

01 (2 ), and TEM00 (3 )

modes (a) and the corresponding motion of a vortex (b), calculated for

e � 1:2, R � 0:05, g � 0:1, c � p=10, D1 � 016.
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in detail the bifurcation mechanisms of the excitation of

various dynamic regimes without significant distortion of the

qualitative nature of the solutions. For example, the vortex

motion paths similar to those shown in Fig. 2 had been

obtained earlier for a three-mode laser by a more rigorous

approach [4].

We thus considered the problem of generation of three

transverse modes belonging to the m � n � 0 and m� n � 1

families in a class-B laser. An important feature of our anal-

ysis is that, on the one hand, the frequency interval between

mode families is assumed to be sufficiently large so that they

cannot become mutually locked and, on the other, that the

frequency splitting within the m� n � 1 family is small

and the TEM10 and TEM01 modes can be mutually locked

or not locked. The main source of the instability of the

regimes with constant mode intensities is an increase in

both the above-mentioned frequency intervals. Stable gener-

ation of the fundamental mode requires that the excess above

the threshold should be at least twice as high as that for the

TEM�
01 and TEM�

10 modes (e > 2). On the other hand, com-

plete suppression of the fundamental mode simply requires

that the excess above the threshold should be less than for

the TEM�
01 and TEM�

10 modes (e < 1). This is related to

the circumstance that the modes of the m� n � 1 family

occupy a larger volume of the active medium than the funda-

mental mode.

When all three modes TEM00, TEM
�
01, and TEM�

10 are

generated, an optical vortex moving across the beam is

observed for a wide range of laser parameters. The motion

of this vortex can be finite or infinite. The vortex escapes

to infinity at the moments in time when the intensities of

the TEM�
01 and TEM

�
10 modes become equal. For some values

of the parameters a bistability between finite and infinite

motion of the vortex is established.
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