
Abstract. An investigation is made of the stability, with

respect to small perturbations, of one-dimensional station-

ary localised radiation structures (`laser autosolitons') in a

wide-aperture laser with a saturable absorber. It is shown

that an increase in the active-medium gain makes a station-

ary autosoliton unstable and gives rise to a pulsating local-

ised structure.

The investigation reported below is a continuation of our

earlier work [1] and it deals with the stability, in respect of

small perturbations, of transversely one-dimensional laser

autosolitons, which are localised (soliton-like) radiation

structures in a wide-aperture laser with a saturable absorber.

We shall use the results and notation of Ref. [1].

Let A0(x) be a stationary localised solution satisfying

Eqn (6) of Ref. [1].We shall study its stability by substituting

a perturbed solution

A�x, t� � A0�x� � dA�x�egt (1)

into Eqn (4) of Ref. [1]. Linearisation in terms of a small

perturbation yields an equation
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for finding the spectrum of a linear operator L̂, which can be

written in the form (see Ref. [2])
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Here, a0 is the value of the parameter a for which there exists

the solution A0(x). The continuous spectrum of the operator

L̂ is determined by the behaviour of this operator in the

limit x ! �1. In the bistability region, where the spatially

homogeneous solution E � 0 (nonlasing regime) is stable, the

spectrum of the operator L̂ lies in the left half-plane of a

complex plane and does not lead to an instability of the

solution A0(x). Therefore, the stability of the solution A0(x)

is governed by the discrete spectrum of the operator L̂.

In view of the symmetry of Eqn (4) of Ref. [1],

A�x, t� ! A�x, t�eiZ , A�x, t� ! A�x� h, t� ,

A�x, t� ! A�xÿ vt, t� exp

�

ivx

2
ÿ
iv2t

4

�

,

the discrete spectrum of the operator L̂ includes a triple zero

eigenvalue. It corresponds to two eigenvectors

L̂w1;2�x� � 0 ,

which are described by the relationships

w1�x� �
iA0�x�
ÿiA�

0�x�

� �
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and one associated vector

L̂u2�x� � w2�x� ,

which is of the form

u2�x� �
ÿixA0�x�=2
ixA�

0�x�=2

� �

.

It should be noted that for a localised structure defined by an

even (odd) function A0(x), the function w1(x) is even (odd),

and the functions w2(x) and u2(x) are odd (even). For both

even and odd functions A0(x) the operator L̂ is invariant

under the substitution x ! ÿx.

We shall consider a family of stationary localised solu-

tions A0(x, a) corresponding to a certain part of the curve

shown in Fig. 1 of Ref. [1]. At the bifurcation points S

and S0 and at other points of this curve where its slope

becomes infinite (dg0=da � 0), the operator L̂ has a four-

dimensional and not three-dimensional root subspace. An

autosoliton is then stable (unstable) on the part of the curve

adjoining from below (from above) the point S (S0). An addi-

tional zero eigenvalue, which appears at the point S,

corresponds to an associated vector u1(x), which is even in

respect of x:

L̂u1�x� � w1�x� .

This vector is given by the expression
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Here, aS corresponds to the point S. A quadruple zero

eigenvalue was always obtained for the nonlinear Schro« -

dinger equation, which is conservative. It corresponds to

two eigenvectors and two associated vectors [2].

The stability of stationary localised structures calculated

in Ref. [1] was found by numerical solution of Eqn (2) dealing

separately with stability against even and odd perturbations.

The second derivative in Eqn (3) was approximated by the

required function at five points and the infinite interval along

x was replaced by a sufficiently long but finite interval. As a

result, the problem was reduced to finding the eigenvalues of

a matrix whose maximum order in our calculations was

1024� 1024.

The autosoliton solutions corresponding to those parts of

the curve in Fig. 1 of Ref. [1] which are identified by a dashed

curve are unstable. The stable autosolitons correspond to the

continuous parts of this curve. These parts, of length which

decreases on transition to the spiral turns which are closer

to its centre (which is why only two such parts are shown

in Fig. 1 of Ref. [1]), lie between the points S and S0 of a

saddle ^ node bifurcation and the points H and H0 of an

Andronov ^Hopf bifurcation [3, 4]. Fig. 1 in the present

paper shows, for two values of the parameter g0 close to

the point H, the positions of several eigenvalues which belong

to the discrete spectrum of the operator L̂ and lie closest to

the imaginary axis. The left-hand (right-hand) parts of

Fig. 1 in the present paper give the eigenvalues corresponding

to even (odd) eigenfunctions. Two upper (lower) parts of

Fig.1 correspond to a subcritical (supercritical) region of

g0. In full agreement with the above conclusions, our numer-

ical calculation predicts a simple zero eigenvalue for even

perturbations and a doubly degenerate zero eigenvalue for

odd perturbations.

Fig. 1 demonstrates the existence of the Andronov ^Hopf

bifurcation, which appears on increase in the parameter g0. It

can be seen that a pair of complex-conjugate eigenvalues, cor-

responding to even eigenfunctions w3;4(x), intersects the

imaginary axis. The distribution of these eigenfunctions is

shown in Fig. 2. For comparison, this figure includes also

the modulus of the eigenfunction w1(x) corresponding to

zero eigenvalue and described by expression (4). Reduction

of the saturation parameter reduces the width of the stability

region of the autosoliton solution lying between the points S

and H (see Fig. 3). Between curves 2 and 3 in Fig. 3 the sol-

ution in the form of a single autosoliton is stable. Direct

numerical integration of Eqn (1) demonstrated that the

Andronov ^Hopf bifurcation at the point H is supercritical

and it leads to soft excitation of a pulsating localised structure

(see also Ref. [5]). This structure is shown in Fig. 4.
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Figure 1. Eigenvalues of the operator L̂ with the largest real parts, shown

for a0 � 2:0 and Ig � 10:0. The upper (lower) parts of the figure corres-

pond to g0 � 2:08 (above) and 2.10 (below) for even (on the left) and odd

(on the right) perturbations.
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Figure 2. Moduli of the eigenfunctions c1;3;4(x) (since these functions

are even, they are shown only for x5 0).
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Figure 3. Bifurcation curves for a single autosoliton in the plane of the

parameters g0, Ig, plotted for a0 � 2:0: (1, 4 ) limits of the bistability

region; (2 ) saddle ^ node bifurcation curve; (3 ) Andronov ^Hopf

bifurca-tion curve.
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Figure 4. Oscillatory (period 1200) localised structure predicted for

g0 � 2:102, a0 � 2:0, and Ig � 10:0 at various moments in time.
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Let us now assume that the unperturbed solution A0(x)

of Eqn (3) represents a stationary localised structure formed

by two coupled autosolitons. It is natural to assume that if

these autosolitons are sufficiently far from one another,

then the spectrum of the operator L̂ is close to the spectrum

obtained for a single autosoliton. Hence, we can readily

conclude that instability of a single autosoliton leads to insta-

bility of `two-soliton' stationary structures with two

autosolitons sufficiently far apart.However, it does not follow

in general from the stability of a single autosoliton that `two-

soliton' structures are stable.

In fact, since each single autosoliton has three zero eigen-

values, a `two-soliton' structure should have six eigenvalues

located on a complex plane in a small region near the origin

of the coordinates. Only three out of these six eigenvalues

vanish identically and the other three are displaced from

the origin of the coordinates because of the interaction

between autosolitons. If all three eigenvalues are shifted to

the left half-plane, a `two-soliton' structure is stable; other-

wise, it is unstable. Therefore, the problem of stability of

stationary `two-soliton' structures requires separate consider-

ation. Here, we shall report only some of the results of our

numerical calculations relating to the stability of `two-soliton'

structures. For example, if g0 � 2:04, a0 � 2:0, and Ig � 10:0,
there is a stable single autosoliton with a0 � 0:06725. For the
same parameters of a laser a stationary structure described

by the odd function A0(x) and corresponding to two coupled

autosolitons with a minimal distance between them

(a0 � 0:06419) is stable. A similar structure described by

the even function A0(x) exists for a0 � 0:06706 and is unsta-

ble.
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