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Bifurcation analysis of laser autosolitons

A G Vladimirov, N N Rozanov ¥, S V Fedorov, G V Khodova

Abstract. An investigation is reported of one-dimensional
stationary localised radiation structures (‘laser autosolitons’),
which appear in a wide-aperture laser with a saturable
absorber under conditions of hard lasing excitation. Bifurca-
tion theory methods are used to find the range of existence of
single autosolitons and of their coupled states. It is shown that
such structures correspond to a transverse dependence of the
field amplitude which is either symmetric and node-free or
antisymmetric and has a single node. An infinite set of single
autosolitons with various widths and transverse amplitude
profiles is predicted. It is shown that there is an infinite set of
‘two-soliton’ structures differing in respect of the distance
between the component autosolitons.

1. Introduction

The term ‘localised (soliton-like) structures of laser radia-
tion’ is used for structures formed in a limited lasing
region of laser systems with an arbitrarily large extent of
the active medium in the transverse direction, for example,
in wide-aperture lasers. They are of interest because they
represent the case of self-organisation in coherent optical
systems and have promising applications in optical data
processing.

To the best of our knowledge, such structures have not
yet been observed experimentally, but in recent years they
have been the subject of intensive theoretical investigations.
Such localised structures are predicted [1 — 3] specifically for
active single-mode nonlinear waveguides and for ‘slab’ lasers
described by similar equations with a strong dependence of
the field on just one transverse coordinate. However, such
structures prove to be unstable and, therefore, physically
unattainable because an excess of the unsaturated gain above
the losses induces growth of perturbations in the low-
intensity wings of such a structure.

A decisive condition of the stability of localised structures
is hard excitation of lasing (bistable lasers). These stable
localised laser structures, ‘laser autosolitons’, were first pre-
dicted in Ref. [4] and were then investigated in detail [5— 8]
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(see also the literature cited there). Mathematical aspects
of a theory of similar structures were studied without specific
reference to lasers [9, 10] (see also the literature cited there).
Laser autosolitons, representing islands of lasing against the
background of a stable nonlasing regime and formed by hard
excitation, are largely analogous to localised structures in
bistable passive nonlinear-optical systems, such as wide-aper-
ture nonlinear interferometers excited by external radiation
investigated earlier. Stationary and pulsating ‘diffraction
autosolitons’ were predicted [11, 12] and detected experimen-
tally [13, 14] (see also reviews [7, 8]). ‘Diffusion autosolitons’
were investigated intensively earlier in various physical,
chemical, and biological systems [15, 16].

Laser solitons of various types are now known: station-
ary and pulsating, immobile (in a transverse direction),
moving and rotating, single and coupled. The main method
for the analysis of these autosolitons involves numerical
computations and approximate calculations, including the
approximate method of moments [19] similar to that pro-
posed in Refs [17, 18]. In view of the difficulties encountered
in solving nonlinear partial differential equations describing
laser autosolitons, it would be desirable to establish a system-
atic classification of such structures and to demonstrate
more rigorously their stability. This is the task we set
ourselves: we shall consider these topics for transversely one-
dimensional bistable laser systems.

2. Model and the initial relationships

We shall consider a wide-aperture (characterised by a large
Fresnel number) laser with a saturable absorber. The relax-
ation times of the active and absorbing media inside the
cavity are assumed to be sufficiently short compared with
the time taken to establish the field in the cavity (class A
laser). The slowly varying amplitude E of the electric field,
averaged along the longitudinal (axial) direction, obeys the
quasi-optical equation proposed by A F Suchkov [21]:
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The time t and the transverse coordinate x are dimensionless,
and the function f represents the difference between satu-
rated gain and the total (linear and nonlinear) losses:
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where aq and g, are the unsaturated gain and the absorption
coefficient, normalised to the nonresonant loss factor;
I=|Ef and I, are, respectively the radiation intensity,
and the intensity needed to saturate the absorbing medium,
expressed in units of the gain-saturation intensity. Such a
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model describes a laser with a homogeneous medium and an
unbounded (along one of the transverse directions) aperture
(in the other transverse direction the lasing is single-mode).
We shall assume that the various frequency detunings are
small, because if they are included the function f(7) would be
complex.

Laser autosolitons represent transversely inhomogeneous
distributions of the field with the asymptotics £ — 0 in the
limit z — #oo. Therefore, the existence of stable laser auto-
solitons demands stability of the lasing-free regime, which is
achieved for f, = f(0) = gy — ap — 1 < 0. Eqn (1) is symmet-
ric under the ‘Galilean transformation’ (transformation to a
moving system of coordinates). Therefore, the presence of one
laser autosoliton is evidence of the existence of a family of
autosolitons with a continuously varying parameter, which
is the velocity v of transverse motion of the structure as a
whole [22].

3. Stationary localised structures

If the complex amplitude of the electric field is represented in
the form

Bz, t) = A(E, t)e ™2 e =gt 3)

we obtain the following equation for A(¢, ?):
0A . %A 5

where o = v + v*/4 represents the lasing-frequency shift.
Since Eqn (1) is invariant under reversal of the signs of E

and x, Eqn (4) is invariant under the transformations

A—-A, {(—-C. ®)

Stationary (time-dependent) solutions of Eqn (4), A(¢, t) =
A(¢), satisfy the equation
d’A :
— +aA—iAf(|A]) =0, ©6)
d¢
where o plays the role of an eigenvalue. We shall represent
the complex variable A in the form A(¢) = a(&)e'?®), where
a > 0 and @ are real. Then, in terms of real variables

4o lde
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Eqn (6) can be rewritten as a system of three first-order real
equations [10]:
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In view of the symmetry of expressions (5), the vector
field described by the system of equations (8) is invariant
under the transformation

(éa a, g, k) - (_éa a, —(q, — k) . (9)

The three-dimensional phase space of the system of equa-
tions (8) includes two fixed points which correspond to zero
intensity of the laser field (I =a®=0). These points,
denoted by L_ and L,, are defined, respectively, by the
following respective relationships:
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In addition to the fixed points described by the above expres-
sions, the phase space defined by the system of equations (8)
may include a further two or four fixed points, correspond-
ing to a nonzero intensity of laser radiation (I = a® > 0,
bistability). It follows from Ref. [23] that stable laser auto-
solitons can exist only in the bistability region.

The fixed point L_ is a saddle — focus. It has a one-dimen-
sional unstable manifold [24] and a two-dimensional stable
manifold, lying in the invariant (relative to the radiation
flux) plane a = 0. The fixed point L, is transformed to L_
by substitution (9) and, therefore, it has a one-dimensional
stable manifold and a two-dimensional unstable manifold,
which lies in the a = 0 plane. Stationary localised structures
of Eqn (4) correspond to heteroclinic trajectories lying in the
region a = 0 of the phase space of the system of equations (8)
and, as ¢ is increased, these trajectories propagate from the
fixed point L_ (¢ = —o0) to the fixed point L, (£ = +00).
It follows that the process of finding stationary localised
structures includes identifying the bifurcation points in the
space of the parameters for which the system (8) had hetero-
clinic trajectories of the type just described.

Classification of heteroclinic trajectories can be used to
describe stationary localised structures of various types (at
this stage independently of their stability). In particular,
the simplest (‘single-pass’) heteroclinic trajectory, which
propagates directly from L_ to L,, corresponds to the solu-
tion of Eqn (4) in the form of a single autosoliton, whereas
‘multipass’ heteroclinic trajectories which pass repeatedly
the vicinities of the fixed points L_ and L, correspond to sta-
tionary structures in the form of coupled autosolitons.
Moreover, heteroclinic trajectories with the same number
of passes n may differ in respect of the number of passes
near the fixed points L_ and L. Such trajectories correspond
to stationary structures formed by n coupled autosolitons
separated by various distances.

When the parameters o, g, ay, and I, are fixed, there may
be only one heteroclinic trajectory from L_ to L, and this
trajectory is therefore invariant under substitution (9) and
it consists of two symmetric parts which transform into
one another as a result of this substitution. A point C, which
separates a heteroclinic trajectory into two symmetric parts
(and belongs to both), lies in the phase space of the system
of equations (8) on the a axis (a > 0, ¢ = k = 0). If we take
the point C to be the origin from which the variable ¢ is meas-
ured, we find that stationary localised solutions of Eqn (4),
corresponding to heteroclinic trajectories of the system (8),
are even functions of the variable &: A(¢) = A( — ¢&). In addi-
tion to C, such a heteroclinic trajectory has no other points on
the ¢ = k = 0 axis.

A heteroclinic trajectory corresponding to a single auto-
soliton emerges from the fixed point L_ (&= —o0),
intersects the a axis at a relatively large value of a, and termi-
nates atthe point L, (¢ = +00). Fig. 1 showsa curve, obtained
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Figure 1. Stationary solution of Eqn (4) in the form of a single auto-soli-
ton calculated for ay = 2.0 and I, = 10.0 (the inset shows the vicinity of
the point P on an enlarged scale). The autosoliton solution is stable (unsta-
ble) in the parts of the curve identified by the continuous (dashed) line
[20]; S and S’ are the points of a saddle — node bifurcation; H and H’ are
the Andronov—Hopf bifurcation points of an autosoliton solution; P is
the bifurcation point of codimensionality 2 of the system of equa-
tions (8).
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Figure 2. Solutions in the form of a single autosoliton obtained for
go = 2.102, ag = 2.0, I, = 10.0, and the following values of o 0.14175 (1),
0.04218 (2), 0.06663 (3), and 0.05934 (4). Only the autosoliton solution
represented by curve 4 is stable [20].

by applying the INTSEP suite of programs [25], demonstrating
the relationship between the parameters g, and o for which
there is such a heteroclinic trajectory in the system (8). This
curve lies entirely in the bistability region where the equation
f(a?) = 0 has two positive roots. It begins at the point on the
upper boundary of the bistability region gy =1+ ao and
passes to the region of lower values of g,; it then turns
back and finally winds itself into a spiral. A point P, on which

this spiral is wound, is the bifurcation point of codimension-
ality 2 of the system (8). In the vicinity of the point P, for
the same parameter gy, there may be several solutions in
the form of a single autosoliton with different values of o.
The closer the point on the spiral to its centre, the greater
the width of the autosoliton solution corresponding to this
point (Fig. 2) and the greater the number of oscillations of
the laser field intensity on the autosoliton envelope.

The existence, at o = o, of a solution of Eqn (4) in the
form of a single autosoliton implies the existence of an infinite
set of different coupled stationary ‘multisoliton’ solutions
with values of o close to oy and, in particular, the existence
of a denumerably infinite number of solutions formed by
two coupled autosolitons. A ‘two-pass’ heteroclinic trajectory
corresponding to two coupled autosolitons passes once near
the fixed point L, before it crosses the a axis at low values of
a. The closer the value of « for a ‘two-soliton’ solution to a,
the larger the number of passes and, consequently, the longer
the ‘time’ ¢ spent in the vicinity of the point L, . The longer
the time, the greater the distance between coupled autosoli-
tons and the closer they resemble two separate autosolitons.

Since the variable k defined by expression (7) has a singu-
larity at a = 0, the system of equations (8) is convenient for
describing only those localised stationary structures for
which the amplitude a is finite when ¢ is finite (we demon-
strated above that such structures are described by even
functions of the variable &). However, if this condition is
not satisfied, it is more convenient to use a system of four
first-order differential equations for the variables

dAf dA’ dA
= |A)? =|— =A A*
= [A]7, acl T3 ae + 4z
1 dA” dA (12
=-(A——-A"—).
T < aé d&f)
This system follows from Eqn (6) and is of the form
dx dx
(ngma, Tg:—“$3—$4f(951),
d q (13)
x x
d—t;: —20x; + 25, d—g: =2z f(x1) .

It follows from the definitions given by the set of expressions
(12) that the trajectories of the system of equations (13) of
interest to us lie on a three-dimensional hypersurface:

ZZJIZO, .15220

(14)

The vector field described by the system of equations (13)
is invariant under the transformation

4x 1 —:L’%—xi =0,

(15)

The system (13) has one fixed point L, which corresponds to
zero laser radiation intensity:

(és X1, Lo, X3, 934) - (_és X1, Tpy — I3, — x4) .

.1‘1:.7)2:.%‘3:1'4:0.

Localised stationary structures of Eqn (4) correspond to
homoclinic trajectories of the system of equations (13),
which pass—on increase in ¢—from the fixed point L
back to this point, and which satisfy the set of relation-
ships (14). Among these trajectories there are such for
which x; does not vanish for finite values of & We investi-
gated them already with the aid of the system of
equations (8) so that now we shall consider those homoclinic
trajectories which contain a point Z with z; = 0, that does
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not coincide with the fixed point L. It follows from the set of
expressions (14) that the point Z lies on the xz, axis
(.’El = I3 :.’E4:0, o) 20)

Let us consider a segment I', of a homoclinic trajectory I
which originates from the fixed point L and terminates at the
point Z on the z, axis. Transformation (15) transfers I'y to a
different segment I' _ of a trajectory corresponding to the sys-
tem of equations (13) and this segment forms, together with
I',, a complete homoclinic trajectory I'. Consequently, the
point Z is the only point on the homoclinic trajectory which
lies on the x, axis and is characterised by z, # 0. This point
divides the trajectory into two symmetric parts which are
converted into one another by transformation (15). We shall
select the point Z to be the origin for measuring the variables
£. Then, a homoclinic trajectory which contains this point and
is described by the system of equations (13) corresponds to a
pair of stationary localised structures of Eqn (4) described by
odd functions A(¢) = —A(— &). One of these structures is
converted into the other one by the substitution A — —A.
It follows that any odd function A(¢) which describes a sta-
tionary localised structure of Eqn (4) has just one root
A(0) = 0.

The simplest odd stationary localised structures are of
‘two-soliton’ type and they are formed by two coupled
antiphase autosolitons (Fig. 3). They can be described as fol-
lows within the framework of the system of equations (8). A
one-dimensional unstable manifold of the fixed point L_ is
transferred to the vicinity of the point L and hence to infin-
ity, where the point Z is located. The second half of the
trajectory is obtained from the first by substitution (9) and
is identical with a one-dimensional stable manifold of the
fixed point L, . It arrives from infinity reaching the vicinity
of the point L_ and then passes to the point L in the limit
¢ — 4o0. There is also a denumerably infinite number of odd
‘two-soliton’ solutions with different distances between
coupled autosolitons, as found earlier for even ‘two-soliton’
solutions when the intensity I does not vanish for finite
values of &. The larger the distance between the coupled auto-
solitons, the closer the parameter « corresponding to a
‘two-soliton’ solution to o, which corresponds to a single
autosoliton.

It follows that finding localised stationary structures
which appear in a wide-aperture laser with a saturable
absorber reduces, in the case of one spatial variable, to iden-
tification of heteroclinic (or homoclinic) trajectories of a
system of ordinary differential equations. Stationary local-
ised structures may be of two types. Classification of
‘multipass’ and ‘multirevolution’ heteroclinic (homoclinic)
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Figure 3. Stationary solution of Eqn (4) in the form of two antiphase
coupled autosolitons described by an odd complex function
A(¢) = —A(— &) with a single root & = 0 of the equation A(¢) = 0.

trajectories provides the basis for classifying stationary solu-
tions in the form of single and coupled autosolitons. There is
an infinite number of solutions predicting a single autosoliton
with a variety of widths. For given laser parameters, the exis-
tence of a single autosoliton solution corresponding to a
‘single-pass’ heteroclinic trajectory implies the existence of
a denumerably infinite set of stationary states formed by
two coupled autosolitons and of corresponding ‘two-pass’
heteroclinic (homoclinic) trajectories. Such ‘two-soliton’ sol-
utions can be the two types described above, such that various
solutions of one type differ in respect of the distance between
coupled autosolitons, which is governed by the number of rev-
olutions of a trajectory near fixed points of a system of
ordinary differential equations.
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