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Numerical Study of Dynamical Regimes
in a Monolithic Passively Mode-Locked

Semiconductor Laser
Andrei G. Vladimirov, Alexander S. Pimenov, and Dmitrii Rachinskii

Abstract—Bifurcation mechanisms of the development and
break up of different operation regimes in a passively mode-locked
monolithic semiconductor laser are studied by solving numerically
partial differential equations for amplitudes of two counterpropa-
gating waves and carrier densities in gain and absorber sections. It
is shown that mode-locking regimes with different repetition rates
can be multistable for a wide range of laser parameters and that
the harmonic mode-locking regime with two counterpropagating
pulses in the cavity can exhibit a period-doubling bifurcation
leading to different amplitudes and separations of the pulses.
The effect of linewidth enhancement factors in gain and absorber
sections on the laser dynamics is discussed.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords..

I. INTRODUCTION

P ASSIVELY mode-locked semiconductor lasers emit short
optical pulses with high repetition rates suitable for ap-

plication in telecommunication networks [1]. The use of these
pulses in modern technology implies several important limi-
tations on their characteristics, such as pulse width, repetition
frequency, amplitude noise, and timing jitter [2]. In particular,
elimination of pulse amplitude noise, which appears as a re-
sult of the so-called -switching instability, is an important
problem related to the technological application of mode-locked
monolithic semiconductor lasers in telecommunication tech-
nology [3], [4]. This oscillatory instability responsible for the
low-frequency (a few GHz) modulation of the amplitude of
mode-locked pulses and related to the slow recovery of the
intracavity gain medium can be significantly suppressed in
quantum-dot lasers [5], [6]. Apart from -switching instability,
there are other bifurcation mechanisms of the break-up of the
fundamental mode-locking regime. These mechanisms can
lead to the development of various dynamical regimes, such as
harmonic mode-locking with a higher repetition rate than that
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of the fundamental mode-locking regime, irregular pulsations,
and a CW operation. Numerical study of mode-locking in
semiconductor lasers is in the focus of many papers (see, for
example, the review paper [7] and references therein). However,
only a few of them investigate bifurcation mechanisms of stabi-
lization and destabilization of various regimes in mode-locked
lasers. In particular, in [4], [8]–[12], nonlinear bifurcations in
a passively mode-locked laser were studied with the help of
the recently proposed ring laser model which is based on a
system of delay differential equations (DDEs) and assumes the
unidirectional operation approximation.

In this paper, we abandon the ring approximation and use a
modification of the traveling wave model [12]–[14] describing
the evolution of two counterpropagating waves in a linear laser.
On the basis of the results of the work in [10], [15]–[17], an ef-
ficient numerical scheme for the solution of the traveling wave
equations is constructed. This numerical scheme is used to de-
scribe typical bifurcation sequences that take place with the in-
crease of the injection current in the gain section. We show the
existence of large bistability and multistability domains and hys-
teresis between different dynamical regimes in a mode-locked
laser. Moreover, under certain conditions, a period-doubling bi-
furcation of the harmonic mode-locking regime is predicted.
This bifurcation leads to the coexistence of two counterpropa-
gating pulses with different amplitudes and different time sepa-
rations in the laser cavity. Finally, we investigate the effect of the
linewidth enhancement factors in the gain and absorber sections
on the laser dynamics and demonstrate that the amplitude-phase
coupling introduced by these factors can lead to a mode-locking
regime with a quasi-periodic laser intensity.

II. MODEL EQUATIONS

Let us consider a model of a monolithic semiconductor laser
consisting of four sections (see Fig. 1): reverse-biased saturable
absorber , forward-biased gain section

, phase tuning section ,
which is used to adjust repetition frequency of mode-locked
pulses, and a spectral filtering element [2], [3]. Here, , ,
and denote the length of the gain, absorber, and passive sec-
tions, respectively. Normalized equations describing temporal
and spatial evolution of the amplitudes of two counterpropa-
gating waves and the carrier density in the gain and ab-
sorber sections [18] can be written in the form

(1)
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Fig. 1. Schematic representation of a model of monolithic semiconductor laser.
The laser sections are split into segments of equal optical length ��. SF: thin
spectral filtering section. � : amplitudes of two counterpropagating waves.

(2)

where , which has the dimension of time, is the
rescaled coordinate along the cavity axis and is the group
velocity of light which we assumed to be the same in both
laser sections. In (1) and (2), the variables are dimension-
less and the normalized variable has the
dimension of inverse time. Here is the excess of the
carrier density over transparency level, is the differential
gain (loss) coefficient in the amplifying (absorbing) section,
and is the optical confinement factor. The relaxation rate
describes linear internal losses in the semiconductor material,

is the so-called linewidth enhancement factor, is the carrier
relaxation rate, and is the unsaturated
gain parameter, where is the injection current density (
for the absorber section), is the electron charge, and is the
active layer thickness. is positive in the gain section (am-
plification) and negative in the absorber section (absorption).
The electric field envelope is rescaled in such a way that

ps in the gain section and in the
absorber section. Here and below, the subscripts and are
added to distinguish between the parameters of the gain and
the absorber sections, respectively. In our calculations, we
use the following fixed values for the parameters of the laser
sections: ns, ps, ps,

ps, ps, ps,
ps, . We note that the investigation

of the effect of spontaneous emission on the laser dynamics
lies beyond the scope of this paper. Some results concerning
the influence of spontaneous emission noise on the stability of
mode-locked regimes can be found in [10], [19], and [20].

Boundary conditions at the left laser facet can be
written in the form

(3)

where describes the reflectivity of the left laser facet.
Industrial samples of monolithic mode-locked lasers com-

prise special Bragg reflection sections that act as a spectral filter
for the laser radiation. In the case when such a section is absent,
the spectral filtering results from the finiteness of the spectral
bandwidth of the gain section. Here, we assume that a thin spec-
tral filtering section is located near the right laser facet. Then,

the effect of this section on the laser radiation can be expressed
by the boundary condition

(4)

where and describe the reflectivity of the right laser facet
and the form of the spectral filtering profile, and is the total
cavity length. In accordance with [8] and [10], we use the
Lorentzian shape of the spectral filtering
with the bandwidth . In our calculations, and

ps.

III. NUMERICAL METHOD

In order to solve (1)–(4), we apply a numerical scheme sim-
ilar to that used in [16] to study active mode-locking in semi-
conductor lasers. First, we divide each of the laser sections into
a number of segments of equal optical length , where

is the time required for light to pass through this segment
(see Fig. 1). Let the total number of segments be . In each
segment of the gain and absorber sections, we
integrate (1) for the counterpropagating waves along the char-
acteristics. The solutions are given by

(5)

(6)

For , the two integrals in (5) and (6) can be approxi-
mated to the order of by a single time-dependent integral

Using this approximation, we can rewrite the transformations
(5) and (6) in the form

(7)

(8)
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In order to obtain the equation for , we integrate (2) over
the interval and arrive at

(9)

where is the cumulative unsaturated gain (loss)
associated with the segment of the gain (ab-
sorber) section. The integrals in (9) can be approximated as fol-
lows. Multiplying (1) by the complex conjugate amplitudes
and considering the real part of the resulting equations, we ob-
tain

Integration of these equations along the characteristics leads to

(10)

(11)

where at the integrals on the right-hand side of (10) and
(11) can be up to the order approximated by the two inte-
grals from the right-hand side of (9). Therefore, using relations
(7) and (8) together with (10) and (11) and the trapezoidal ap-
proximation to the integrals

and assuming that , we obtain

(12)

The system of coupled differential-algebraic equations (7),
(8), and (12) approximates the evolution of the electric field
envelopes and the carrier density in the gain and absorber sec-
tions. To solve these equations, we used the time discretization

, consistent with the space discretization, and an im-
plicit numerical scheme for the differential (12). To describe the
transformation of the amplitudes in the passive section, the
algebraic relations (7) and (8) with were used.

Fig. 2. Numerical bifurcation diagram illustrating different operation regimes
of a monolithic mode-locked laser. � � � � �.

IV. BIFURCATION DIAGRAMS

Fig. 2 presents a bifurcation diagram, which was obtained
by the numerical solution of (7), (8), and (12) with boundary
conditions (3) and (4). In this figure, local maxima of the in-
tensity time traces of the electric field amplitude
at the right laser facet are plotted against the value of the con-
trol parameter corresponding to the unsaturated gain in
the gain section. The unsaturated loss in the absorber sec-
tion is fixed for Fig. 2. The sequences of bifurcations shown
in these plots are in good qualitative agreement with the re-
sults obtained using the DDE mode-locking model [10]. For
small injection currents (small ), the mode-locking regime
is unstable with respect to the -switching instability. In the
unstable range, the amplitude of mode-locked pulses is slowly
modulated with the -switching frequency GHz (see
Fig. 3). With the increase of the gain current, the fundamental
mode-locking regime becomes stable. This regime corresponds
to a sequence of short pulses with the repetition period close to
the cavity round-trip time [see Fig. 4(a)].

With further increase of the injection current in the gain sec-
tion, the fundamental mode-locking branch disappears after a
saddle-node bifurcation and a sudden jump happens to a har-
monic mode-locking regime with approximately twice higher
repetition rate [see Fig. 4(b)]. This regime corresponds to a pair
of mode-locked pulses counter-propagating in the cavity. This
type of harmonic mode-locking regime was observed experi-
mentally in a passively mode-locked monolithic semiconductor
laser [12]. Within the framework of the DDE model based on the
ring cavity approximation, the two pulses are always equidis-
tant and have equal amplitudes [10]. As opposed to this approx-
imation, in a linear laser, the branch of harmonic mode-locked
pulses can exhibit the period doubling bifurcation leading to dif-
ferent pulse amplitudes and time separations [see Figs. 2 and
4(b)]. This bifurcation has a simple intuitive interpretation. Un-
like pulses propagating unidirectionally in a ring laser, the two
counterpropagating pulses in a linear cavity must collide in the
course of their propagation. If the pulses emitted by the laser are
identical and equally spaced in time, the collision takes place in
the (optical) midpoint of the cavity. For the parameter values
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Fig. 3. �-switched mode-locking regime. (a) Time trace of the electric field
intensity �� ��� �� � . (b) Optical spectrum corresponding to the time trace
shown in panel (a). � � ����� . Other parameters are the same as in Fig. 2.

Fig. 4. Time traces of the laser intensity �� ��� �� � . (a) � 	� � ����,
the fundamental mode-locking regime. (b) � � ���� , a harmonic mode-
locking regime with two pulses in the cavity having different peak power and
time separations. (c) � � ���� , a harmonic regime with three pulses in the
cavity. Other parameters are the same as in Fig. 2.

used in our calculations this point is located inside the ampli-
fying medium, not far away from the right end of the gain sec-
tion. Hence, in this case the collision of two pulses should result
in a strong local saturation in this section which is unfavorable
for laser generation. On the other hand, for the regime shown in
Fig. 4(b) with slightly different distances between the two con-
secutive pulses, only every second collision takes place in the
gain section, while the other collisions occur in the phase tuning
section. Therefore, the period-doubling bifurcation shown in
Fig. 2 leads to a reduction of the gain section saturation. One

Fig. 5. Optical spectra corresponding to the regimes shown in Fig. 2. (a)� �
����� , the fundamental mode-locking regime. (b) � � ���� , a harmonic
mode-locking regime with two pulses in the cavity having different peak power
and time separations; (c) � � ���� , a harmonic regime with three pulses in
the cavity. Parameters are the same as in Fig. 2.

could expect that similar bifurcation is responsible for assym-
metry of pulse energies in a colliding-pulse mode-locked laser
with an assymmetric design [22].

Harmonic mode-locked regimes with two pulses having
different amplitudes and separations were recently observed
experimentally in a monolithic quantum-dot laser [23]. How-
ever, since the device studied in this paper had only two
sections, gain and absorber, the mechanism described above
can hardly be used for interpretation of the observed differ-
ences in pulse amplitude and spacings. According to [27], a
period-doubling bifurcation of the harmonic mode-locking
regime in a quantum-dot laser can be explained in the frame-
work of the ring cavity DDE model by taking into consideration
carrier exchange processes between quantum dots and wetting
layer.

Optical spectra of the fundamental and harmonic
mode-locking regimes are presented in [AUTHOR: PLEASE
CITE FIGS. 5 AND 6 PRIOR TO FIG. 7.—ED.] Fig. 7.
For the harmonic mode-locking regime with pulses
coexisting in the cavity, only the modes with the numbers

dominate in the spectrum [see
Fig. 7(c)]. Due to the period-doubling bifurcation leading to
different pulse amplitudes and separations, the suppression of
the modes with the numbers is not so
pronounced for the mode-locking regime with shown
in Fig. 7(b). However, as one could expect, in this regime the
modes with the numbers , have the largest ampli-
tudes in the spectrum. In [24], the suppression of modes with
odd numbers was reported in a colliding-pulse mode-locked
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Fig. 6. Same as Fig. 2, but with nonzero linewidth enhancement factors, � �

� and � � �.

Fig. 7. Mode-locking pulse peak intensities for the varied linewidth enhance-
ment factor � and fixed � . (a) � � �. (b) � � ���. � � ���� .

laser. We note that, according to the bifurcation diagram shown
in Fig. 2, there exist wide ranges in the parameter space where
the model equations exhibit bistability and even tristability
between different types of mode-locking regimes. Similar
multistability was observed experimentally in a passively
mode-locked InGaAsP laser with an external mirror [21].

The numerical results presented in Figs. 2, 3, 4, and 7 have
been obtained with the zero linewidth enhancement factors both
in the gain and the absorber sections, . Fig. 6 presents
a diagram similar to that shown in Fig. 2, but corresponds
to nonzero linewidth enhancement factors in both gain and
absorber sections. It is seen from the figure that the inclusion
of -factors leads to a substantial degradation of mode-locking
regimes. In particular, harmonic mode-locking regimes with
high repetition rates are transformed into chaotic pulsations for
sufficiently large . This can explain why it is quite difficult

Fig. 8. Laser intensity time traces for different mode-locking regimes shown
in Fig. 7. (a) Fundamental mode-locking regime for � � � � �. (b) Quasi-
periodic mode-locking regime with a satellite pulse behind the main pulse for
� � � � ���. Other parameters are the same as in Fig. 7.

to observe harmonic mode-locking regimes in 40-GHz devices
studied in [3]. Such regimes can be more easily achieved in
longer monolithic devices, see, e.g., [23]. This is in agreement
with the results of [11] where it was shown that increasing
the laser cavity length favors the appearance of harmonic
mode-locking.

Fig. 7 presents diagrams similar to those shown in Figs. 2
and 6 but obtained by using the linewidth enhancement factor

in the gain section as the bifurcation parameter. The effect of
changing the linewidth enhancement factor in the gain sec-
tion on the fundamental mode-locking regime is illustrated by
Fig. 7 obtained for a fixed value of the -factor of the absorber
section, which is and for Fig. 7(a) and (b),
respectively. If follows from these figures that the maximal am-
plitude of mode-locked pulses is achieved when -factors of
the gain and absorber sections are approximately equal, i.e.,

, which is in agreement with the result obtained with
the DDE model describing a ring laser with unidirectional lasing
[10]. Further increase of leads to a gradual decrease of the
amplitude of the mode-locked pulse and hence to a degradation
of the mode-locking regime.

Intensity time traces and corresponding optical spectra of
mode-locked regimes of (1) and (2) with nonzero linewidth
enhancement factors are shown in Figs. 8 and 9. It is seen that
the self-phase modulation introduced by the -factor results
in asymmetry of the emission spectrum. Similarly to the re-
sults of [24] this spectrum has steeper red edge. According to
Fig. 7(b), at some critical value of the linewidth enhancement
factor a sharp transition to a mode-locking regime with an
additional small “satellite” pulse following the main pulse
takes place (see Fig. 8). The amplitudes of both the pulses
are slightly modulated in time, which implies that the regime
shown in Fig. 8(b) corresponds to the laser intensity changing
quasi-periodically in time rather than periodically. This is
confirmed by the picture of the optical spectrum of this regime
shown in the right panel of Fig. 9(b), where each of the laser
modes is split into two lines with the frequency difference
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Fig. 9. Optical spectra for different mode-locking regimes shown in Fig. 8.
(a) Fundamental mode-locking regime for � � � � �. (b) Quasi-periodic
mode-locking regime with a satellite pulse behind the main pulse for � �

� � ���. Other parameters are the same as in Fig. 7.

GHz, i.e., approximately seven times smaller than
the intermode frequency spacing GHz. Regimes
with additional small satellite pulses behind the main pulse are
known to appear in external cavity passively (see, e.g, [25]) and
actively mode-locked lasers [20], [26]. In [20], the asymmetric
pulse shape and satellite pulse formation was explained by
the dynamic detuning effect in active mode-locking. Here
we demonstrate that a sharp transition to a similar type of
regimes may appear due to the presence of -factor responsible
for strong carrier density dependency of the refractive index.
Finally, we note that for the regime shown in Fig. 9(b) the
amplitudes of the main and the satellite pulses oscillate with
a very small amplitude near certain mean values. In a similar
regime reported in [12], the amplitudes of the two pulses are
strongly oscillating: the main pulse is transformed periodically
into a satellite one and vice versa. Therefore, in the latter
regime, a satellite pulse can exist both at the leading and the
trailing edge of the main pulse.

V. CONCLUSION

To study dynamical instabilities in a passively mode-locked
semiconductor laser, we have applied an efficient algorithm for
numerical analysis of the traveling wave equations describing
the space–time evolution of counterpropagating waves in this
laser. The results of the numerical implementation of this al-
gorithm appear to be in good qualitative agreement with those
obtained with the DDE model describing unidirectional oper-
ation in a ring laser. In particular, multistability between the
fundamental and different harmonic mode-locking regimes has
been demonstrated for wide parameter ranges. However, numer-
ical simulations revealed also certain differences between the
two models. We have shown that, unlike the ring cavity DDE
model, the one based on the traveling wave equations for coun-
terpropagating waves in a linear cavity can exhibit a period dou-

bling bifurcation of the harmonic mode-locking regime with
two pulses in the cavity. This bifurcation, resulting in different
amplitudes and separations of the two pulses, is related to the
increased saturation of the gain section at the point where the
counterpropagating pulses collide. We have studied the effect
of the -factors in the gain and absorber sections on the dy-
namics of the mode-locked laser and shown that the maximal
intensity of mode-locked pulses is achieved when the -factors
in the two sections are approximately equal. A sharp transition
to a quasi-periodic mode-locking regime with additional small
satellite pulse following the main one is described.
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