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We study the properties of 2D cavity solitons in a coherently driven optical resonator subjected to a

delayed feedback. The delay is found to induce a spontaneous motion of a single cavity soliton that is

stationary and stable otherwise. This behavior occurs when the product of the delay time and the feedback

strength exceeds some critical value. We derive an analytical formula for the speed of a moving soliton.

Numerical results are in good agreement with analytical predictions.
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Cavity solitons are transverse optical localized struc-
tures which belong to the class of dissipative structures
found far from equilibrium [1]. Recent significant advan-
ces in their study are often due to research in nonlinear
optical settings, where cavity solitons have potential appli-
cations as bits for information storage and processing. The
interest in this field of research was motivated further by
experimental observation of cavity solitons in driven non-
linear planar cavities [2–9]. The conditions under which
localized structures and periodic patterns appear are
closely related. Typically, when the modulational or
Turing instability becomes subcritical, there exists a pin-
ning domain where localized structures are stable. This
subject is relatively well understood (see the latest over-
views in [10]). In 1D settings, a transition from a stationary
to oscillating or bouncing localized structure was observed
experimentally and explained analytically for liquid crystal
light valve system without delayed feedback [6]. So far,
however, the investigation of the effect of the delayed
feedback on the dynamics of spatially extended systems
is a relatively new area of research [11]. Recently, a model
for the study of cavity solitons in broad area vertical-cavity
surface-emitting lasers subjected to a frequency-selective
feedback was proposed in [12].

In this Letter, we study theoretically the influence of the
delayed feedback on the properties of 2D cavity solitons.
We consider a passive cavity filled by a two-level medium
and driven by a coherent radiation beam. We focus on the
regime of nascent optical bistability where the spatiotem-
poral dynamics can be described by the Swift-Hohenberg
equation with time delay. We show that when the product
of the delay time and the feedback strength exceeds some
threshold, a single cavity soliton exhibits a spontaneous
motion in an arbitrarily chosen direction. We derived an
analytical formula for the speed of the cavity soliton. The
generality of our analysis suggests that the instability
leading to the spontaneous motion of cavity solitons is an
universal phenomenon which does not depend on a specific
type of model equation. Therefore, our conclusions should

be applicable to any spatially extended system with a
delay. Finally, we show that when two cavity solitons are
bound together they, in addition to a forward motion,
exhibit a rotation around the point corresponding to the
‘‘center of mass’’ of the two solitons.
Let us consider a passive cavity filled with a nonlinear

media and driven coherently by an external injected field.
The delayed feedback is introduced by an external reflector
located at a large distance from the right facet of the cavity
as shown schematically in Fig. 1. The delay time �0 ¼
2L=c corresponds to the round-trip time in the external
cavity, where c is the speed of light and L is the optical path
length. The modeling of the delayed feedback is performed
in the same way as in the Rosanov [13] and Lang-
Kobayashi models [14]. We assume that the laser operates
in a single-longitudinal mode, the diffraction in the exter-
nal cavity is fully compensated, and the feedback field is
sufficiently attenuated, so that it can be modeled by a
single delay term with a spatially homogeneous coeffi-
cient. Under these approximations, and close to the critical
point associated with nascent bistability, the characteristic
time scale is inversely proportional to the deviation from
the criticality. The real distributed order parameter X that
describes the deviation of the electric field envelope from
its stationary value at the onset of bistability can be shown
to obey the following delayed partial differential equation:

FIG. 1. Schematic setup of a passive cavity subject to delayed
optical feedback. NLM—nonlinear medium. A lens in a combi-
nation with a reversing prism is used to compensate the diffrac-
tion in the external cavity.
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which we shall call the delayed Swift-Hohenberg equation
(DSHE). Here (x, y) are the transverse coordinates and
r2 ¼ @2xx þ @2yy is the transverse Laplacian. The parameter

Y describes the deviation of the injection field amplitude
from its critical value,C is the cooperativity parameter, � is
the normalized delay time, � is the detuning parameter, and
� is the feedback rate. Note that the product �� is dimen-
sionless and does not depend on the choice of the time
scale in Eq. (1). This product is proportional to the reflec-
tivity of the external mirror times the ratio of the external
and internal cavity lengths [15]. Taking into account the
phase difference between emitted and reinjected light, we
obtain �� / rðL=lÞ cos2L�0

, where �0 is the wavelength of

the light. In Eq. (1) we subtract the cavity field from its
delayed value Xðx; y; t� �Þ, so that when we put � ¼ 0we
recover the homogeneous steady states of the system,
which are given by Y ¼ XsðX2

s � CÞ.
In the absence of the delay (i.e., at � ¼ 0) Eq. (1) is the

Swift-Hohenberg equation (SHE) [16]. It is one of the most
studied partial differential equation and constitutes a para-
digmatic evolution equation that exhibits not only periodic
patterns but also localized structures. Stable stationary
localized structures are homoclinic solutions of Eq. (1)
with @X=@t ¼ 0; they exist in the subcritical domain where
a uniform solution and a branch of spatially periodic
solution are both linearly stable [17,18]. An important
property of the SHE is that it has a gradient structure,
i.e., admits a potential or a Lyapunov functional, and any
perturbation evolves towards a stationary homogeneous or
nonhomogeneous distribution of light in the transverse
plane. The existence of a Lyapunov functional pushes the
time-evolution toward the state for which the functional
has the smallest possible value compatible with the bound-
ary conditions. However, in the presence of delay term
Xðx; y; t� �Þ the DSHE equation (1) loses the gradient
structure. Typical manifestation of this effect is shown in
Fig. 2. When the product of the delay time and the feedback
strength is small, numerical simulations of Eq. (1) with
periodic boundary conditions show that localized struc-
tures are stable and stationary; i.e., �0:98 & �� � 0.
However, for a sufficiently large product of the delay
time and the feedback strength (�� & �0:98), a cavity
soliton exhibits a motion with a constant velocity as shown
in Fig. 2. Numerical simulations of Eq. (1) have been
performed using a classical spatial finite-difference
method with forward temporal Euler integration. The ini-
tial condition corresponded to the homogeneous steady
state perturbed at one grid point (the magnitude of the
perturbation was �X ¼ 5).

Let us determine the instability threshold leading to the
appearance of a moving soliton solution. Consider a circu-
larly symmetric stationary localized solution X ¼ u0ðrÞ,

r ¼ ð x y ÞT of the SHE; i.e., it satisfies Eq. (1) with � ¼
0. Since this solution is independent of time it remains a
stationary localized solution of Eq. (1) for all �. Linear
stability of this solution can be analyzed by substituting
X ¼ u0ðrÞ þ c ðrÞe�tþi!t into Eq. (1) and collecting the
linear in c terms:

Lc ¼ ½�þ i!� �ðe����i!� � 1Þ�c ; (2)

where the self-adjoint linear operator L ¼ C� 3X2
0 �

4�r2 � ð4=3Þr4 describes the stability of the solution X0

within the framework of the SHE. Notice that any eigen-
function c � of the operator L solves Eq. (2) which then

transforms to

� ¼ �þ i!� �ðe����i!� � 1Þ; (3)

where � is the eigenvalue of L corresponding to the
eigenfunction c � (Lc � ¼ �c �). Thus, the solution

will be stable at a nonzero� if �ð�Þ determined by relation
(3) remains negative as � runs the spectrum of L.
Bifurcation point corresponds to �ð�Þ vanishing at some

FIG. 2. Examples of 2D moving localized structures in time t
obtained by numerical simulation of the model Eq. (1). with Y ¼
0:25, C ¼ 1, � ¼ �0:4, �� ¼ �0:98. These parameter values
correspond, e.g., to the reflectivity of the external mirror r ¼
0:03, the laser cavity length l ¼ 100 �m, and the external cavity
length L * 3 cm [15]. Light amplitude maxima are plain white.
The integration mesh is 96� 96 and the time step is 0.0025.
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�. As the soliton is stable at � ¼ 0, we have � � 0. Note
that due to the translational symmetry operator L has two
zero eigenvalues corresponding to the translational neutral
modes given by the two components of the vector
ðc 0xc 0yÞT ¼ ru0; they satisfy Lc 0x;0y ¼ 0.

One can see from Eq. (3) that with the increase of the
feedback strength j�j the loss of stability of the solution
X ¼ u0ðrÞ of Eq. (1) happens at � ¼ �1=� and this cor-
responds to � ¼ 0, ! ¼ 0. At this point the eigenvalue
�þ i! ¼ 0 becomes fourfold degenerate with the geomet-
rical multiplicity 2. The corresponding eigenfunctions are
the neutral modes c 0x and c 0y. At the bifurcation point

each of these two neutral modes corresponds to a 2� 2
Jordan block.

In order to calculate analytically the soliton velocity
near the bifurcation point � ¼ �1=�, we assume that
near this point up to the leading terms in the small velocity
v ¼ jvj the cavity soliton preserves its form during
the motion. Thus, we make the ansatz Xðr; tÞ ¼ u0ðRÞ,
where R ¼ r� vt. Taylor expansion near v ¼ 0 gives
uðR � v�Þ ¼ u0 þ v�u1 þ ðv�Þ2u2=2 þ ðv�Þ3u3=6 þ
ðv�Þ4u4=24 þ Oðv5Þ, with u0 ¼ u0ðRÞ, upðRÞ ¼ v�1ðv �
rup�1ðRÞÞ, p ¼ 1, 2, 3, 4. By plugging this into Eq. (1),

multiplying both sides by u1, and integrating from �1 to
þ1 we obtain

�ð1þ��Þ
Z þ1

�1
u21dR¼��v2�3

6

Z þ1

�1
u1u3dRþOðv5Þ

(4)

[we used that
Rþ1
�1 u1ða1r2u0 þ a2r4upÞdR ¼ 0 for p ¼

0, 2, 4, which follows from the symmetry property
upð�RÞ ¼ ð�1ÞpupðRÞ]. In addition, using integration

by parts, the integral
Rþ1
�1 u1u3dR in the right-hand side of

(4) can be replaced by �Rþ1
�1 u22dR. From Eq. (4) we see

that when approaching the bifurcation point v ! 0, we
should have 1þ �� ¼ Oðv2Þ. Because of the rotational
symmetry of the model equation, the direction of the
soliton velocity v is arbitrary. Therefore, the instability
leading to the emergence of a moving soliton can be
referred to as a circle pitchfork bifurcation [19]. Let us
now introduce a small deviation from the bifurcation point,
i.e., � ¼ ���1 � �, with � � 1. Substituting this relation
into Eq. (4) and neglecting second order terms �2, we
obtain

v ¼ �Q

ffiffiffiffiffiffi
6�

�

s
with Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRþ1
�1 u21dRRþ1
�1 u22dR

s
: (5)

The constant Q has been evaluated numerically. For � ¼
�0:45, and�� ¼ �1:025 (� ¼ 0:025), we haveQ � 1:33.
To compare with a direct 2D numerical simulations, we
first calculate the speed given by Eq. (5) and that of the
single 2D cavity soliton obtained by a direct numerical
simulation. This is displayed in Fig. 3. We can see that near
the bifurcation point �� ¼ �1 the agreement is very good,

while far from this point the numerical velocity becomes
smaller than that obtained by numerical simulations. Next,
we compare the threshold associated with the motion of the
cavity soliton. Analytically we have �th ¼ �1=� numeri-

FIG. 3. Velocity of a single moving localized structures as a
function of the delayed feedback strength (a). Same figure in
logarithmic scale (b). Solid line indicates the velocity obtained
analytically. The circles indicate the corresponding velocity
obtained by numerical simulations. Same parameters as in Fig. 2.

FIG. 4. Examples of 2D moving and rotating localized struc-
tures obtained by numerical simulation of Eq. (1). Parameters are
the same as in Fig. 2 except (a) �� ¼ �0:95 (b) �� ¼ �0:9.
Light amplitude maxima are plain white and the mesh integra-
tion is 96� 96. The time step is 0.0025.
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cally we obtain �num ¼ �0:98=�. We also see a good
agreement between the two thresholds.

Note that the uniform motion of cavity solitons can
occur in systems devoid of external delay feedback. For
instance, the motion could be induced by the vorticity [20],
by finite relaxation rates [21–23], by phase gradient [24],
so-called Ising-Bloch transition [25,26], by the walk-off
[27], or by the symmetry breaking due to off-axis feedback
[28]. All these effects are absent in the model (1). In our
model the presence of an external delay feedback creates a
robust and controllable mechanism for the soliton motility.

When two cavity solitons are bound together, the axial
symmetry of the intensity distribution is broken. As a result
of this spontaneous symmetry breaking, in addition to a
forward motion they exhibit a rotation as shown in Fig. 4.
The analytical investigation of moving and rotating
multiple-peak cavity solitons and clusters of them will be
reported elsewhere.

To conclude, we have shown that the Swift-Hohenberg
equation with time delay supports moving localized struc-
tures above a certain threshold which depends only on the
delay parameters. More precisely, the threshold depends on
the product of the delay time and the feedback strength. We
have derived an analytical formula for the speed of a
single-peak localized structure. The analytical results are
in good agreement with numerical simulations and can be
easily extended to describe similar instability in other
spatially extended systems.
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