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We show that a weak transverse spatial modulation in �2+1� nonlinear Schrödinger-type equation can result
in nontrivial dynamics of a radially symmetric soliton. We provide examples of chaotic soliton motion in
periodic media both for conservative and dissipative cases. We show that complex dynamics can persist even
for soliton sizes greater than the modulation period.
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Equations of nonlinear Schrödinger type play a central
role in understanding various phenomena in plasma physics,
hydrodynamics, Bose-Einstein condensation, and nonlinear
optics. For example, they describe pulse propagation in non-
linear fibers and self-focusing of paraxial beams of light in a
homogeneous Kerr medium �1�. In the case of purely cubic
nonlinearity, �2+1�-dimensional nonlinear Schrödinger
�NLS� equation possesses a localized solution, “the Townes
mode” �2�. However, this solution is always unstable: small
perturbations lead to a collapse, an unbounded growth of the
field amplitude within a finite time. A suppression of the
collapse can be achieved by various means �3,4�: thus, re-
placing the cubic nonlinearity with a saturable one is an ef-
ficient way of the collapse arrest that leads to a stable self-
collimated propagation of a light beam. In a spatially
homogeneous medium the paraxial beam propagates with a
constant velocity along a straight line. However, because of
recent developments in fabrication of microstructured wave-
guiding materials �5�, there is a growing interest to the study
of nonlinear beam propagation in various inhomogeneous
settings �1,4,6–9�.

In this Rapid Communication we study mobility proper-
ties of stable solitons of conservative and dissipative NLS-
type equations in the situation where the refractive index of
the medium is subjected to a weak periodic modulations in
two transverse directions. Using multiscale method, we de-
rive equations which describe the soliton as a Newtonian
particle in the external potential created by the refractive
index profile. Surprisingly, the soliton motion equations re-
main Hamiltonian even in the case of dissipative nonlinear-
ity; as we show, the effect is a consequence of the Galilean
symmetry of the NLS-type equations.

The soliton-particle analogy is known to be useful for the
analysis of soliton interaction �10–14�. However, in the stud-
ies of soliton dynamics in spatially modulated media the ef-
fective particle approach was mostly applied in nearly inte-
grable one-dimensional settings �15–17�. Our method is free
of these restrictions; furthermore, the results remain valid
independently of the ratio of the soliton transverse size to the
modulation period, even when the soliton is quite wide.

We show that similar to a particle in a two-dimensional
potential, the soliton in the medium with a transversely
modulated refractive index can move both in a regular and
chaotic manner, and the choice between these two types of
motion is foremost determined by the geometry of the refrac-
tive index profile. When the refractive index forms a rectan-

gular lattice, the effective potential is integrable, and the soli-
ton transverse motion is very close to the integrable one for
long time intervals. In this case there are two typical dynami-
cal regimes: the first corresponds to low-energy quasiperi-
odic oscillations around local maximum of the refractive in-
dex �minimum of the effective potential�, the second
corresponds to quasiperiodic oscillations superimposed on a
constant velocity drift. In the case of hexagonal lattice the
situation is drastically different. Here, with the increase of
the soliton kinetic energy the oscillations near a local maxi-
mum of refractive index become chaotic and transform into a
random walk—an unbounded transverse motion of the soli-
ton wandering chaotically between different cells of the re-
fractive index profile. Thus, our results show that even in
simple periodic media a soliton can exhibit very complicated
motion patterns.

While the results apply to any nonlinear Galilean-
invariant �2+1� equation, we focus here on the simplest ex-
ample written in the dimensionless form

�tA = i��xxA + �yyA� + Af��A�2� + i�2g�r�A , �1�

where r= �x ,y� is the radius vector in the transverse plane
and A�r , t� is the normalized complex field amplitude. Note
that when f is purely imaginary, Eq. �1� is Hamiltonian, with
the energy functional H= 1

2 ����xA�2+ ��yA�2+���A�2�
−�2g�x ,y� �A�2�dxdy, where ��� if . The conservation of en-
ergy H means that the purely imaginary f corresponds to
light propagation in a transparent medium. To ensure the
stability of the soliton, we use the saturable Kerr-type non-
linearity �3�

f��A�2� = − i�1 + �A�2�−1, �2�

typical, e.g., for photorefractive media �1�.
An important feature of Eq. �1� is that at �=0 it is invari-

ant with respect to the Galilean transformation to a moving
coordinate frame,

A�r,t� → A�r − vt,t�exp�ir · v/2 − i�v�2t/4� . �3�

It follows that for �=0 any stationary solution of Eq. �1�
coexists with a family of uniformly moving solutions param-
etrized by the velocity vector v.

The term i�2g in Eq. �1� with small � and real g�r� de-
scribes the spatial variation of the refractive index profile. If
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g�r��const, the translational and, hence, Galilean symme-
tries are broken at nonzero �, which results in a nontrivial
motion of the soliton in the �x ,y� plane.

The propagation of paraxial light beams in a dissipative
media can be described by the same equation �1�, where the
function f in the right-hand side is no longer purely imagi-
nary. In our simulations we take f real,

f��A�2� = − 1 + G�1 + �A�2/s�−1 − Q�1 + �A�2�−1, �4�
where G and Q are linear gain and, respectively, absorption
coefficients, and s�1 is the ratio of the saturation intensities
of the gain and absorber media. Equation �1� with nonlinear-
ity �4� was used to describe pattern formation in broad area
lasers with saturable absorbers �18�.

In the dissipative case, the Hamiltonian structure of the
equation is lost, while the Galilean symmetry is preserved at
�=0. We show that this results in a great similarity of the
soliton motion in the conservative and dissipative cases, in
spite of the difference between the physical mechanisms of
the soliton formation.

Let Eq. �1� at �=0 have a radially symmetric stationary
soliton A�r , t�=A0�r�ei�0t, where A0→0 exponentially fast as
r→� �we denote r= �r��. Since the equation at �=0 is sym-
metric with respect to spatial translations, the vector-function
U=�A=rA0��r� /r satisfies LU=0, where the operator
L :X� �i��−�0�+ f�E0�+E0f��E0��X+A0

2f��E0�X* yields the
linearization of the right-hand side of Eq. �1� at the soliton
solution. Here the star denotes complex conjugation, and
E0= �A0�2. Galilean symmetry of Eq. �1� implies the existence
of the vector-function Z such that LZ=U. By differentiating
formula �3� with respect to v, we find that Z=−irA0�r� /2.

Let us define the inner product of functions X and Y
as follows: �X ,Y	=��XY +X*Y*�dxdy. According to this
definition, the adjoint to L operator L† reads as
L† :X� �i��−�0�+ f�E0�+E0f��E0��X+ �A0

2f��E0��*X*. Like
L, the operator L† has a nontrivial odd solution to L†U†=0.
Due to the rotational symmetry, U†=rU†�r� /r, where U†�r�
is a scalar function. An easy computation gives �Zx ,Uy

†	
= �Zy ,Ux

†	=0 and �Zx ,Ux
†	= �Zy ,Uy

†	=���r�dxdy, where
��r�=�r

+� Im�U†�	�A0�	��d	, and Zx,y and Ux,y denote the
components of the vector-functions Z and U†.

At nonzero � we will be looking for a slowly moving
soliton solution in the form of series expansion A
= 
A0��r� � �+�A1�r� ,�t�+�2A2�r� ,�t�+ ¯ �ei�0t with r�=r
−R��t�, where R is the soliton peak position and A1,2 de-
scribe small corrections to the soliton shape. Plugging this
expansion into Eq. �1� and collecting first-order terms in �
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FIG. 1. Soliton amplitude profiles �a� and response functions
�b�. Solid lines correspond to conservative nonlinearity �2�. Dotted
lines correspond to dissipative nonlinearity �4� with G=2.11, Q
=2.0, and s=10.
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FIG. 2. Chaotic and regular soliton peak trajectories in square
�a�, �b� and hexagonal �c�–�g� lattices. Dark �light� color indicates
higher �lower� values of the refractive index. �a�, �c�, �e�–�h� corre-
spond to conservative nonlinearity �2�. �b� and �d� correspond to
dissipative nonlinearity �4� with the same parameter values as in
Fig. 1. The modulation amplitude is given by �2=0.02 in the con-
servative case and �2=0.008 in the dissipative case. Each of panels
�c� and �d� shows two trajectories: one representing a chaotic soli-
ton wandering and the other corresponding to regular oscillations
around a minimum of the effective potential. This latter trajectory is
indicated by white arrow. �e�–�g� illustrate soliton motion in lattices
with different cell size dc=4
 / �3k�. Here, k=0.5 �c�, k=1 �e�, k
=1.5, �f�, k=2 �g�. The soliton size is approximately visible in �h�.
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we find that LA1=−Ṙ ·�A0�−Ṙ ·U �the dot over R denotes
the derivative with respect to the slow time �t�. Since U
=LZ, we may take A1=−Ṙ ·Z.

Collecting the second-order terms in � we obtain LA2

=−R̈ ·Z�r��− ig�r�A0��r� � �−F�r��, with F�−r�=F�r�. The
solvability of this equation with respect to A2 requires the
orthogonality of its right-hand side to the solutions of the
homogeneous equation L†X=0. Thus, by multiplying the
right-hand side to Ux

†�r�� and Uy
†�r��, and noticing that

�F ,Ux,y
† 	=0, we find that the solvability condition implies

R̈���r�dxdy=2�g�r+R�Im�U†�r�A0�r��dxdy. Integrating
by parts gives finally the following equation for the soliton
motion:

R̈ = − �V�R�, V�R� = − 2
� g�r + R���r�dxdy

� ��r�dxdy

. �5�

Note that in the Hamiltonian case where f is purely imagi-
nary and A0 is real, we have L†�iX�= iLX, so U†= iU
= irA0��r� /r, and ��r�=−A0

2�r� /2. In the non-Hamiltonian
case these relations are no longer true, and we do not have an
explicit formula for �.

As we see, both in transparent and active-dissipative me-
dia, the transverse soliton motion is described, to the leading
order, by the Hamiltonian equation �5�. Up to the factor of
�−2� the potential is obtained by averaging the refractive
index g with a weight which depends on the soliton intensity
profile. Note that Eqs. �5� are valid for arbitrary ratio of the
soliton width to the characteristic period of the refractive
index modulation. When this ratio is small, we obtain V�R�
=−2g�R�. As the ratio grows, the averaging smooths the in-
homogeneity of the refractive index. Therefore, when the
soliton is sufficiently wide it moves, essentially, like a free
particle.

Being a Hamiltonian system with two degrees of
freedom, Eq. �5� may exhibit both regular and chaotic
dynamical regimes, depending on the shape of the potential
and on the initial conditions. In order to examine how the

transverse dynamics of the soliton depends on the
structure of the refractive index profile, we consider
square, g=−cos�kx�−cos�ky�, and hexagonal, g
=−
0�l�2 cos�k�x cos
l

3 +y sin
l
3 ��, lattices. Here k=�2
 /dc

for the square lattice and k=4
 / �3dc� for the hexagonal one,
dc is the radius of the lattice cell. By Eqs. �5�, the effective
potential that governs the soliton transverse motion is
V�x ,y�=−g�x ,y�S�k�, where the response coefficient S is de-

fined by S�k�=2 �cos�kx���r�dxdy
���r�dxdy . In the limit of a narrow soli-

ton �k→0�, we have S�k�→2, while in the opposite limit k
→� the response function decays exponentially. In Fig. 1 we
plot the graph of the amplitude profile and the response co-
efficient for the solitons whose dynamics we studied in our
numeric simulations. It is seen that S�k� is not negligibly
small, hence the effect of the inhomogeneity of the refractive
index profile on the soliton motion is not negligible, for the
soliton sizes up to roughly 2dc.

In the case of square lattice, the effective potential V
=S�k��cos�kx�+cos�ky�� is separable, therefore Eq. �5� is in-
tegrable, which means a quasiperiodic motion for the soliton.
This is confirmed by direct numerical integration of Eq. �1�.
Indeed, as we see in Figs. 2�a� and 2�b� the soliton in the
square lattice is either trapped in a lattice cell and oscillates
quasiperiodically in it, or the quasiperiodic oscillations ac-
company a constant velocity drift. The picture is the same
both for the conservative nonlinearity �2� and for the active-
dissipative case �4�. However, in the non-Hamiltonian case
we may see �Fig. 3�b�� a slow decay in the oscillation am-
plitude, due to higher order corrections neglected in our deri-
vation of Eq. �5�.

The hexagonal refractive index lattice induces a different
type of soliton motion, as the hexagonal potential is known
to create chaotic dynamics �19�. Namely, while low-energy
oscillations near the minimum of the potential remain typi-
cally quasiperiodic �by Kolmogorov-Arnold-Moser theo-
rem�, the increase of the energy leads to a random walk
between the cells. When the energy is close to the maximum
of the potential �Vmax=3S�k��, the motion can be roughly
modeled by a bouncing between the points of maximum,
with the direction of the velocity changing approximately to
180°, �150°, �120°, or �90° at each bounce; the chaotic
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FIG. 3. Time dependencies of the coordinates
x �black� and y �gray� corresponding to pairs of
the soliton trajectories of Figs. 2�a�–2�d�. Panels
�a1�, �a2�, �b1�, �b2�, �c1�, �c2�, and �d1�, �d2�
correspond to the pairs of trajectories shown in
Figs. 2�a�–2�d�, respectively.
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character of the motion manifests itself in that the choice
between these possibilities is random. The time between the
bounces �estimated as a modulation period over �Vmax� de-
fines the scale after which the motion can be considered a
random walk. Numerical simulations both for conservative
�2� and active-dissipative �4� nonlinearities in Eq. �1� con-
firm this description, and show either low-amplitude regular
oscillations or chaotic wanderings of the soliton peak, see
Figs. 2�c�, 2�d�, 3�c�, and 3�d�.

The effect of the decrease of the lattice cell size on the
soliton motion is illustrated in Figs. 2�e�–2�g�. For soliton
radii up to �1.5dc we see a behavior resembling that of a
particle in the potential. This is either the random walk de-
scribed above, or the so-called Levi flights �19� which appear
on the boundary between hyperbolic �chaotic� and elliptic
�quasiperiodic� behavior in the phase space �see Fig. 2�f��. In
Fig. 4 we present the results of numerical integration of Eqs.
�1� and �4� with the “diffusion” term 
�A added into the
right-hand side �for a derivation of this term in a broad area
laser model see Ref. �20��. Real and small 
�0 correspond
to a spatial spectral filtering, which breaks the Galilean sym-
metry of Eq. �1� at �=0. One can show that taking it into

account results in adding the dissipation term �Ṙ in the left-
hand side of Eq. �5�, with �=O�
 /��. Indeed, we see in Fig.
4 a steady decrease of the amplitude of oscillations, regular
and chaotic alike. In this case the soliton transverse motion
finally halts at some position corresponding to a local maxi-
mum of the refractive index. The data obtained by direct
simulation of Eq. �1� �see Figs. 2–4� are in agreement with
the results of numerical solution of the reduced equation �5�.

To conclude: we have established a chaotic character of
motion of a soliton in hexagonal lattice, even for a weak
amplitude of the spatial modulation. Effectively, the soliton
performs a random walk characterized by the long-term con-
servation of the soliton motion energy. This effect takes place
both in the case of conservative and dissipative nonlinearity
and has a universal nature solely attributed to the Galilean
symmetry of the unperturbed system. Factors that destroy
this symmetry, e.g., spatial spectral filtering, impede the soli-
ton motion and lead to a halt of the random walk.
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FIG. 4. Soliton motion in an active-dissipative
medium with nonzero spatial spectral filtering co-
efficient 
=0.01. Parameters of nonlinear func-
tion �4� are the same as in Figs. 1, 2�d�, and
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