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Control and removal of modulational instabilities
in low-dispersion photonic crystal fiber

cavities

M. Tlidi
Optique Nonlineaire Theorique Université Libre de Bruxelles, C.P. 231, Campus Plaine, B-1050 Bruxelles, Belgium

A. Mussot and E. Louvergneaux
Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523 IRCICA, Université des Sciences et

Technologies de Lille, 59655 Villenueve d’Ascq Cedex, France

G. Kozyreff
Optique Nonlineaire Theorique Université Libre de Bruxelles, C.P. 231, Campus Plaine, B-1050 Bruxelles, Belgium

A. G. Vladimirov
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, D-101178 Berlin, Germany

M. Taki
Laboratoire de Physique des Lasers, Atomes et Molecules, UMR-CNRS 8523 IRCICA, Université des Sciences et

Technologies de Lille, 59655 Villenueve d’Ascq Cedex, France

Received October 11, 2006; accepted November 29, 2006;
posted December 20, 2006 (Doc. ID 75864); published February 15, 2007

Taking up to fourth-order dispersion effects into account, we show that fiber resonators become stable for a
large intensity regime. The range of pump intensities leading to modulational instability becomes finite and
controllable. Moreover, by computing analytically the thresholds and frequencies of these instabilities, we
demonstrate the existence of a new unstable frequency at the primary threshold. This frequency exists for
an arbitrary small but nonzero fourth-order dispersion coefficient. Numerical simulations for a low and flat-
tened dispersion photonic crystal fiber resonator confirm analytical predictions and open the way to experi-
mental implementation. © 2007 Optical Society of America
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Instabilities in nonequilibrium systems are drawing
considerable attention both from fundamental as
well as applied point of views.1,2 One such instability
gives rise to periodic self-modulations and is referred
to as modulational instability (MI) in temporally dis-
persive media3 and Turing instability4 in spatially
extended systems. In optical fibers, MI results from
the interplay between chromatic dispersion and the
intensity-dependent refractive index. In the usual
scalar-free propagation, the phase matching of the
underlying four-wave mixing process requires
anomalous dispersion.3 However, phase matching
can also be achieved in normal dispersion region by
considering extra degrees of freedom such as polar-
ization in birefringent5 and isotropic6 fibers, bimodal
fibers,7 working around the zero-dispersion wave-
length (ZDW),8–10 or inserting the fiber within a
cavity.11 Scalar MI in free propagation through a
single-mode optical fiber is usually described by the
nonlinear Schrödinger equation (NLSE), in which the
propagation constant is expanded in a Taylor series
in the frequency domain. It has been shown that only
even-order terms contribute to the MI gain and that
development up to the fourth order must be consid-

ered when the pump wavelength is close to the ZDW.
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In this case, scalar MI is possible in the normal dis-
persion region if the fourth-order dispersion term is
negative, and a second frequency of instability can be
generated if the fourth-order dispersion term is
positive.8–10 To our knowledge, intracavity MI leading
to a single frequency has been studied only in rela-
tively strong dispersion regions where models includ-
ing up to the second-order dispersion term are rel-
evant to describe its dynamics.

In this Letter, we show that it is necessary to take
into account up to the fourth-order dispersion term to
capture the full MI dynamics of a passive fiber reso-
nator, especially when proceeding close to the ZDW.
To this end, we extend the model developed by
Lugiato–Lefever12 (LL model) up to the fourth-order
dispersion term. We then demonstrate that, however
small the fourth-order dispersion coefficient is, a sec-
ond frequency of instability can be observed at the
primary threshold of stationary state destabilization,
which adds to the single frequency predicted and ob-
served up to now.11 Moreover, we demonstrate that
the MI process has a finite domain of existence delim-
ited by two pump power values, allowing for the sta-
tionary state to restabilize at large powers. We inves-
tigate the evolution of the MI frequencies within the
2007 Optical Society of America
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existence domain from their rise up to their disap-
pearance. Finally, in view of an experimental imple-
mentation, we perform numerical simulations for a
realistic experimental configuration with a flattened
dispersion photonic crystal fiber and find excellent
agreement with the analytical predictions.

The fiber resonator is schematically depicted in
Fig. 1. A continuous wave of power Ei

2 is launched
into the cavity by means of a beam splitter, propa-
gates inside the fiber, and experiences dispersion and
the Kerr effect. At each round trip the light inside the
fiber is coherently superimposed with the input
beam. This can be described by the boundary condi-
tions E�z=0,�+ tR�=T�Ein���+R�E�L ,��exp�−i�0�
and by the extended NLSE �zE�z ,��= �−i�2 /2��2

+�3 /6��3+ i�4 /24��4+ i��E�2�E, with round-trip time
tR, linear phase shift �0, intensity mirror transmis-
sivity (reflectivity) T2 �R2�, and cavity length L. The
electric field inside the cavity is denoted E. �2,3,4 are
the second-, third-, and fourth-order dispersion
terms, respectively. � is the nonlinear coefficient, z is
the longitudinal coordinate, and � is the time in a ref-
erence frame moving at the group velocity of the
light. This infinite-dimensional map can be simplified
to the following single normalized equation by apply-
ing the mean field approximation:

��

�t�
= S − �1 + i��� + i���2� − i�2

�2�

���2

+ B3

�3�

���3 + iB4

�4�

���4 , �1�

where t�= tT2 /2tR, ��=��T2 /L�1/2, �=E�2�L /T2, S
=2/T�2�L /T2�1/2Ei is the normalized input field, B3

=�3T /�9L, B4=�4T2 /12L, and �=2�0 /T2 is the cav-
ity detuning. We carry out the analytical study in a
low-dispersion fiber with a small dispersion slope.
Thus, B3 can be neglected. The steady state (SS) re-
sponse �S of Eq. (1) satisfies SS= �1+ i��− ��S�2���S.
This solution is identical to that of the LL model lead-
ing to a monostable (bistable) regime for ���3
�	�3�. Its stability with respect to finite frequency
perturbations, i.e., of the form exp�i
��+�t��, shows
that the MI frequencies that can be destabilized at
the primary threshold I1m= ��1m�2=1 are


L,U
2 =

− �2 ± ��2
2 + 4�� − 2�B4

2B4
, �2�

and one can see immediately that two frequencies
can be destabilized at the primary threshold for a

Fig. 1. Experimental setup. BS, beam splitter.
suitable choice of �2 and �. Thus, taking into account
� expansion up to the fourth order in Eq. (1) evi-
dences the existence of a second frequency of insta-
bility that has not yet been reported experimentally
or theoretically when working in quite strong disper-
sion regions.11

This result is illustrated by the closed marginal
stability curve in Fig. 2(a), where two destabilization
frequencies (
L and 
U) exist at the primary thresh-
old I1m in the monostable regime [Fig. 2(b)]. The fi-
nite extent of the MI domain is also evidenced by the
lower and upper values of cavity power, ��1m�2=I1m

=1 and ��2m�2=I2m= �2�eff+��eff
2 −3� /3. The lower

value fixes the minimum input power required for
the MI process to occur, while the upper one can be
tuned as a function of the physical parameter �eff
=�2

2 / �4B4�+�. The critical value of the frequency at
the upper bifurcation point I2m is given by 
c

2

=−�2 /2B4, and we note that it satisfies the averaging
relation 
c

2=
L
2 +
U

2 . This result strongly contrasts
with the usual cavity MI where the instability do-
main is not bounded as shown in Fig. 2(a) by the gray
curves. So the two main results of this stability
analysis are that (i) two instabilities at frequencies

U and 
L occur simultaneously at the primary
threshold �I1m� and (ii) it is possible to restabilize or
recover the stationary state by driving the system to
the large intensity regime �I	I2m�.

In view of the above analysis, an important ques-
tion arises: how do the first two frequencies 
L and

U evolve and connect to 
c upon increasing the in-
put intensity P= �S�2? The linear stability analysis
can give us some insight on this point through the
evolution of the most unstable frequencies of the SS,

Fig. 2. (a) Marginal stability curve for the steady state so-
lution versus MI. Black curve, �4�0; gray curve, �4=0. (b)
Evolution of the cavity intensity stationary state I= ��S�2
versus the input intensity P= �S�2 (the dashed curve corre-
sponds to the unstable case). �=10 W−1 km−1, �0=1.98�,
T=0.35, L=10 m, �2=−3�10−28 s2/m, �3=0, �4=6.4
�10−54 s4/m.

Fig. 3. Evolution of the maximum temporal gains (solid
black and gray lines) versus (a) the frequency 
 and (b) the

output intensity I.
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as shown in Fig. 3. At I1 the SS undergoes a bifur-
cation leading to small-amplitude modulations at fre-
quencies 
L and 
U. The two corresponding bands of
unstable frequencies widen with growing I until it
reaches the value Ic1 at 
=
c [Fig. 3(a)]. This signals
the merging of the two bands into a single larger one.
This new band of unstable frequencies is now charac-
terized by the existence of three frequencies with
positive gain, as can be seen from Fig. 4(b). When we
further increase I, the two most unstable lateral fre-
quencies merge into the critical one 
c at I=Ic2. This
point indicates an outstanding feature leading to an
exchange of the maximum gain between 
L �
U� and

c [Fig. 3(b)]. Finally, one then can expect from Fig. 3
that above this power value �I	Ic2� the dynamics is
dominated by the frequency 
c until the upper limit
of the instability domain is reached �I=I2m�.

These results should be experimentally observable
using a fiber whose dispersion curve is low and as flat
as possible at the working wavelength ��3�0�. We
numerically checked our predictions by integrating
the extended NLSE with bounded conditions by us-
ing the split-step Fourier method with an input con-
tinuous wave. We included realistic third- and
fourth-order dispersion term values in our simula-
tions (see the caption of Fig. 2). Indeed, we did not
take exactly �3=0 but a very low value [DS
=0.001 ps/nm2/km, i.e., �3=2�10−42 s3 /m (Ref. 13)]
to match with a realistic configuration. We have
checked in all our simulations that the final state
was reached (�400 round trips). We show in Fig. 4(a)
that two frequencies (0.98 and 3.63 THz) are destabi-
lized (circles) just above the first pump threshold
�20 mW� [Fig. 4(b)], in excellent agreement with the
analytical results (1.1 and 3.6 THz). Upon increasing
the pump power, the frequencies merge, leading to a
single frequency of instability around 300 mW [Fig.
4(c)]. This unique frequency then disappears just
above the second pump threshold, corresponding to a
recovery of the stationary state of the cavity. Thus,

Fig. 4. (a) Evolution of the frequency of instability versus
the pump power with the same parameters as in Fig. 2, ex-
cept for �3=2�10−42 s3/m. Circles, numerical simulations;
solid curves, analytical results. (b), (c), and (d) power spec-
tra for 30, 400, and 900 mW of pump power, respectively.
the two main predictions of our analytical study are
numerically verified. This linear stability analysis
provides an excellent insight into the frequency evo-
lution scenario within the instability domain, except
for 50 mW�I�300 mW [Fig. 4(a)]. In this last region
only a nonlinear analysis as in Refs. 14 and 15 will
figure out the dynamic evolution of the system. This
work is in progress.

To summarize, we presented an analytical and nu-
merical study of a coherently driven photonic crystal
fiber resonator. We showed that it is necessary to
take into account dispersion up to the fourth order to
capture the full temporal dynamics of the system.
Namely, there exist two frequencies at the primary
MI threshold, and their domain of existence is finite
or bounded such that the stationary state is recov-
ered for pumping of high enough intensity. In addi-
tion, numerical simulations carried out for realistic
experimental parameters provide the evolution of
these instabilities with the input field. They confirm
our analytical results and constitute a step towards a
future experimental demonstration.
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