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Abstract We present a model and nonlinear analysis which account for the clus-
tering behaviors of arid vegetation ecosystems, the formation of localized bare soil
spots (sometimes also called fairy circles) in these systems and the attractive or re-
pulsive interactions governing their spatio-temporal evolution. Numerical solutions
of the model closely agree with analytical predictions.

1 Introduction

It is common in semi-arid or arid regions to encounter landscapes where the veg-
etation cover is non-uniform and exhibits large-scale structures, generically called
“vegetation patterns” [1, 2]. The terms “semi-arid” and “arid” refer here to climatic
conditions where water resources are scarce. More precisely, they mean that the
potential evapo-transpiration largely exceeds the water supply provided by rainfall.
At the individual plant level, this hydric stress affects plants’ growth and survival;
at the community level, it generates clustering effects that cause the formation of
vegetation patches. The outcome is a spatial “differentiation” of the landscape into
a “mosaic” of poorly vegetated and strongly vegetated domains, accompanied by a
redistribution of the ecosystem water resources benefiting the vegetated domains.
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It is now generally admitted that this adaptation to hydric stress involves a
symmetry-breaking modulational instability, whose causes are intrinsic rather than
extrinsic, to the vegetation, i.e., they result from the vegetation dynamics itself,
rather than from the imposition on this dynamics of some external (environmen-
tal), pre-existing spatial periodicity or anisotropy [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].
Well-known patterns of this type are the banded, periodic vegetation covers, often
labeled with the picturesque name of tiger bush, which can be observed in many arid
regions on the earth. The intrinsic, self-organizing mechanism mentioned above pro-
vides a unified explanation for the diverse phenotypical characteristics displayed by
vegetation patterns. In particular, it predicts the properties of periodic patterns and
the sequence of symmetry-breaking transitions, which such patterns undergo as a
function of aridity. For example, it accounts for the observation that the size (wave-
length) of the heterogeneities increases with the degree of aridity, while, simultane-
ously, the symmetry of the patterns transforms from π-hexagonal into stripes and,
finally, into 0-hexagonal [3, 6, 13]. Remarkably, besides the behavior of periodic
patterns, the same mechanism predicts the possible existence of aperiodic, localized
structures (sometimes called dissipative solitons). They consist either of localized
patches of vegetation, randomly distributed on bare soil [14, 15] or, on the contrary,
of localized spots of bare soil (LBS), randomly distributed in an otherwise uniform
vegetation cover.

In this chapter, we shall focus our attention on LBS-type patterns. Well-
documented examples are the so-called woodland glades, a label referring to iso-
lated, open spaces of herbaceous vegetation (sometimes even of bare ground) sur-
rounded by woody vegetation. Woodland glades are permanent structures, and they
can be observed worldwide, even in non-arid climates. They may support particular
plants, and they are zones of attraction for various animal species which are adapted
to woodland and which take advantage of these sunny and dry open areas. Under-
standing their formation and maintenance is an important ecological issue. Other
fascinating, puzzling and well-documented examples of LBS patterns are the fairy
circles or fairy rings discovered in the Namib desert (see Fig. 1). These circular ar-
eas, devoid of any vegetation, can reach diameters of up to 14 m. This exceeds the
size of the tall grasses surrounding them by more than one order of magnitude. In
a recent study, van Rooyen et al. [16] have made an in-depth investigation of the
strengths and shortcomings of several hypotheses concerning their origin. These au-
thors have been able to rule out external causes, such as the possible existence of
localized radioactive areas unsuited for the development of plants, or a link between
fairy circles and the activity of termites. Among the other hypotheses they con-
sidered (notably, the release of allelopathic compounds and the possible existence
of stimulatory or inhibitory influences due to interactions between different plant
species), none was found which satisfactorily fitted their experimental observations.
Our objective, in regard to this context, is to investigate the generic properties and
evolving behaviors which can be predicted for LBS patterns on the basis of the
conceptual framework and treatment developed previously for the study of periodic
vegetation patterns.



On Vegetation Clustering, Localized Bave Soil Spots and Fairy Circles 383

Fig. 1 Example of the fairy circles occurring in the pro-Namib zone of the west coast of southern
Africa [16] (photography: courtesy of M. Johnny Vergeer)

The starting point of our approach is a modified version of the integro-differential
propagator–inhibitor model (PI model) originally introduced to explain the forma-
tion of tiger bushes [3]. The basic hypotheses of the PI model are summarized
in Sect. 2. The modifications introduced in its present version have the objec-
tives (i) to formulate more precisely the relationship between the plants’ aerial–
subterranean structures and the facilitative or competitive feedbacks which influ-
ence their dynamics at the community level; and (ii) to incorporate into the model
an explicit formulation of the plants’ spatial propagation (e.g., by seed dispersion),
so that the interrelations between the “transport” phenomena taking place in the
ecosystem and the growth/decay dynamics of its constitutive vegetation are ac-
counted for in a better manner. In Sect. 3, we derive, from the original integro-
differential equation describing the dynamics in general, a nonlinear fourth-order
partial differential equation which constitutes a convenient, appropriate approx-
imation in the weak-gradient limit, where the size of spatial heterogeneities at
the community level greatly exceeds the size of individual plants. The condi-
tions under which vegetation clustering and localized bare spots appear are dis-
cussed in Sects. 4 and 5. The homoclinic solutions modeling LBS patterns are
then evaluated analytically. To begin with, the case of localized, isolated sin-
gle spots is treated; the solutions representative of this situation are constructed,
and their properties are discussed and compared with the results of numerical
solutions. In Sect. 6, the situation where bare spots are close enough to inter-
act is studied. This question, which is of considerable interest, has been inves-
tigated in other contexts [17, 18, 19, 20, 21, 22, 23, 24]. We demonstrate here
that such interactions induce the appearance of a “force” between LBS, which
may be attractive or repulsive, depending on the distance separating the interact-
ing spots. These results are established analytically and confirmed by numerical
simulations.
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2 Mean-Field Model of Vegetation Evolution

Let us consider a plant community established on a spatially uniform territory, and
suppose that a dominant species accounts for most of the community bio-mass. Let
La be the radial extension of a mature individual belonging to this species, S = π L2

a
be a territorial surface element centered on a given spatial point, r, and mmax be
the maximal amount of bio-mass that the community could produce on the surface
element S in the absence of vegetation decay. We imagine that we redistribute the
bio-mass mp(r, t) contained in S uniformly over it, then we define the normalized
bio-mass at the point r for time t as b(r, t) = mp(r, t)/mmax and model its spatio-
temporal evolution by the logistic equation

∂t b(r, t) = k1 b(r, t)− k2 b(r, t)

+D
∫ [

Φin(|r′|)b(r+ r′, t)−Φout(|r′|)b(r, t)
]

dr′, (1)

where the unit of time has been set equal to the characteristic time of the growth
process. The first two terms in (1) account for the bio-mass gains and losses that the
surface element S undergoes due to the natural growth and decay of the plants. The
third term accounts for the vegetation spatial propagation via seed dispersion and/or
other natural mechanisms. The integration extends over the whole of the territory,
which we suppose to be infinitely extended, and Φin and Φout are the dispersion ker-
nels weighting the incoming and outgoing seed fluxes between neighboring points,
according to their separation, |r′|. Further, D is a phenomenological constant which
fixes the rate of propagation of the vegetation, while k1 and k2 are kinetic coefficients
which take into account the plant-to-plant feedback effects resulting from the com-
munal organization of the vegetation. As such, we suppose that they are mean-field
state functions which can be written as:

k1 = [1−b(r, t)] Mf(b(r, t), t), k2 = μ Mc(r, t). (2)

The phenomenological constant, μ , is the decay to growth rate ratio in the absence
of interactions, i.e., under conditions where the vegetation spatio-temporal dynam-
ics is reduced to that obeyed by isolated plants, while Mf(r, t) and Mc(r, t) are
mean-field factors describing plant-to-plant interactions. By definition, these fac-
tors are equal to 1 in the case of isolated (or non-interacting) plants, and greater
than one when interactions cannot be neglected. In other words, they enhance the
rate of the processes which they influence, and therefore we call them the mean-field
enhancing factors. Mf(r, t) describes interactions facilitating growth.1 They are as-
sociated with the plants’ aerial structures and involve, notably, a reciprocal shelter-
ing of neighboring plants against climatic harshness, as well as a communally more
favorable management of vital resources. They extend over distances of the order

1 As well as seed production and germination [26].
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of La (e.g., the crown radius of mature trees). On the other hand, Mc(r, t) is associ-
ated with competitive plant-to-plant interactions enhancing vegetation decay. They
predominantly involve the plants’ roots system, or rhizosphere. Accordingly, they
operate over distances of the order of the rhizosphere radius, Lr. Their competitive
nature results from the fact that the rhizosphere activity of a plant tends to deprive
its neighbors of vital resources, e.g., water [25]. The logistic factor,

[
1− b(r, t)

]
,

of the kinetic constant k1 accounts for the existence of an upper limit, mmax, which
the bio-mass of a surface element, S, cannot exceed. The latter is specific to the
vegetation.

The following considerations then determine the choice of the mathematical
expressions of the rate-enhancing factors:

(i) By definition, Mf(r, t) and Mc(r, t) are increasing, functions of the vegetation
density. They take values in the interval [1,∞ , and they are equal to 1 in the
zero-density limit,

lim
ρ(r+r′, t)→0

Mı(r, t) = 1, ı = f ,c, (3)

where the dynamics of isolated plants must be recovered.
(ii) To fulfill condition (i), we postulate that the rate-enhancing factors depend ex-

ponentially upon the vegetation density, with the following form:

Mı(r, t) = exp

(
χı

∫
Φı

(
|r′|,Lı

)
b(r+ r′, t)dr′

)
, ı = f ,c, (4)

i.e., they are exponential functions of the mean-field integral of the normalized
vegetation density, b(r+ r′, t), weighted by the kernels, Φf and Φc, which de-
scribe the spatial extension of feedback effects in terms of the characteristic
ranges Lf and Lc over which facilitative and competitive interactions operate.
The positive parameters χf and χc, which fix the strength of the interactions,
may be influenced by extrinsic factors such as the degree of environmental
aridity.

(iii) Our aim is to study the localized structures having the generic characteristic
that they appear at the start to be a uniform density vegetation cover, or, more
exactly, uniform stationary state solutions of (1) for which b(r, t) = b is a finite,
positive constant, excluding the neighborhood of the value zero. In this respect,
we may, for simplicity, consider that Lf and Lc are constants, 2 and set Lf ≡ L0

f =
La and Lc ≡ L0

c = Lr. If we furthermore specify, in agreement with conditions (i)

2 Clearly, Lf and Lc depend on the stage of development of the vegetation: mature plants, ob-
viously, affect a greater territory than young seedlings. This feature plays an important role in
phyto-societal behaviors which generically appear only at low average vegetation densities, i.e.,
in the neighborhood of b = 0. The method consisting to link the development of the vegetation
to its density by assuming that L = L0 b(r+ r′, t)p, where L0 is a constant and p is an allometric
exponent, constitutes a straightforward ansatz for handling such situation. Vegetation patterns con-
sisting of vegetation patches distributed on bare soil can clearly be expected to be of this type. We
shall report on them elsewhere [26].
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and (ii), that the interactions obey a gaussian, isotropic distribution law,3 then
we obtain the following expressions (see Fig. 2) for the kernels Φf and Φc:

Φı(|r′|) = Nı exp

[
− |r′|2

L0
ı

]

, with ı = f , c, L0
f = La, L0

c = Lr. (5)

The normalization condition

Nı =
1
π

∫
exp

(
− |r|2

L0
ı

)
dr (6)

must be imposed so that bulk behaviors, e.g., the uniform stationary solutions
of (1), are independent of the interaction ranges in the case of spatially isotropic
environments, as expected on physical grounds.

Setting the unit of length to be equal to the crown radius, La, assuming that dis-
persion obeys a gaussian law, denoting the corresponding dispersion range of seeds
(gaussian variance) by Ld and replacing (2),(3),(4),(5) and (6) in (1), the mean-field
evolution equation of the vegetation finally reads

Fig. 2 Sketch of the facilitative and competitive mean-field kernels Φf and Φc, as given by (5).
Clearly, at short distances, |r′|, the difference Λ = Φf −Φc, which represents the effective mean-
field generated by the interactions, is facilitative (positive values) while at great distances, it is
competitive (negative values). The unit of length is equal to the canopy radius, La = 1

3 From a qualitative point of view, this gaussian choice is convenient and implies no loss of gen-
erality. Other expressions for the kernels, Φf and Φc, quantitatively describing specific vegetation
systems, will be considered elsewhere [26]. Anyway, we are not interested here in the influence of
external anisotropies. Hence, we have the choice of isotropic kernels, i.e., those that have no angu-
lar dependency and are only functions of the distance between points. For investigations devoted
to the role of spatial anisotropies, see [3, 27, 28].
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∂t b(r, t) = b(r, t) [1−b(r, t)] exp

(
χf

π

∫
e−|r′|2 b(r+ r′, t)dr′

)

−μ b(r, t) exp

(
ε

χc

π

∫
e−ε |r′|2 b(r+ r′, t)dr′

)

+
σ D
π

∫
eσ |r′|2 [b(r+ r′, t)− b(r, t)

]
dr′, (7)

where the parameters

ε =
(La

Lr

)2
and σ =

(La

Ld

)2
, (8)

specify the structural ratio and dispersivity of the vegetation considered.
In order to investigate the spatio-temporal dynamics predicted by the integro-

differential (7), it is convenient to work with a partial differential equation approxi-
mation of it. The latter is derived in the next section.

3 Weak-Gradient Approximation

We look for an approximation to (7), in the form of a partial differential equation, in
the limit where, according to linear stability theory, (i) unstable fluctuations are of
much greater wavelength than the crown size, La, (ii) their growth rate is small, and
(iii) nonlinearities remain weak. Generically, requiring (i) and (ii) means that we are
interested in the system’s dynamics near a transition point where fluctuations corre-
sponding to the zero-Fourier mode become unstable, i.e., fluctuations of very large
wavelength are stable but are nearly marginal (in the weak-gradient approximation).
Requiring (iii) means that we look for conditions such that this transition point oc-
curs at uniform vegetation densities, b, thus satisfying the inequalities 0 < b << 1.
Hence, let us first determine the uniform stationary states of (7) and their stability
properties. It is easily found that the latter, given by the solutions of

μ = b(1−b)exp(Λb) , (9)

depends on only two parameters. The switching parameter μ (defined in (2)) con-
trols the stability of the trivial uniform solution, b = b0 = 0, corresponding to bare
soil without vegetation: b0 is unstable for 0 ≤ μ < 1 and stable for μ ≥ 1. The sec-
ond parameter in (9) is the feedback balance resulting from the difference between
the strengths of facilitative and competitive feedbacks:

Λ = χf −χc. (10)

It controls whether the population behaves co-operatively (Λ > 0) or not (Λ < 0).
At the “neutral feedback point”, Λ = 0, facilitative and competitive effects bal-
ance each other exactly – the non-trivial uniform stationary state solution of (3),
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Fig. 3 Uniform stationary states solutions of (9) as a function of the switching parameter, μ , with
increasing values of the feedback balance, Λ. For Λ > 1, the system exhibits a saddle-node transi-
tion point, whose co-ordinates are given by (11)

b = bs = 1− μ , is then identical to that of a community in which plants do not in-
teract, i.e., one with χf = χc = 0. For Λ > 1 and 1 ≤ μ ≤ exp(Λ−1)/Λ, (9) admits
three non-negative solutions, b0,b−,b+ (see Fig. 3). The uniform state, b−, is always
unstable. On the other hand, b0 and b+ are stable with respect to small perturbations
which do not break the system spatial uniformity. Remarkably, when the feedback
balance, Λ, is strongly co-operative, i.e., for Λ >> 1, the domain of existence of
the vegetation, represented by the b+ branch of stationary states, extends up to the
saddle-node transition point of co-ordinates

b∗ =
Λ−1

Λ
, μ∗ =

exp(Λ−1)
Λ

, (11)

i.e., far beyond the switching point, μ = 1, where the trivial state, b0, changes sta-
bility. In light of the requirements (i) – (iii) mentioned earlier, we now explore the
system dynamics in the neighborhood of the feedback balance value Λ = 1. Hence,
we set

b(r, t) = ζ u(r, t), Λ = 1+ζ Λ1, μ = 1+ζ 2 μ2, (12)

where ζ is a “smallness” parameter, and we renormalize the time and space scales
by the transformation:

t =
2 t̃
ζ 2 , |r| = |̃r|

k0
, (13)

where k0 is the non-zero, positive modulus of the first Fourier wave vector which
becomes (linearly) unstable in the neighborhood of the saddle-node point. (For sim-
plicity of notation, the tilde will later be dropped.) We require k0 << 1, i.e., that it
corresponds to spatial heterogeneities of much greater size than La. The linear sta-
bility analysis of (7) shows that, in order to satisfy this condition and to obtain real,
positive values for k0, the strength of competitive feedbacks, χc, and the dispersion
coefficient, D, must scale with respect to ζ as:
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χc =
ε

1− ε
+
√

ζ χ1, D = ζ 3/2 δ
σ

. (14)

To the dominant order in ζ , this yields

k0 = qζ 1/4, with q = 2

√
ε
(

χ1 −2
δ

u+

)
, (15)

where

u+ = Λ1 +
√

Λ2
1 −2 μ2 (16)

is the dominant term in the expansion b+ = ζ u+ +O(ζ 2) of the branch of stationary
states, b+, in terms of ζ .

We use (10) to eliminate χf, expand b(r+ r′, t) = ζ u(r+ r′, t) + O(ζ 2) in a
Taylor series around the focal point r, substitute (12), (13), (14), and (15) into (7)
and expand the resulting equation in terms of ζ , up to O(ζ 3). This yields the desired
partial differential evolution equation, with u(r, t) as new state variable:

∂tu(r, t) = −u(r, t)
[

2 μ2 −2Λ1 u(r, t)+u(r, t)2 ]

+
[

qδ − qχ1

2
u(r, t)

]
∇2u(r, t)− q2

16ε
u(r, t)∇4u(r, t)

+O(ζ 7/2). (17)

In order to put (17) into a more compact form, let us define

η = 2 μ2 κ = 2Λ1, Δ = qδ , Γ =
qχ1

2
, α =

q2

16ε
. (18)

Rewritten in terms of these parameters, (17) becomes

∂t u(r, t) = −u(r, t)
[
η −κu(r, t)+u(r, t)2]

+[Δ−Γu(r, t)]∇2u(r, t)−αu(r, t)∇4u(r, t), (19)

while the stationary solutions, representing uniform vegetation covers, are now
given by

u0 = 0, u± =
[
κ ±

√
κ2 −4η

]
/2. (20)

To be physically acceptable, u± must be real and non-negative. Two situations must
be distinguished, according to the sign of κ . When κ < 0, the co-ordinates of the
saddle-node point are unphysical. Besides u0, u+ is then the only acceptable uniform
stationary state solution. It exists only if η < 0 and is a monotonically decreasing
function of η which vanishes for η = 0. When κ > 0, the co-ordinates of the saddle-
node point, given by

u∗ = κ/2, η∗ = κ2/4, (21)
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are physically acceptable. Accordingly, for 0 < η < η∗, the bio-mass density ex-
hibits a phenomenon of bistability, so that u0 and u+, which are linearly stable with
respect to uniform fluctuations, as well as the intermediate unstable branch, u−,
are then, simultaneously, acceptable uniform solutions of (19). In the following, we
shall focus on the parameter regime where the uniform plant distribution exhibits
bistability (κ > 0), and assume that the inequalities (ηm < η < η∗) hold. In that
case, all uniform stationary states belonging to u+ have a finite, non-negative value.
This is required, given the simplification made earlier that Lf and Lc are constants,
independent of the vegetation density (cf. assumption (iii) in 2).

4 Clustering and Periodic Vegetation Patterns

Inspection of (19) suggests that the u+ stationary states may become unstable if
subjected to random, non-uniform fluctuations. Indeed, when Δ/Γ = 2δ/χ1 < u+,
the “diffusion” coefficient in front of the Laplacian is negative, indicating that veg-
etation clustering, i.e., the “phase separation” of vegetation and bare soil, becomes
possible [29, 30]. This phenomenon is physically comparable with the behavior of
immiscible mixtures, e.g., the separation of oil and water. It corresponds, in the lin-
ear stability analysis of (19), to the appearance of a finite band of unstable Fourier
modes. Its upper cutoff is due to the “line tension” coefficient of the bi-Laplacian
term, which is always stabilizing (for short distances, dispersion is always an effi-
cient mixing mechanism), while its lower cutoff owes its existence to the stability
of the zero-Fourier mode. (By definition, all u+ stationary states are stable with re-
spect to uniform fluctuations.) Under these conditions, the intrinsic instability due
to the negative diffusion coefficient is modulational – random noise triggers the ap-
pearance of spatially periodic patterns which spread over the whole territory. The
wavelength of the first non-zero-Fourier mode to become unstable is

λm = 2π

√
2α

Γ/α −Δ/um
, (22)

where um, given by the largest real positive solutions of the cubic polynomial

(2Γum −Δ)2 = 4αu2
m(2um −α), (23)

is the threshold state at which the modulational instability appears on the u+ branch
of solutions for η = ηm (see Fig. 4). When the aridity parameter, η , increases, the
structures that appear first (sub-critically) are the so-called hexagons, H0. They
consist of a periodic pattern, of hexagonal symmetry, made up of sparse vegeta-
tion spots. Upon a further increases in η , this pattern becomes unstable and the
system evolves toward patterns consisting of bands or stripes; the latter properties
are in good agreement with observations relating to tiger bush patterns. Increas-
ing aridity still further destabilizes these banded patterns and transforms them into
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u
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0–0.2

0.25

0.5

ηηm

Fig. 4 Uniform stationary bio-mass density as a function of the aridity parameter η , for κ = 0.5,
Δ = 0.1, Γ = 0.5 and α = 0.25. Broken lines correspond to unstable states. As η increases, at the
bifurcation point (ηm,um), the uniform branch of stationary states, u+, becomes unstable with re-
spect to infinitesimal fluctuations whose wavelength is given by (22). In the neighborhood of this
point, sub-critical periodic vegetation patterns which are made up of spots of sparser vegetation can
be found. Super-critically, they transform into stripes, and finally into periodic patterns consisting
of vegetation spots separated by bare ground. The three different kinds of patterns represented have
been obtained for η = −0.25, 0.1 and 0.2, respectively. The grid is 128× 128 points. Black cor-
responds to the highest values of the bio-mass density. Minima are plain white. Periodic boundary
conditions are used in both spatial co-ordinates

hexagonal Hπ patterns which correspond to periodic distributions of vegetation
spots surrounded by bare ground. These three types of 2D periodic structures are
represented in Fig. 4. They have been obtained by numerically integrating (19) on
a square-shaped domain with periodic boundary conditions. The initial condition
used to generate these structures consists of the unstable uniform stationary solu-
tion, perturbed by noise of small amplitude. Reversing the variation of the aridity
parameter shows that there exist two hysteresis loops involving striped, H0 and Hπ
patterns (not represented). Published works giving nonlinear analyses [13, 31] al-
low for detailed calculation of the bifurcation diagrams of such periodic vegetation
patterns.

5 Pinning and Localized Bare Soil Spots

Localized vegetation patterns have been described in various arid regions, notably
in Africa. So far, however, they have attracted little attention, both from experi-
mental and theoretical points of view. Such patterns are “spatially localized”, in
the sense that they are elemental structures (vegetation patches or holes in the veg-
etation cover) which have a well-defined size and which seem to be quite stable.
However, in contrast to periodic patterns, they apparently have little or no tendency
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to spread and to invade the whole territory accessible to them. Characteristically,
they are found as isolated elements, or in the form of groups which gather a small
number of elements, more or less closely. The fairy circles illustrated in Fig. 1 are
striking examples belonging to this category of patterns.

On the theoretical side, spatial localization is a patterning phenomenon better
known in contexts of a physico-chemical rather than biological nature. It is estab-
lished that various, quite distinct, non-equilibrium reaction-diffusion systems and
nonlinear optical devices, which have the common property that they exhibit modu-
lational instability, also display pinning phenomena which generate so-called local-
ized structures (LS) [32, 33, 34, 35, 36, 37, 38, 39, 40, 41]. In all these systems, the
conditions under which periodic patterns and localized structures appear are closely
related – dynamically speaking, in all cases, a sub-critical modulational instability
underlies the pinning phenomena responsible for the appearance of localized pat-
terns. In this section, (i) we show that the dynamics described by (19) gives rise to
such pinning phenomena and, as a consequence, may account for the formation of
the localized bare spots (LBS) observed, e.g., the case of fairy circles; and (ii) we
present a treatment which allows us to analytically evaluate the elemental solutions
of (19) corresponding to an isolated bare soil spot immersed in an otherwise uniform
vegetation cover.

Mathematically, stable localized structures are homoclinic solutions (solitary
waves or stationary pulses) which belong to the sub-critical domain where a uniform
branch of stationary state solutions and a branch of spatially periodic solutions are
both linearly stable [34]. In parameter space, this situation corresponds to the exis-
tence of a hysteresis loop. Within it, there generally exists a so-called pinning range
of parameter values for which stable localized structures, connecting the uniform
and the periodic solutions, can be found. Their stability is attributed to the absence
of a variational principle, i.e., to the non-existence of a Lyapunov functional guar-
anteeing that evolution proceeds toward the state for which the functional has the
smallest possible value which is compatible with the system boundary conditions.
The Swift–Hohenberg equation, for example, is a paradigmatic evolution equation
which admits localized structures of this kind.4 Clearly, the presence of the nonlin-
ear diffusion terms, u∇2u and u∇4u, render (19) non-variational.

Figure 5 shows some examples of localized structures obtained by numerically
solving (19) for given, fixed values of the control parameters. Because of the homo-
clinic nature of these solutions, the number, as well as the spatial location, of the bare
spots immersed in the bulk of the linearly stable uniform reference state depends on
the initial condition considered. A single, isolated stationary bare spot is shown in
Fig. 5(a). The spatial profile of the bio-mass density surrounding the central bare
spot exhibits a decaying spatial oscillation which produces the concentric rings seen
in the Fig. 5 (see also Fig. 7). This oscillatory tail connects the uniformly vegetated
state to the central spot of sparser vegetation. To a first approximation, its char-
acteristics (wavelength and maximal amplitude) are those ofthe periodic solution

4 It is noteworthy that LS do not require a commutation process between distinct uniform stationary
states [35].
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Fig. 5 Sample of localized bare spots surrounded by the uniformly vegetated state us = (κ +√
κ2 −4η)/2, obtained from numerical simulations of the model (19). Parameters are κ = 0.5,

Δ = 0.1, Γ = 2α = 0.5 and η =−0.025. (a) Single bare spot, (b) three LBSs (c) random distribution
of LBS. The grid is 256× 256 points. Black corresponds to the highest values of the phyto-mass
density. Minima are plain white. Periodic boundary conditions are used in both spatial co-ordinates

corresponding to the same parameter values. Figure 5(b) shows a pattern consisting
of three localized bare spots, of which one is an isolated structure and two form a
bound state. In Fig. 5(c), a pattern consisting of randomly distributed isolated and
bound bare spots has been obtained.

Amplitude equations describing the space–time evolution of a slow unstable
mode, derived in the framework of weakly–nonlinear regime, cannot describe lo-
calized structures. This approach does not take into account the non-adiabatic ef-
fects that involve the fast spatial scales which are responsible for the stabilization of
LSs [33]. In recent years, considerable progress has been realized in the understand-
ing of these structures. Analytical localized structures are relatively well understood
in the 1D setting. The existence of localized structures in the Swift–Hohenberg
model has been found by using functional analysis methods [42] and a dynami-
cal system approach [43, 44, 45]. More recently, the computation of small and large
spatial scales, by going beyond all orders of the usual multiple-scale expansion, al-
lows us to construct the bifurcation diagram of localized structures [46]. However,
analytical methods in 2D are still largely unexplored, and most of the results are
obtained by numerical simulations.

A single stationary bare spot solution of (19) can be written in the form u(r) =
U(r)+ u+, where U(r) is the deviation from the uniform stationary state, u+. The
stability of the bare spot solution is determined by the spectrum of the linear operator
L, defined by

L[U(r)+u+] = L(u+)+M [u+,U(r)]U(r),

with

L(u+) = −η +2κu+ −3u2
+ +(Δ−Γu+)∇2 −αu+∇4, (24)

M [u+,U(r)] = (κ −3u+)−U(r)−Γ∇2 −α∇4. (25)
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A single LBS is a radially symmetric solution, u(x,y) = u(r), of (19). We can then
replace the Laplacian operator by ∇2 = ∂ 2

rr + (1/r)∂r. We consider the following
boundary conditions: u|r=+∞ = u+, ∂ru|r=0 = 0, ∂ru|r=+∞ = 0 and ∂ 3

r u|r=0 = 0.
The solution of the linear problem is

u(r) = u+ +ℜ
{

Aexp(iθ)K0[(ϖ + iω)r]
}
, (26)

where
ϖ + iω =

√
−ξ1 + iξ2, (27)

with

ξ1 = [(Δ/u+)−Γ)]/(2α) , and ξ2 =
√

(3u2
+ +η −2κu+)/(αu+)−ξ 2

1 . (28)

The Bessel function K0 describes the decaying oscillations at large distance from
the center of the bare spot. The bare spots are calculated in the following manner.
First, we integrate (19) with ∂tu = 0, from r = 10−8 to r1 = 1, using the initial
conditions: u(r)|r=r0 = B, ∂ 2

r u|r=r0 = C and ∂ru|r=r0 = ∂ 3
r u|r=r0 = 0. Then we solve

the (19) with ∂tu = 0 from r = r1 to r = L, with L = 100 for the initial condition
of (26). The parameters A,B,C and θ are determined numerically by matching the
solution obtained at r = r1. The procedure of the calculation is the shooting method.
This calculation allows us to draw the bifurcation diagram (see Fig. 6), where we
plot the homogeneous steady state together with the minimum values of the bare
spot. The spot branch of solutions emerges from the uniformly vegetated state, u+,
at the bifurcation point (ηm,um) associated with the modulational instability.

Fig. 6 Bifurcation diagram. The solid (dotted) line represents the stable (unstable) solutions. As
the aridity parameter increases, the upper uniformly vegetated state (HSS) becomes unstable at
the bifurcation point (μm,um). From this instability point, a branch of localized bare spots (BLS)
emerges sub-critically. Here κ = 0.5, Δ = 0.1, Γ = 2α = 0.5, and η = −0.025. The black circles
indicate the minimum of LBS obtained from the numerical simulations of the model (19). The
agreement between the two method is excellent
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6 Attractive/Repulsive Interactions Between Bare Spots

We have seen that (19) admits bare spot solutions that either can be spatially inde-
pendent, or, if they are close enough, can interact through their overlapping tails to
form bound states. In this section, we study the properties of these bound states in
the case of two LBSs interacting in 2D space. An analytical expression, in terms of
integrals of Bessel functions, is derived for the interaction forces between two sepa-
rate localized bare spots. The interaction will initiate motion of the LBSs until they
reach a stable equilibrium position. We show that there exist several equilibrium
positions and that the system selects one of these states, depending on the initial
distance between the two localized spots. On the other hand, numerical simulations
reveal that two localized bare spots may loose their stability under their mutual in-
teraction, giving rise to a periodic distribution of bare spots forming an hexagonal
lattice.

Figure 7 shows two situations which are representative of the behaviors which
may be observed when two LBSs interact. In order to analyze them, let us first
rewrite (19) as:

0.5
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0.25
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u

50 200

20050
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(c)

(d)

Fig. 7 Interaction between two LBSs. (a) and (b) are obtained for the same values of parameters.
They differ only in the initial distance between the LBSs. (c) and (d) are, respectively, the cross-
sections taken from (a) and (b) and passing through the center, along the x-direction. Parameters are
κ = 0.5, Δ = 0.1, Γ = 2α = 0.5 and η =−0.025. The grid is 256×256 points. Black corresponds to
the highest values of the phyto-mass density. Minima are plain white. Periodic boundary conditions
are used in both spatial co-ordinates
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∂tu = F [u],
F(u) = Δ∇2u−ηu+κu2 −u3 −u(Γ∇2u+α∇4u). (29)

In the following, we consider two bare spots that can interact through their oscilla-
tory tails. The asymptotic form of the tail is described by a modified Bessel function
(26) that decays at large distances from the centre of the localized bare spot. When
they are excited sufficiently close to each another, they exert mutual forces due to
the overlapping of their tails. We will see that these interaction forces can be either
attractive or repulsive, depending on the initial distance between the bare spots. In
the following, we calculate these interaction forces analytically for the case of weak
overlap, which means that the two bare spots are well separated.

Let us choose the co-ordinate system in such a way that its origin is located at
the mid-point between two spots, i.e., at equal distance from each of them. Let the
center of mass of each of the bare spots be on the axis x, so that their minima are
located at the points (−R/2,0) and (0,R/2) along the x-direction, where R is the
distance between them (Fig. 8). We look for a solution of (19) in the form of a
slightly perturbed linear superposition of two spots:

U(r, t) = U1(r)+U2(r)+εδU(r, t) where U1,2(r) =U(|r−R1,2|). (30)

The positions of the localized solutions, R1,2 (t) = (X1,2,Y1,2)
T, evolve on the slow

time scale ∂t R1,2 (t) = O (ε). Substituting this expansion into (19) and collecting
first-order terms in ε , we obtain

[∂t −L(U1+U2 +u+)]δU = ∇U1 ·∂tR1 +∇U2 ·∂tR2 +F(U1 +U2 +u+). (31)

To solve (31), it is necessary to satisfy a solvability condition, viz. the right
side of (31) should be orthogonal to the null eigenfunctions of the adjoint oper-
ator L†(U1 + U2 + u+), which can be approximated by the neutral (often called
Goldstone) translational modes, v1 = (v1x,v1y)

T and v2 = (v2x,v2y)
T of L†(U1 +u+)

and L†(U2 +u+), respectively. The solvability condition reads

Fig. 8 Schematic plot of two bare spots located at the points (−R/2,0) and (0,R/2) along the
x-direction. The black circles indicate the tails of the LBSs
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1
2

∂tR1

∫
S

vk ·∇U1dr+
1
2

∂tR2

∫
S

vk ·∇U2dr = −
∫

S
vkF (U1 +U2 +u+)dr, (32)

with k = 1,2. The integrals appearing in (32) are taken over the whole plane S =
ℜ×ℜ ≡ (x,y). To perform the integration over this plane, we decompose it into
two half planes, namely, S1 = ℜ−×ℜ and S2 = ℜ+ ×ℜ (see Fig. 8)

∫
S

vkF (U1 +U2 +u+)dr =
∫

S1

vkF (U1 +U2 +u+)dr

+
∫

S2

vkF (U1 +U2 +u+)dr. (33)

In the half plane S1, where the bare spot solution U2 is small, we can apply the
following first-order expansion:

F (U1 +U2 +u+) ≈ F (U1 +u+)+L(U1 +u+)U2 = L(U1 +u+)U2. (34)

Similarly, in the half-plane S2, where the bare spot solution U1 is small,

F (U1 +U2 +u+) ≈ F (U2 +u+)+L(U2 +u+)U1 = L(U2 +u+)U1. (35)

Then (32) reads

ξ ∂tR1 = −
∫

S1

v1L† (U1 +u+)U2 dr, (36)

and

ξ ∂tR2 = −
∫

S2

v2L† (U2 +u+)U1 dr, (37)

with

ξ =
1
2

∫
S

v1 ·∇U1 dr =
1
2

∫
S

v2 ·∇U2 dr. (38)

Subtracting (36) from (37), we get the equation for the time evolution of the distance
between the spots:

ξ ∂tR = −
∫

S2

v2L†(U2 +u+)U1 dr+
∫

S1

v1L†(U1 +u+)U2 dr, (39)

where R = R2 −R1. Since v1,2 are the eigenfunctions of L† (U1,2 +u+) with the
zero eigenvalue, we have
∫

S
U1L† (U2 +u+)v2dr = 0 =

∫
S

v2L(U2 +u+)U1dr

=
∫

S1

v2L(U2 +u+)U1dr +
∫

S2

v2L(U2 +u+)U1dr, (40)
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∫
S
U2L† (U1 +u+)v1dr = 0 =

∫
S

v1L(U1 +u+)U2dr

=
∫

S1

v1L(U1 +u+)U2dr+
∫

S2

v1L(U1 +u+)U2dr. (41)

Using the relations (40) and (41), (39) becomes

ξ ∂tR =
∫

S2

v1L(U1 +u+)U2 dr−
∫

S1

v2L(U2 +u+)U1 dr. (42)

Since U1(U2) is small in S2(S1), (42) can be approximated by

ξ ∂tR =
∫

S2

[v1L(u+)U2 −U2L(u+)v1]dr

−
∫

S1

[v2L(u+)U1 −U1L(u+)v2]dr, (43)

where the self-adjoint linear operator L(u+) is defined by (24) and L(u+)v1 = O
(
ε2
)

in S2 while L(u+)v2 = O
(
ε2
)

in S1. Using this equation, we get

ξ ∂tR = (Δ−Γu+)(I1 − I2)+αu+ (J1 −J2) = F, (44)

with

I1,2 =
∫

S1,2

[
v1,2∇2U2,1 −U2,1∇2v1,2

]
dr, (45)

J1,2 =
∫

S1,2

[
v1,2∇4U2,1 −U2,1∇4v1,2

]
dr. (46)

Using Green’s identities and the symmetry properties U(−r) = U(r) and v(−r) =
−v(r), the integrals (45) and (46) over the half-planes Sk, k = 1,2, can be trans-
formed into the following integrals over the line x = 0 separating these two half-
planes:

Ik = (−1)k
∫ ∞

−∞

[
d
dx

(vkUk)
]

x=0
dy = −∇RĪk, (47)

Jk = 2(−1)k
∫ ∞

−∞

[
d
dx

(
Uk∇2vk +vk∇2Uk

)]
x=0

dy = −∇RJ̄k, (48)

where

Īk = 2(−1)k
∫ ∞

−∞
(vkxUk)x=0 dy, (49)

J̄k = 4(−1)k
∫ ∞

−∞

(
Uk∇2vkx + vkx∇2Uk

)
x=0 dy. (50)
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According to (47) and (48), (44) can be rewritten in the following gradient form:

ξ ∂tR = −∇RU (R), (51)

with the potential function

U (R) = (Δ−Γu+)(Ī1 − Ī2)+αu+ (J̄1 − J̄2) . (52)

Finally, we note that the integrals appearing in (45),(46),(47),(48),(49), and (50)
have the symmetry properties I2 = −I1, J2 = −J1, Ī2 = −Ī1 and J̄2 = −J̄1, which
express the fact that the velocities of the two spots have opposite signs, ∂tR2 (t) =
−∂tR1 (t).

In order to calculate the interaction force of two bare spots, we substitute the
asymptotic relations for Uk and vk, in terms of the modified Bessel functions, into
(47) and (48) and perform the integration. The plot of the interaction force, F , ver-
sus the half-distance, R/2, between the centers of the two bare spots is shown in
Fig. 9. This function shows a decaying oscillation, as predicted from the linear anal-
ysis. The equilibrium positions R1, R2 and R3 correspond to a separation where the
interaction force between the two spots vanishes, i.e., F = 0. The two spots are
bound together by the interaction forces. The equilibrium positions R1 and R2 are
stable, while R3 is unstable. If the initial distance, d, between two spots is such that
R0 < d < R1, the system will evolve toward the formation of two spots separated by
a distance R1. When d is larger than R2, they will reach the equilibrium position R3.
Note, however, that the origin of position R0/2 in Fig. 9 is calculated numerically
by a direct integration of (19). The position R0 corresponds to the critical initial dis-
tance between spots, and below it, only one spot survives. This means they merge

Fig. 9 Interaction force as a function of half-distance between two localized bare spots. Parameters
are κ = 0.5, Δ = 0.1, Γ = 2α = 0.5, and η = −0.025
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Fig. 10 Transition toward the formation of a periodic distribution of bare spots induced by the
interaction between two localized bare spots. Note that the single LBS remains stable for a long
time. Minima are plain white and the grid is 256×256 points. Parameters are κ = 0.5, Δ = 0.1 and
η = −0.01 (ti = ti−1 +50, with t1 = 20)

if d < R0, and only a single spot is formed. Due to the space oscillation of the tails,
the interaction force alternates between attraction and repulsion, depending on the
initial distance between the two bare spots.

When the branch of spot solutions coincides with the bare state (see Fig. 6),
then the minimum of the spot is zero. In that case, the interaction forces between
two well-separated spots will destabilize the dynamics of the system toward the
formation of a periodic distribution of bare spots which will occupy the whole space
available on the ground. This feature is illustrated in Fig. 10. The time evolution
shows that the two LBSs become unstable under their mutual interaction, and a
periodic pattern is selected in late stage evolution of the system (Fig. 10).

7 Conclusions

We have presented a model and nonlinear analysis which account for the clustering
behaviors of arid vegetation ecosystems, the formation of localized bare soil spots
(sometimes also called fairy circles) in these systems and the attractive or repulsive
interactions governing their spatio-temporal evolution. The bare spots can be ei-
ther spatially independent, self-organized, or randomly distributed. They form under
conditions that are favorable to modulational instability, leading to the patterning.
More precisely, they are generated in the regime where a periodic vegetation pattern
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and a uniform plant distribution co-exist for given, fixed values of the switching
parameter μ . They correspond to a spatial compromise between a homogeneous
plant distribution and hexagonal patterns that consist of a uniform vegetation cover
regularly punctuated with bare soil areas.

The interaction between two bare spots in 2D systems has been clarified. When
the distance between them is large, bare spots do not interact. They form an isolated
stationary structure. However, if they are close one to another, they will interact
through their overlapping tails. The interaction will cause the bare spots to move
until they reach a stable equilibrium position. We have shown that there exist several
equilibrium positions. The system selects one of these positions, depending on the
initial distance between the two localized spots.

The half-height width of a 2D LBS corresponds approximately to half the wave-
length at the modulational instability, λm/2. The wavelength is explicitly given by
a simple relation (22), where um is the solution of (23). The size of fairy circles
ranges from 2 to 10 m [16]. The spatial scale for (19) is the inter-plant competition
range. This value is estimated to be of the order of 2 m. The half-height width of a
2D LBS is of the order of three- dimensionless spatial units, and so is of order 6 m.
This value is consistent with field observations.
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