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Abstract: We show, both experimentally and theoretically, that the loss of coherence of a long
cavity optical coherence tomography (OCT) laser can be described as a transition from laminar
to turbulent flows. We demonstrate that in this strongly dissipative system, the transition happens
either via an absolute or a convective instability depending on the laser parameters. In the latter
case, the transition occurs via formation of localised structures in the laminar regime, which
trigger the formation of growing and drifting puffs of turbulence. Experimentally, we demonstrate
that these turbulent bursts are seeded by appearance of Nozaki-Bekki holes, characterised by the
zero field amplitude and π phase jumps. Our experimental results are supported with numerical
simulations based on the delay differential equations model.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

OCT is a powerful imaging technique that enables the acquisition of real-time images of scattering
media that are semi-transparent in the near-infrared range [1]. While OCT initially relied on
white light interferometry using low coherence superluminescent diodes, new techniques such
as swept-source OCT (SS-OCT) enable the realisation of 3D-real-time video of biological
tissues [2]. In SS-OCT, the image quality depends on the property of a swept source, which is a
laser whose output wavelength is periodically modulated [3]. For example, the axial resolution
is inversely proportional to the width of the optical spectrum while the image depth is limited
by the coherence length. This coherence length, which can be measured by a conventional
interferometric technique or by a more complex direct measurement of the electric field [4], is
limited by various physical phenomena ranging frommode-hopping [5], parasitic noise source [6],
cavity dispersion [7] or, more generally, by the appearance of instabilities. In this paper, we study
coherence properties of a long SS-OCT laser and find out that the mechanism leading to the loss
of coherence is similar to the laminar-turbulent transition in hydrodynamic flows.

The laminar-turbulent transition [8,9] is a crucial problem of engineering and science motivated
by many applications such as turbulent transport, atmospheric flows and airplane development
while remaining a partially understood problem of fluid dynamics [10, 11]. The transition from
laminar to turbulent flow follows usually the same scenario, evolving from a stationary motion
to well-defined oscillations eventually ending in a turbulent wake. For example, the Poiseuille
flow inside a pipeline demonstrates an interesting example of the transition to turbulence since
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the laminar flow is theoretically linearly stable for any speed [12] (or Reynolds number) but
experimental observations show the development of turbulence associated with the formation
of a turbulent spot downstream indicating that a finite amplitude perturbation destabilises the
laminar regime [9].
The important role of nonlinearities was first understood phenomenologically in the 1950s

after the pioneering work of L. D. Landau [13]. The transition from a laminar to a turbulent
state may be characterized by the notion of bifurcation which has been at the centre of important
developments from the 60s up to the present [14]. Many features observed in a turbulent
flow are closely connected to the formation of localised structures such as solitary waves or
vortices. These structures are naturally observed in nonlinear optics [15, 16], which has become
an excellent test-bed to investigate turbulence and the emergence of complexity in spatially
extended systems [17]. It was, for example, suggested that the transition to turbulence in a long
cavity laser could be explained in the frame of a nearly conservative system where the balance
between dispersion and Kerr nonlinearities leads to dark and grey soliton clustering [18]. Rogue
waves [19] and turbulent puffs in the transition to turbulence [20] have also been observed in
polarisation dynamics of partially mode-locked and quasi-CW lasers.
Here, we demonstrate that the transition from laminar to turbulence can occur in a long laser

operating at the zero dispersion point. In addition to dissipative saturable nonlinearities, our
laser system includes a tunable spectral filter. The spectral filtering is equivalent to diffusion
within the framework of the complex-Ginzburg Landau equation [21]. If the filter is driven in
near resonance with the cavity round trip time, we observed and analysed the transition between
absolute and convective instabilities. In the convective instability regime, we show that turbulent
puffs, generated by localised structures, seed the growth of turbulence leading to de-coherence of
the laser field. Convective instabilities are commonly observed in open flow instabilities where
a disturbance may grow in time as it travels away from the region of its birth so its amplitude
grows at any point along the path before eventually decaying to its original value. This contrasts
with the more conventional absolute instabilities where an initial disturbance spreads out along
the entire unstable region [22–25]. In the convective regime, noise-induced spots, swirls and
other structures are commonly observed in hydrodynamic turbulence. Noise may also lead to
the appearance of a laminar-turbulent transition at finite distance in the convective regime as
demonstrated by Deissler [26]. Turbulent puffs in the transition to turbulence have also been
observed in partially mode-locked laser [20] and associated with the formation of rogue waves. In
our case, turbulent puffs are generated by Nozaki-Bekki holes which we observed experimentally
and analyzed in the frame of delay differential equations.

2. Experimental setup and theoretical model

Our experimental setup consisted of a long cavity swept laser which incorporated a semiconductor
amplifier as a gain medium and a narrow bandwidth (50pm) Fabry-Pérot tunable filter. The
optical output of the laser was following the central frequency of the filter (∆(t)) generating
wavelength sweeps of several nm around the 1300nm central wavelength. The temporal evolution
of the output power was studied by coupling the laser light to a high speed photodetector and
further analysed on a 12GHz real-time oscilloscope. The laser cavity had a length of about
20m. In this case, the laser was operating in a quasi-static regime meaning the frequency of the
wavelength sweep was in the order of 1Hz.

Theoretically, we analysed the system using the following delayed differential equations that
describe the temporal evolution of the laser gain G(t) and the electric field envelope A(t) as
in [27]. These equations read

ÛA(t) + (Γ − i∆ (t)) A(t) = Γ
√
κe(1−iα)G(t−T )/2 A (t − T) , (1)

ÛG(t) = γ
[
g0 − G(t) −

(
eG(t) − 1

)
|A(t)|2

]
, (2)
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where ÛA(t) and ÛG(t) are the time derivatives of the electric field envelope and the laser gain, T
is the delay time, corresponding to the roundtrip time of the light in the cavity, g0, γ, α, Γ and
κ are the unsaturated gain, gain relaxation rate, linewidth enhancement factor, filter width and
attenuation factor per roundtrip from cavity losses, respectively.
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Fig. 1. Subcritical and supercritical bifurcations in awavelength swept laser. (a) Experimental
set-up of a long cavity wavelength swept laser incorporating a semiconductor optical amplifier
(SOA) and a fast Fabry-Pérot tunable filter (FFP-TF) (see the detailed description of the
laser components in [27]). (b) The filter wavelength variation in time (top). Experimental
(middle) and theoretical (bottom) observations of subcritical and supercritical modulational
instabilities. A sequence of subcritical bifurcations occurs as the filter transmission
wavelength increases while a single supercritical bifurcation leads to the appearance of a
turbulent state as the the filter transmission wavelength decreases. The experimental time
trace was recorded for the laser with a 20m cavity length and 1Hz filter modulation frequency.
The theoretical time trace was obtained by direct numerical simulation of Eqs. (1) and (2)
with a cavity round trip time of 14ns.

When the filter moved in a low sweep rate regime, we observed both experimentally and
theoretically, that the single mode laser operation underwent either a subcritical or a supercritical
Hopf bifurcation depending on the direction of the filter tuning as described in [27]. The increase
of the filter transmission wavelength resulted in a subcritical bifurcation that ultimately led to the
transition to another, red-detuned, single mode operation. The decrease of the filter transmission
wavelength resulted in a supercritical bifurcation which led to the emergence of a turbulent
regime. Such behaviour, as illustrated in Fig. 1(b), was observed when the filter wavelength was
periodically modulated at a very low frequency (less than 10Hz).
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Next, the laser was set to operate in a Fourier Domain Mode-Locked (FDML) regime [28].
This regime is achieved by adding extra single mode fiber delay into the cavity and increasing
the cavity length up to 20km. In this case it was possible to synchronise the period of the filter
modulation (TF ) with the roundtrip time of the light in the cavity (T). An interpretation of the
phase shift introduced by dynamically tuned Fabry-Pérot filter with the help of Doppler effect
is given in [29,30]. In this regime, the sweeping rate was in the order of 10kHz. Interestingly,
the motivation to investigate the dynamics of FDML lasers is mostly driven by its application
in SS-OCT [1, 2, 31] and more recently, Raman spectroscopy [32]. This laser, due to its
unprecedented high sweep rates, enables volumetric video-rate real time OCT imaging whose
quality relies on ultra-fast broadband swept sources with a long coherence length. However the
loss of coherence within the sweep leads to deterioration of the image quality and limits the
generation of extremely short pulses to 60ps after optical decompression [33].

The bifurcation analysis of the FDML laser reveals similar regimes as described in the case of
a low sweep rate laser [27]. In order to relate the evolution of the FDML output to the turbulent
behaviour commonly observed in spatio-temporal systems, we reconstructed space-time diagrams
of the laser intensity in analogy with [34].

Experimentally, this was carried out by recording the laser output during a small time window
of length tW (tW � T), repeated with a period matching the filter sweep period TF . For each
filter sweep number n, we examined the intensity of the laser in the interval nTF < t < nTF + tW .
The electric field was then treated as a function of two variables: time and filter period number n.
A 2D picture of the laser dynamics is thus created for a small part of the filter sweep.

In our theoretical simulations, we followed a similar approach, integrating in the limit of a
very large delay near the bifurcation point. The experimental realisation of the FDML regime
required a very long cavity length. The delay differential equation model could be used to run
simulations of this laser but the delay would be very large, requiring lots of computation. The
dynamics of interest are in a small time window where laminar flow drifts into a region of
instability and becomes turbulent over many sweep periods. The simplest case is close to the
filter turning point, where the filter moves slowly and the laminar flow is a single mode solution
to the delayed differential equations model, instead of a chirped FDML solution. By using the
analytical solution for the laminar part and by assuming the cavity roundtrip time to be arbitrarily
long, we can simulate only the required portion of each filter sweep (Table 1).

Table 1. Parameter values for simulations

Parameter Description Value

γ Carrier relaxation rate 4GHz

κ Linear attenuation factor 0.04

α Linewidth enhancement factor 5.0

g0 Unsaturated gain per roundtrip 5.0

πΓ Filter full width at half maximum 9GHz

The electric field during the nth sweep is An(t) = A(t + nTF ). We consider the case where
T = TF + τ, with τ > 0, so that the electric field drifts in the positive t direction relative to the
filter sweep profile with each subsequent period. In order to simulate An(t) in the time window
0 < t < tW , the required delayed term is given by An−1(t), with the time window offset by τ as
shown in Fig. 2. For t > 0 this history comes from previous simulation or initial conditions. We
assume that the filter is static at zero frequency for an arbitrarily long time before t = 0 so that a
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single mode solution can be calculated analytically in this region, filling in the history for t < 0.

Δ t)

τ

n 1 TF
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t

Fig. 2. Plot of filter sweep profile, ∆(t), used for simulations. For each sweep period n the
model equations are numerically integrated in the green shaded region using the delayed
term from the blue shaded region. The solution in the region where ∆(t) = 0 is calculated
analytically and the dashed region where the filter returns to zero is ignored.

The full filter sweep used for simulation is as follows. The filter starts at frequency f0 at t = 0
and decreases linearly during the simulated time interval. After the simulated interval the filter
returns to f0 and remains there for the remainder of the arbitrarily long filter sweep, allowing the
system to return to single mode operation before the beginning of the next simulated interval.
The filter sweep profile of the real laser follows a sine wave. Near the turning point the filter is
almost static for a time which is long compared with the time scale of the laser dynamics.
There is some equivalence between the single mode operation and chirped FDML operation.

The following transformation puts the system in a frame where the filter is always at zero
frequency, A(t) = a(t) exp

(
i
∫ t

t−T ∆(t
′)dt ′

)
. If the filter period is perfectly tuned to match the

cavity round trip time then this system is identical to a system with a static filter, but the single
mode solutions in this “filter frame” system correspond to chirped FDML solutions. In the case
of small detuning these solutions drift away from the filter over many round trips. Laminar
FDML thus has similar instabilities to single mode operation, so a study of the single mode case
provides insight into the transition to turbulence in FDML.

3. Nozaki-Bekki holes

When the filter was driven in a perfect resonance with the cavity roundtrip time, the laser emitted
a set of frequency modulated outputs corresponding to single modes in the filter frame [27].
These modes have the same stability criteria as the modes observed when the central frequency
of the filter is fixed. When the filter was tuned out of resonance from the cavity round trip, the
stability of these frequency modulated outputs depended on detuning δ = 2π(1/TF −1/T). While
the behaviour of the supercritical bifurcation remained qualitatively the same for any values of δ,
the dynamics around the subcritical point strongly depended on its value and, to investigate this
point further, we considered the dynamics for the increasing values of δ > 0. As δ increased,
we identified four different regimes. For δ < δc1 , the laminar regime remained stable for the
entire sweep. For δc1 < δ < δc2 , the laminar regime became turbulent as soon as it passed the
bifurcation point; the transition between laminar and turbulent regimes remained at a fixed value
of the filter frequency. This regime is consistent with an absolute instability as illustrated by 2D
diagrams in Figs. 3(a) and 4(a) (experimental) and Figs. 3(b) and 4(b) (theoretical).
For the larger detuning values, i.e. δc2 < δ < δc3 , the laminar regime invaded the turbulent

regime at a rate much faster than the growth rate of the turbulent regime (Figs. 3(c) and 4(c)
(experimental) and Figs. 3(d) and 4(d) (theoretical)). In this case, the front between the laminar
and turbulent regimes was no longer synchronised with the filter position but returned at every
roundtrip time. In the filter frame this appeared as a front drifting with a “speed” proportional to
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Fig. 3. Evolution of the laser intensity near the transition between the laminar and turbulent
regimes for subsequent filter periods (n). Experimental (a) and theoretical (b) 2D diagrams
of the laser intensity evolution for 250 subsequent roundtrips in the absolute instability
regime corresponding to δc1 < δ < δc2 . Experimental (c) and theoretical (d) 2D diagrams
of the laser intensity evolution for the subsequent 500 roundtrips in the convective instability
regime corresponding to δc2 < δ < δc3 . The triangular features in (c) and (d) represent the
emergence of localised structures from the laminar regime. These structures drift toward
the turbulent region with a speed v ∼ 1/pup and the size of the turbulent spot grows at
a rate r ∼ 1/plow − 1/pup , where pup and plow are the slopes of the upper and lower
boundaries between the laminar state and the localised structures. The colorbars represent
the normalised laser intensity. The parameters for simulations are given in Table 1.

the detuning. As the laminar regime invaded the turbulent region, we observed spontaneous noise
induced creation of turbulent puffs which were mediated by the formation of spatio-temporal
topological defects. For δc3 < δ, the laser displayed a turbulent regime throughout the entire
sweep. Experimentally, the values for δc1 , δc2 were found to be on the order of a few mHz while
δc3 was on the order of a few hundreds of mHz. The values of detuning below δc1 are the most
promising for the imaging applications, yet difficult to achieve experimentally [29].

The temporal evolution of the laser intensity near the subcritical bifurcation point as a function
of the filter period number n is also shown in Figs. 4(a)–4(d). Figures 4(a) and 4(b) demonstrate
the sharp transition and Figs. 4(c) and 4(d) depict the regime where convective instability occurs
displaying the drift of the laminar regime in the turbulent regime and the creation of localised
structures. For example, Fig. 4(c) shows the experimentally observed formation of a localised
structure near t = 10ns for n = 220.

To further characterise the formation of the turbulent puffs, we measured both the intensity and
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Fig. 4. The detailed analysis of the laser intensity evolution near the subcritical bifurcation
point. The laser intensity was recorded at t = nTF , where n is the number of the filter
cycles of modulation. Experimental (a) and theoretical (b) observations of the laser intensity
demonstrating a sharp transition from laminar to turbulent regimes at a small value of
detuning δc1 < δ < δc2 . This corresponds to the absolute instability regime. The animations
of the corresponding regime are shown in Visualisation 1 (experiment) and Visualisation
2 (simulations). Experimental (c) and theoretical (d) observations of creation and drift of
turbulent fronts in the convective regime (δc2 < δ < δc3 ). The nucleation of a hole structure
that appears suddenly in the cavity is shown in (c) at round trip 220. The animations of
the corresponding regime are shown in Visualisation 3 (experiment) and Visualisation 4
(simulations). The parameters for simulations are given in Table 1.

phase of the laser in the initial stage of the creation of these localised structures. To measure the
phase, we used the experimental set-up described in [4, 35]. In short, the set-up included a 3x3
self-delayed heterodyne that enabled us to measure the phase difference φ(t) − φ(t − Td) = η(t),
where Td is the time difference between the two inputs of the 3x3 coupler. The measurement of
the temporal evolution of the laser intensity and phase with a 25ps temporal resolution shows
that the laser intensity reaches zero with an associated π-phase jump (Fig. 5(a)). Similar results,
obtained numerically, are shown in Fig. 5(b). The 2D diagrams of the laser intensity and the
associated real part of the electric field are also shown on Fig. 6(b). It is also worthwhile to
note that such interferometric technique enabled us to measure the laser linewidth in the various
regimes as described in [6]. Using this technique, we observed a coherence collapse at the
laminar-turbulent transition where the linewidth on the order of 500MHz in the laminar regime
increased to the linewidth of a few GHz in the turbulent regime. This coherence collapse is
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another indicator of the growth of turbulence.
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Fig. 5. Experimentally observed (a) and, theoretically modelled (b), temporal evolution
of the laser intensity (top) and phase (bottom) during the creation of a localised structure.
Note that the laser intensity vanishes while the phase exhibits a π-jump as observed with
Nozaki-Bekki holes.
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Fig. 6. Creation of three turbulent puffs. Experimentally measured temporal evolution of the
laser intensity (a), and real part of the laser field (b) for 250 subsequent filter periods showing
the emerging of three Nozaki-Bekki holes that initiate three turbulent regions within the
laminar regime.

The observed localised structures (Fig. 5) are similar to the Nozaki-Bekki holes [36, 37]
observed in complex Ginzburg-Landau equation. These holes are asymmetric wave sources,
emitting different wave numbers up and down streams [38], and it has been suggested that they
are the building-blocks of spatio-temporal chaos in convection experiments [39]. In our case,
the holes move “downstream” and nucleate the meta-stable turbulent phase that propagates at
a larger speed, as demonstrated experimentally and numerically in Figs. 4(c) and 4(d). These
turbulent regions grow while drifting and merging with other turbulent regions. As a result, the
laminar region continues to invade the turbulent region and other turbulent domains are created.
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4. Conclusion

In summary, we have provided, both experimentally and numerically, a scenario for the loss
of coherence in a long cavity swept laser. By precisely controlling the detuning between the
cavity roundtrip time and the sweep period we were able to demonstrate the transition between
an absolute and convective instabilities. In the convective instability regime, we observe a
transition to turbulence via creation of convective Nozaki-Bekki holes. This optical analogue of
turbulent puffs in hydrodynamics, well-known as Poiseuille flow, reveals the mechanism that
leads to deterioration of the coherence of the laser. Delayed differential equations modeling is in
excellent qualitative agreement with the experimental observations. It is, to our knowledge, the
first experimental observation of Nozaki-Bekki holes inducing the turbulent transition in optical
systems.
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