
Abstract. Dynamics of generation of two transverse modes

in a class-B laser is investigated theoretically. The bifurca-

tion mechanisms of excitation of steady-state, periodic, and

chaotic regimes are studied. It is shown that dynamic trans-

verse structures can either rotate continuously or can oscil-

late about the optic axis.

The present investigation is a continuation of earlier work [1]

in which the equations of generation of three transverse

modes TEM00, TEM10, and TEM01 in a class-B laser were

derived and investigated. Here, we shall study in detail the

special case when the TEM00 fundamental mode is sup-

pressed. This situation had been achieved experimentally

on many occasions [2 ^ 8] and was investigated theoretically

[2, 9, 10]. The published results demonstrate that astigma-

tism-induced splitting of the TEM10 and TEM01 mode

frequencies has a significant influence on laser dynamics.

A special feature of our investigation is a study of both

amplitude and phase dynamics. In particular, we shall

show that the phase effects lead to two types of motion of

transverse structures: these structures may either rotate con-

tinuously or can oscillate about the optic axis.

If the amplitudes F10 and F01 of the TEM10 and TEM01

modes, varying slowly with time, are replaced with the func-

tions

F� � F10 exp

�

i
�o10 ÿ o01�t

2

�

� iF01 exp

�

i
�o01 ÿ o10�t

2

�

, (1)

scaling transformations modify the mode-generation equa-

tions to

qtF� � �1ÿ iD��F�N0 � FÿN2� � iR exp�ic�Fÿ ,

qtFÿ � �1ÿ iD��FÿN0 � F�N
�
2 � � iR exp�ic�F� ,

(2)
qtN0 � 1ÿ gN0 ÿ jF�j

2 ÿ jFÿj
2
,

qtN2 � ÿgN2 ÿ F�F
�
ÿ .

Here, o10 and o01 are the eigenfrequencies of the TEM10

and TEM01 modes; R cosc and R sinc represent, respec-

tively, the frequency difference and the loss difference for

the TEM10 and TEM01 modes, such that if c � 0, then R �
jo10ÿ o01j=2; F� � r exp (ÿ r2 � i#) are the Laguerre ^

Gauss mode amplitudes; r is the distance from the beam

axis, normalised to the beam radius; # is the polar angle;

N0 and N2 are the zeroth and second angular harmonics of

the population inversion described by formulas (2) and (5) in

Ref. [1]; D is the dimensionless detuning from the line centre

in the absence of frequency splitting; g � (gk=Ke)
1=2; gk is the

inversion decay constant; K represents the cavity losses; e is

the excess of the pumping rate above the threshold, normal-

ised to K; t is the dimensionless time.

The system of equations (2) in invariant under the

F� ! F� e
iY transformation. It is therefore convenient to

introduce variables which are invariant under this transfor-

mation:

x1 � 2ReN2 , x2 � 2ImN2 , x3 � N0 ,

x4 � jEÿjjE�j cosm , x5 � jEÿjjE�j sin m , (3)

x6 � jE�j
2 ÿ jEÿj

2
, x7 � jE�j

2 � jEÿj
2
.

Here, m � argF� ÿ argFÿ. In terms of these new variables,

the system of equations (2) becomes

qtx1 � ÿgx1 ÿ x4 , qtx2 � ÿgx2 � x5 ,

qtx3 � ÿgx3 ÿ x7 � 1 ,

qtx4 � ÿ2x7R sinc� x7x1 � Dx6x2 � 2x4x3 ,
(4)

qtx5 � 2x6R coscÿ x7x2 � Dx6x1 � 2x5x3 ,

qtx6 � ÿ2x5R cosc� 2x6x3 ÿ D�x5x1 � x4x2� ,

qtx7 � ÿ2x4R sinc� 2x7x3 ÿ x5x2 � x4x1 .

It is important for further analysis that the system of equa-

tions (4) is invariant under the transformation

�x1, x2, x3, x4, x5, x6, x7� ! �x1,ÿ x2, x3, x4, ÿ x5,ÿ x6, x7� .

(5)

In addition to the zeroth solution, the above system has

six steady-state solutions. There is a pair of solutions of

the standing-wave type with jF�j
2 � jFÿj

2
:

x7 �
2

3
�1� gR sinc� , x6 � x5 � x2 � 0 ,

(6)

x4 �
2

3
��1ÿ gR sinc� , x3 �

1ÿ x7
g

; x1 �
ÿx4
g

.

The upper and the lower signs correspond to the TEM01

and TEM10 modes, respectively. Moreover, there are four
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more travelling-wave solutions with jF�j
2 > jFÿj

2
and

jF�j
2 < jFÿj

2
:

x7 �
1

2f2

�

ÿ f1 � �f 2
1 ÿ 4f2 f0�

1=2

�

, x6 �
�1

�1ÿ x7�D
2

�
�

9x37 ÿ 21x27 �
�

R2g2�D sin 2c� 6 cos2 c� � 16
�

x7

ÿ 4�1� R2g2 cos2 c��1=2 , x5 �
x6�1ÿ x7�

gR cosc
,

x4 �
3x27 ÿ 5x7 � 2g2R 2 cos2 c� 2

gDR cosc
, (7)

x3 �
1ÿ x7

g
, x2 �

x5

g
; x1 � ÿ

x4

g
,

where

f0 � ÿ2�R 2g2 cos2 c� 1��D sinc� cosc� ,

f1 � 4D sinc� �D2 � 5� cosc ,

f2 � ÿD sincÿ �D2 � 3� cosc .

The minus and plus signs in the expression (3) for the total

intensity x7 of counterpropagating waves correspond to a

pair of travelling-wave regimes which will be denoted by

TW� and TWÿ (TW1 and TW2). Reversal of the sign in

front of the difference x6 between the counterpropagating

wave intensities means replacement of TW� with TWÿ or

of TW1 with TW2. The singularity of x4 and x6 at D � 0

disappears after substitution of the explicit expression for x7.

The travelling-wave regimes exist only if f 2
1 > 4f2 f0. The

TW� (TWÿ) solution merges with TW1 (TW2) at a sad-

dle ^ node bifurcation defined by the equality f 2
1 � 4f2 f0.

The TW1 and TW2 are always unstable, whereas TW� and

TWÿ exist in a wide range of parameters and can experience

a Hopf bifurcation.

The bifurcation diagram for the steady-state solutions in

the (g, R ) plane is given in Fig. 1a for D � 0 andc � p=3.The
TEM01 mode is stable in the region DHFED and the solu-

tions TW� and TWÿ are stable in the region ABCDHKA.

The BHF (DHM) curve corresponds to a supercritical

Hopf bifurcation (fork) of the TEM01 mode and the HK

curve corresponds to a subcritical Hopf bifurcation of the sol-

utions TW� and TWÿ. When astigmatism is sufficiently

strong (i.e. when R is greater than a certain critical value

Rcr) and g is small, all the regimes of generation of con-

stant-intensity modes are unstable. Intersection of the HK

curve in Fig. 1a with the abscissa gives Rcr. An analytic

expression for this critical value is given in Ref. [11].

The bifurcation diagram in the (D, g ) plane is shown in

Fig. 1b for the R < Rcr case. The TEM01 mode is stable in

region FZTLKHGF and the solutions TW� and TWÿ are

stable in region ARDEFZGHKVA. The DRAVK (BPTL)

curve corresponds to a Hopf bifurcation of the TW� and

TWÿ (TEM01) solutions. These bifurcations are supercritical

(subcritical) on the BPTL, DR, and VK (RAV) lines. The FZ

(ZTNM) curve corresponds to a supercritical (subcritical)

bifurcation of the fork of the TEM01 mode, and the ZG curve

corresponds to a saddle ^ node bifurcation where the solu-

tions TW� and TW1 (TWÿ and TW2) merge and disappear.

The RS and XY curves correspond, respectively, to a sad-

dle ^ node bifurcation of limit cycles and a bifurcation of a

limit cycle into a quasiperiodic attractor. All the bifurcation

curves are based on numerical calculations. The Hopf bifur-

cation and fork lines for standing-wave regimes and the

saddle ^ node bifurcation line for travelling waves were addi-

tionally calculated analytically. Numerical estimates and a

discussion of the dimensionless parameters used here can

be found in Ref. [1].

We shall now describe dynamic structures which appear

as a result of supercritical Hopf bifurcations of steady-state

solutions. The intensity distribution in a transverse section

of a laser beam is

I�r, #, t� � r2
�

jF�j
2 � jFÿj

2

� 2jF�jjFÿj cos�2#� m�
�

exp�ÿr2� . (8)

If F�Fÿ 6� 0, then for a given value of r, the above intensity

has a minimum at

# � #min � �ÿm� p�=2 . (9)

The phase difference m is a function of time for periodic

solutions of the system of equations (4). Consequently, the

angular velocity of rotation of the intensity minimum is

qt#min � ÿqtm=2. If the projection of a cycle onto the (x4,

x5) phase plane includes the point x4 � x5 � 0 (x4 / cos m,

x5 / sin m), then m increases or decreases continuously,

depending on the direction in which a cycle is traversed as

a function of time. For such cycles, the phase difference m can

be written in the form

m�t� � �
2pmt

T
� md�t� . (10)

Here, T is the period of a limit cycle, i.e. the period of the

intensity pulsations; m is the number of complete rotations

around the point x4 � x5 � 0 during one period; md is a peri-

odic functionof timewith theperiodT;md(t) � md(t� T ).The

g
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Figure 1. Bifurcation diagrams of the system of equations (4) obtained

for D � 0, c � p=3 (a) and R � 0:2, c � p=3 (b).
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selection of the plus or minus sign in expression (10) depends

on the direction along which a limit cycle is traversed.

In this case the quantity #min is a continuously rising or

falling function of time and, therefore, an intensity minimum

rotates continuously clockwise or anticlockwise. The total

angle of rotation in the time t � nT (n is an integer) is

�2pnm. If the projection of a limit cycle onto the (x4, x5�
plane does not include the point x4 � x5 � 0, then m is a

bounded periodic function of time: m(t) � md(t). In this

case the intensity minimum oscillates clockwise or anticlock-

wise in a finite interval of the polar angles.

The investigated system of equations is invariant under

the reflection transformation described by expression (5).

Therefore, all the nonvariant solutions exist in pairs. One

of these solutions is transformed into the other by the reflec-

tion transformation. Consequently, each stable regime with a

continuously rising phase difference m(t) always corresponds

to a stable regime with a continuously falling m(t).

Projections of the limit cycles that appear after supercrit-

ical Hopf bifurcations of the solutions TW� and TWÿ do not

include the point x4 � x5 � 0 and, therefore, they correspond

to transverse structures which oscillate in a finite interval d#
of the polar angles. As jDj is increased, the dimensions of both

cycles increase and the point x4 � x5 � 0 is now included in

these projections. Transverse structures are continuously

transformed from oscillation to rotation about the optic

axis. Solutions of the standing-wave type are invariant under

the reflection transformation described by expression (5)

and their Hopf bifurcations create invariant cycles. Sym-

metric cycles cannot include the point x4 � x5 � 0 and,

therefore, they always correspond to oscillating transverse

structures.

An orbit, which is homoclinic relative to an unstable

steady-state solution corresponding to generation of the

TEM01 mode, exists along the CUP line (Fig. 1b). This sol-

ution is of the saddle ^ focus type. Shil'nikov [12] showed

that, if there is a loop which is homoclinic relative to a sad-

dle ^ focus (this saddle ^ focus is a steady-state solution with

the eigenvalues l1,ÿ l2 � io, l1l2 > 0; the real parts of the

remaining eigenvalues are negative and their moduli exceed

jl1;2j) and the condition jl2=l1j < 1 is satisfied, then for sim-

ilar values of the parameters in the vicinity of this saddle ^

focus there is a chaotic set of solutions. The Shil'nikov con-

ditions are satisfied in a segment labelled UP. To the right

of the CU line there is a pair of asymmetric [under the trans-

formation described by expression (5)] stable cycles, whereas

to the left there is a stable symmetric cycle. Fig. 2 shows cha-

otic dependences of the mode intensities and of the difference

between their phases m on the dimensionless time t, obtained

for parameters close to those at the point P (Fig. 1b).

We shall now describe bifurcations of the system of equa-

tions (4) which involve an increase in the detuning for

R � 0:2, i.e. for R < Rcr. At the point R the first Lyapunov

coefficient vanishes and a supercritical Hopf bifurcation of

solutions TW� and TWÿ changes to a subcritical one. The

bifurcation line RS, on which the stable and unstable limit

cycles merge [13], begins at this point.These stable and unsta-

ble cycles are not symmetric relative to the reflection

transformation described by expression (5). Therefore, there

is a pair of stable cycles and a pair of unstable ones. The

projection of the stable cycles onto the (x4, x5) plane includes

the origin of the coordinate system. Consequently, these

cycles correspond to rotating transverse structures. A pair

of stable cycles experiences a cascade of period-doubling
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Figure 2. Time dependences of the intensities jF�j
2
(1 ) and

jFÿj
2
(2 ) (a), and also of the phase differences m (b) in the vicinity of

the point P (Fig. 1b); D � ÿ1:066, g � 0:89, c � p=3, R � 0:2.
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Figure 3. Time dependences of the intensities jF�j
2
(1 ) and

jFÿj
2
(2 ) (a), and also of the phase differences m (b) in the vicinity of

the point P (Fig. 1a); D � ÿ0:62, g � 0:5, c � p=3, R � 0:2.
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bifurcations as a result of a shift in the direction of the neg-

ative detuning.

Fig. 3 gives themode intensities of one of the doubled limit

cycles and thedifference between the phases of thesemodes for

both cycles. A sequence of doubling bifurcations gives rise to

a pair of bistable chaotic attractors. Fig. 4a demonstrates

chaotic pulsations of the mode intensities corresponding to

one of these attractors. The continuously rising and the con-

tinuously falling differences between the mode phases,

corresponding to the two attractors, are plotted in Fig. 4b.

As the detuning increases, chaotic switching between the

attractor pair begins (Fig. 5). The horizontal plateau in

Fig. 5b means that a phase path not containing the point

x4 � x5 � 0 is stabilised temporarily. A further increase in

the detuning induces an opposite period-doubling cascade,

which terminates in a region of periodic generation in the

vicinity of D � ÿ1. In this region a pair of asymmetric limit

cycles that do not include the point x4 � x5 � 0 is stable.

Next, following a chaotic region (corresponding to the detun-

ing interval from about ÿ1 to ÿ1:5), a pair of asymmetric

limit cycles that do not include the point x4 � x5 � 0 is again

stable.

A supercritical Hopf bifurcation of a stable standing wave

(line TL in Fig. 1b) exists for the positive detuning. A shift

out of the region of stability of the travelling-wave regime

in the direction of the positive detuning gives rise to an initial

bifurcation scenario similar to that shown in Figs 3 ^ 5.

However, a chaotic region is followed by a symmetric limit

cycle. This limit cycle experiences in its turn a Hopf bifurca-

tion on the XY line and the result is a quasiperiodic attractor.
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Figure 4. Time dependences of the intensities jF�j
2
(1 ) and

jFÿj
2
(2 ) (a), and also of the phase differences m (b) in the vicinity of

the point P (Fig. 1a); D � ÿ0:632, g � 0:5, c � p=3, R � 0:2.
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the point P (Fig. 1a); D � ÿ0:65, g � 0:5, c � p=3, R � 0:2.
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Figure 6. Time dependences of the intensities jF�j
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jFÿj
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(2 ) (a), and also of the phase differences m (b) in the vicinity of

the point P (Fig. 1a); D � 1:2, g � 0:5, c � p=3, R � 0:2.
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The corresponding intensities and the difference between the

phases of the counterpropagating waves are given in Fig. 6.

To summarise, we analysed bifurcation mechanisms of

the loss of stability of all the steady-state regimes which

are possible in class-B lasers generating a pair of transverse

modes TEM10 and TEM01. It was found that the appearance

of chaotic generation regimes is possible through a sequence

of period-doubling bifurcations and by destruction of a sep-

aratrix loop.The feasibility of existence of dynamic transverse

structures, rotating continuously about the optic axis or oscil-

lating in a finite interval of the polar angles,was demonstrated

and ways of appearance of such structures were discussed.

The system of equations (2) is identical with the system

describing generation of counterpropagating waves in a ring

class-B laser (as discussed in a review [11]). Then, R exp (ic)

is a coefficient representing coupling of counterpropagating

waves via backscattering and m is the difference between

the phases of these counterpropagating waves. We thus

demonstrated that a ring laser with equivalent counterpropa-

gating directions of the round trip may support regimes with

a nonzero frequency of the counterpropagating wave beats.

Such regimes were predicted earlier only for class-B lasers

with inequivalent, for example because of the phase nonreci-

procity, directions of counterpropagating waves in a round

trip. Similar regimes were investigated by us recently for

ring class-A lasers [14, 15].
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