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A NEW MODEL FOR A MODE-LOCKED SEMICONDUCTOR LASER

A.G. Vladimirov1,2∗ and D. V. Turaev3 UDC 621.373.8:535.374

We consider a new model for passive mode locking in a semiconductor laser comprising a set
of delay differential equations. Bifurcations leading to the appearance and break-up of the mode-
locking regime are studied numerically.

Passive mode locking is one of the most efficient methods for generating short optical pulses. In
particular, mode-locked monolithic semiconductor lasers are cheap, compact, and reliable sources of pulses
with high repetition rate, ideal for telecommunication applications [1]. The cavity length of such lasers can
be sufficiently small due to the large gain of the semiconducting medium. Together with the small response
time of the amplifying and absorbing media, this allows one to generate pulses with a repetition rate of
several tens of GHz. The main physical mechanism of passive phase locking is well known. For the case
where the absorber relaxation time is much larger than the pulse duration (“slow” absorber), this mechanism
is as follows [2]. Upon arrival of a pulse, the absorbing medium gets saturated faster than the amplifying one
and thus opens up a short amplification window necessary to compensate for losses and, hence, sustain the
locking regime. Basic analytical theory of passive mode locking in lasers with slow absorber was developed
more than 25 years ago by New and Haus [2–4]. Both authors used an approximation of small roundtrip
losses and gain. In New’s paper, spectral filtering of the pulse was neglected. This actually means that an
infinite number of longitudinal cavity modes take part in the mode locking and, hence an infinitely short
pulse is generated. The pulse energy remains finite and can be expressed in terms of laser parameters. In
the paper by Haus, the parabolic approximation for the profile of the spectral-filtering coefficient was used.
Haus showed that, even if the width of this profile goes to infinity, the boundaries of the mode-locking
domain do not coincide with those obtained by New under the approximation of no spectral filtering. Under
the approximation of weak saturation of absorption, Haus obtained an analytical expression for the mode-
locked pulse shape in the form of hyperbolic secant. According to this formula, unlike the case of active
mode locking, the pulse amplitude for passive mode locking decreases exponentially, and not by the Gaussian
law, with the distance from the pulse center. This result was verified in experiments with a dye laser [5].
In the decades after the Haus paper, his model and its various modifications were developed in detail (see,
e.g., [6–11]).

Despite certain advances related to the Haus model, its applicability to the rigorous description of
mode locking in a semiconductor laser is doubtful. First, this is related to violation of the approximations
used for derivation of this model, such as, e.g., small roundtrip losses and gain. Therefore, the passive mode
locking in semiconductor lasers are now most often studied using direct numerical modeling [7]. Such an
approach, although allowing fairly accurate account of different physical factors affecting the operation of
a specific device, does not provide sufficient understanding of the physical processes underlying the mode
locking.

In this paper, we propose a new model describing passive mode locking in a semiconductor laser. On
the one hand, our model is much more general than the above-mentioned models by New and Haus. Unlike
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these models, we do not assume the smallness of roundtrip

Fig. 1. Schematic picture of a ring laser. The co-
ordinate z is measured along the resonator axis.
The intervals z1 < z < z2 and z2 < z < z3 are
filled with saturable absorber and active medium,
respectively. The spectral filter is located in the in-
terval z4 < z < z5. The intervals z3 < z < z4 and
z5 < z < z1 + L are filled with passive medium.

gain and losses, weak saturation, and infinite width of
the spectral-filtering profile. The only approximations
we adopt are based on the widely-used assumptions of
the ring geometry of the cavity and the Lorentz shape
of the spectral-filtering profile. On the other hand, the
proposed model, represented by a system of delay dif-
ferential equations, is significantly simpler than the
presently used numerical models describing passive mode
locking. Our model admits clear physical interpretation
of the obtained results in terms of the quantities used in
the Haus and New models. It can be shown that these
two models can be obtained from our model as their spe-
cific cases [12]. Another advantage of our model is the
possibility of its studying by the methods developed for
analysis of bifurcations of the delay differential equations.

Consider a ring laser with saturable absorber (see
Fig. 1). Let us assume that one of the counterpropagating
waves is suppressed, i.e., that the lasing takes place in a
single direction. Let z be the coordinate along the laser
axis. The laser has five segments. The first (z1 < z < z2)

and second (z2 < z < z3) segments comprise the absorbing and amplifying media, respectively. The third
(z3 < z < z4) and fifth (z5 < z < z1 + L) segments are passive. The fourth segment (z4 < z < z5) operates
as a spectral filter. The evolution of the amplitude of a traveling electromagnetic wave in the amplifying
and absorbing segments can be described by the following system of partial differential equations:

∂E(t, z)
∂z

+
1
v

∂E(t, z)
∂t

=
grΓr

2
(1 − iαr)

[
Nr(t, z) − N tr

r

]
E(t, z), (1)

∂Nr(t, z)
∂t

= Jr − γr Nr(t, z) − vgrΓr

[
Nr(t, z) − N tr

r

] |E(t, z)|2. (2)

Here, the subscript r = g (r = q) refers to the amplifying (absorbing) segments, respecitvely, E(z, t) is
the slowly varying complex amplitude of the electric field, the quantities Ng(z, t) and Nq(z, t) describe the
carrier densities in the amplifying and absorbing laser segments, N tr

g and N tr
q are the carrier densities at

the transparency level, v is the group velocity of light, which is assumed the same in all four segments, and
the parameters αg and αq, gg and gq, and γg = 1/Tg and γq = 1/Tq describe the alpha factors, differential
gain/losses, and relaxation rates for the amplifying and absorbing segments, respectively. The factors Γg

and Γq are added to take into account the transverse field distribution in the corresponding segment. The
parameter Jg specifies the injection current in the amplifying segment. For the absorbing segment, Jq = 0.

The electric-field amplitude in the passive segments satisfies Eq. (1) with zero right-hand side:

∂E(t, z)
∂z

+
1
v

∂E(t, z)
∂t

= 0. (3)

The last segment responsible for spectral filtering (z4 < z < z5) is assumed infinitely thin, i.e.,
z4 = z5. The transformation of the electric-field amplitude in this segment is described by the relation

Ê(ω, z5) = f̂(ω)Ê(ω, z4), (4)

where Ê(ω, z4) and Ê(ω, z5) are the Fourier components of the amplitudes E(t, z4) and E(t, z5), respectively.
The function f̂(ω) specifies the spectral line profile of the filtering element.
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In a ring laser, the electric-field amplitude satisfies the periodic boundary conditions

E(t, z + L) = E(t, z), (5)

where L is the cavity length.
After the coordinate transformation (t, z) → (τ, z), where τ = t − z/v, Eqs. (1) and (2) for the

amplifying and absorbing segments take the form

∂A(τ, z)
∂z

=
1
2
(1 − iαg)ng(τ, z)A(τ, z), (6)

∂ng(τ, z)
∂τ

= jg − γgng(τ, z) − ng(τ, z) |A(τ, z)|2 ; (7)

∂A(τ, z)
∂z

= −1
2
(1 − iαq)nq(τ, z)A(τ, z), (8)

∂nq(τ, z)
∂τ

= −jq − γqnq(τ, z) − snq(τ, z) |A(τ, z)|2 , (9)

where A(τ, z) = E(t, z)
√

vggΓg, ng(τ, z) = ggΓg [Ng(τ, z) − N tr
g ], nq(τ, z) = gqΓq [Nq(τ, z) − N tr

q ], jg =
ggΓgJg − γgN

tr
g and jq = γqN

tr
q . The parameter s = gqΓq/(ggΓg) is the ratio of the saturation intensities in

the amplifying and absorbing segments.
Similarly, for the passive segments we obtain:

∂A(τ, z)
∂z

= 0. (10)

Now, using Eqs. (6)–(10) and (4), we describe the transformation of the field after its pass through
each of the five cavity segments.

1. Saturable absorber (z1 < z < z2). The relation between the input and output field amplitudes
is as follows:

A(τ, z2) = exp
[
−1 − iαq

2
Q(τ)

]
A(τ, z1), (11)

where Q(τ) is the dimensionless integral carrier density in the absorbing segment:

Q(τ) =

z2∫

z1

nq(τ, z) dz. (12)

Integrating Eq. (9) over z from z1 to z2 and using the relation
z2∫

z1

nq(z, τ) |A(τ, z)|2 dz = −|A(z2, τ)|2 + |A(z1, τ)|2, (13)

which follows from Eq. (6), we obtain the differential equation for the integral carrier density:

dQ(τ)/dτ = −q0 − γqQ(τ) + s |A(τ, z2)|2 − s |A(τ, z1)|2, (14)

where q0 =
∫ z2

z1
jq dz.

2. The amplification segment (z2 < z < z3). Equations for this segment are similar to those
for the absorption segment and have the form

A(τ, z3) = exp
[
1 − iαg

2
G(τ)

]
A(τ, z2) (15)
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and
dG(τ)/dτ = g0 − γgG(τ) − |A(τ, z3)|2 + |A(τ, z2)|2. (16)

Here,

G(τ) =

z3∫

z2

ng(τ, z) dz, g0 =

z3∫

z2

jg dz. (17)

3. Passive segments (z3 < z < z4 and z5 < z < z1 + L). The field transformation in these
segments is given by the relations

A(z4, τ) =
√

κA(z3, τ), A(z1 + L, τ) = A(z5, τ). (18)

Here, the factor
√

κ < 1 describes the total linear nonresonant losses. Without loss of generality, one can
assume that they are confined in the first passive segment.

4. Spectral filter (z4 < z < z5). In the time domain, Eq. (4) takes the form

A(τ, z5) =

τ∫

−∞
f(τ − θ)A(θ, z4) dθ, (19)

where f(τ) goes to zero at τ → ∞ suffuciently fast to ensure convergence of the integral in Eq. (19).
Substituting Eqs. (11), (15), and (18) into (19) and using the periodic boundary conditions (5), which

take the form
A(τ, z + L) = A(τ + T, z) (20)

in terms of the variables (z, τ), we obtain the transformation of the electric-field amplitude at the input to
the absorbing segment after a cavity roundtrip:

A(τ + T ) =
√

κ

τ∫

−∞
f(τ − θ) exp

[
1 − iαg

2
G(θ) − 1 − iαq

2
Q(θ)

]
A(θ) dθ. (21)

Here, we introduce the notation A(τ) ≡ A(τ, z1), and T = L/v is the time of cavity roundtrip.
Equations describing the time evolution of G(τ) and Q(τ) are obtained from Eqs. (16) and (14).

Using Eqs. (11) and (15) to express A(τ, z2) and A(τ, z3) via A(τ, z1) ≡ A(τ), we obtain

dG(τ)/dτ = g0 − γgG(τ) − exp[−Q(τ)] (exp[G(τ)] − 1) |A(τ)|2, (22)

dQ(τ)/dτ = q0 − γqQ(τ) − s (1 − exp[−Q(τ)]) |A(τ)|2. (23)

The system of integro-differential equations (21)–(23) describes passive mode locking in a ring laser
with arbitrary line profile of the spectral filter, which is specified by the function f(τ). Consider the Lorentz
profile

f(τ − θ) = γ exp[−γ (τ − θ)]. (24)

In this case, Eqs. (21)–(23) can be replaced by a system of delay differential equations:

dA(τ)/dτ = −γ

[
A(τ) −√

κ exp
[
1 − iαg

2
G(τ − T ) − 1 − iαq

2
Q(τ − T )

]
A(τ − T )

]
, (25)

dG(τ)/dτ = g0 − γgG(τ) − exp[−Q(τ)] (exp[G(τ)] − 1) |A(τ)|2, (26)

dQ(τ)/dτ = −q0 − γqQ(τ) − s (1 − exp[−Q(τ)]) |A(τ)|2. (27)
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Indeed, the solution of Eq. (25) has the form

A(τ) = exp(−γτ)A(0) + γ
√

κ

τ∫

0

exp
[
γ (θ − τ) +

1 − iαg

2
G(θ − T ) − 1 − iαq

2
Q(θ − T )

]
A(θ − T ) dθ (28)

and concides with Eqs. (21) and (24) if

A(0) = γ
√

κ

0∫

−∞
exp

[
γθ +

1 − iαg

2
G(θ − T ) − 1 − iαq

2
Q(θ − T )

]
A(θ − T ) dθ. (29)

Note that even in the case where Eq. (29) is not satisfied, the first term in Eq. (28) goes to zero at τ → ∞.
Therefore, at this limit the solution of Eq. (25) coincides with Eqs. (21) and (24).

Equations (25)–(27) are the basic model proposed in this paper. These equations are obtained for
the case where the center of the transmission line of a spectral filter exactly coincides with the frequency of
one of the cavity modes. If this condition is not satisfied, then equations describing passive mode locking
can be obtained from Eqs. (25)–(27) by applying the ansatz

√
κ → √

κ exp(iφ) in Eq. (25), where the phase
φ is determined by the frequency mismatch between the line center of a spectral filter and the closest cavity
mode. Below, we consider only the case φ = 0.

It is noteworthy that an approach similar to the one used here was employed earlier by Gurevich and
Khanin [13–16] for describing the passive mode locking in a solid-state laser. The system of delay differential
equations obtained by these authors comprises, instead of the saturable gain G and saturable absorption
Q, two other variables specifying the electromagnetic-field amplitude in different cross sections of the laser.
The model given by Eqs. (25)–(27), unlike the Gurevich-Khanin model, has no singularity at points where
the electromagnetic-field amplitude goes to zero, which we consider an advantage of our model. This makes
it possible to study our model by methods similar to those developed by New and Haus for the description
of passive mode locking in lasers with slow absorber. This category comprises also lasers for which the
relaxation time scale of the saturable absorption is much larger than the duration of generated pulse, in
particular, semiconductor and solid-state lasers operated in the regime of mode locking. The New and Haus
methods are based on dividing the solution for the time-periodic intensity into two parts. One part describes
the so-called slow motion and corresponds to the interval between pulses, when the electromagnetic-field
amplitude is practically zero and the gain and absorption slowly relax to non-saturated values. Detailed
description of analytical methods for studying Eqs. (25)–(27) in the case of slow absorber is given in [12].

The case of Lorentzian spectral filtering is not the only one for which Eq. (21) can be replaced by a
delay differential equation. Another case takes place if the function f(τ) has the form

f(τ) =
γ

2
[sgn(τ) − sgn(τ − γ−1)]. (30)

The Fourier transform of Eq. (30) is written as

f̂(ω) =
1√
2π

exp
(

iω

2γ

)(
ω

2γ

)−1

sin
(

ω

2γ

)
, (31)

which corresponds to reflection from a small-amplitude Bragg lattice. In this case, Eq. (21) can be replaced
by an equation with two delays:

dA(τ)/dτ = γ
√

κ

[
exp

[
1 − iαg

2
G(τ − T ) − 1 − iαq

2
Q(τ − T )

]
A(τ − T )

− exp
[
1 − iαg

2
G(τ − T1) − 1 − iαq

2
Q(τ − T1)

]
A(τ − T1)

]
, (32)
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where T1 = T + γ−1. The solution of Eq. (32) has the form

A(τ) = c + γ
√

κ

τ−T∫

τ−T1

exp
[
1 − iαg

2
G(θ) − 1 − iαq

2
Q(θ)

]
A(θ) dθ, (33)

where c is an arbitrary constant. If c = 0, then Eq. (33) coincides with Eq. (21) in which the function f(τ)
is specified by Eq. (30). Substituting τ = 0 and c = 0 into Eq. (33), we obtain the following initial condition
for the field amplitude:

A(0) = γ
√

κ

−T∫

−T1

exp
[
1 − iαg

2
G(θ) − 1 − iαq

2
Q(θ)

]
A(θ) dθ. (34)

Note, however, that, as follows from Eq. (33), the initial condition for Eqs. (32), (26), and (27), unlike
Eqs. (25)–(27), does not decay exponentially in time. Therefore, to obtain the correct result when solving this
system of equations numerically, it is necessary to choose the correct initial condition satisfying Eq. (34). The
meaning of this condition is as follows. Replacing integral equation (21) by delay differential equation (32)
is equivalent to replacing integral relation (19), which determines the electromagnetic-field transformation
in the spectral filter, by the differential equation which determines the field A(τ, z5) at the output of the
spectral filter via the input field A(τ, z4) with accuracy up to an arbitrary constant. To eliminate such an
ambiguity, it is necessary to use initial condition (34).

Finally, we show results of calculation of the do-

Fig. 2. Solutions of system (25)–(27) with con-
stant and periodic time dependences of the laser-
field intensities for q0 = 2γq, T = 25 ps, γ−1 =
0.4 ps, αg = αq = 0, s = 5, γ−1

g = 1 ps,
γ−1
q = 10 ps, and κ = 0.5. Periodic solutions P1,

P2, and P3 bifurcate from the stationary solution
(marked as CW) at the Hopf bifurcation points.
Stable and unstable solutions are denoted by solid
and dashed lines, respectively.

mains of passive mode locking for Eqs. (25)–(27), obtained
using the software package DDE-BIFTOOL for numerical
analysis of bifurcations of delay differential equations [17].
These results are shown in Fig. 2 for the case where the
alpha factors of the amplifying and absorbing media are
equal to zero: αg = αq = 0. The case of nonzero alpha
factors is more complicated and will be considered in an-
other publication. For nonzero alpha factors, a pulse after
a cavity roundtrip acquires a phase shift dependent on the
electromagnetic-field intensity and thus varying over the
pulse. Preliminary calculations show that the presence
of such a phase shift has a negative effect on the mode
locking and can lead to its break-up at sufficiently large
alpha factors. However, since the quantities G and Q en-
ter Eq. (25) for the electromagnetic field with opposite
signs, the phase shifts introduced by the amplifying and
absorbing segments have opposite signs and, hence, par-
tially compensate for each other if the signs of αg and αq

are the same. Numerical calculations show that, for each
value of αg, there is a certain value of αq, for which such
compensation is maximum. This situation is most favor-
able for mode locking and qualitatively resembles the case
where the alpha factors are zero.

The pump parameter g0 of the amplifying medium
was chosen as a bifurcation parameter in Fig. 2. Stable

and unstable solutions are plotted by solid and dashed lines, respectively. The curve marked CW corresponds
to the stationary lasing, i.e., the solution with time-independent intensity of the electromagnetic field. This
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solution is stable in a small vicinity near the linear threshold of lasing, g0/γg = q0/γq−lnκ, and in the region
of large g0, where the contribution of the amplifying medium dominates that of the absorbing medium. In
the intermediate domain of g0 values, where the stationary lasing is unstable, solutions with periodic and
quasiperiodic temporal dependences of the field intensity are observed. Periodic solutions in Fig. 2 are
denoted P1, P2, and P3. The solution P1 has a period close to the time T of pass through the cavity.
Therefore, it corresponds to a fundamental regime of passive mode locking. The solutions P2 and P3 have
pulse-repetition periods approximately 2 and 3 times smaller than T , respectively. These solutions describe
passive mode locking with two and three pulses coexisting in the cavity. The domain of stability of the
fundamental mode-locking regime is bounded by two bifurcation points denoted as SN and QP in Fig. 2.
The first point corresponds to a saddle-node bifurcation, where two periodic solutions (stable and unstable)
merge and disappear. The second point corresponds to the bifurcation of a periodic solution into the one
with quasiperiodic electric-field intensity. The latter solution corresponds to the mode locking modulated
by the frequency of relaxation oscillations, which, for semiconductor lasers, is usually several times smaller
than the repetition rate of mode-locked pulses. The modulation depth increases as the system goes to
the left from the point QP. The bifurcation diagram shown in Fig. 2 is in qualitative agreement with the
experimental data obtained for a monolithic semiconductor laser [18].

To summarize, we propose a new model, which describes passive mode locking in a semiconductor
laser, in the form of a system of delay differential equations (25)–(27). This model is more convenient for
analytical study than the earlier model by Gurevich and Khanin [13–16]. It is easy to generalize our model
to the case of active or hybrid mode locking. The main approximations at which our model is based are the
assumptions of the ring laser geometry and Lorentz line profile of the spectral filter. The approximations
of small roundtrip gain and losses, as well as any assumptions on the relation between the pulse length
and relaxation timescales of the amplifying and absorbing media, are not used. Therefore, the applicability
domain of the model is significantly wider than for the well-known models by New and Haus. For the
case of zero alpha factors, we have numerically studied the bifurcations responsible for the appearance and
disappearance of the mode locking.

We wish to thank G. Kozyreff and E.A. Viktorov for fruitful discussions and useful recommendations.
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