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We suggest semianalytic estimates for the Q-switching instability boundary of the continuous-wave (cw) mode-
locking regime domain for a ring-cavity semiconductor laser. We use a differential delay laser model that al-
lows us to assume large gain and loss in the cavity, which is a typical situation for this class of lasers. The
Q-switching instability boundary is obtained as a Neimark–Sacker bifurcation curve of a map describing the
transformation of pulse parameters after a round trip in the cavity. We study the dependence of this boundary
on laser parameters and show that our theoretical results are in qualitative agreement with the experimental
data obtained with a passively mode-locked monolithic semiconductor laser. © 2006 Optical Society of
America
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. INTRODUCTION
emiconductor lasers operating in the mode-locking (ML)
egime are efficient, compact, low-cost sources of short op-
ical pulses with high repetition rates (tens and hundreds
f gigahertz) suitable for applications in telecommunica-
ion technology. Similarly to other types of lasers, these
asers can be passively mode locked by incorporating a
aturable absorber section into the laser cavity. However,
part from ML, lasers with a saturable absorber have a
endency to exhibit undamped Q-switching pulsations. In
mode-locked laser the Q-switching instability leads to a

ransition from the cw ML regime to the so-called
-switched ML regime. The latter regime is characterized
y pulse amplitude modulated by the Q-switching oscilla-
ion frequency that is typically on the order of a few giga-
ertz for semiconductor lasers. Since fluctuations of the
L pulse amplitude are undesirable in most applications,

ow to avoid this type of instability in real devices is an
mportant question.

Stability of the cw ML regime with respect to the
-switching bifurcation was studied theoretically and ex-
erimentally in a number of publications.1–7 In particular,
nalytical estimations for the stability criteria for the cw
L regime in a solid-state laser were obtained theoreti-

ally under certain approximations.1,3,5 However, since
hese studies were based on the Haus master equation,
hich assumes small gain and loss per cavity round trip
nd weak saturation of the absorbing medium, their re-
ults are hardly applicable in the parameter domain of
emiconductor lasers. Therefore, to study ML in these la-
ers, the approaches based on direct numerical simula-
0740-3224/06/040663-8/$15.00 © 2
ions of spatially distributed models are commonly used
for a review see Ref. 8). In this paper we present an al-
ernative approach to describe the Q-switching instability
n a semiconductor laser, which uses the delay differential

odel proposed in Ref. 9. Under the slow saturable ab-
orber approximation we derive a map describing the
ransformation of the ML pulse parameters after a com-
lete round trip in the cavity. A nontrivial fixed point of
his map corresponds to a cw ML regime. The Q-switching
nstability threshold is then obtained as a Neimark–
acker bifurcation of the nontrivial fixed point. We study
he dependence of the Q-switching instability boundary
nd the ML stability boundaries obtained by New’s
riterion10 on laser parameters and compare them with
he results of direct numerical analysis of the original de-
ay differential model. Further modification of our ap-
roach, based on the hyperbolic secant ansatz, is used to
stimate the width and repetition rate of the ML pulses.
inally, we present some results of the experimental
tudy of a monolithic passively mode-locked semiconduc-
or laser operating at 40 GHz repetition frequency. These
xperimental data are found to be in qualitative agree-
ent with theoretical results.

. MODEL EQUATIONS
e consider a ML solution in a model of a semiconductor

ing-cavity laser suggested and studied numerically in
ef. 9. In case of the Lorentzian line shape of the spectral
ltering element, the model expressed in dimensionless
orm reads
006 Optical Society of America
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�−1Ȧ + A = ��e��1−i�g�G�t−T�/2−�1−i�q�Q�t−T�/2+i��A�t − T�, �1�

Ġ = g0 − �gG − e−Q�eG − 1��A�2, �2�

Q̇ = q0 − �qQ − s�1 − e−Q��A�2, �3�

here A is the electric field envelope at the entrance of
he absorber section and G and Q stand for saturable gain
nd loss, respectively. In Eqs. (1)–(3) T is the cold cavity
ound trip time, the parameter � measures the bandwidth
f the spectral filtering element, � is the attenuation fac-
or describing linear nonresonant intensity losses per cav-
ty round trip, �g,q are the relaxation rates of the ampli-
ying and absorbing media, s is the ratio of the saturation
ntensities in gain and absorber media, and � describes
he detuning between the central frequency of the spec-
ral filtering element and the nearest cavity mode. The
alues of dimensionless parameters T, �−1, and �g,q

−1 can be
onverted to real units by multiplication with the time
easure unit �t=10 ps. Table 1 represents the parameter

et we use in most calculations below.
Equations (1)–(3) give a generalization of Haus’ master

quation to the case of large gain and loss per cavity
ound trip, i.e., a situation typical of semiconductor la-
ers.

Before proceeding to the analysis of a ML regime, we
ery briefly observe cw solutions of Eqs. (1)–(3) and their
-switching instability. cw states are defined by the rela-

ions G=G0, Q=Q0, A�t�=A0ei��t, where �=�� /� is the
imensionless frequency shift of the cw solution normal-
zed by the filter bandwidth. Consequently, the constant
alues of the G and Q components of a cw solution, the
mplitude A0 of the optical field component, and the fre-
uency shift � are determined by the system

0 − �gG − e−Q�eG − 1�A0
2 = 0, q0 − �qQ − s�1 − e−Q�A0

2 = 0,

�eG−Q − 1 − �2 = 0, �4�

nd

� + tan��T� + ��gG − �qQ�/2 − �� = 0, �5�

ith the additional condition cos��T�+ ��gG−�qQ� /2
���0. As the last equation implies, this system has a
ountable sequence of solutions (laser modes).

The Q-switching instability corresponds to the
ndronov–Hopf bifurcation of the cw solution. If the
-switching frequency �R and the cw solution frequency

hift � are much smaller than the ML frequency �� ,�R
�T�, then one arrives at the case of a slowly changing

ptical field and can neglect the first term �−1A in Eq. (1).
ultiplying the resulting equation by its complex conju-

ate, one gets P�t+T�=�eG�t�−Q�t�P�t�, where P= �A�2 is the

Table 1. Parameter Set for Eqs. (1)–(3)

t T�t �−1�t �g
−1�t �q

−1�t
0 ps 25 ps 0.2 ps 1 ns 13 ps

s �g �q

.1 25 0 0
imensionless optical field power. The assumption of the
lowly changing field justifies the further approximation
�t+T��P�t�+TṖ�t�, which leads to the approximation of

aser equations (1)–(3) by the set of ordinary differential
quations

TṖ = − P + eG−Q+ln �P, �6�

Ġ = g0 − �gG − e−Q�eG − 1�P, �7�

Q̇ = q0 − �qQ − s�1 − e−Q�P. �8�

e note that, in the limited case of small G, Q, and ln �,
his system transforms to the usual saturable absorber
odel,1,11–13 where all exponentials are replaced by their

inear approximations. Equations (6)–(8) generalize this
impler model to the case of large gain and loss per cavity
ound trip.

Although the Q-switching instabilities of the cw and
L solutions are related, we shall see that the Andronov–
opf bifurcation line of the cw solution of Eqs. (6)–(8)

ives only a very rough estimate of the Q-switching insta-
ility boundary of the ML regime. The results of numeri-
al calculations are presented below in Section 5 (see Fig.
).

. INSTABILITY LEADING TO Q-SWITCHED
L

ow we consider the Q-switching bifurcation of the ML
olution. The number of cavity modes that take part in
he locking process can be roughly estimated as a ratio of
he spectral width � of the filtering element and the in-
ermode frequency spacing T−1. Here we consider a limit
hen this number is very large, �T→
, which means

hat the duration � of a ML pulse is very short, much
horter than the relaxation times of the gain and absorber
edia, �	�g,q

−1 . This limit corresponds to the so-called
low saturable absorber approximation,10,14 which holds
uite well for parameter values typical of semiconductor
asers. Analytical study of a ML laser with slow absorber
as performed by New10 and Haus.14 Following their ap-
roach and using the results of Ref. 15, we distinguish be-
ween slow and fast stages in the evolution of a ML solu-
ion. The fast stage corresponds to a short time interval
uring which the amplitude of the pulse is large. During
his stage linear relaxation terms in the right-hand side
f Eqs. (2) and (3) can be neglected. The slow stage corre-
ponds to the time interval during which the electric field
ntensity is small between two subsequent pulses. At this
tage we neglect the terms proportional to �A�2 in the
ight-hand side of Eqs. (2) and (3). Solving the laser equa-
ions for the two stages separately and then combining
he solutions, we obtain a map that describes the trans-
ormation of pulse parameters after a complete round trip
n the cavity. A fixed-point solution of this map corre-
ponds to a ML solution characterized by the periodic la-
er intensity. We study the stability of the fixed point and
emonstrate that it can exhibit a Neimark–Sacker bifur-
ation characterized by a pair of complex conjugate Flo-
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uet multipliers crossing the unit cycle. This bifurcation
s responsible for a Q-switching instability of the ML re-
ime.

Let Gn and Qn be the saturable gain and loss evaluated
t the beginning of the fast stage after n round trips in
he cavity, i.e., at the leading edge of the nth pulse. The
orresponding pulse energy is given by Pn=�0

�n �A�2dt,
here the integration limits, 0 and �n, stand for the be-
inning and end of the nth fast stage, respectively. During
he fast stage the laser intensity is large, and the terms
ontaining �A�2 become dominant in Eqs. (2) and (3). Thus
e neglect the other (relaxation) terms in the right-hand

ide of these equations to arrive at the system Ġ=
e−Q�eG−1� �A�2 and Q̇=−s�1−e−Q� �A�2, which admits the
xplicit solution

G�p� = − ln	1 −
1 − e−Gn

�1 + esp−Qn − e−Qn�1/s
,

Q�p� = ln�1 + e−sp�eQn − 1��, �9�

here p is the differential energy of the nth pulse defined
y dp= �A�2dt. The slow stage of a ML solution is described
y the linear ordinary differential equations, Q̇=q0−�qQ
nd Ġ=g0−�gG, with the solutions

G�t� = G�Pn�e−�gt +
g0

�g
�1 − e−�gt�,

Q�t� = Q�Pn�e−�qt +
q0

�q
�1 − e−�qt�, �10�

here the initial conditions, G�Pn� and Q�Pn�, are ob-
ained from Eqs. (9) with p=Pn. Substituting Eqs. (9) into
qs. (10) and taking into account that in the limit �T

 the duration of the slow stage is equal to the cavity

ound trip time T, we obtain a map describing the trans-
ormation of the saturable gain and loss after a complete
ound trip in the cavity:

Gn+1 = − e−�gT ln	1 −
1 − e−Gn

�1 + esPn−Qn − e−Qn�1/s

+ �1 − e−�gT�g0/�g, �11�

Qn+1 = e−�qT ln�1 + e−sPn�eQn − 1�� + �1 − e−�qT�q0/�q.

�12�

ere Gn+1 and Qn+1 are the saturable gain and loss evalu-
ted at the beginning of the fast stage after n+1 round
rips in the cavity, i.e., at the leading edge of the �n+1�th
ulse.
To complete Eqs. (11) and (12) one must relate the en-

rgies Pn and Pn+1 of two subsequent pulses by solving
q. (1) for the electric field envelope A. Unfortunately,

his task cannot be performed analytically in a general
ituation. Therefore we use two different approaches to
implify the problem. The first of them is based on New’s
pproximation,10 which assumes that there is no spectral
ltering in the cavity. This approach allows for the calcu-

ation of the Q-switching instability boundary of a ML so-
ution and background stability boundaries of a ML pulse
ccording to the criterion proposed by New.10 However,
uch important characteristics of the ML regime as pulse
uration and deviation of the pulse repetition period from
he cold cavity round-trip time are missing in this ap-
roach. Therefore, in order to get these characteristics, in
ection 5 we apply a variational approach to a more real-

stic situation when spectral filtering is taken into ac-
ount.

. NO SPECTRAL FILTERING IN THE
AVITY
et us rewrite Eq. (1) equivalently in the form

�−1Ȧn+1�t − �−1�n� + An+1�t − �−1�n�

= ��e	1−i�g

2
G�t�−

1−i�q

2
Q�t�
An�t�. �13�

n Eq. (13) An+1�t��An�t+Tn� and �n=��Tn−T�, where Tn
s the time interval between the two subsequent pulses.

ultiplying Eq. (13) with its conjugate and integrating
ver the round trip time T we get

�−2�
0

�n+1

�Ȧn+1�2dt + Pn+1 = ��
0

Pn

eG�p�−Q�p�dp, �14�

here in both sides we have restricted the integration to
he fast stage since the optical field intensity during the
low stage is negligibly small. Equation (14) describes the
nergy balance in the cavity. It is similar to Eq. (46) in
ef. 14, which was derived for a periodic ML solution un-
er small gain and loss per cavity round trip and para-
olic dispersion approximations, and to a generalization
f this equation in the case of large gain and loss obtained
n Ref. 15. The integral term in the left-hand side of Eq.
14) describes energy losses introduced by the spectral fil-
ering element. Since in this section we neglect the spec-
ral filtering completely, this term can be dropped. Then,
fter explicit integration of the right hand side we obtain

Pn+1 = � ln�1 − eGn + eGn�1 + esPn−Qn − e−Qn�1/s�. �15�

The three-dimensional map [Eqs. (11), (12), and (15)]
escribes the transformation of the pulse parameters Gn,
n, and Pn after a complete round trip in the cavity. It al-
ays has a trivial fixed point �g0 /�g ,q0 /�q ,0� correspond-

ng to zero pulse power (i.e., to laser-off). This point is
table for 
=g0 /�g−q0 /�q+ln ��0 and loses stability via
transcritical bifurcation at the linear laser threshold 

0. A fixed point �G* ,Q* ,P*� with P*�0 that appears af-

er the transcritical bifurcation represents a pulsed solu-
ion of Eqs. (1)–(3) with the periodic laser intensity corre-
ponding to a fundamental ML regime. Depending on the
arameter values, the fixed point characterized by a posi-
ive pulse energy can bifurcate from the trivial one, either
upercritically or subcritically. In the latter case there
ay be a bistability between the zero intensity solution

nd the solution corresponding to a ML regime. In this
aper, however, we consider only the parameter values
atisfying the inequality
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��−1 − e−q0/�q�tanh
�qT

2
� s�1 − e−q0/�q�tanh

�gT

2
, �16�

hich implies that the stable fixed point �G* ,Q* ,P*� with
*�0 bifurcates from the trivial one supercritically,
hereby bistability is excluded.
We have observed numerically by the linear stability

nalysis that the fixed point �G* ,Q* ,P*� can lose stability
ia the so-called Neimark–Sacker bifurcation where two
omplex conjugated Floquet multipliers cross the unit
ircle. This bifurcation is similar to the Andronov–Hopf
ifurcation of ordinary differential equations. A solution
hat appears at the bifurcation point corresponds to a re-
ime with ML pulse energy modulated periodically at the
-switching frequency. The Neimark–Sacker bifurcation

urve QS shown in Fig. 1 by a solid curve represents the
order between the ML and Q-switching domains in the
arameter plane �g0 ,−q0�. The fixed point �G* ,Q* ,P*) ex-
sts to the right from the linear threshold line th and is
table in the area above the curve QS.

Another stability criterion of ML solution was proposed
y New.10 According to this criterion, ML pulses are stable
f the net gain parameter G�t�−Q�t�+ln � is negative dur-
ng the whole slow stage. Physically this means that
mall perturbations of the low intensity background be-
ween two subsequent pulses do not grow with time.
hough stable ML pulses that do not satisfy New’s crite-
ion were observed in numerical simulations,4,6,9 these
ulses are expected to be very sensitive to the presence of
oise. Therefore one can expect that this criterion gives at

east a rough estimation of the ML stability domain.
As one can see from Eq. (10), New’s background stabil-

ty criterion is fulfilled if the net gain is negative at the
eginning and the end of the slow stage. Therefore the
oundaries of the background stability domain of ML
ulses are defined by the equalities

G* − Q* + ln � = 0, G̃* − Q̃* + ln � = 0. �17�

ere G̃*=G�P*� and Q̃*=Q�P*�, defined by Eq. (9), de-
cribe the saturable gain and loss at the beginning of the
low stage. They are obtained from Eqs. (9) by the substi-
ution Qn→Q*, Gn→G*, and p→P*. Eqs. (17) defines the
eading and the trailing edge instability boundaries of a

L pulse in the laser parameter space. These boundaries
re shown in Fig. 1 by the solid curves L and T, respec-
ively. One can see that the lower boundary T of the back-
round stability domain is separated from the bifurcation
oundary QS by a thin stripe, where ML pulses with un-
table background are stable with respect to the
-switching instability. The existence of stable ML pulses
ith unstable background, according to New’s criterion,
as noticed in numerical simulations using both the
aus master equation4,6 and the delay differential model

Eqs. (1)–(3)].9,16 The two background instability bound-
ries L and T meet each other at the codimension-two
oint CT. The coordinates of this point, which lie at the
inear threshold line th and, therefore, correspond to infi-
itely small pulse energy, can be expressed explicitly: g0
�g ln��s−1� / �s�−1��, q0=�q ln���s−1� / �s�−1��; see Ref.
5. The circles in Fig. 1 represent the points at the
-switching (empty circles) and background (full circles)
nstability boundaries obtained by means of direct nu-
erical simulation of Eqs. (1)–(3). One can see that these
umerical results are in quite good agreement with those
btained analytically in the limit when the spectral filter-
ng is neglected.

Figure 2 presents the dependence of the ML
-switching and background instability boundaries on

he linear loss parameter � and the ratio s of the satura-

ig. 1. Q-switching instability curves (QS) and background in-
tability boundaries (L and T) of a ML pulse. L, leading-edge; T,
railing-edge instability boundary. Solid curves are obtained us-
ng Eqs. (11), (12), and (15). Dashed curves are obtained from
qs. (11), (12), (19), and (20). Dots show Q-switching and back-
round instability boundaries calculated by direct numerical in-
egration of the laser equations (1)–(3). The straight line th indi-
ates the linear lasing threshold. Parameters are as in Table 1.

ig. 2. Background stability 1 and ML Q-switching instability 2
omains. (a) s�=5 and (b) s�=1.3. Solid and dashed curves
resent the Q-switching and background instability boundaries
f the ML solution calculated for s=35 and s=15, respectively.
hin curves in (a) indicate the Q-switching instability of the cw
egime. This latter instability does not exist for s�=1.3. Other
arameters are the same as in Fig. 1.
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ion intensities in gain and absorbing media. The bound-
ries shown by thick solid and dotted curves have been
alculated using Eqs. (11), (12), (15), and (17). It follows
rom our numerical simulations that these boundaries de-
end mainly on the product s� and weakly depend on
hese two parameters separately. This property holds es-
ecially well for large cavity losses typical for semiconduc-
or lasers, as illustrated by Fig. 2. According to this figure,
he domain of the Q-switched ML regime is shifted into
he region of large linear gain g0 and linear loss q0 param-
ters and becomes wider with the decrease of s�. This is
n agreement with the experimental observations of Ref.
, where it was shown that the ML stability domain of a
onolithic semiconductor laser can be enlarged by in-

reasing the laser facets reflectivity. Thin curves in Fig.
(a) indicate the Q-switching instability boundaries of the
w state calculated at s�=5 using Eqs. (6)–(8) (the thin
olid curve corresponds to s=35; the thin dotted curve cor-
esponds to s=15). For these parameter values the
-switching bifurcations of the cw and ML solutions are
ot far away from one another. However, for the param-
ter values of Fig. 2(b) �s�=1.3�, the Andronov–Hopf bi-
urcation of the cw solution disappears and hence cannot
e used to estimate the Q-switching threshold of the ML
egime anymore.

On a qualitative level, the effect of the parameters s
nd � on the properties of a mode-locked laser allows
imple explanation. The ratio s of the saturation energies
f the two laser sections is associated with the main non-
inear mechanism responsible for the compression of the

L pulse. Therefore one can expect an improvement of
L quality and a decrease of the pulse width with the in-

rease of this parameter. According to Eqs. (1)–(3), the at-
enuation factor � describes the round-trip feedback
trength that is also responsible for one of the main
echanisms of the formation of the ML pulse. In the case
hen � is too small, the amplitude of the pulse returning

o the absorber section after a round trip in the cavity is
ot sufficient to create a net gain window necessary to
aintain the ML regime. Thus one also expects that the

ncrease of � must be helpful for ML. Below in Section 6
e present some experimental confirmation of these
ualitative conclusions. Of course, the results of our
uantitative method and quantitative conclusions like
hat the product s� are that the main parameter lies be-
ond the scope of this simple qualitative argumentation.

. VARIATIONAL APPROACH
he reduced model [Eqs. (11), (12), and (15)] is based on
he representation of a ML solution by the T-periodic se-
uence of � pulses with the energy P*. Note that this map
oes not depend on the � factors �g,q. Also, it gives no in-
ormation about such important characteristics of the ML
egime as the pulse width and deviation of the pulse rep-
tition period from the cold cavity round-trip time T. To
stimate these characteristics, we modify our map using a
ariational approach. We look for the solution of Eq. (1) at
he nth fast stage in the form
An�t� =�Pn�

2�n
sech
�t

�n
� , �18�

here Pn is the dimensionless pulse energy and �n /� is
he pulse width. In doing so, we are motivated by the fact
hat Haus’ formula [Eq. (18)] (see Ref. 14) gives an exact
olution of the ML problem in the weak saturation limit
hen all the nonlinearities can be replaced by their

econd-order Taylor expansions in the pulse energy P.
For simplicity, we consider the case of zero � factors,

onsequently �g=�q=0. Substituting Eq. (18) into Eq. (14)
nd taking into account that the right-hand side of this
quation is equal to the right-hand side of Eq. (15), we ob-
ain

Pn+1

3�n+1
2 + Pn+1 = � ln�1 − eGn + eGn�1 + esPn−Qn − e−Qn�1/s�.

�19�

t is important to note that since in the limit of infinite
andwidth, �T→
, the normalized pulse width � remains
nite, both the terms in the left-hand side of Eq. (19) are
f the same order, while in New’s approach the first term
as neglected. It means that Eq. (19) obtained for the
orentzian filtering in the limit of infinitely broad band-
idth �T→
 and Eq. (15) based on New’s assumption

hat spectral filtering is absent lead to different estimates
f the ML pulse energy.

Thus, in the presence of spectral filtering, we replace
q. (15) by Eq. (19), while Eqs. (11) and (12), which do not
epend on the pulse shape, remain unchanged. Since Eq.
19) contains an additional parameter, the normalized
ulse width �n, an extra relation is required to describe
he evolution of this parameter from one pulse to another.
e obtain it by integrating Eq. (13) over the cavity round-

rip time, which seems to be a reasonable and simple pos-
ibility among the others (leading to different relations).
e neglect the optical field intensity during the slow

tage and then integrate Eq. (13) with G, Q, An, and An+1
eplaced by the corresponding fast stage solutions of Eqs.
9) and (18), and An+1�t�= ��Pn+1/ �2�n+1��1/2sech��t /�n+1�.
aking the square of both sides of the resulting equation,

n the limit �T→
 we arrive at

�n+1Pn+1 = ��nPn	 1

�
�

0

Pn ��p,Qn,Gn�

�p�Pn − p�
dp
2

, �20�

ith

��p,Qn,Gn� = �1 + e−sp�eQn − 1��−1/2

�	1 −
1 − e−Gn

�1 + esp−Qn − e−Qn�1/s
−1/2

. �21�

We analyze the four-dimensional map [Eqs. (11), (12),
19), and (20)] in the same way as the three-dimensional
ne of Section 4, again interpreting a stable fixed point
G* ,Q* ,P* ,T*� with a positive pulse energy P* as a repre-
entation of the fundamental ML solution and the
eimark–Sacker bifurcation line as the border between

he Q-switching and ML domains. Figure 1 allows us to
ompare this border and the region of stability of ML



p
m
m
a
c
s
b
c
e
t
p
p
d
m
=
c
o
t
(
d
t

S
e
r

w
(
q
b
l

m
p
t
p
u
a
e
t
b
W
c
w
T
o
t
l
t
n
l
e
n
l
i
a
t
e
t
m

6
R
T
s
s
d
f
a
c
t
R
p
f
t
w
w
g
r
l
l
w
s
m
a
w
s

c
s
t
n
s

F
t
w
(
d
p

668 J. Opt. Soc. Am. B/Vol. 23, No. 4 /April 2006 Rachinskii et al.
ulses background obtained for the four-dimensional
odel (dashed curves) with that of the three-dimensional
odel (solid curves) and with the results of numerical

nalysis of the complete model [Eqs. (1)–(3)] (shown by
ircles). One can see that, as it might be expected, the re-
ults obtained with the four-dimensional map appear to
e in better agreement with the results of direct numeri-
al simulations of the delay differential equations. How-
ver, the discrepancy between the stability boundaries ob-
ained with and without spectral filtering is not so
ronounced for the parameter values of Fig. 1. A more im-
ortant advantage of the approach based on the four-
imensional map is that it allows us to estimate the nor-
alized pulse width �* and the normalized difference �*
��T*−T� between the pulse repetition period and the
avity round-trip time. The first of these two quantities is
btained by calculating the fourth component of the non-
rivial fixed point of the map [Eqs. (11), (12), (19), and
20)]. The second quantity can be obtained similarly to the
erivation of Eq. (20) above. For a T*-periodic ML solu-
ion, Eq. (13) becomes

�−1Ȧ�t − �−1�*� + A�t − �−1�*� = ��e�G�t�−Q�t��/2A�t�. �22�

ubstituting fast-stage solutions (9) and (18) into this
quation, multiplying it by t, and integrating over the
ound-trip time, we arrive at the formula

�* = 1 +
�*��

�
�

0

P* ��p,Q*,G*�

�p�P* − p�
arctanh
2p

P*
− 1�dp,

�23�

here �Q* ,G* ,P* ,r*� is the fixed point of the map (11),
12), (19), and (20). Figures 3(a) and 3(b) show how the
uantities �* and �* change along the boundaries of the
ackground stability domain. We have found that, simi-
arly to the background and Q-switching instability do-

ig. 3. (a) Normalized difference between the ML pulse repeti-
ion period T* and the cavity round-trip time T. (b) Normalized
idth �* of a ML pulse. Curves L (T) correspond to the leading

trailing) edge instability boundaries shown in Fig. 1. Solid and
otted curves correspond to s�=5 and s�=1.3, respectively. Other
arameters are the same as in Fig. 1.
ain boundaries shown in Fig. 2, these two quantities de-
end very weakly on the parameters s and � separately in
he case when the product s� is fixed. Therefore in each
lot of Fig. 3 the results obtained with two different val-
es of the product s� are presented. The curves labeled L
nd T correspond, respectively, to the leading and trailing
dge instability boundaries. It follows from Fig. 3(b) that
he pulse width is smaller at the trailing edge instability
oundary, which is close to the Q-switching curve QS.
ith the increase of the product s� the pulse width de-

reases. Both these results are in qualitative agreement
ith the experimental data presented in the next section.
he quantity −�* increases (decreases) with the increase
f the pump parameter at the curves L (T). This means
hat the pulse repetition rate increases with g0 at the
eading-edge instability boundary and decreases at the
railing-edge instability boundary. The reason is that the
et gain window is shifted near the boundary L to the

eading edge of a pulse and, hence, the ML pulse is accel-
rated by the nonlinear intracavitary media. Similarly,
ear the trailing-edge instability boundary pulses are de-

ayed by a net gain window, which is shifted to their trail-
ng edge in this case. The point where the two curves, L
nd T, meet each other in Fig. 3(a) lies on the linear
hreshold and corresponds to infinitely small pulse en-
rgy. At this point the quantity −�* is negative owing to
he dispersion introduced by the spectral filtering ele-
ent.

. COMPARISON WITH EXPERIMENTAL
ESULTS
he experiments were performed with a monolithic pas-
ively mode-locked semiconductor laser comprising four
ections: saturable absorber, gain, phase tuning, and a
istributed Bragg reflector section, which is responsible
or the spectral filtering of laser radiation. The phase shift
nd losses introduced by the phase tuning section can be
ontrolled by the current applied to this section. More de-
ails concerning the experimental device can be found in
ef. 17. The gray shaded areas in Fig. 4 present the ex-
erimentally measured ML regimes with the repetition
requency close to 40 GHz obtained for different values of
he phase section current. In this figure, different pulse
idths are indicated by different levels of gray color. In
hite regions below the gray ML domains and above the
eneration threshold, the laser exhibits Q-switched ML
egimes. Figure 4(a), corresponding to smaller cavity
osses (phase current is equal to zero), demonstrates a
arger ML domain and a smaller Q-switching domain,
hich is in qualitative agreement with the theoretical re-

ults shown in Fig. 2. We note that this is also in agree-
ent with the experimental results reported earlier.2 In

ddition, the ML area in Fig. 4(b) is slightly down-shifted
ith respect to that in Fig. 4(a). Similar behavior is ob-

erved in Fig. 2.
According to our theoretical results, the effect of the in-

rease of the parameter � (decrease of the cavity losses) is
imilar to that of the increase of the ratio s of the satura-
ion energies of the gain and absorber sections. Unfortu-
ately, one can hardly change this latter parameter in the
ame device. Therefore in Fig. 5 we present the results of
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he experimental study of two lasers characterized by a
ifferent number of quantum wells in both absorber and
ain sections. Figure 5(a), corresponding to the laser with
hree quantum wells, exhibits a larger ML area and
maller pulse widths than Figure 5(b) obtained for the six
uantum-well laser. This could be qualitatively explained
y the increase of the saturation energies ratio s in a laser
ith smaller number of quantum wells. As was shown in
ef. 17, the laser with three quantum wells is character-

ig. 4. Experimentally measured ML domain 1. Different pulse
idths are shown by different depth of the gray color. In the
hite area 2 below the ML domains and above the threshold line

ndicated Th the Q-switched ML regimes have been observed. (a)
aser with normal losses. (b) Laser with extra losses introduced
y applying additional current to the passive section.

ig. 5. The same as Fig. 4 but for two lasers with different num-
er of quantum wells in both gain and absorber sections. (a) A
aser with three quantum wells; (b) a laser with six quantum
ells. The ML area is much larger for the three quantum-well

aser than for the six quantum-well one.
zed by much smaller differential gain parameter and
ence much larger saturation gain energy than that with
ix quantum wells.

. CONCLUSION
n this paper, using a slow saturable absorber approxima-
ion, we described the Q-switching instability in a mode-
ocked semiconductor laser. We constructed an analytical

ap that describes the transformation of ML pulse pa-
ameters after a complete round trip in the cavity. The
-switching instability boundary was found as a
eimark–Sacker bifurcation of this map. According to our

esults, this boundary can be quite well estimated by the
pproach of New that neglects spectral filtering. To deter-
ine the pulse width and repetition frequency, we have

pplied a more advanced approach based on variational
echniques. We have shown that the Q-switching instabil-
ty boundary depends strongly on the product of the sta-
ility parameter s and the linear nonresonant loss param-
ter � is weakly dependent on each of these two
arameters separately if s� is fixed. Our estimations of
he dependence of the Q-switching instability and the ML
tability domains on the laser parameters are in qualita-
ive agreement with experimental data obtained with a
onolithic mode-locked semiconductor laser.
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