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We study analytically and numerically a delay differential model of a passively mode-locked semiconductor
laser subjected to a single-frequency coherent injection. The width of the locking cone is calculated asymptotically
in the limit of small injection and zero line-width enhancement factors and compared to that obtained by direct
numerical integration of the model equations. The dependence of the locking cone on the laser parameters is
discussed.
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I. INTRODUCTION

Mode-locked (ML) semiconductor lasers are important
devices for many applications, including optical telecom-
munications, optical sampling, microwave photonics, optical
division multiplexing [1], and two-photon imaging [2]. Ideally,
these lasers emit a periodic train of picosecond pulses with
a repetition rate ranging from a few GHz to a few THz.
The optical spectrum of ML lasers is commonly referred to
as an optical frequency comb, where the spacing between
two neighboring modes corresponds to the repetition rate of
the laser. For some coherent communication or metrology
applications, it is interesting to lock the position of one of
the modes in the comb to an external single-frequency source.
Similarly, to optically injected single mode lasers, this can
be implemented using injection locking from a single-mode
laser, but here the slave laser emits a frequency comb instead
of a single frequency. We have recently demonstrated both
theoretically and experimentally that optical injection can
inhibit waveform instabilities observed in quantum dot ML
lasers and improve the time-bandwidth product of these lasers
[3]. Also, experiments demonstrated that a two-frequency
injection can, in addition, lead to a reduction of the ML
pulse-timing jitter [4].

When the frequency ν of the external injection comes
sufficiently close to the frequency νk of one of the laser
modes, the frequency of this mode locks to ν. The interval
of detuning ν − νk , where the locking phenomenon takes
place, is usually referred to as the locking range. This paper
aims to estimate this range in a passively ML semiconductor
laser subjected to single-frequency optical injection. Using a
delay-differential equations model describing a passively ML
semiconductor laser with a single-frequency optical injection,
we calculate the asymptotic width of the locking range. Our
simple analytical expression is in good agreement with direct
numerical simulations of the full-model equations and can be
considered as an analog of the formula estimating the locking
range width in a cw laser subjected to a coherent optical
injection [5].

The paper is organized as follows. In Sec. II, the delay
differential model of an injected ML laser is presented.
We discuss different regimes of the laser operation and
the associated bifurcation diagrams. In Sec. III, we present
results of the asymptotic analysis of the locking range in

the limit of small injection amplitude and compare them
with the results obtained by direct numerical integration of
the model equations. We identify the domain where the
asymptotic formula is in good agreement with the results of
numerical simulation. Then, the dependence of the locking
range on the laser parameters is discussed. Section IV contains
conclusions. Derivation of the analytical results is presented
in the Appendix.

II. MODEL EQUATIONS

We consider the model proposed in [6–8] for a passively
mode-locked ring cavity laser with Lorentzian spectral-
filtering profile and unidirectional operation. The model
equations extend the classical model of Haus [9,10] to ML
lasers with large gains and losses per cavity round trip, i.e.,
the situation typical of semiconductor lasers. After including
a coherent optical injection term, the equations expressed in
dimensionless variables read

γ −1 dA

dt
+ A = √

κe
(1−iαg )GT −(1−iαq )QT

2 AT + ηeiωt , (1)

dG

dt
= g0 − γgG − e−Q(eG − 1)|A|2, (2)

dQ

dt
= γq(q0 − Q) − s(1 − e−Q)|A|2, (3)

where the complex variable A is the electric field envelope,
the real variables G and Q describe saturable gain and
loss, respectively. The dimensionless time t is related to the
dimensional time t ′ by t = t ′

10ps . The subscript T denotes
time-delayed terms where the delay parameter T is the cold-
cavity round-trip time. The parameter γ represents the spectral
filtering bandwidth, κ is the attenuation factor describing
linear nonresonant intensity losses per cavity round trip, g0

is the pump parameter, which is proportional to the injection
current in the gain region, q0 is the unsaturated absorption
parameter, γg and γq are the relaxation rates of the amplifying
and absorbing sections, respectively, and s is the ratio of the
saturation intensities in the gain and absorber sections. The
term ηeiωt represents optical injection with η denoting the
injection strength and ω = 2π	ν. Here 	ν = ν − ν0 mea-
sures the detuning of the frequency ν of injected light from
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FIG. 1. (Color online) Frequency comb of the output of the mode-
locked laser. Tr ≈ T denotes the ML pulse repetition period.

the central frequency ν0 of the slave laser. Finally, αg and
αq are line-width enhancement factors in gain and absorber
sections. In order to simplify the asymptotic and numerical
analysis, both the factors are assumed to be zero below; this
simplification is discussed later in this section. Analytical
and numerical study of bifurcations of the ML solution of
the model equations [Eqs. (1)–(3)] without optical injection
(η = 0), extensions of the model to quantum dot lasers, and
comparison with other models of linear and ring-cavity lasers,
have been performed in Refs. [6,11–15].

The optical spectrum of a free-running ML laser is a
frequency comb with the distance between equidistant modes
close to 1/T , see Fig. 1. When the injection frequency ν is
close enough to one of the modes, the slave laser locks to
the external source [4]. This locking phenomenon results in
a frequency shift of the entire comb by the quantity ν − νk ,
where νk is the modal frequency of the free-running laser
closest to ν.

Figure 2 shows the central and two adjacent modes for
Eqs. (1)–(3) with their locking regions obtained using the
DDE-BIFTOOL software package [16]. There are three dis-
tinct areas corresponding to three different slave-laser regimes
that are easily detectable experimentally. The upper area,
marked CW, corresponds to the single-mode regime, i.e., when
the injection strength is too large the output of the laser is a
continuous wave with the angular frequency of the injected
light ω. The area referred to as LML represents the values
of parameters ω and η, for which the slave laser operates in
ML regime and is locked to the external source. The regions
denoted by letters UML correspond to the ML regimes that are
not locked to the injected signal. As it is seen from Fig. 3, unlike
the LML regime, which corresponds to a strictly periodic
laser intensity, these regimes exhibit either quasiperiodic or
irregular ML pulsations. This figure shows examples of the
laser-intensity time traces calculated in different parts of the
UML domain.

The bifurcation diagram shown in Fig. 2 presents domains
of different laser operation regimes. The dotted line indicates
the Andronov-Hopf bifurcation from the cw solution to the
LML solution. The solid lines separate the domains of LML
and UML solutions. Different parts of these lines correspond
to the saddle-node and the Neimark-Sacker (torus) bifurca-
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FIG. 2. (Color online) Locking regions for αg = αq = 0 obtained
using the software package DDE-BIFTOOL. g0 = 1.0, q0 = 2.0,
κ = 0.3, s = 10.0, γ = 15.0, γg = 0.01, γq = 1.0, T = 2.5.

tions of the LML limit cycle. A more accurate bifurcation
diagram includes finer domains of more complex behavior
such as multistability, harmonic regimes, chaos, etc. Detailed
bifurcation analysis is, however, beyond the scope of this work
as we focus on small injections into a slave laser demonstrating
stable mode-locked operation.

The change of variables A → Aeiωt transforms model
Eqs. (1)–(3) to an autonomous system. A stable limit cycle
(A,G,Q) of this system with a period close to T corresponds
to a fundamental ML regime of the slave laser locked to
the optical-injection frequency. In the absence of injection
(η = 0), the model equations are invariant with respect to an
arbitrary phase shift A → Aeiϕ of the electric field amplitude.
Hence, the ML regime in this case corresponds to a stable
torus composed of an infinite set of neutrally stable limit cycles
that are mapped one onto another by such phase shifts. The
injection term breaks the phase-shift symmetry of the system.
However, for small injection strength, the invariant stable torus
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FIG. 3. (Color online) Time traces of unlocked ML (UML region
on Fig. 2) solutions computed by direct numerical integration of
Eqs. (1)–(3). αg = αq = 0, g0 = 1.0, q0 = 2.0, κ = 0.3, s = 10.0,
γ = 15.0, γg = 0.01, γq = 1.0, T = 2.5. (a) η = 0.02, ω = 1;
(b) η = 0.01, ω = 0.4; (c) η = 0.5, ω = 0.2.
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FIG. 4. (Color online) Locking cone for injections of small
intensity with the frequency close to the central mode of the mode-
locked regime for αg = αq = 0, g0 = 1.0, q0 = 2.0, κ = 0.3, s =
10.0, γ = 15.0, γg = 0.01, γq = 1.0, T = 2.5. The figure represents
a zoom of Fig. 2 close to the origin 	ν = 0,η = 0.

survives. When the detuning between the injection frequency
and the frequency of one of the laser modes is sufficiently
small, the dynamics on the torus is periodic; i.e., the trajectories
are attracted to a stable limit cycle corresponding to the
ML regime locked to the injection frequency (LML solution;
Fig. 4 demonstrates the locking cone for small injections
with the injection frequency close to the central mode of
the slave laser). At larger detunings, this cycle collides with
an unstable limit cycle in a saddle-node bifurcation (black
lines separating the region LML from the regions UML in
Fig. 4, and the dynamics on the invariant torus becomes
quasiperiodic resulting in a ML regime that is not locked to the
external signal (UML solution). The time trace of this regime is
characterized by a slow periodic modulation of the pulse-peak
intensity; see Fig. 3(b). For injection strengths below the
codimension-two points A and B shown in Fig. 4, the locking
cone (i.e., the region where the fundamental ML regime
is locked to the frequency of optical injection) is bounded
by two bifurcation lines corresponding to the saddle-node
bifurcation of the LML limit cycle of Eqs. (1)–(3). For larger
injections, the LML limit cycle destabilizes through the torus
bifurcation to a regime with periodically modulated pulse-peak
intensity with the increase of detuning. The saddle-node and
torus-bifurcation lines meet at the codimension-two points A
and B, the Gavrilov-Guckenheimer points of the Poincare map
associated with the LML cycle, suggesting the presence of
domains of more complex dynamics in a vicinity of these
points [17].

The diagram shown in Fig. 4 is qualitatively similar to
that of the injected single-mode laser, where the locking
boundaries are defined by the saddle-node bifurcation of
the equilibrium-locked state for small injections and the
Andronov-Hopf bifurcation of this equilibrium for larger
injections [18].

From Fig. 4, one can see that for small injections the
width of the locking range increases almost linearly with the
injection strength. This suggests that an asymptotic approach
can be applied to estimate the locking range. As shown in
the Appendix, in the case of zero α factors, the coefficient

describing the linear expansion of the locking range can be
approximated by

|ω|
η

� wh, (4)

with

wh =
1
Tr

∫ Tr

0 ψ
†
1(t) dt∫ Tr

0 ψ
†
1(t)

(
γ −1 dA

dt
(t) + A(t) + (γ T )−1A(t)

)
dt

, (5)

whereA is the electric-field component of the fundamental ML
solution of Eqs. (1)–(3) with η = 0 (free running laser); Tr is
the period of the ML solution, Tr ≈ T ; ψ

†
1 is the “phase-shift”

neutral mode of the linear operator adjoint to the operator that
describes stability of the fundamental ML solution of the free
running laser. wh in Eq. (4) is the asymptotic half-width of the
locking cone.

Expression (4) is valid for small values of η only. However,
this should not be considered as a major restriction, since
minimal values of injection strength should be used in
experiments in order to avoid a suppression of the ML regime
by injection and minimize its effect on the pulse shape. A
similar expression can be derived for the half-width of the
locking cone of a noncentral mode. In the next section, we
study numerically the dependence of the asymptotic half-width
of the locking cone defined by formula (5) on the laser
parameters and compare the results obtained using this formula
with those of direct numerical integration of Eqs. (1)–(3). The
injection power parameter η2 used in the direct integration
of Eqs. (1)–(3) was of the same order as the power of the
central mode of the ML solution, which agrees with typical
experimental setting.

The asymptotic expressions (4) and (5) are obtained under
the assumption that αg,q = 0. This assumption simplifies the
numerical calculation of the adjoint neutral mode ψ† = ψ

†
1 ,

which enters the r.h.s. of Eq. (5). In the absence of injection,
the linear operator L describing the stability of the ML solution
has two neutral modes, one corresponding to the phase-shift
invariance of the model equations and the other corresponding
to the invariance with respect to arbitrary time shifts. Similarly,
apart from the “phase-shift” neutral mode ψ†, the adjoint
operator L† has a second “translational” neutral mode χ †

related to the time-shift invariance of the model (see Appendix
for details). In the case of zero α factors in the gain and absorber
sections, the calculation of the adjoint “phase-shift” neutral
mode ψ† is rather simple: it is a solution of a scalar linear-delay
differential equation obtained by separating the imaginary part
of the field equation of the adjoint linear problem from its real
part, the gain, and the loss equation [Sec. A2, formulas (A7)
and (A9)]. On the contrary, when at least one of the two α

factors is nonzero, both the adjoint neutral modes, ψ† and χ †,
should be determined simultaneously by solving a system of
four coupled equations.

Formulas (4) and (5) describe the locking range of a CW
solution of Eqs. (1)–(3) as well. In this case, A = A0 =
const, ψ

†
1 = const, and the formula transforms into |ω|/η �

γ (1 + γ T )−1/A0. This agrees with the asymptotic locking
range estimate |ω|/η � 1/A0 for a standard single-mode laser
model. This latter model can be derived from Eqs. (1)–(3) by
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setting γ = ∞, T = 1, and expanding nonlinear terms, see
Ref. [11].

III. NUMERICAL RESULTS

The analysis of the impact of laser parameters on the
width of the locking cone has been performed by numerical
calculation of wh in the inequality (4). The comparison of
the results of these calculations with those of direct numerical
integration of the model equations indicates that the accuracy
of the asymptotic relation (4) depends strongly on the stability
properties of the ML solution. We have found that the
discrepancy between the values of the half-width of the locking
cone obtained by the asymptotic formula (5) and by the direct
integration of the model is less than 3% when the ML solution
satisfies New’s background stability criterion; i.e., the net gain
parameter is negative,

G (t) − Q (t) + ln κ < 0, (6)

between two successive ML pulses where the electric field
intensity is close to zero [6,19]. Physically New’s criterion
means that small perturbations of the low-intensity background
between ML pulses decay with time (absolute stability). As it
was demonstrated in Ref. [6], close to the instability boundary
of the fundamental ML solution, stable pulses that do not
satisfy New’s criterion can exist. According to our results,
expressions (4) and (5) do not provide an accurate estimate of
the locking cone for such ML pulses. We illustrate this fact
with Fig. 5, where the half-width of the locking cone estimated
using formula (5) (solid line) is compared to that obtained by
direct simulation of Eqs. (1)–(3) (dotted line). One can see that
for γq > 0.95, asymptotic results differ from those obtained
by direct numerical simulations. This discrepancy is related to
the fact that for the chosen parameter values, New’s criterion
is satisfied for γq < 0.95. For γq > 0.95, Eqs. (1)–(3) have a
stable ML solution, but the locking cone calculated by means
of direct numerical integration of the model equations appears
to be wider than that estimated using expressions (4) and (5).

The absorber relaxation rate γq increases with the absolute
value of the reverse voltage applied to the absorber section.
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FIG. 5. (Color online) Dependence of the half width of the
locking cone on γq : direct integration (dashed line) and estimate
obtained by formulas (4) and (5) (solid line). T = 2.5, γ = 30,
κ = 0.1, g0 = 1, q0 = 2, γg = 0.01, s = 25.

FIG. 6. Dependence of the half width of the locking cone on
γq and g0 obtained using formulas (4) and (5). T = 2.5, γ = 30,
κ = 0.1, q0 = 4, γg = 0.01, s = 25.

Hence, for the study of the impact of the absorber bias
on the locking cone width, we vary the parameter γq . The
two-parametric plot in Fig. 6 illustrates the dependence of
the asymptotic half-width of the locking cone on the gain
parameter g0 and the relaxation rate γq in the absorbing
section, with the fixed unsaturated absorption parameter q0.
Color intensity represents the width of the locking cone and
white lines show the boundaries of the domain where periodic
ML pulses are stable and satisfy New’s criterion. Within the
region bounded by the white lines, asymptotic expressions (4)
and (5) give an estimate of the locking cone width with 3%
accuracy. Crossing the lower left or right boundaries of this
region leads to a break-up of the periodic ML regime and
results in a modulated output, shown in Fig. 3. In particular, in
the black area located between the vertical axis γq = 1 and the
white line, the peak power of the ML regime is modulated with
the Q-switching frequency [see Fig. 3(b)]. Above the the region
bounded by the white lines, we have observed stable periodic
ML pulses. However, they do not satisfy New’s criterion and
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FIG. 7. (Color online) Dependence of the half width of the
locking cone on γq computed using formulas (4) and (5). T = 2.5,
γ = 30, κ = 0.1, q0 = 4, γg = 0.01, s = 25.
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FIG. 8. Dependence of the half width of the locking cone on κ

and s obtained using formulas (4) and (5). T = 2.5, γ = 30, g0 = 1,
q0 = 2, γg = 0.01.

the results obtained with formula (5) diverge from the results
of direct integration of the model.

Figure 6 shows that the half-width of the locking cone
increases near the boundary where New’s criterion for a stable
ML regime is violated. This trend is more clearly illustrated
by Fig. 7, which shows three one-parametric cross sections of
the plot in Fig. 6.

The ML pulses satisfying New’s criterion can exist only
provided that the absorbing medium is saturated faster than
the gain medium, i.e., when s > 1, see for example Ref. [19]
for details. When gain and loss per cavity round trip are not
small, such pulses are possible only if a more strict condition
sκ > 1 is satisfied [6,11].

Figures 8 and 9 present the dependence of the asymptotic
half-width of the locking cone on the parameters κ and s. The
domain where the stable periodic ML regime satisfies New’s
criterion is bounded by the black and white lines in the two-
parametric plot in Fig. 8. The left boundary corresponds to the
violation of New’s criterion and almost immediate transition
to the Q-switched ML state. The right boundary corresponds
to the transition to a harmonic ML state with two coexisting
pulses in the laser cavity. The one-parametric plots in Fig. 9,
showing three cross sections of the plot in Fig. 8, indicate
that the half-width of the locking cone increases toward the
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FIG. 9. (Color online) Dependence of the half width of the
locking cone on s obtained using formulas (4) and (5). T = 2.5,
γ = 30, g0 = 1, q0 = 2, γg = 0.01.
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FIG. 10. (Color online) Dependence of the half width of the
locking cone on γ obtained using formulas (4) and (5) (solid
line), direct simulations (dashed line), and fitted curve wh = c√

γ

(dot-dashed line). T = 2.5, κ = 0.1, g0 = 1, q0 = 2, γg = 0.01,
γq = 0.75, s = 25.

boundaries of the domain of stable ML operation; i.e., they
demonstrate the same trend as Figs. 6 and 7. Figure 9 also
shows that the locking cone becomes wider with the increase
of linear nonresonant intensity losses, i.e., when the attenuation
factor κ decreases.

As it is shown in the Appendix, for large γ T , expression
(5) can be further simplified to

wh = c√
γ

; (7)

see Sec. A3 for details and discussion of the constant c. The
results of direct numerical integration of model equations (1)–
(3), shown in Fig. 10, indicate that, in agreement with the
asymptotic formula (7), the width of the locking cone scales
with increasing γ as γ −1/2. Hence, the locking cone becomes
more narrow when the number of ML modes increases and
the pulse becomes shorter. Therefore, one can expect that, in
some situations, incorporating an additional spectral filtering
section into the laser cavity would help to increase the locking
range. This is in agreement with the results obtained for a
hybrid ML laser [20]. On the other hand, experimental data
indicate that the increase of the bandwidth results in shortening
of the pulse to a certain limit only, after which the width of
the pulse does not change when the spectrum becomes wider,
suggesting that the synchronization of side modes becomes
rather poor. This effect is not present in models (1)–(3); it can
be possibly taken into account by including additional terms
such as noise sources.

IV. CONCLUSIONS

Using a delay-differential model of a passively mode-
locked semiconductor laser with a single-frequency coherent
optical injection, we have shown that the asymptotic analysis
gives a good approximation of the locking-cone boundaries
provided that (a) the intensity of the injected light is suffi-
ciently small (we used the ratio of the single-mode injection
to output intensity typical of experimental setting); and
(b) parameters of the laser ensure generation of ML pulses
with “stable background” as defined by New’s criterion [6]. In
our calculations, formulas (4) and (5) give approximation of
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the locking boundaries with error less than 3% for parameters
within the domain where the stable periodic fundamental ML
solution satisfies New’s criterion. We have used the asymptotic
formula (4) to study the dependence of the width of the
locking cone on laser parameters. In particular, we have
demonstrated that the width of the locking cone increases when
parameters approach the boundaries of stable ML operation of
the free-running laser. In short, the less stable the ML regime,
the wider the locking cone.

An asymptotic approach similar to that used to derive
formula (4) can be applied for the estimation of the locking
cone width in a passively ML laser with two-frequency coher-
ent optical injection, such as the lasers studied experimentally
in Ref. [4], and in a hybrid ML laser [20], as well as for
studying the effect of small noise on ML operation.
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APPENDIX

1. Analysis with the method of two time scales

Here we derive the asymptotic formulas (4) and (7) using
the method of multiple time scales.

To shorten the notation, we rewrite Eqs. (1)–(3) with
αg,q = 0 as

γ −1 dA

dt
+ A = √

κe(GT −QT )/2AT + εηeiεωt ,

dH

dt
= F (H,|A|2), (A1)

where H stands for (G,Q) and a small parameter ε is
introduced; hence, η and ω are of order O(1). We further
introduce the time scales τ0 = t and τ1 = εt with the corre-
sponding operators of differentiation D0 = ∂

∂τ0
and D1 = ∂

∂τ1
and look for solutions of Eqs. (1)–(3) in the form A =
A0 + εA1,G = G0 + εG1, Q = Q0 + εQ1, where each term
is a function of the two times, for example, A(τ0,τ1) =
A0(τ0,τ1) + εA1(τ0,τ1) and dA

dt
= D0A + εD1A.

After expanding Eq. (A1) with respect to ε and separating
order O(1) terms from O(ε) terms, while neglecting the terms
of higher order, we arrive at the system

γ −1D0A
0 + A0 = √

κe(G0
T −Q0

T )/2A0
T ,

D0H
0 = F (H 0,|A0|2) (A2)

for the leading order terms A0,H 0 = (G0,Q0) and the equa-
tions

γ −1D0A
1 + A1 + γ −1D1A

0

= ηeiωτ1 + √
κe(G0

T −Q0
T )/2(A1

T − T D1A
0
T + A0

T

(
G1

T − Q1
T

)
− 1

2T D1
(
G0

T −Q0
T

))
,

D0H
1+D1H

0 = F ′
H (H 0,|A0|2)H 1

+F ′
I (H 0,|A0|2)(A0(A1)∗ + (A0)∗A1), (A3)

for the corrections A1,H 1 = (G1,Q1), where F ′
H is the

Jacobian matrix of F with respect to H ; F ′
I is the partial

derivative of F with respect to I = |A|2; and the asterisk
denotes the complex conjugate; only the time τ0 is retarded
in the delayed terms; i.e., for example, A0

T = A0(τ0 − T ,τ1).
The solution of the leading order Eq. (A2) is

A0 = eiϕ(τ1)A(τ0 + θ (τ1)), H 0 = H(τ0 + θ (τ1)), (A4)

where (A,H) = (A,G,Q) is the ML solution of the free-
running laser system with the real-valued field component
A starting at some distinguished moment, for example, at the
maximum of A. It is convenient to shift the time and phase
in the correction A1, H 1 similarly, i.e., to replace A1(τ0,τ1)
with eiϕ(τ1)A1(τ0 + θ (τ1),τ1). Then, substituting Eq. (A4) into
Eq. (A3), and using the fact that (A,H) solves the free-running
laser equations, we obtain the system for A1, H 1,

γ −1D0A
1 + A1 − √

κe(GT −QT )/2
(
A1

T + AT

(
G1

T − Q1
T

)
/2

)
= −iϕ′T (γ −1Ȧ + A + (γ T )−1A)

− θ ′T (γ −1Ä + Ȧ + (γ T )−1Ȧ) + ηei(ωτ1−ϕ),

D0H
1 − F ′

H (H,I)H 1 − F ′
I (H,I)A((A1)∗ + A1) = −θ ′Ḣ,

(A5)

whereI = A2 andA,Ȧ = dA
dτ0

,Ä = d2A
dτ 2

0
,H,Ḣ = dH

dτ0
are func-

tions of τ0, and ϕ′ = dϕ

dτ1
, θ ′ = dθ

dτ1
are functions of τ1.

Now, employing the general approach of the method of
multiple time scales, we derive equations for the evolution
of the slow variables ϕ,θ from the solvability conditions
for system (A5) with respect to (A1,H 1) under periodic
boundary conditions in τ0. The l.h.s. of Eq. (A5) is the
linearization of Eqs. (1)–(3) with η = 0 (the free-running
laser equations) on the ML solution. This linearization has
a two-dimensional space of periodic solutions corresponding
to the two symmetries of the free-running laser equations, one
with respect to time shifts, the other with respect to phase shifts
(rotations of the complex A plane); the periodic eigenfunctions
of the linearization corresponding to the phase shift and the
time shift, respectively, are

ψ = (iA,0,0)T , χ = (Ȧ,Ġ,Q̇)T , (A6)

where the superscript T denotes the transposition. Hence,
the adjoint linear system has a two-dimensional space of
periodic solutions, too (this system is considered in the next
subsection in more detail). We denote by ψ†,χ † the linearly
independent pair of the adjoint periodic solutions defined by
the normalization conditions

〈ψ†,ψ〉 = 〈χ †,χ〉 = 1, 〈ψ†,χ〉 = 〈χ †,ψ〉 = 0,

with the inner product

〈u,v〉 = Re

(∫ Tr

0
(u(t))T (v(t))∗ dt

)
,

where Tr is the period of the ML solution (A,G,Q). As
discussed in the next subsection, the adjoint functions have
the form

ψ† = (iψ†
1 ,0,0)T , χ † = (χ †

1 ,χ
†
2 ,χ

†
3 )T , (A7)
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where both ψ
†
1 , χ

†
1 are real-valued, i.e., similarly to ψ , the

adjoint function ψ† has purely imaginary A component and
zero G,Q components, while the adjoint function χ † has the
real A component like χ .

According to the Fredholm alternative, system (A5) with
the periodic boundary conditions in τ0 is solvable if the r.h.s.
of this system, as a function of τ0, is orthogonal to each of the
adjoint functions ψ† = ψ†(τ0),χ † = χ †(τ0) for each τ1. Using
expressions (A7), one can write this solvability criterion in the
form of the system

ϕ′ = k1η sin(ωτ1 − ϕ), θ ′ = k2η cos(ωτ1 − ϕ), (A8)

with

k1 = wh,

where wh defined by formula (5), and

k2 =
∫ Tr

0 χ
†
1 (t) dt∫ Tr

0 (T χ
†
1 (γ −1Ä + Ȧ + (γ T )−1Ȧ) + χ

†
2 Ġ + χ

†
3Q̇) dt

.

Adler’s type equations (A8) define dynamics of the slow
variables ϕ,θ . In particular, the LML regime is determined
by the criterion

ϕ′ = ω, θ ′ = const.

Hence, for the LML solution, ϕ = ωτ1 + ϕ0, and due to the
first of equations (A8), ω = −k1η sin ϕ0, consequently,

|ω| � k1η = whη,

i.e., formula (4) holds.

2. Adjoint functions

Let us introduce the notation J = Im A, R = Re A, A =
(J,R) and replace the complex A Eq. (1) in Eqs. (1)–(3) with
the pair of real equations. Consider the Jacobian matrix B of the
r.h.s. of the free-running laser equations (η = 0) with respect to
the variables J,R,G,Q and the Jacobian matrix C with respect
to the delayed variables JT ,RT ,GT ,QT . Evaluating these
matrices on the ML solution (0,A,G,Q), we obtain Tr -periodic
matrices B and C, respectively. The periodic eigenfunctions
(A6), which in the real notation of this section have the form
ψ = (A,0,0,0), χ = (0,Ȧ,Ġ,Q̇), solve the system

ż = B(t)z + C(t − T )z(t − T ).

The adjoint functions ψ†, χ † solve the adjoint system

ẏ = −BT (t)y − CT (t + T )y(t + T ),

see, e.g., Ref. [21]. The explicit computation of the ma-
trices B, C shows that the first equation in each of these
systems separates from the other three equations. Hence,
ψ† = (ψ†

1 ,0,0,0)T , χ † = (0,χ
†
1 ,χ

†
2 ,χ

†
3 )T [cf. Eq. (A7)], where

ψ
†
1 is a nontrivial periodic solution of the scalar equation

ψ̇
†
1 = γψ

†
1 − Ȧ(t + T ) + γA(t + T )

A(t)
ψ

†
1(t + T ), (A9)

and (χ †
1 ,χ

†
2 ,χ

†
3 )T is a nontrivial periodic solution of the system

χ̇
†
1 = γχ

†
1 + 2e−Q(eG − 1)Aχ

†
2 + 2s(1 − e−Q)Aχ

†
3

− Ȧ(t + T ) + γA(t + T )

A(t)
χ
†
1 (t + T ),

χ̇
†
2 = (γg + eG−QA2)χ †

2 − Ȧ(t + T ) + γA(t + T )

2
χ
†
1 (t + T ),

χ̇
†
3 = −e−Q(eG − 1)A2χ

†
2 + (γq + se−QA2)χ †

3

+ Ȧ(t + T ) + γA(t + T )

2
χ
†
1 (t + T ).

The nonzero component ψ
†
1 of the adjoint function ψ† can be

easily found numerically by solving Eq. (A9) in the reverse
time as, after the time reversion, this equation becomes stable.
The same is true for the function χ †.

3. Dependence of the locking cone on γ

Assume that γ 
 1, T is fixed and the ML solution of the
free-running laser equations scales with γ as in the Haus limit,
i.e., the period of the ML solution scales as

Tr = T + γ −1δ, (A10)

and the electric-field envelope A is very close to zero between
the pulses, while during the pulse

A(t) = √
γ a(γ t) (A11)

(note that in the Haus model a = sech). Then, the periodic
solution ψ

†
1 of the adjoint Eq. (A9) is also a periodic

sequence of pulses that are synchronized with the pulses
of A. Using the periodicity of A and ψ

†
1 with the com-

mon period Tr and the scaling relation (A10), we rewrite
Eq. (A9) as

ψ̇
†
1 = γψ

†
1 − Ȧ(t − γ −1δ) + γA(t − γ −1δ)

A(t)
ψ

†
1(t − γ −1δ).

On the fast stage (i.e., during the pulse), using the
ansatz (A11) and introducing the fast-time τ = γ t , we
obtain

ψ̇
†
1 = ψ

†
1 − ȧ(τ − δ) + a(τ − δ)

a(τ )
ψ

†
1(τ − δ).

Hence, on the fast stage, ψ
†
1 scales with γ in the same way as

A does, namely, ψ†
1(t) = φ(γ t), where φ is a positive solution

of the problem

φ̇ = φ − ȧδ + aδ

a
φδ, φ(−∞) = φ(∞) = 0.

Therefore, in the limit of large γ , the asymptotic formula (4)
can be rewritten as (7) with

c =
∫ ∞
−∞ φ(τ ) dτ

T
∫ ∞
−∞ φ(τ )(ȧ(τ ) + a(τ )) dτ

.
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