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Recently, a mechanism of formation of light bullets
(LBs) in wide-aperture passively mode-locked lasers
was proposed. The conditions for existence and
stability of these bullets, found in the long cavity limit,
were studied theoretically under the mean field (MF)
approximation using a Haus-type model equation. In
this paper, we relax the MF approximation and study
LB formation in a model of a wide-aperture three
section laser with a long diffractive section and short
absorber and gain sections. To this end, we derive a
non-local delay-differential equation (NDDE) model
and demonstrate by means of numerical simulations
that this model supports stable LBs. We observe that
the predictions about the regions of existence and
stability of the LBs made previously using MF laser
models agree well with the results obtained using
the NDDE model. Moreover, we demonstrate that the
general conclusions based upon the Haus model that
regard the robustness of the LBs remain true in the
NDDE model valid beyond the MF approximation,
when the gain, losses and diffraction per cavity
round trip are not small perturbations anymore.
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This article is part of the theme issue ‘Dissipative structures in matter out of equilibrium:
from chemistry, photonics and biology (part 1)’.

1. Introduction
The formation of nonlinear localized structures (LSs) has been the subject of substantial interest
over recent decades. The concept of dissipative LSs is based on three main foundations: classical
soliton theory, bifurcation theory and Prigogine’s ideas of self-organization [1]. An interesting
example of three-dimensional LSs is provided by the so-called ‘light bullets’ (LBs), pulses of
electromagnetic energy that are localized both in space and time and preserve their shape in
the course of their propagation. Since the paper of Silberberg [2], who coined the term ‘LBs’
and demonstrated that the ‘naive’ conservative Kerr LBs found in the nonlinear Schrödinger
equation are unstable and collapse in three dimensions (for more details on the collapse, see [3,4]),
experimental observation of LBs remains one of the challenging problems in nonlinear optics.
Silberberg showed that the balance between a self-focusing nonlinearity and the spreading effect
of chromatic dispersion and/or diffraction was not sufficient to define a robust LB formation
scenario. During the last 20 years, other confinement mechanisms were envisioned in different
nonlinear optical systems. In particular, LBs were predicted in dissipative systems like, e.g.,
optical parametric oscillators [5] or bistable cavities [6,7] with an instantaneous response of the
active medium, and more recently in the output of a passively mode-locked laser operated in the
long cavity regime [8,9]. However, these studies were performed with the help of the Haus-type
partial differential equations derived in the mean field (MF) limit when gain and loss per cavity
round trip were small and the diffraction was weak, an assumption which is hardly justified
for real semiconductor laser devices. Therefore, while the basic mechanism of the formation of
the LBs can be qualitatively understood using the models of [8,9], determining the parameter
domains where this phenomenon can be observed experimentally requires further theoretical
studies. To that end, the understanding of the existence and stability properties of LBs with respect
to various laser parameters is crucial for the experimental success, which is ongoing research at
the moment.

Unlike the MF laser models, the delay differential equations (DDEs) developed in [10–12] and
successfully applied to analyse complex dynamical phenomena in mode-locked lasers [10–14] are
free from the small gain and loss approximation. The DDE model describes time evolution of the
slowly varying envelope of the electric field in a ring cavity consisting of multiple sections such
as gain, absorber and spectral filter under some general physical assumptions about each section
[11]. Moreover, DDE laser models were successfully tested over recent years to investigate multi-
longitudinal-mode regimes observed in various experimental set-ups [13–19] including the lasers
with Fabry–Perot cavities [20–23], which are conventionally studied using more complicated
travelling wave partial differential equation models [24–28].

To study the dynamics of a wide aperture mode-locked semiconductor laser, we derive a non-
local delay-differential equation (NDDE) model that can be considered as a generalized version
of the DDE mode-locking model taking into account the diffraction in the transverse plane.
Using this model, we discover for the first time stable LBs in the parameter domain where the
MF approximation is no longer valid, and demonstrate that their existence ranges and stability
properties are qualitatively similar to those found in [8,9], which confirms the robustness of the
LBs. Furthermore, we demonstrate that by using a spectral method optimized for the computation
of LBs in a narrow temporal window we can considerably reduce the LB computation cost. We use
the spectral functional mapping to study the stability properties of the LBs in transition away from
the MF limit, and show that numerical results obtained using this method are in perfect agreement
with those obtained by direct numerical integration of the NDDE model. It is noteworthy that
following the approach introduced in [29] in the limit of small gain and loss per cavity round trip
and weak diffraction one can reduce the described NDDE model to generic partial differential
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Figure 1. Schematic of a wide-aperture ring external cavity laser with thin absorber, gain and spectral filtering sections. The
numbered points 1, 2 and 3 indicate the longitudinal coordinates of the transverse sections where the electric field envelopes
Aj with j = 1, 2, 3 are evaluated. The output of the laser is taken from one of the cavity mirrors. The relationship between these
envelopes are given by equations (2.1)–(2.3).

MF equations of the Haus type where the effects of gain, losses, chromatic dispersion and/or
diffraction can be easily incorporated. On the other hand, incorporating chromatic dispersion
into the DDE models is not as straightforward. For example, theoretical approaches allowing to
extend DDE models of multimode lasers to account for chromatic dispersion of the intracavity
media leading to differential equations with distributed time delay were proposed in [15,30,31].

2. Model equations
In this section, we derive a model of a wide-aperture mode-locked semiconductor laser shown
schematically in figure 1. Similar to [10–12], we use the lumped element approach, which assumes
that gain, absorption, diffraction and spectral filtering are separated and attributed to different
laser sections. Therefore, assuming that the absorber and gain sections are very thin and placed
one after another, we neglect the diffraction and express the electric field amplitude A2 on the
output of the gain section via the amplitude A1 on the entrance of the absorber section as

A2(t, x, y) = e(1−iαg)G(t,x,y)/2−(1−iαq)Q(t,x,y)/2+iφ1 A1(t − t1, x, y), (2.1)

where t1 describes small time delay introduced by these two sections, αg and αq are linewidth
enhancement factors, φ1 is the phase shift, G and Q are the saturable gain and loss proportional
to the integrals of the carrier density along the characteristics over the gain and absorber sections,
respectively [10–12].

Next, we consider a section where the diffraction takes place. In the Fresnel diffraction
approximation, the output field A3 from this section can be expressed via the input field A2 as
follows:

A3(t, x, y) = √
κ

eikL

2π i

∫∫∞

−∞
ei[(x−x′)2+(y−y′)2]/2A2(t − t2, x′, y′) dx′ dy′, (2.2)

where x and y are dimensionless transverse coordinates, L is the section length, t2 = L/v is the
delay time, v is the light velocity, k is the light wavenumber in the diffractive section, and κ is the
attenuation factor taking into account losses due to output coupling as well as distributed linear
losses of the intracavity media.

Light propagation through the thin spectral filtering section is described by

A1(t, x, y) =
∫ t

−∞
f (t − θ )A3(θ , x, y) dθ . (2.3)
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In particular, for a Lorentzian spectral filter with halfwidth γ and detuning ω0, we choose f (t) =
γ e(−γ+iω0)t.

Finally substituting (2.1) and (2.2) into (2.3), differentiating the resulting equation, and setting
ω0 = 0 we obtain the following set of NDDEs:

dA
dt

+ γ A = γ
√

κ
eiφ

2π i

∫∫∞

−∞
ei((x−x′)2+(y−y′)2)/2

× e(1−iαg)G/2−(1−iαq)Q/2A(t − T, x′, y′) dx′ dy′, (2.4)

where A(t, x, y) ≡ A1(t, x, y), T is the total cold cavity round trip time, the propagation factor ikL
has been absorbed into the phase φ, φ = φ1 + kL, and saturable gain G and loss Q satisfy the
equations [10–12]:

dG
dt

= γg(G0 − G) − (eG − 1)e−Q|A(t − T, x, y)|2 (2.5)

and
dQ
dt

= γq(Q0 − Q) − s(1 − e−Q)|A(t − T, x, y)|2. (2.6)

Here, G0 (Q0) is the unsaturated gain (loss) parameter, γg (γq) is the carrier relaxation rate in the
gain (absorber) section, and the parameter s is the ratio of saturation intensities in the gain and
absorber sections. In the case of single transverse dimension instead of equation (2.4), we have

dA
dt

+ γ A = γ
√

κ
eiφ

√
2π i

∫∞

−∞
ei(x−x′)2/2 e(1−iαg)G/2−(1−iαq)Q/2A(t − T, x′) dx′. (2.7)

NDDE models given by equations (2.4)–(2.6) and (2.5)–(2.7) can be considered as generalizations
of the DDE model introduced in [10–12] to the case when the transverse diffraction of the laser
beam is taken into account. In the next sections, we use these models for numerical study of LBs
in a wide-aperture semiconductor mode-locked laser.

3. Simulations

(a) Numerical method
For numerical solution of equations (2.4)–(2.6) and (2.5)–(2.7), we perform Fourier transform
(denoted by F⊥) of equations (2.4) (or (2.7)) in the transverse plane

dÃ
dt

+ γ Ã = γ
√

κ e−iq2F⊥[e(1−iαg)G/2−(1−iαq)Q/2+iφA(t − T, x, y)], (3.1)

with Ã =F⊥[A], q2 = q2
x + q2

y for system (2.4)–(2.6), and q2 = q2
x for system (2.5)–(2.7). Here qx

and qy are two components of the normalized transverse wavenumber. Note that for the sake
of convenience in our numerical simulations starting from equation (3.1), we use the rescaled
transverse variables x̄ = x

√
2 and ȳ = y

√
2, with overbar omitted. The numerical method is

realized very similar to the conventional split-step method, so that systems (2.4)–(2.6) and (2.5)–
(2.7) require as much computational effort as, e.g., 1 + 1D and 2 + 1D Ginzburg–Landau-type
problems with delay, respectively [32–35]. First, using the delayed field A(t − T, x, y), we obtain
the values of G and Q on the next step by solving numerically equations (2.5) and (2.6). Second, we
propagate the Fourier-transformed field Ã one time-step further. Then the procedure is repeated.
The large delay does not induce additional computational costs, because we use the values
of the field that were calculated in the past. However, it increases significantly the memory
requirements. These requirements could be, in principle, relaxed if we use the localized nature of
our solution and store the delayed field A(t − T, x, y) only when its absolute value is sufficiently
large. Moreover, as it is shown in the following subsection, it is also possible to neglect completely
the dynamics outside of a narrow temporal window around a single LB in a similar way as it was
done for the MF models discussed in [8].
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(b) Spectral method optimized for single light bullets
The field equation given by equation (2.4) can be formally rewritten as

Ȧ
γ

= −A + ĝ[A(t − T)], (3.2)

where ĝ is the nonlinear operator that combines the effect of gain, losses, diffraction and whose
expression is given by the right-hand side of equation (2.4). Writing equation (3.2) in this
particular form makes it apparent that the term ĝ[A(t − T)] is a known nonlinear function of
the field at the previous round trip. One can then solve equation (3.2) for the field profile over
a whole round trip that we denote An. Several methods are possible, but the most convenient
choice is to use the Fourier transform, since transverse diffraction can also be evaluated that way.
In particular, the fact that the pulse train is asymptotic to zero makes it possible to apply the
Fourier transform along the propagation axis (i.e. in the time domain) with periodic boundary
conditions. Solving equation (3.2) in Fourier space and transforming back to the time domain
yields a simple expression of the mapping operator

An =F−1
t {L(ω)Ft[ĝ(An−1)]}, (3.3)

where Ft denotes the Fourier transform in time and L(ω) = (1 + iω/γ )−1 is the Lorentzian
function. The fact that equations of the same type as equation (3.2) could be solved by a Fourier
method as a functional mapping in the long delay limit was already pointed out in [36] for the case
of a single variable. Applying Fourier transformation in the transverse plane yields the following
form of the functional mapping:

An =F−1
t {L(ω)FtF−1

⊥ [e−iq2F⊥(e(1−iαg)Gn−1/2−(1−iαq)Qn−1/2+iφAn−1)]}, (3.4)

with the carrier profiles Gn−1 and Qn−1 that can be deduced from the field distribution An−1.
Finally, using the fact that the function L(ω) (e−iq2

) does not depend on transverse wavenumber
q (frequency ω), we can reorder the Fourier transformations to obtain

An =F−1[U(ω, q)F (e(1−iαg)Gn−1/2−(1−iαq)Qn−1/2+iφAn−1)], (3.5)

with F =Ft ◦ F⊥ and U(ω, q) =L(ω) e−iq2
exp(−iυω), where the last exponential factor represents

an ad hoc correction to the natural drift of the temporal solution from one round trip towards
the next. Such drift is found in most DDE systems and in our case one can simply take υ ≈ −1/γ ,
see [11,36] for more details.

A numerical method based on the use of equation (3.5) was applied to calculate bifurcation
diagrams of the LB solutions. An important advantage of this approach is that the temporal
domain along the t-axis can be taken much smaller than the delay time T, e.g. a few times larger
than the LB temporal width, yielding a considerable reduction of computational cost; see [37] for
more details on this functional mapping approach.

4. Results

(a) Light bullets in the mean-field approximation
Self-organization mechanism leading to the formation of LBs in the wide-aperture mode-locked
laser is related to the presence of saturable absorption in the laser cavity rather than self-focusing
Kerr nonlinearity, and one can observe them with zero alpha-factors [8]. Therefore, we start with
the simplest case αg = αq = 0 and choose the parameter region, where the gain and loss per cavity
round trip are relatively small, so that the MF approximation can be used: κ = 0.8, Q0 = 0.3, γg =
0.04, γq = 1.0, s = 30, γ = 40, T = 200. We vary the normalized gain g0 = G0/gth, where gth = Q0 −
log κ , below the lasing threshold g0 < 1.

A stable two-dimensional LB calculated for g0 = 0.68 is shown in figure 2, while figure 3
presents a stable three-dimensional LB obtained for g0 = 0.69. Note that the very long tail of the
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multiplication factor 1.00012, which reduces the speed of the LB and improves its visibility in the representation. Panels (b),
(c) and (d) show spatio-temporal profiles of LB intensity |A(t, x)|2, saturable gain G(t, x) and saturable loss Q(t, x), respectively.
Other parameters are κ = 0.8, Q0 = 0.3, γg = 0.04, γq = 1.0, s= 30, γ = 40, T = 200,αg = αq = 0. (Online version in
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LB that stems from the slow gain profile is fully resolved by solving numerically equations (2.4)–
(2.6) (or (2.5)–(2.7)). Unlike the Haus-type model, which was used earlier in [8] for qualitative
modelling of LB regime in the MF limit, these equations give a more realistic description of
dynamical behaviour of a wide aperture mode-locked semiconductor laser under investigation.
Therefore, our results presented in figures 2 and 3 provide further arguments in favour of the
feasibility of the experimental observation of LBs, predicted in the earlier works [8,9].
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The domains of the existence of stable two-dimensional LBs obtained by numerical integration
of equations (2.5)–(2.7) are shown in figure 4. Figure 4a (figure 4b) presents the stability domain
in the plane of two parameters, pump parameter g0 and linewidth enhancement factor αg (αq) in
the gain (absorber) section of the laser. The parameter scans were performed by taking a stable
LB calculated at fixed values of the linewidth enhancement factors αg = 1.5 and αq = 0.5 as an
initial condition, and then performing numerical continuation of the LB branch by increasing and
decreasing g0. For each value of g0, N = 100 round trips in the laser cavity were calculated. After
that we calculate the centre of the stability range in g0, pick the corresponding LB as an initial
condition, make a small step in the linewidth enhancement factor and repeat the above-described
procedure. It is noteworthy that the stability domains shown in figure 4 are in good qualitative
agreement with those obtained in [9] using the Haus-type model (see figure 9 and the discussion
in §4c). It can be seen from this figure that moderate non-zero linewidth enhancement factors
can enlarge the LB stability range. The main difference of the results presented here with those
obtained using the Haus-type model is that in the NDDE system (2.5)–(2.7) predicts slightly larger
stability domains of LBs. We suggest that this discrepancy may be attributed to finite size of the
integration interval, different continuation procedures, as well as to the use of different models.
Note that the lack of quantitative agreement between the results reported in [9] (figure 9) with
the bifurcation diagrams shown in figure 4 may indicate that future studies could profit from the
use of NDDE models even in the parameter domain where MF Haus-type mode-locking models
were successfully applied earlier for qualitative analysis of the LB formation [8,9]. More detailed
comparison of the two models requires further studies.

(b) Light bullets beyond the mean field approximation
In the previous subsection, we demonstrated that in the MF limit the results obtained with the
NDDE models (2.4)–(2.7) are in a very good agreement with those from the Haus-type model used
in [8,9], and pointed out some minor discrepancies between the two models. In this subsection,
we use the NDDE model to investigate how the properties of LBs are modified away from the MF
limit. To this end, we consider relatively large gain and loss per cavity round trip time, which is
typical of semiconductor lasers: κ = 0.3, Q0 = 2.0, γg = 0.04, γq = 1.0, s = 30, γ = 10, T = 200, αg =
1.5, αq = 0.5. A stable two-dimensional LB obtained by numerical integration of equations (2.5)–
(2.7) with g0 = 0.83 is presented in figure 5. Using a two-parameter scan similar to that described
in the previous subsection, we find even larger parameter domains of the existence of stable LBs
than those obtained in the case of relatively small gain and loss; compare figure 6 with figure 4.
Note, that when the difference αg − αq becomes sufficiently large (between 1.5 and 2, see, for
example, the region 0 ≤ αq ≤ 0.2 in figure 6b), a sufficiently good initial guess is required to ensure
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a convergence of the solution to a stable LB. Finally, figure 7 shows an example of stable three-
dimensional LB obtained by solving equations (2.4)–(2.6) with g0 = 0.92.

(c) Spectral method
As we have already mentioned above, the application of spectral method based on the functional
mapping described in §3b allows us to calculate the LB solution on a time interval much shorter
than the cavity round trip time T and, hence, to reduce considerably the amount of calculations.
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Transverse and longitudinal profiles of a two-dimensional LB solution calculated with the help
of the optimized spectral method given by equation (3.5) are presented in figure 8 together
with the profiles obtained by direct numerical solution of the NDDE model (2.5)–(2.7) using the
method described in §3a. One can see that the agreement between the results obtained with two
different numerical approaches is almost perfect. Similarly, the stability domains of an LB solution
calculated with the help of the functional mapping method and shown in figure 9 are in a good
agreement with those presented in figure 6. Small discrepancies in the two-parameter stability
diagrams can be explained by differences in the numerical continuation procedure. In particular,
the continuation of the LB solution can be performed only with a good initial guess, which we
accomplished as described in the previous subsection. On the other hand, numerical simulations
of the mapping procedure (3.5) are very fast, and it is more efficient to perform two-parameter
scans by finding a stable LB solution for each value of the linewidth enhancement factor and
then continuing it in g0. It is seen from figure 9 that the latter approach fails to find a stable LB
around αg ≈ 2 (figure 9a) and αq ≈ 0.2 (figure 9b), whereas a slower continuation approach based
on direct numerical integration of equations (2.5)–(2.7) indicates that stable LBs exist in these
parameter domains (cf. figure 6). This discrepancy is related to the fact that at large differences
αg − αq it is hardly possible to excite stable LBs from an arbitrary initial condition not only by
using the functional mapping method, but also by solving numerically the NDDE system on the
full round trip time interval.
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∫∫ |A(t, x)|2 dx dt. White lines represent stability domain borders of the LBs
calculated using the Haus model [9], which are shifted to higher current with an offset δg= 0.06. (Online version in colour.)

To continue the discussion about the validity of the MF approximation started in §4a, in figure 9
we superpose the results from the NDDE model (2.5)–(2.7) with exponential gain and absorption
with those of the Haus equation model (cf. [9]) shifted to higher currents with an offset δg = 0.06.
One can see that both models predict the existence of LBs with almost the same parameters,
similar stability ranges and similar dependence of these ranges on the α-factors in the gain and
absorber sections: a moderate increase of αg − αq (αg ≥ αq) leads to an increase of the LB stability
range. However, the quantitative agreement is not that good. Notwithstanding the offset δg of
approximately 8% to higher currents in figure 9, some salient differences remain, in particular for
large values of αg and αq. While the detailed investigation of these differences is out of scope of
this paper, in what follows we will identify three main sources of the discrepancies.

First, the linearization of the gain and absorption in the Haus model [9] accounts for a part
of the quantitative disagreement. The values of the unsaturated loss parameter in the absorber
section, Q0 = 0.3, and linear round trip loss per cavity round trip, κ − 1 = 0.2, used in [9], are
relatively small quantities, but they are not infinitesimal. For instance, the discrepancy between
the lasing threshold in [9] defined by gl

th = 2(κ−1/2 − 1) + Q0 ≈ 0.536 and the threshold obtained
with the NDDE model (2.5)–(2.7), gth = − ln κ + Q0 ≈ 0.523, is evaluated to approximately 2.5%.
Therefore, other thresholds such as saddle-node bifurcations of the LBs are also bound to shift
slightly in g0 due to the difference between the linear and exponential gain.

Secondly, the NDDE model (2.5)–(2.7) can be transformed into a partial differential Haus-type
equation [9] with the help of the multiple time-scale analysis, where a ‘spatial’ operator acting on
the fast time scale replaces the delay operator [29,36]. This can only be done by neglecting higher
order derivatives (beyond diffusion) along the longitudinal direction. This approximation results
in a discrepancy between the models for almost all parameter values.

Finally, the NDDE model (2.5)–(2.7) accounts for diffraction via a lumped exponential operator
exp(iq2) (in Fourier domain), whereas the Haus model [9] considers an additive operator iq2.
Therefore, these approaches might yield identical results only for long wavelength LSs, for which
the characteristic wavelength λc � 1 so that exp(iq2) ≈ 1 + iq2. In our case, the typical FWHM
of the LBs in the transverse dimension is λc ∼ 6 (cf. figure 8b), which is not particularly large
and can explain some of the differences between the two approaches. In our case, the qualitative
convergence between the two models stems from the fact that in the MF regime (Q0 → 0, G0 →
0, κ → 1) the LBs become wider in the transverse dimension.

After we have demonstrated the quantitative accuracy of the functional mapping (3.5), we
can use it to investigate the effect of large losses on the LB stability domain. Figure 10 illustrates
how the stability domain on the plane of two parameters, normalized unsaturated gain g0, and
normalized unsaturated loss q0 = Q0/− log κ , changes with the decrease of the linear attenuation
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factor κ , i.e. with the increase of the linear cavity losses. Note that similar bifurcation diagram
reported in [9] for the case small losses, κ = 0.8, is qualitatively similar to that shown in figure 10.
It follows also from this figure that the LB stability range increases with the absolute value of the
unsaturated loss parameter. The LB stability domains on the plane of two parameters, normalized
pump parameter g0, and attenuation factor κ , are shown in figure 11a corresponding to fixed
value of the unsaturated absorption parameter Q0 = 1. According to this figure the increase of
linear losses results in a slight decrease of the LS stability range. Finally, by decreasing κ and
increasing Q0 so that q0 = Q0/− log κ = 1 is constant, we see from figure 11b that the decrease of
the LS stability range due to increased losses can be compensated by increasing the unsaturated
loss parameter. Furthermore, by increasing κ up to 0.99 and decreasing Q0 simultaneously we see
that the LB broadens in all dimensions, and in the regime, when the linear and saturable losses are
small enough and the length of the LB becomes larger than the absorber recovery time, γ −1

q = 1,
we observe that the LB stability range in g0 shrinks fast to the point g0 = κ = 1 corresponding to
the MF limit with a fast absorber.

5. Conclusion
We have proposed an NDDE model of a wide-aperture mode-locked laser and used this model to
demonstrate the existence of stable LBs in a semiconductor lasers, where the small gain and loss
approximation is usually not justified. Unlike the Haus-type model, which was used previously
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to predict the existence of LBs and explain the mechanism of their formation theoretically [8,9],
the NDDE model is not based on the MF approximation. We have shown that, although in the MF
approximation the qualitative agreement between the results obtained using these two models is
very good, for the parameter region studied in [8,9] the Haus-type model is already rather close
to the limits of its applicability. Therefore, even in this parameter region the NDDE model can
provide a more accurate description of the LBs stability domain. A detailed investigation of an
interesting question, how far the agreement between NDDE and Haus-type models regarding the
existence and the stability properties of the LBs stands, could be a subject of further studies. For
example, it is known that the Q-switching instability of the mode-locked regime is well described
by the DDE model, but can be missing in Haus-type models [29]. Moving away from the MF
approximation we have demonstrated the existence of LBs in a laser with relatively large gain
and losses per cavity round trip. We have found that the increase of the absolute value of the
unsaturated loss parameter can lead to an increase of the stability range of LBs, and, in particular,
to a compensation of the destabilizing effect of large linear losses. Thus, our results provide
further guidelines for future experimental observation of LBs in mode-locked semiconductor
lasers.
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