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Abstract. We study theoretically the effect of inhomogeneous broadening of the gain and absorption lines
on the dynamics of a passively mode-locked laser. Using numerical simulations of travelling wave equations,
we demonstrate the formation of an instability of mode-locking regime and suppression of Q-switching in
a laser with large inhomogeneous broadening. Moreover, we derive simplified delay-differential equation
model for a mode-locked laser with inhomogeneously broadened gain and absorption lines and perform
numerical bifurcation analysis of this model.

1 Introduction

Passively mode-locked lasers generate short optical pulses
used in numerous scientific, technological, and indus-
trial applications. In particular, monolithic semiconductor
lasers are compact sources of picosecond and subpicosec-
ond pulses with high repetition rates suitable for appli-
cation in telecommunication networks [1]. Recent experi-
mental and theoretical investigations have demonstrated
important advantages of new generations of quantum dot
and quantum dash semiconductor lasers over conventional
quantum-well semiconductor devices: low threshold cur-
rent, low pulse chirp, reduced temperature sensitivity,
high stability to noise and external feedback, etc. [2,3].
One of the important features of these lasers that plays a
major role in determining various laser characteristics is
the inhomogeneous broadening of the gain spectrum due
to nonuniformity of the ensemble of quantum dots with
respect to their size, shape, and composition [2]. In par-
ticular, it was demonstrated that in quantum dot lasers
under the bias conditions the inhomogeneous broadening
width at half-maximum (from 21 meV to 50 meV) is larger
than homogeneous broadening width (19 meV) [4].

The effect of inhomogeneous broadening on single-
mode [5–11], multi-longitudinal [12–19] and multitrans-
verse [20,21] mode laser instabilities has been a subject
of intense studies during the past decades. In particu-
lar, it was shown that inhomogeneous broadening can
reduce the so-called second laser threshold as well as the
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threshold of the multimode Risken-Nummendal-Graham-
Haken instability leading to a self-pulsing behaviour. This
is in agreement with the well known fact [22] that inhomo-
geneous broadening of the gain line leads to a reduction
of mode competition and, hence, can facilitate multi-
mode operation. On the other hand, a suggestion that due
to reduced mode-competition ultrashort-pulse formation
may be more easily achievable in inhomogeneously broad-
ened lasers than in corresponding homogeneous systems,
were shown to be in contradiction with the experimen-
tal data [23]. This can be understood by taking into
account that increasing inhomogeneous broadening intro-
duces additional incoherence into mode interaction and,
therefore, can reduce the intervals where self-pulsing is
observed [19].

While the dynamics of inhomogeneously broadened
CW lasers has been already extensively investigated,
the influence of inhomogeneous broadening on the char-
acteristics of passively mode-locked lasers still remains
largely unexplored theoretically. In order to fill this gap
in this work we study numerically the dynamics of a
passively mode-locked laser with inhomogeneously broad-
ened gain and absorber lines. We consider traveling
wave equations (TWEs) for the electric field envelopes
of the counter-propagating waves coupled to the equa-
tions for polarisations and population differences of the
two-level atoms emitting at different central frequencies
[21]. We integrate the resulting integro-differential equa-
tions numerically with the help of an efficient spectral
method with Hermite-Gaussian functions taken as the
basis. To this end, similarly to Graham and Cho [7], we
derive an infinite chain of equations for the macroscopic
variables, truncate this chain, and solve the truncated
equations numerically. Unlike the analytical approach of
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Graham and Cho [7], our numerical techniques allow us
to perform the truncation at much higher orders and,
therefore, to achieve higher precision. Basing on our sim-
ulations we demonstrate that for moderate values of the
inhomogeneous broadening linewidth the mode-locking
characteristics can be improved due to suppression of the
Q-switching instability. On the other hand, large inho-
mogeneous broadening linewidths lead eventually to a
degradation of the mode-locking regime.

Finally, by assuming unidirectional propagation of
the electrical field in the ring cavity and using the
approach proposed in [24–26], we derive a simplified delay-
differential equation (DDE) model of a mode-locked laser
with inhomogeneously broadened gain and absorption
lines. This model provides a good qualitative description
of the nonlinear dynamical regimes in a laser by tak-
ing into consideration zero and first moments of medium
polarisation [7,10]. We perform numerical bifurcation
analysis of the DDE model and demonstrate qualita-
tive agreement with the TWE model. We show that an
instability of the mode-locking regime develops when the
inhomogeneous broadening width of the gain line exceeds
a certain threshold. On the other hand, suppression of
Q-switching instability of the fundamental mode-locked
regime can be achieved at sufficiently large inhomogeneous
broadening linewidth of the saturable absorber.

2 Model equations

2.1 Travelling wave model

We consider non-dimensional form of the TWE model
describing space-time evolution of the amplitudes E±(t, z)
of the two counter-propagating waves, corresponding
polarisations P± = P±(ω̄, t, z), and population differ-
ence N = N(ω̄, t, z) of the two-level inhomogeneously
broadened medium. These equations are obtained from
the two-level semiclassical Maxwell-Bloch equations under
standard mean-field, effective-index, and slowly varying
envelope approximations [21]

∂E±

∂t
± ∂E±

∂z
= −β

2
E± +

∫ ∞
−∞

P±f̄(ω̄)dω̄, (1)

∂P±

∂t
= (−Γ + iω̄)P± +

g

2
NE±, (2)

∂N

∂t
= n0 − γNN −<(P+E+∗ + P−E−∗). (3)

Here β describes internal linear losses in the intracavity
medium, g is the differential gain parameter, Γ and γN are
the transverse and longitudinal relaxation rates, respec-
tively, and n0 = n0(z) is the linear gain/loss parameter.
The normalised spectral distribution f̄(ω̄) is represented
by the Gaussian profile

f̄(ω̄) =
1

σ
√

2π
exp

(
− (ω̄ − ω0)2

2σ2

)
, (4)

where σ is the width of inhomogeneous broadening at
half-maximum, ω0 is the detuning between the central fre-
quency of the Gaussian distribution (4) and the frequency
of one of the cavity modes, which serves as the reference
frequency.

2.2 Spectral method

For numerical solution of equations (1)–(4) we use a
“spectral” (Galerkin) method. First, we choose Hermite-
Gaussian functions

φm(ω) = (m!2m
√
π)−1/2e−ω

2/2Hm(ω), (5)

where Hm(ω) is the Hermite polynomial of the order m,
as a complete orthonormal basis for the space L2(C) with
the inner product defined by

〈u, v〉 =

∫ ∞
−∞

uv∗dω. (6)

After the coordinate change

ω =
ω̄ − ω0√

2σ
, (7)

the spectral distribution f̄(ω̄) given by equation (4) trans-

forms into f(ω) = φ2
0 with φ0 = π−1/4e−ω

2/2. Therefore,
we can rewrite (1) in the form

∂E±

∂t
± ∂E±

∂z
= P±0 −

β

2
E± (8)

with P±0 = 〈P±(ω, t, z)φ0(ω), φ0(ω)〉. Then multiplying
equations (2) and (3) with φ0, projecting them onto
φm, taking into account the coordinate change (7),
and using the recurrent relations for Hermite polyno-
mials we obtain an infinite hierarchy of equations for
the moments P±m(t, z) = 〈P±(ω, t, z)φ0(ω), φm(ω)〉 and
Nm(t, z) = 〈N(ω, t, z)φ0(ω), φm(ω)〉:

∂P±m
∂t

= (−Γ + iω0)P±m + iσ(
√
mP±m−1 +

√
m+ 1P±m+1)

+
g

2
NmE

±, (9)

∂Nm
∂τ

= n0m − γNNm −<(E+P+∗
m + E−P−∗m ), (10)

where P±−1 ≡ 0.
In terms of original problem (1)–(3) the first two

moments of polarisation and population inversion have the
form P±j =

∫∞
−∞ ωjP±f(ω)dω and Nj =

∫∞
−∞ ωjNf(ω)dω

with j = 0, 1 and f(ω) = φ0(ω)2. They are equivalent to
the zeroth- and the first-order moments of polarisation P±

and carrier density N introduced by Graham and Cho
[7]. Since n0m = 0 for all m > 0, only the zeroth-order
moment of the population difference is pumped directly,
while other moments are excited via a purely imaginary
constant in equation (9).
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When solving numerically equations (8)–(10) we choose
some finite M and truncate them by setting P±M+1 = 0.
Though there is not much mathematical theory beyond
partial integro-differential equations (1)–(3), the finite-
dimensional hyperbolic system of PDEs (8)–(10) is well-
posed [27]. Using energy estimates for the system (8)–(10)
given in [28] one can show that the moments decrease with
the number m > 0, i.e. |P±m |, |Nm| ≤ ckm−k with any inte-
ger k > 0 and some constants ck > 0 that do not depend
on m and M . Therefore, solution of equations (8)–(10)
truncated at sufficiently large m = M must be close to
that of the same equations truncated at m = M1 > M .
Or, in other words, this solution must be close to the solu-
tion of the non-truncated equations. It is evident from the
equation (9) that the speed of decrease of the moments
with m depends strongly on the value of σ. In this sense,
the chosen approach provides good quantitative approxi-
mation with the truncation order M = 1 for the case of
small σ. Moreover, in contrast to more direct approaches
where integral in (1) is discretised or replaced with a sum
of M atom groups [15,16], quite small number of moments
M is often sufficient for adequate description of the laser
dynamics as demonstrated in [7] and below. For larger M
and higher quantitative accuracy, our approach allows for
application of very robust and efficient numerical discreti-
sation schemes similar to those described in [29–32], see
Appendix B for more details.

Truncating equations (8)–(10) at M = 1 and eliminat-
ing adiabatically P±1 we obtain the following equation for
P±0 :

∂P±0
∂t

= −
(

Γ +
σ2

Γ

)
P±0 +

Γ

2
N0E

±. (11)

Hence, we conclude that for small enough σ the basic
effect of inhomogeneous broadening is to increase the
homogeneous broadening width Γ by approximately σ2/Γ.

3 Delay-differential equation model

In this section, we introduce a DDE system to describe an
inhomogeneously broadened mode-locked semiconductor
laser. First, we derive in Appendix A a DDE model taking
into account the polarisation dynamics in two-level active
medium. This model can be easily generalised to take into
account inhomogeneous broadening. The resulting system
of distributed DDEs reads

γ−1 dA

dt
+ (1− iω0/γ)A=

√
κ [A(t− τ) + 〈Pq(ωq), fq(ωq)〉

+ 〈Pg(ωg), fg(ωg)〉] , (12)

dPq
dt

= (−Γq + iωq)Pq + Γq(e
−Q/2 − 1)A(t− τ), (13)

dPg
dt

= −(Γg − iωg)Pg + Γg(e
G/2 − 1)[A(t− τ) + Pq], (14)

dQ

dt
= q0 − γqQ+ s|A(t− τ) + Pq|2 − s|A(t− τ)|2, (15)

dG

dt
= g0 − γgG+ |A(t− τ) + Pq|2

−|A(t− τ) + Pg + Pq|2, (16)

where A(t) is the complex electric field amplitude, G(t)
and Q(t) represent saturable gain and absorption intro-
duced by the corresponding laser media. Parameters g0

and q0 describe unsaturated gain and absorption, respec-
tively, κ < 1 is the cavity round trip attenuation factor,
s is the ratio of the saturation intensities in the gain
and absorber media, τ = 2l is the cavity round-trip time.
Γg,q and γg,q are, respectively, transverse and longitudinal
relaxation rates in the gain and absorber media, and ωg,q
describe the shift of the central frequencies of the gain and
absorption lines from the reference frequency. Here the
index g (q) corresponds to the gain (absorber) medium.
The main role of the linear filtering term γ−1dA (t) /(dt)
is to regularise the system by converting delay algebraic-
differential equations into DDEs. The parameters γ and
ω0 represent width and detuning of the central frequency
of the linear filter. In order minimise the effect of the linear
filter on the system’s dynamics in numerical simulations
we choose γ � Γg. Note that in the case of homogeneous
broadening with ωg,q = 0 equations (12)–(16) can be
transformed into the standard DDE mode-locking model
[24–26] by means of adiabatic elimination of polarisations
Pg,q.

We further assume that the effect of inhomogeneous
broadening on the dynamics of population difference is
much weaker than its effect on the polarisation dynam-
ics [7,10]. Then, implying that g0 and q0 are frequency
independent, we assume G(t) and Q(t) to be frequency
independent as well and apply the spectral method to
obtain the following truncated system

dA

dt
+ (γ − iω0)A =

√
κγ
[
A (t− τ) + P0q + P0g

]
, (17)

dP0q

dt
= (−Γq + iω0q)P0q + iσqP1q

+Γq(e
−Q/2 − 1)A(t− τ), (18)

dP1q

dt
= −

(
Γq +

√
2p2qσq + iω0q

)
P1q + iσqP0q, (19)

dP0g

dt
= (−Γg + iω0g)P0g + iσgP1g

+Γg(e
G/2 − 1) [A(t− τ) + P0q] , (20)

dP1g

dt
=
(
−Γg −

√
2p2gσg + iω0g

)
P1g + iσgP0g. (21)

dQ

dt
= q0 − γqQ+ s|A(t− τ) + P0q|2

−s|A(t− τ)|2, (22)

dG

dt
= g0 − γgG− |A(t− τ) + P0g + P0q|2

+|A(t− τ) + P0q|2, (23)

where P0,1 represent the zeroth- and first-order moments
of polarisation, while all other moments satisfying
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differential equations

dPm
dt

= (−Γ + iω0)Pm + iσ(
√
mPm−1 +

√
m+ 1Pm+1),

(24)

are eliminated adiabatically. The coefficients p2 in
equations (19) and (21) can be approximated by setting
PM+1 = 0 with M large enough. Then from equation (24)

we get PM = ipMPM−1 with pM =
√
Mσ/ (Γ− iω0) and

Pm = ipmPm−1 for all 2 < m < M − 1 with recursive
relationship

pm =

√
mσ

Γ + iω0 +
√
m+ 1σpm+1

.

Therefore, for ω0 = 0 we can see that p2 > 0 and the main
effect of the higher moments of polarisation is that they
increase the relaxation rate of the first moment of polari-
sation for higher values of σ so that it becomes larger than
relaxation rate of the zeroth-order moment of polarisation.

In the particular case when inhomogeneous broadening
is present only in the gain medium we set σq = 0 in the
absorber medium. Furthermore, in this case without the
loss of generality we can assume that ω0q = 0. Then elim-
inating adiabatically the variable P0q from equation (18)

we obtain the relations P0q = (e−Q(t)/2 − 1)A(t− τ) and
P1q = 0, which lead to the following equations for the com-
plex field envelope A, saturable gain G, and saturable loss
Q:

γ−1 dA

dt
+A =

√
κ
[
e−Q/2A (t− τ) + P0g

]
, (25)

dG

dt
= g0 − γgG−

(
|e−Q/2A(t− τ) + P0g|2

−e−Q|A(t− τ)|2
)
, (26)

dQ

dt
= q0 − γqQ− s

(
1− e−Q

)
|A (t− τ)|2 . (27)

Combining these three equations with equations (20) and
(21) evaluated at ω0g = 0 we get DDE model of a laser
with inhomogeneously broadened gain line and adiabat-
ically eliminated polarisation in the absorbing medium.
The lasing threshold in this laser can be expressed as

√
κ exp

(
g0

2γg
− q0

2γq

)
= 1+

σ2
g

Γ̃2

[
1−
√
κ exp

(
− q0

2γq

)]
≥ 1,

where Γ̃2 = Γg [Γg + σgp2g], i.e. inhomogeneous broaden-
ing in the gain medium leads to an increase of the lasing
threshold.

Similarly to equations (25)–(27) the equations govern-
ing the time evolution of the complex field envelope A
and saturable gain G can be derived for the case when
inhomogeneous broadening is present in the absorber
medium only. Setting σg = ω0g = ω0q = 0, P1g = 0,
and eliminating adiabatically the variable P0g we get

P0g =
(
eG/2 − 1

)
[A(t− τ) + P0q] and

γ−1 dA

dt
+A =

√
κ
[
eG/2A (t− τ) + P0q

]
, (28)

dG

dt
= g0 − γgG−

(
eG − 1

)
|A (t− τ) + P0q|2 . (29)

Combining these two equations with equations (18), (19)
and (22) evaluated at ω0q = 0 to these two equations
we get the DDE model of a laser with inhomogeneously
broadened absorber and homogeneously broadened gain
lines. We note that in this model the spectral filtering
is attributed to the linear filtering section instead of the
gain section. Therefore, in contrast to the model (12)–(16),
where γ is introduced for regularisation purposes, now
spectral filter is affecting the pulse width. In this situation
we employ a commonly adopted procedure by choosing γ
equal to Γg used in equations (12)–(16), and by replacing
a nonlinear filter with a linear filter [24–26,29–31]. The
lasing threshold of the central mode in this case can be
expressed as

√
κ exp

(
g0

2γg
− q0

2γq

)
=

1 + σ2
q/Γ̃

2

1 + σ2
qe
q0/(2γq)/Γ̃2

≤ 1,

where Γ̃2 = Γq [Γq + σqp2q], i.e. inhomogeneous broaden-
ing in the absorber medium leads to a decrease of the
linear threshold of the central mode located in the middle
of the spectral profile of the absorption line.

4 Numerical results

4.1 TWE model

We solve equations (8)–(10) for the two-section laser with
a gain and an absorber section using the discretisation
scheme similar to the one reported in [29,30], which is
outlined in Appendix B. Since the number of moments
reaches up to M = 200, we use parallelisation techniques
to speed up our simulations.

In numerical simulations the parameter values of equa-
tions (8)–(10) were similar to those used earlier for
modelling of monolithic semiconductor lasers with homo-
geneously broadened gain and absorption lines [29,30].
In particular, the reflectivities of the laser facets were
assumed to be equal, κ1 = κ2 = 0.3. Furthermore, for sim-
plicity we assume that ωg0 = ωq0 = 0 and that all the
linear losses take place on the laser facets, i.e., βg,q = 0.
The remaining parameters of the gain (absorber) sec-
tions are: normalised pump rate n0 = 10 ns−1 (linear
absorption rate n0 = 0.16 ps−1), longitudinal relaxation
time γ−1

N = 1 ns (γ−1
N = 10 ps), transverse relaxation time

Γ−1 = 250 fs (Γ−1 = 250 fs), and normalised saturation
parameter s = 1 (s = 5). The length of the gain and
absorber sections normalised to the group velocity of light
in this sections are 10 ps and 2.5 ps, respectively.

A typical bifurcation tree obtained by plotting local
maxima of the laser intensity time trace calculated for
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Fig. 1. Bifurcation tree obtained by numerical integration of
equations (8)–(10). Local maxima of the field intensity are plot-
ted for different values of the pump parameter n0 in the gain
medium. Cyan circles correspond to σ = 0, black rectangles –
to σ = 2 ps−1, and blue triangles – to σ = 5 ps−1 in a laser with
inhomogeneously broadened gain and absorber lines. Blue tri-
angles in the lower right corner of the figure indicate the peak
power of the satellite pulse that appears at the trailing edge
of the main pulse. Other parameter values are given in the
beginning of Section 4.1.

increasing values of the pump parameter n0 in the gain
medium in a laser with homogeneously broadened gain
and absorber lines, σg = σq = 0, is shown by cyan cir-
cles in Figure 1. It can be seen that soon after the lasing
threshold a regime with periodic laser intensity under-
goes an instability leading to a Q-switched mode-locking
regime corresponding to a cloud of points in Figure 1.
Quasiperiodic intensity time trace of the latter regime is
shown in the top panel of Figure 2. At even larger pumps a
fundamental mode-locking regime illustrated in the bot-
tom panel of Figure 2 becomes stable. Black rectangles
(blue triangles) in Figure 1 are obtained by increasing
the pump parameter n0 at fixed and equal inhomoge-
neous broadening linewidths, σg = σq = σ, in the gain
and absorber media, σ = 2 ps−1 (σ = 5 ps−1). It can be
seen that the lasing threshold remains almost indepen-
dent of σ, however, the Q-switching instability is gone for
σ ≥ 2 ps−1. Therefore, we conclude that inhomogeneous
broadening can lead to a suppression of this instabil-
ity, which is in agreement with the experimental data on
quantum-dot mode-locked lasers [33] and with the general
considerations of reference [15].

For sufficiently large σ in the gain and absorber media
small satellite pulses can appear at the trailing edge of
the main mode-locked pulse. This can be seen in the top
panel of Figure 3 illustrating fundamental mode-locking
regimes with one, two and three additional satellite pulses.
The corresponding spectra shown in Figure 3 (bottom)
become wider with the increase of σ and eventually a
Lamb dip [34], similar to that reported earlier in actively
mode-locked quantum-dot lasers [15], is formed in the
middle of the pulse spectrum. Further increase of the
inhomogeneous linewidth leads to a separation of the

Fig. 2. Right: time traces of Q-switched regime (top) and fun-
damental mode-locking regime (bottom) calculated for σ = 0.
Other parameter values are as in Figure 1.

Fig. 3. Pulses (top) and optical spectra (bottom) in a laser
with inhomogeneously broadened gain and absorber lines hav-
ing equal linewidth σ = 5.2 ps−1, σ = 5.6 ps−1, and σ = 6 ps−1.
Optical spectrum of the pulse is obtained using the discrete
Fourier transform of a single period of the periodic ML solu-
tion. Here, the pump parameter in the gain medium is n0 =
10 ns−1, and other parameters are as in Figure 1.

spectral comb into two symmetric combs with positive and
negative central frequencies and subsequent degradation
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Fig. 4. Reconstructed polarisation (top) and popula-
tion difference (bottom) functions |P+(ω, tpulse, L)φ0(ω)|,
N(ω, tpulse, L)φ0(ω) at the end of the absorber section (z = L,
output edge) at the moment of maximal pulse intensity t =
tpulse, where P , N approximate solutions of (1)–(3), and φ0

is defined by (5), in a laser with inhomogeneously broadened
gain and absorber lines having equal linewidth σ = 1 ps−1 and
σ = 5.6 ps−1. Other parameters are as in Figure 3.

of mode-locking via an instability which is referred here
as the “Lamb dip instability”. Figure 4 demonstrates the
polarisation P+ and population difference N weighed by
the exponential function φ0 as the function of frequency
ω. One can see that for sufficiently large inhomogeneous
broadening width σ spectral holes appear in these pro-
files. Comparing this figure with Figure 3 (bottom) we
can observe that for increasing σ the spectral hole in the
profile of P+φ0 and Nφ0 precedes the formation of the
Lamb dip in the pulse spectral profile.

Evolution of fundamental mode-locked regime with the
increase of the inhomogeneous broadening widths σ in the
gain and absorber media is illustrated by the top panel of
Figure 5. Black circles in this figure indicate local maxima
of the field intensity calculated for different values of
σ with fixed normalised pump parameter n0 = 10 ns−1.
It can be seen that the peak power of the mode-locked
pulse increases with σ within the interval σ ∈ [0, 5] ps−1,
while for σ > 5 ps−1 additional satellite pulses shown in
Figure 3 (top) appear on the trailing edge of the pulse.
Blue line in Figure 5 (top) indicates the linear increase
of the pulse intensity with the homogeneous broadening

Fig. 5. Bifurcation diagrams similar to that shown in Figure 1,
obtained by increasing the parameter σ in both media. Top:
black dots show local maxima of the field intensity calculated
by changing σ with fixed normalised pump rate n0 = 10 ns−1.
Blue line represents intensity maxima of fundamental mode-
locking solutions calculated by changing Γg = Γq in a laser with
homogeneously broadened gain and absorption lines. Dashed
lines denote values of σ where new satellite pulses appear.
Bottom: Same as black dots in the upper panel, but for
n0 = 6 ns−1. Other parameters are as in Figure 1.

width Γ in the absence of inhomogeneous broadening,
σ = 0. It follows from (11) that when σ = ∆σ is suffi-
ciently small, the effect of inhomogeneous broadening is
analogous to the increase of the homogeneous broadening
width from Γ0 to Γ = Γ0 + ∆σ2/Γ0. On the other hand,
for larger ∆σ the pulse width continues to decrease for
increasing homogeneous broadening, while mode-locked
regime eventually looses stability for increasing inhomo-
geneous broadening. Bottom panel of Figure 5 presents
a similar bifurcation diagram calculated for smaller value
of the pump parameter, n0 = 6 ns−1 corresponding to a
stable Q-switched mode-locking regime in the absence of
inhomogeneous broadening. It can be seen that increasing
the inhomogeneous broadening width in the gain medium
up to σ ≈ 2 ps−1 leads to a suppression of Q-switching
instability and a transition to a stable fundamental
mode-locking regime. The latter regime remains stable
for 2 ≤ σ < 6 ps−1.
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Fig. 6. Bifurcation diagrams obtained numerically by chang-
ing the parameter σ in the gain (top, bottom)/absorber
(center) medium in a laser with homogeneously broadened
absorption (top, bottom)/gain (center) line. Normalized pump
rates are n0 = 20 ns−1 (top) and n0 = 9 ns−1 (center, bottom).
Other parameters are as in Figure 1. In the bottom panels the
Intensity labels denote for brevity maximal field intensity as
in the top panel.

It follows from the top panel of Figure 6 that the
Lamb-dip instability appears due to the inhomogeneous
broadening of the gain line, while the suppression of Q-
switching is due to inhomogeneous broadening of the
absorber line, see central panel of Figure 6. The absence
of instability for high values of the parameter σ in
the absorber medium (see central panel of Fig. 6) sug-
gests that the inhomogeneous broadening in the absorber
medium does not participate in the development of Lamb-
dip instability. On the other hand, the diagram shown in
bottom panel of Figure 6 indicates that inhomogeneous
broadening of the gain medium does not suppress the Q-
switching instability of mode-locked regime, but on the
contrary enhances this instability.

In order to study the effect of the inhomogeneous
broadening in the gain and absorber media on the char-
acteristics of mode-locked pulses we plot in Figure 7 the
dependence of their full-width at half-maxima, spectral
width, energy, and the time-bandwidth product as func-
tions of the inhomogeneous broadening width σ. It can

be seen from this figure that the pulse width decreases
and the spectral width increases with increasing σ. This
is in agreement with intuitive expectations as well as with
the theoretical results obtained for actively mode-locked
quantum-dot lasers [15]. The time-bandwidth product
remains almost constant for σ < 5 ps−1, and increases
drastically together with the spectral width for higher σ.
The pulse energy decreases monotonically with increas-
ing σ.

Finally, one can notice from Figure 1 that an increase
of inhomogeneous broadening linewidth σ can lead to
a slight increase of the lasing threshold. Figure 8 (top)
shows a more dramatic increase of the lasing threshold
obtained for faster gain relaxation rate γN = 125 ps−1.
Furthermore, a comparison of Figure 8 (bottom) and
Figure 1 shows that for the faster gain relaxation rate
γN = 125 ps−1 the Lamb-dip instability of mode-locking
regime appears at higher values of σ then for slower
relaxation rate γN = 10 ps−1.

4.2 DDE model

First, we simulate the DDE model (12)–(16) of a laser
with inhomogeneously broadened gain and absorption
lines with the parameter values close to those of the TWE
model: τ = 25 ps, κ = 0.3, Γ−1

g = Γ−1
q = 250 fs, γ−1

g =

1 ns, γ−1
q = 5 ps, γ−1 = 25 fs, s = 10, g0 = 6 ns−1, and

q0 = 0.1 ps−1. The dependence of the pulse peak inten-
sity on the inhomogeneous broadening width σg = σq ≡ σ
obtained with the help of the DDE-BIFTOOL software
package [35] is presented in the top panel of Figure 9. It
can be seen that the bifurcation diagram in this figure is
similar to that obtained by numerical simulation of the
TWE model, see Figure 5 (bottom).

In order to perform numerical analysis of the Lamb-dip
instability we simulate the DDE model with inhomoge-
neously broadened gain line and adiabatically eliminated
polarisation in the absorber medium, equations (25)–(27),
(20), and (21). We increase carrier relaxation rate up to
γ−1
g = 500 ps and, using the DDE-BIFTOOL software

package, perform a continuation of the mode-locked solu-
tion along the parameter σg, see Figure 9 (bottom). The
presence of additional lines in the bottom right corner of
the figure indicates that similarly to the results of numer-
ical simulation with the TWE model shown in the bottom
panel of Figure 5 the increase of σg leads to formation of
small satellite pulses behind the main mode-locked pulse.
The branch of mode-locked solutions in Figure 5 (bottom)
ends up at a saddle-node (fold) bifurcation point, where
the negative real eigenvalue with smallest absolute value
becomes zero.

Top panel of Figure 10 presents a branch of mode-
locking solutions of the DDE model (28), (29), (18), (19),
and (22) with homogeneously broadened absorber line and
adiabatically eliminated polarisation in the gain medium.
As we previously noted the spectral filtering in this model
is performed by a linear filter with the bandwidth γ−1 =
250 ns. The part of this branch between bifurcation points
A and B shown by dotted line is unstable with respect to
Q-switching instability. In the bottom panel of Figure 10
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Fig. 7. Left: full-width at half-maximum of the mode-locked pulses (top) and their spectral width (bottom) as functions of
equal inhomogeneous broadening widths σ in the gain and absorber media. n0 = 10 ns−1 in the gain medium. Other parameters
are as in Figure 1. Right: pulse energy (top) and time-bandwidth product versus inhomogeneous broadening linewidth in the
gain medium. n0 = 10 ns−1 in the gain medium. Other parameters are as in Figure 1.

Fig. 8. Top: bifurcation diagram obtained numerically by
changing the parameter σ in gain and absorber media for
pump rates n0 = 25 ns−1 and 38 ns−1 in the gain medium.
Bottom: bifurcation diagram obtained numerically by chang-
ing the parameter n0 in the gain medium for σ = 0 (circles),
σ = 4 ps−1 (rectangles), and σ = 8 ps−1 (triangles) in both
media, γN = 125 ps−1 in the gain medium, n0 = −320 ns−1 in
the absorber medium. Other parameters are as in Figure 1.

Fig. 9. Top: bifurcation diagram obtained numerically by
changing the parameter σg = σq = σ in both laser media
using the DDE model (12)–(16). Bottom: bifurcation diagram
obtained with the help of DDE-BIFTOOL by changing the
parameter σg = σ in the DDE model (25)–(27), (20), and (21).
Here, the unsaturated gain parameter is g0 = 6 ns−1, and other
parameters can be found in the beginning of Section 4.2.
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Fig. 10. Top: bifurcation diagram obtained using the DDE-
BIFTOOL by continuing the branch of the mode-locking
regime along the parameter g0 of the DDE model (28), (29),
(18), (19), and (22) with σq = 0. Solid lines indicate stable solu-
tions, while dashed line indicates unstable ones. γ−1 = 250 ns.
Bottom: two-parameter bifurcation diagram obtained using the
DDE-BIFTOOL by following the Q-switching instability bifur-
cation points A and B along the parameter σq = σ of the DDE
model (28), (29), (18), (19), and (22). Other parameter are as
in Figure 9.

the critical values of the pump parameter g0 corresponding
to the Q-switching instability bifurcation points are shown
as functions of the inhomogeneous broadening width
σq = σ of the absorption line. It can be seen that with
increasing σ the two bifurcation points collide and disap-
pear, and the mode-locking solution branch becomes sta-
ble within the whole range of pump parameters shown in
Figure 10 (top).

Finally, we note that although the approximation of
slow evolution of the population differences underlying
the DDE model (12)–(16) is based on qualitative con-
siderations, our numerical simulations indicate that the
results obtained using the DDE model are in good qualita-
tive agreement with those of the TWE model. This could
be understood by taking into account the fact that the
characteristic times of the population differences evolu-
tion, 1/γg,q, are usually much larger than those of the
field envelope, 1/γ, and polarisations, 1/Γg,q. In par-
ticular, the carrier dynamics during the fast stage of
passive mode-locking [26] is still much slower than the

polarisation dynamics and has weak effect on the evolution
of polarisation.

5 Conclusion

We have studied numerically two-level TWE model of a
passively mode-locked laser with inhomogeneousy broad-
ened gain and absorption lines. We have proposed an
efficient spectral method for numerical integration of
this model, and implemented this method using paral-
lel computation techniques. We have studied the effect
of the inhomogeneous broadening on the characteristics
of the fundamental mode-locking regime. It follows from
our analysis that, alongside with the carrier dynamics
processes in the gain medium, see e.g. [30,33,36], inho-
mogeneous broadening may lead to a suppression of Q-
switching instability in mode-locked quantum-dot lasers.
This is in agreement with qualitative considerations,
which suggest the enhancement of the gain saturation and
suppression of Q-switching due to inhomogeneous broad-
ening [37]. We have shown that equal inhomogeneous
broadening widths in both laser media can lead to the
increase of the lasing threshold, pulse intensity and spec-
tral width, and to the decrease of the pulse width and
the pulse power. Moreover, small inhomogeneous broad-
ening has the effect on pulse characteristics similar to
that of homogeneous broadening, whereas large inhomo-
geneous broadening in the absorber (gain) medium leads
to a suppression of Q-switching instability (the formation
of the Lamb dip in the spectral profile of the pulse and the
degradation) of the mode-locking regime. We have demon-
strated that the increase of the longitudinal relaxation
rate in the gain medium leads to stabilisation of the fun-
damental mode-locking regime for strong inhomogeneous
broadening and to further increase of the lasing threshold.

We have derived a simplified DDE model of an inhomo-
geneously broadened laser which demonstrates dynamical
behaviour qualitatively similar to that of the TWE model.
Using the DDE model we have shown that the degradation
of mode-locked regime at sufficiently large values of the
inhomogeneous broadening linewidth in the gain medium
takes place after a fold bifurcation where the stable branch
of fundamental mode-locked solutions disappears. Finally,
we have demonstrated that with the increase of inho-
mogeneous broadening linewidth in the absorber medium
two bifurcation points responsible for the appearance to
the Q-switching instability of mode-locked regime collide
and disappear, leading to elimination of this instability by
inhomogeneous broadening.

The authors acknowledge the support of SFB 787 of the
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Appendix A: Derivation of the DDE model

To derive a DDE model of a ring passively mode-locked
laser taking into account medium polarisation dynamics
we use the approach similar to that proposed in [24–26].
We start with the unidirectional travelling wave equa-
tions describing the space-time evolution of the complex
electrical field envelope E, complex two-level polarisa-
tion P , and real population difference N in the gain and
absorber media written out in co-moving coordinate frame
z + t→ z, t→ t:

∂E

∂z
= P,

∂P

∂t
= (−Γ + iω)P +

Γ

2
EN,

∂N

∂t
= n0 − γNn− s(EP ∗ + PE∗) = n0 − γNn− s

∂|E|2

∂z
,

where the equation for the electric field envelope E can
we rewritten in the form:

∂2E

∂t∂z
+ (Γ− iω)

∂E

∂z
=

Γ

2
EN. (A.1)

Assuming that the time evolution of the population dif-
ference N is much slower than that of the field envelope
E we apply Fourier-transform to (A.1) considering N(t, z)
to be independent of time t. Then we obtain

2πiξ
dẼ

dz
+ (Γ− iω)

dẼ

dz
=

Γ

2
ẼN. (A.2)

Integrating (A.2) along longitudinal coordinate z from the
point z1 at the beginning of the gain/absorber medium to
the point z2 at the end of the the medium we get

Ẽ(ξ, z2) = exp

[
ΓG

2(Γ− iω + 2πiξ)

]
Ẽ(ξ, z1)

=

∞∑
k=0

1

k!

[
ΓG

2(Γ− iω + 2πiξ)

]k
Ẽ(ξ, z1), (A.3)

where G =
∫ z2
z1
Ndz. Therefore, by making the inverse

Fourier transform of (A.3) we obtain

E(t, z2) = E(t, z1) +
ΓG(t)

2

×
∫ t

−∞
E(s, z1)e(Γ−iω)(s−t)

I1

[√
(t− s)G(t) 2Γ

Γ−iω

]
√

(t− s)G(t) Γ
2(Γ−iω)

ds,

(A.4)

where I1 is the first order Bessel function.
Finally, assuming that the time evolution of G(t) is slow

we eliminate distributed delay we rewrite equation (A.4)
as the following chain of equations

E(t, z2) = E(t, z1) + P1(t),

dP1(t)

dt
= (−Γ + iω)P1(t) +

ΓG(t)

2
(E(t, z1) + P2(t)),

dP2(t)

dt
= (−Γ + iω)P2(t) +

ΓG(t)

2× 2
(E(t, z1) + P3(t)),

dP3(t)

dt
= (−Γ + iω)P3(t) +

ΓG(t)

3× 2
(E(t, z1) + P4(t)),

...

dPk(t)

dt
= (−Γ + iω)Pk(t) +

ΓG(t)

2k
(E(t, z1) + Pk+1(t)),

...

where Pm are auxiliary variables describing the polari-
sation at the point z2. Assuming G(t)/2 � 1, we can
truncate the system at any k ≥ 1. For higher G(t) ∼ 1
we improve the approximation by keeping a single polar-
isation equation for P1 with all other auxiliary variables
Pm (m > 1) eliminated adiabatically:

dP1(t)

dt
= (−Γ + iω)P1(t) + Γ(eG(t)/2 − 1)E(t, z1).

This equation is responsible for nonlinear spectral filtering
approximating the effect of two-level polarisation on the
laser dynamics at small G(t).

Using the above approximation, we write the following
equation for the time evolution of the complex electric field
envelope in a two-section passively mode-locked laser

dA

dt
+ (γ − iω0)A =

√
κγ [A (t− τ) + Pq(t) + Pg(t)] ,

(A.5)

where Pg(t) and Pq(t) describe the polarisation of the
gain and absorber medium, respectively. Equation (A.5)
together with equations (13)–(16) gives us a DDE model
for a homogeneously broadened mode-locked laser. By set-
ting ω0g = ω0q = 0 and performing adiabatic elimination
of the variables Pg and Pq we obtain from this model the
standard DDE mode-locking model of references [24–26].

Appendix B: Numerical solution of the TWE

For spatial discretisation of the TWE we use the
method developed for homogeneously broadened passively
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∂p±m,k
∂t

(t) ≈ (−Γ + iω0)p±m,k + iσD(
√
mp±m−1,k +

√
m+ 1p±m+1,k)

+ ΓGm,k(t)
E±(t, zk)(1 + e−

β∆z
2 ) + (1− β∆z

4 )p±0,k(t)

2

(B.3)

∂Gm,k
∂t

≈ gm − γNGm,k −
s

2
Re
(
(p−∗m,kE

−(t, zk+1) + p+∗
m,kE

+(t, zk))(1 + e−
β∆z

2 )

+

(
1− β∆z

4

)
(p−∗m,kp

−
0,k + p+∗

m,kp
+
0,k)
) (B.4)

mode-locked multisection semiconductor laser [29,30]. We
divide the laser into K segments of size ∆z = l/K, and
integrate equation (8) along the characteristics to obtain
the following second-order accurate approximation at the
end-points of the segments

E+(t+ ∆z, zk+1) = E+(t, zk)e−
β∆z

2 +

(
1− β∆z

4

)
p+

0,k(t)

+O(∆z3), (B.1)

E−(t+ ∆z, zk) = E−(t, zk+1)e−
β∆z

2

+

(
1− β∆z

4

)
p−0,k(t) +O(∆z3). (B.2)

After that we denote

p±m,k =

∫ zk+1

zk

P±m

(
t− ∆z

2
, z

)
dz,

Gm,k =

∫ zk+1

zk

Nm

(
t− ∆z

2
, z

)
dz,

and integrate equations (10), (9) for P±m(t −
∆z/2, z), N±m(t − ∆z/2, z) over z ∈ [zk, zk+1], approxi-
mating the integrals of multiplications using trapezoid
method, hence obtaining second-order approximations

See equations (B.3) and (B.4) above.

For discretisation of p±m,k in time we use the Crank-
Nicolson method with time step ∆t = ∆z. We consider
equations for p±m,k, approximate Gm,k(tn+1) using explicit

method [32], and for each n, k,m we obtain the following
system of linear algebraic equations (SLAE) with quasi-
tridiagonal matrix

A±m,k,np
±
m−1,k,n+1 +B±m,k,np

±
m,k,n+1 + C±m,k,np

±
m+1,k,n+1

+D±m,k,np
±
0,k,n+1 = F±m,k,n.

We look for the solution of the equations for m = 1, . . . ,M
in the form p±m,k,n+1 = Xm,k,n − Ym,k,np±0,k,n+1 using a
modified algorithm of solution of SLAE with tridiago-
nal matrices. Then we solve two equations for p±0,k,n+1,

p±1,k,n+1, propagate values of p±m,k,n+1 for m > 1, and

use Crank-Nicolson method to find Gm,k(tn+1).1 Since
the complexity of the algorithm of solution of SLAE
with tridiagonal matrix is O(M), the total complexity
of the numerical algorithm is O(MK2T/l), where T is
the total time of simulation. We note that the numer-
ical scheme (B.1)–(B.4) is a second-order semi-implicit
scheme suitable for stiff problems such as simulation of
mode-locked lasers [29,32], and its algorithmic complexity
remains linear in the number of moments M , while direct
discretisation of the integral over polarisations (1) results
in the full matrix in the equations (B.3)–(B.4), and ineffi-
ciency of the proposed scheme. Our aim was to develop a
robust algorithm for our study, which is numerically stable
over a wide realistic parameter range and for sufficiently
large time steps ∆t = ∆z. Hence we did not investi-
gate alternative approaches such as explicit approximation
of polarisation terms in (B.3)–(B.4) that come from the
direct discretisation of the integral in (1). Nevertheless,
we assume that polarisations relax much faster than the
populations differences, which leads to stiffness in the
equations and numerical instability of explicit schemes.

We parallelise the numerical scheme (B.1)–(B.4) by con-
sidering each small section of a laser [zk, zk+1] at the
moment of time tn as a cell that communicates with the
other cells during the calculations. We place the neigh-
bouring cells in a group and assign each group to a
computing node, which can be another thread or an MPI
process. We demonstrate the scheme of the calculation of
the variables at each moment of time tn+1 for the case
of two computing nodes on Figure B.1 (number of nodes
NC = 2). We can see that each cell k is connected to the
two neighbouring cells in the variables E±k±1,n+1, which

are obtained using simple rules (B.1)–(B.2) from the val-
ues of the variables E±k,n, p

±
0,k,n at the moment of time tn.

Hence only one value should be sent to each neighbouring
computing node from the current node at each time step,
which is accomplished by sending the corresponding value
of E±k,n+1 through a “ghost” cell, which, for example, can
be responsible for sending and receiving MPI messages.

1 We have found that such approach to Gm,k(tn+1) is numerically
stable for the parameters we used. In other situations it can be fur-
ther improved by predictor-corrector steps, or made fully implicit by
applying Crank-Nicolson method to Gm,k(tn+1) instead of explicit
approximation on the first step. The resulting equations are non-
linear and the matrix for the Newton iterations is block tridiagonal
with the block size 4.
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Fig. B.1. Numerical scheme (B.1)–(B.4) with parallelisation realised on two nodes.
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