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We derive and study a model describing passive mode locking—a set of differential equations with time
delay. Unlike classical mode locking models based on the Haus master equation, this model does not assume
small gain and loss per cavity round trip. Therefore, it is valid in a parameter range typical of semiconductor
lasers. The limit of a slow saturable absorber is analyzed analytically. Bifurcations responsible for the appear-
ance and breakup of the mode locking regime are studied numerically.
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INTRODUCTION

Passive mode locking �ML� is a powerful method to gen-
erate high-quality short pulses with high repetition rates from
different kinds of lasers. In particular, passively and hybrid
mode-locked semiconductor lasers are compact, low-cost, re-
liable, and efficient sources of picosecond and subpicosec-
ond pulses ideal for applications in high-speed communica-
tion systems �1�. Due to the small size, large gain coefficient,
and fast recovery time of semiconductor material these lasers
can produce pulses at very high repetition rates �tens and
hundreds of gigahertz�. The duration of ML pulses generated
by semiconductor lasers is typically much smaller than the
semiconductor saturable absorber recovery time. This situa-
tion is usually referred to as a ML with slow saturable ab-
sorber �2�. The basic physical mechanism responsible for the
appearance of passive ML in a laser with slow absorber has
been known for a long time: with the arrival of a pulse, the
absorbing medium saturates faster than the amplifying one,
and, therefore, a short net gain window is opened, ensuring
the pulse amplification that is necessary to compensate cav-
ity round-trip losses �3�. However, nonlinear dynamical re-
gimes that can arise in mode-locked lasers and bifurcations
of these regimes are still quite poorly understood. We believe
that the delay differential model described in this paper could
help to fill this gap.

Analytical approaches to describe passive ML with a slow
saturable absorber were developed by New and Haus �2,3�.
Both of them considered the situation of small gain and loss
per cavity round trip. Assuming the absence of spectral fil-
tering New obtained implicit analytical expressions for the
stability boundaries of the ML regime in the space of laser
parameters. Haus developed a ML model that takes spectral
filtering into consideration under a parabolic approximation.
He derived analytical expression for the shape of a ML pulse
in the limit of small pulse energy, when the intracavity media
are weakly saturated. His results were found to be in a good

agreement with the experimental data obtained with dye la-
ser �4�. Since then, different modifications of the Haus model
have been derived and analyzed; see reviews �5–8� and ref-
erences therein.

Despite the success of the Haus master equation, its abil-
ity to describe adequately real laser systems is questionable
in many situations. In particular, typical solid-state lasers
with semiconductor saturable absorbers are operated under
conditions of almost complete saturation �9�, which violates
the assumptions underlying Haus’ model. Another example is
given by semiconductor mode-locked lasers. They typically
have high gain and losses per cavity round trip, which invali-
dates both New and Haus classical models. This is why ap-
proaches based on direct numerical simulations of spatially
distributed models have been mainly used to study ML in
semiconductor lasers �for a review, see Ref. �8��. Although
the direct numerical simulations are, in principle, capable to
reproduce experimental data, they give only little insight into
the physical mechanisms involved.

In this paper we derive and study a delay differential
model, announced in �10�, which is able to describe ML in
the parameter range typical of semiconductor lasers. When
deriving this model we do not use the small-gain and -loss,
weak-saturation, and infinite-bandwidth approximations. The
only essential assumption we adopt is a ring-cavity geometry
with unidirectional lasing. Being more general than the clas-
sical ML models, our model remains simple enough for a
comprehensive bifurcation analysis and allows for a clear
physical interpretation. Here we present the results of an ana-
lytical study of the delay differential model in the limit of a
slow saturable absorber. In particular, we show how models
similar to those by New and Haus are derived in the case
where the gain and loss per cavity round trip are not small,
and discuss the applicability limits of these models. In order
to describe bifurcations of the fundamental and multiple ML
regimes we perform a numerical analysis of the delay differ-
ential model. We find that two main mechanisms are respon-
sible for the onset and breakup of these regimes: the low-
frequency Q-switching instability and a sudden chaotization
via intermittency. Special attention is paid to the strong and
very asymmetric impact of linewidth enhancement factors on
ML solutions. Among other results we show that stable ML
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pulses with positive net gain at the leading edge can exist in
a certain parameter range and investigate the sensitivity of
such and other ML solutions to noise.

I. MODEL EQUATIONS

In this section we use the so-called lumped-element
method to derive delay differential equations for a ring
mode-locked laser. Let us consider the laser shown schemati-
cally in Fig. 1. It is assumed that one of the two counter-
propagating waves in the laser cavity is suppressed so that
the lasing is unidirectional. The laser consists of five sec-
tions. Let z be the coordinate along the cavity axis. The first
z1�z�z2 and the fourth z4�z�z5 sections are passive. The
second z2�z�z3 and the third z3�z�z4 sections contain
saturable absorber and gain medium, respectively. The last,
fifth section z5�z�z1+L acts as a spectral filter that limits
the bandwidth of the laser radiation. Here L is the cavity
length. The so-called traveling-wave equations �11,12� gov-
erning evolution of the slowly varying electric field envelope
E�t ,z� in the gain and absorber sections can be written in the
form

�E�t,z�
�z

+
1

v

�E�t,z�
�t

=
gr�r

2
�1 − i�r��Nr�t,z� − Nr

tr�E�t,z� ,

�1�

�Nr�t,z�
�t

= Jr − �rNr�t,z� − vgr�r�Nr�t,z� − Nr
tr��E�t,z��2.

�2�

Here the subscript r=g �r=q� corresponds to the gain �ab-
sorber� section. The variables Ng�z , t� and Nq�z , t� describe
carrier densities in the gain and absorber sections, respec-
tively. The parameters Ng,q

tr are the carrier densities evaluated
at transparency threshold. The parameter v is the light group
velocity which is assumed to be constant and equal in all the
five sections. The parameters �g,q, gg,q, �g,q, and �g,q are,
respectively, linewidth enhancement factors, differential

gains, transverse modal fill factors, and carrier density relax-
ation rates in the gain and absorber sections. The parameter
Jg describes injection current in the gain section. For the
absorber section we have Jq=0.

Evolution of the electric field envelope E�t ,z� in the pas-
sive sections is governed by the equation

�E�t,z�
�z

+
1

v

�E�t,z�
�t

= 0. �3�

The spectral filtering section describes material gain dis-
persion together with that of any artificial dispersive ele-
ments such as distributed Bragg reflectors. Transformation of
the electric field envelope by this section is given by

Ê��,z1 + L� = f̂���Ê��,z5� , �4�

where Ê�� ,z5� and Ê�� ,z1+L� are the Fourier transforms of

E�t ,z5� and E�t ,z1+L�, respectively. The function f̂��� in Eq.
�4� describes the line shape of the bandwidth-limiting ele-
ment. In a ring cavity the electric field envelope E obeys the
periodic boundary condition E�t ,z+L�=E�t ,z�.

After the coordinate change �t ,z�→ �� ,��, where �=�q�t
−z /v� is the retarded time divided by the absorber relaxation
time, and �=z�q /v is the normalized coordinate along the
cavity axis, Eqs. �1� and �2� take the following adimensional
form:

�A��,z�
��

=
1

2
�1 − i�g,q�ng,q��,z�A��,z� , �5�

�ng��,z�
��

= jg − �ng��,z� − ng��,z��A��,z��2, �6�

�nq��,z�
��

= − jq − nq��,z� − snq��,z��A��,z��2. �7�

Here A�� ,��=E�t ,z��vgg�g /�q, ng,q�� ,��
=vgg,q�g,q�Ng,q�t ,z�−Ng,q

tr � /�q, jg=vgg�g�Jg−�gNg
tr� /�q

2, jq

=vgg�gNq
tr /�q, and �=�g /�q. The parameter s

= �gq�q� / �gg�g� is the ratio of the saturation intensities in the
gain and absorber sections.

In the new coordinates �� ,�� Eq. �3� for the passive sec-
tions takes the form

�A��,��
��

= 0. �8�

By solving Eqs. �5�–�8� and Eq. �4�, the transformation of
the electric field amplitude by each of the five laser sections
is evaluated. According to Eq. �8�, the relations between in-
put and output fields in the two passive sections are

A��,�2� = A��,�1�, A��,�5� = A��,�4� , �9�

where �k=zk�q /v �k=1,2 ,3 ,4 ,5�. The transformations of
the electric field amplitude by the gain and absorber sections
are obtained by the integration of Eq. �5�:

FIG. 1. Schematic representation of a ring passively mode-
locked laser. Coordinate z is measured along the cavity axis. Inter-
val z2�z�z3�z3�z�z4� corresponds to absorbing �amplifying�
section. Spectral filtering element is placed between z=z5 and z
=z1+L, where L is the cavity length. Intervals z1�z�z2 and z4

�z�z5 are filled with passive medium.
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A��,�4� = e�1−i�g�G���/2A��,�3� ,

A��,�3� = e−�1−i�q�Q���/2A��,�2� . �10�

Here the dimensionless quantities G��� and Q��� describe
saturable gain and loss introduced by the absorber and gain
sections �13,14�. They are given by G���=��3

�4ng�� ,��d� and
Q���=−��2

�3nq�� ,��d�. Integrating Eqs. �6� and �7� over �

from �3 to �4 and from �2 to �3, respectively, and using the
relation ��2,3

�3,4nq,g�� ,���A�� ,���2d�=−�A��3,4 ,���2+ �A��2,3 ,���2,
which follows from Eq. �5�, we derive the equations govern-
ing the evolution of the saturable gain and loss:

��G��� = g0 − �G��� − �A��,�4��2 + �A��,�3��2, �11�

��Q��� = q0 − Q��� + s�A��,�3��2 − s�A��,�2��2. �12�

Here the unsaturated gain �pump� and absorption parameters
are defined by g0=��3

�4jgd� and q0=��2

�3jqd�, respectively.
Being rewritten in the time domain, Eq. �4� for the spec-

tral filtering section takes the form

A��,�1 + T� = �
−�

�

f�� − 	�A�s,�5�d	 , �13�

where T=�qL /v is the normalized cold-cavity round-trip
time and f��� is assumed to decay at �→� sufficiently fast
that the integral in the right-hand side of Eq. �13� converges.

Substituting Eqs. �9� and �10� into Eq. �13� and using the
periodic boundary condition, which can be rewritten in the
form A�� ,�+T�=A��+T ,��, we obtain the transformation of
the electric field envelope A���	A�� ,�1� after a complete
round trip in the cavity,

A�� + T� = �
−�

�

f�� − 	�R�	�A�	�d	 , �14�

with

R��� = �
e�1−i�g�G���/2−�1−i�q�Q���/2. �15�

Here the attenuation factor 
�1 describes total nonresonant
linear intensity losses per cavity round trip.

Equation �14� describes evolution of the electric field am-
plitude in a ring laser with arbitrary line shape of the spectral
filtering element defined by the response function f���. In the
case where spectral filtering element is absent, this function
can be replaced by the Dirac delta function, f���=����. Then
Eq. �14� is transformed into the map

A�� + T� = R���A��� , �16�

similar to the Ikeda map which was proposed to describe
multistability and chaos in a ring cavity with nonlinear me-
dium �15,16�. Equation �16� governs the time evolution of
the amplitude A in a laser without spectral filtering element,
i.e., in a situation considered by New �3�. An ML solution of
these equations can be expressed as a T-periodic sequence of
� pulses, �A����2=�P
n=−�

� ���−nT�, where �P is the dimen-
sionless energy of a pulse. This solution is characterized by
infinitely large number of locked modes which produce an
infinitely short pulse.

Now let us consider the case where the response function
in Eq. �14� is defined by

f��� = f̃���H�� − ��, f̃��� =
�

1 − e−��e�−�+i��, �17�

where H��� is the Heaviside step function and the parameter
 describes detuning between the central frequency of the
spectral filtering element and one of the cavity modes. In this
case Eq. �14� can be replaced by the delay differential equa-
tion �DDE� with two delays:

��A��� + �� − i�A���

= f̃�0�R�� − T�A�� − T� − f̃���R�� − T1�A�� − T1� .

�18�

Here T1=T+�. The solution of Eq. �18� can be written in the
form

A�� + T� = e�−�+i��C + �
�−�

�

f̃�� − 	�R�	�A�	�d	 . �19�

One can see that under the condition C=0 Eq. �19� is trans-
formed into Eq. �14�. This implies the following initial con-
dition for the electric field amplitude:

A�0� = �
�
−T1

−T

f̃�− ��R���A���d� . �20�

Equation �20� defines the initial condition for which Eq. �18�
is equivalent to Eq. �14�. However, since for ��0 the term
proportional to C in Eq. �19� decays exponentially with time,
even for C�0 the solution of Eq. �18� coincides with that of
Eq. �14� in the limit �→�. Therefore, for positive � the
precise form of the initial condition �20� can be safely dis-
missed in the calculations.

In order to clarify the physical meaning of Eqs. �17� let us
consider two limiting situations. In the limit �→0 we have
f���=�−1H��−��exp�−i��. The corresponding spectral fil-

tering function is then defined by f̂���=exp�−i��
−�� /2�sin���−�� /2� / ��2���−�� /2�−1, i.e., this case
describes a reflection from a weak Bragg grating.

The second situation, �→�, corresponds to
Lorentzian line shape of the bandwidth-limiting element,
f���=� exp��−�+ i���. In this case Eq. �14� can be replaced
by differential equation with a single delay parameter equal
to the cavity round-trip time T. After the coordinate change
A→A exp�i�� this equation takes the form

�−1��A��� + A��� = �
e�1−i�g�G��−T�/2−�1−i�q�Q��−T�/2−i�A�� − T� ,

�21�

where �=T.
The equations governing the evolution of the saturable

gain and loss are obtained from Eqs. �11� and �12� by using
Eqs. �9� and �10� to express A�� ,�2�, A�� ,�3�, and A�� ,�4� in
terms of A���=A�� ,�1�. They read

��G��� = g0 − �G��� − e−Q����eG��� − 1��A����2, �22�
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��Q��� = q0 − Q��� − s�1 − e−Q�����A����2. �23�

In the following we will restrict our consideration to the
analysis of Eqs. �21�–�23�.

Note that an approach similar to that we have used to
derive Eqs. �21�–�23� was applied earlier by Gurevich and
Khanin to study passive ML in a solid-state laser �17–19�.
However, the delay differential equations derived by these
authors are singular at zero electric field. Therefore, our
model is more suitable for analytical study in the limit of a
slow saturable absorber in which the amplitude A becomes
almost zero between ML pulses �see Sec. II A�.

II. LIMIT OF INFINITELY BROAD BANDWIDTH

The number of cavity modes that take part in ML process
can be roughly estimated as the ratio of the bandwidth of the
spectral filtering element � and the cavity intermode fre-
quency spacing T−1. In this section we perform analytical
study of Eqs. �21�–�23� in the case where �T is large ��
→��. In this limit the duration of a ML pulse �p��−1 van-
ishes, its amplitude A0��1/2 diverges, while the pulse energy
�P�A0

2�p remains finite. Physically this means that the num-
ber of locked laser modes grows, while the energy associated
with each separately taken mode decreases.

If � is sufficiently large and the relaxation times of the
intracavity media are large as compared with the pulse dura-
tion �slow absorber�, then following the approach of New �3�
and Haus �2�, we split the evolution of a ML solution into
two stages. At the slow stage, whose duration tends to the
cavity round-trip time T as � increases, the amplifying and
absorbing media recover slowly between two subsequent
pulses. During this stage the electric field intensity is close to
zero, �A����2�0 �see Fig. 2�. Therefore, the terms propor-
tional to �A����2 in Eqs. �22� and �23� can be neglected at the

slow stage. At the short fast stage the electric field intensity
is large and therefore, the terms proportional to �A����2 domi-
nate in Eqs. �22� and �23�. The remaining �relaxation� terms
in the right-hand sides of these equations can be neglected at
the fast stage.

In this way, the laser equations can be solved separately
for the slow stage and, under additional assumptions, for the
fast stage. Then the full solution can be evaluated analyti-
cally by gluing the two ones. Below we demonstrate that
both New and Haus classical approaches �2,3� can be recov-
ered from our DDE model �21�–�23� under the approxima-
tion of small gain and loss per cavity round trip. Moreover,
we generalize these results to the case where gain and loss
per cavity round trip are not small, i.e., to a situation typical
of semiconductor lasers. This will be done in Secs. II C and
II D. As we will see, the generalized Haus approach is more
precise, but has a smaller domain of applicability than the
generalization of the New approach.

An important role in the analysis is played by the New’s
background stability criterion for ML pulses �3�. This crite-
rion requires that the net gain G���−Q���+ln 
 has to be
negative during the entire slow stage. Physically this means
that small perturbations of the low-intensity background be-
tween pulses decay with time �absolute stability�. It can be
shown that the background stability criterion is satisfied if
the net gain is negative at the beginning and at the end of the
slow stage. Therefore, it can be rewritten as a set of two
inequalities

G1 − Q1 + ln 
 � 0, G2 − Q2 + ln 
 � 0. �24�

Here G2 and Q2 �G1 and Q1� are the saturable gain G���
and loss Q��� evaluated at the beginning �end� of the slow
stage �see Fig. 2�. Since the end of the slow stage corre-
sponds to the beginning of the fast one, and vice versa, the
two inequalities in �24� give the background stability condi-
tions at the leading and trailing edge of a pulse, respectively.

Obviously, the background stability criterion is of a quali-
tative nature. It does not take into account that the small
perturbations can propagate along the low-intensity back-
ground until, after a finite time of order �, they are absorbed
by the leading or trailing edge of the pulse. This means that
even when the background is unstable, the amplification of
small perturbations does not necessarily destroy the ML
pulse. The fact that stable ML pulses with unstable back-
ground can indeed exist is confirmed, e.g., by our numerics
in Sec. III. It is natural to expect that such pulses should be
more sensitive to noise than those with the stable back-
ground. We give a quantitative characterization of the sensi-
tivity of the ML pulse to the background noise in Sec. IV.

A. Slow stage

Let us consider a solution of Eqs. �21�–�23� with periodic
laser intensity corresponding to a ML regime �see Fig. 2�. At
the slow stage, when �A����2�0, Eqs. �22� and �23� become
linear: ��G���=g0−�G��� ,��Q���=q0−Q���. Solving these
equations, we express the saturable gain G1 and loss Q1 at
the leading edge of a pulse via their values G2 and Q2 at the
trailing edge:

FIG. 2. Time evolution of the electric field intensity �A�2, the
saturable gain G, and the saturable loss Q in a mode-locked laser
with slow absorber. Duration of the fast stage coincides with the
pulse width �p. G1 and Q1 are the saturable gain and loss at the
leading edge of a pulse which corresponds to the beginning of the
fast stage and the end of the slow one. G2 and Q2 are the saturable
gain and loss at the trailing edge of a pulse which corresponds to
the end �beginning� of the fast �slow� stage.
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G1 = G2e−�T +
g0

�
�1 − e−�T� , �25�

Q1 = Q2e−T + q0�1 − e−T� . �26�

Here T is the duration of the slow stage that is equal to the
cavity round-trip time in the limit �→�.

Eqs. �25� and �26� can be further simplified in the two
limiting cases.

�i� The absorber relaxes completely between two subse-
quent pulses, i.e., T�1. Then, instead of Eq. �26� we obtain

Q1 = q0. �27�

�ii� The relaxation time of the gain medium is much
smaller than the cavity round-trip time, i.e., �T�1. In this
case Eq. �25� can be replaced by G1=G2+g0T.

B. Fast stage

At the fast stage we neglect the relaxation terms in the
right-hand sides of Eqs. �22� and �23�. Then, introducing the
dimensionless differential pulse energy P���=�0

��A�	��2d	,
where �=0 corresponds to the beginning of the fast stage, we
rewrite these two equations in the form

�Pg�P� = − e−q�P��eg�P� − 1�, �Pq�P� = − s�1 − e−q�P�� ,

�28�

with g�P�=G��� and q�P�=Q���. Solving Eqs. �28� we ex-
press the saturable gain G2=g��P� and loss Q2=q��P� at
the trailing edge of a pulse via their values G1=g�0� and
Q1=q�0� at the leading edge

G2 = g��P� = − ln�1 −
1 − e−G1

�e−Q1�es�P − 1� + 1�1/s , �29�

Q2 = q��P� = ln�1 + e−s�P�eQ1 − 1�� . �30�

Here �P= P��p�=�0
�p�A����2d� is the total dimensionless en-

ergy of a ML pulse.
By taking modulus square from both sides of Eq. �21�,

and integrating over the pulse duration �p we obtain

�−2�
0

�p

���A����2d� + �P = 
�
0

�p

eG���−Q����A����2d� .

�31�

Then, using the solutions of Eqs. �28�, the integral in the
right-hand side can be calculated explicitly. This yields the
relation

�−2�
0

�p

���A����2d� + �P = 
 ln
eG1 − 1

eG2 − 1
. �32�

Note that the integral term in the left-hand side, which de-
scribes energy losses introduced by the spectral filtering ele-
ment, remains finite at �→�, i.e., strictly speaking, it cannot
be neglected even in the limit of infinitely broad bandwidth.
Indeed, as was pointed out by Haus �2�, it is obvious that
���A����2��2�A����2 for pulses of width �p��−1. In other

words, the spectral width of the ML pulse increases with the
bandwidth of the spectral filtering element in such a way that
the losses introduced by this element remain finite in the
limit �→�.

Thus, in order to get an analytical description of the fast
stage one has to express the integral in the left hand side of
Eq. �32� explicitly in terms of the pulse parameters. Two
particular situations when this can be done analytically are
studied in the following Secs. II C and II D.

C. A generalization of New’s model

New’s approach assumes the absence of spectral filtering
in the cavity. In this case f���=���� in Eq. �14� and, there-
fore, such approximation is equivalent to the neglect of the
derivative term �−1��A��� in Eq. �21�. This means dropping
the integral term in the left-hand side of Eq. �32�, i.e., the
equation becomes

�P = 
 ln
eG1 − 1

eG2 − 1
. �33�

Equations �25�, �26�, �29�, and �30�, along with Eq. �33�,
constitute a closed set of equations that can be solved for
G1,2, Q1,2, and �P. This gives the dependence of the pulse
energy �P on the laser parameters. As we have already men-
tioned, the neglect in Eq. �32� of the term describing the
losses introduced by spectral filtering cannot be justified
even for infinitely large �. Therefore, relation �32� is only a
crude approximation. Still, as we will see, it can be satisfac-
tory for a large domain of parameters.

Substituting the solution into inequalities �24� one can
calculate the background stability boundaries of a ML pulse.
A result of such calculation is presented in Fig. 3 for ML
solutions with the period T and T /2. The first of them corre-
sponds to a fundamental ML regime with a single pulse cir-
culating in the cavity, while the second one corresponds to a

FIG. 3. Background stability domains calculated using the gen-
eralization of New’s approach described in Sec. II C. The horizon-
tally �vertically� hatched area presents the background stability do-
main for a fundamental ML regime �a regime with twice higher
repetition rate�. Straight line Th corresponds to the linear threshold.
The curves L1,2 and T1,2 indicate the leading and trailing edge in-
stability boundaries, respectively. CT is the codimension-2 point
defined by Eqs. �34�. The parameters are T=1.875, s=25, �=1.33
�10−2, 
=0.1.
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regime with twice greater repetition rate and two pulses in
the cavity. One can see that the two stability domains overlap
in certain parameter range. This indicates the possibility of a
hysteresis between the regimes having different repetition
rates. According to Fig. 3, the two background stability
boundaries, namely, those for the leading and trailing edges
of a pulse, meet at the codimension-2 point CT lying on the
linear threshold line Th. This point can be calculated explic-
itly:

q0 = ln

�s − 1�
s
 − 1

, g0 = � ln
s − 1

s
 − 1
. �34�

It is well known �7� that ML pulses with stable background
can exist only if the absorbing medium is saturated faster
than the gain one �2�, i.e., when s�1. It follows from Eqs.
�34� that in a situation when gain and loss per cavity round
trip are not small, such pulses are possible only if the more
strict condition

s
 � 1 �35�

is satisfied. In the small-gain and -loss limit �
→1� this new
condition coincides with the condition s�1. However, for
the parameter values typical of semiconductor lasers with
their high losses �
�1� the inequality �35� implies much
stronger limitation on the minimal value of the ratio of satu-
ration intensities than the previously known condition s�1.
For s
�1 the parameter range of ML pulses with stable
background enlarges with the product s
. This is in qualita-
tive agreement with the experimental results of Ref. �20�
where it was shown that the quality of a ML regime can be
improved by decreasing the nonresonant losses.

Equations �25�, �26�, �29�, �30�, and �33� can be consid-
ered as a generalized New’s model because unlike the equa-
tions for the pulse parameters derived in Ref. �3� they do not
assume that gain and loss per cavity round trip are small. In
order to recover from these equations those obtained by New
we expand Eqs. �29� and �30� up to the first-order terms in
G1 and Q1:

G2 = G1e−�P, Q2 = Q1e−s�P. �36�

Then, substituting Eq. �29� into Eq. �33� and expanding it up
to the first-order terms in G1, Q1, and ln 
 we obtain the
equation for the pulse energy

G1�1 − e�P� − Q1
�1 − es�P�

s
− �P ln 
 = 0, �37�

which is equivalent to Eqs. �11� and �12� of Ref. �3�.
Background stability boundaries of ML pulses calculated

using different sets of equations are presented in Fig. 4. In
this figure dashed lines LN and TN indicate the leading and
trailing edge instability boundaries obtained with the pulse
parameters calculated using Eqs. �25�, �27�, �36�, and �37�.
These equations are equivalent to those derived by New �3�.
Solid lines LN and TN indicate background instability bound-
aries calculated using the generalization of New’s model de-
scribed in this section. Dots in Fig. 4 represent points at the
background stability boundaries which have been calculated
by means of direct numerical integration of Eqs. �21�–�23�

with �=333. It is noteworthy that with the decrease of � the
width of the background stability domain increases. One can
see from Fig. 4 that, despite neglecting the losses introduced
by spectral filtering, the generalized New model appears to
be in a quite good agreement with the results of numerical
integration of the DDE model. On the other hand, discrep-
ancy between the numerical data and the results obtained
using the original New equations �3� is significant. This is
because Fig. 4 corresponds to parameter values typical of
semiconductor lasers characterized by large gain and loss per
cavity round trip.

Note that within the framework of New’s approach, in
which the derivative term is neglected in Eq. �21�, the back-
ground stability boundaries do not depend on the linewidth
enhancement factors �g,q. This is not true any longer as soon
as spectral filtering is taken into account.

D. A generalization of Haus’s model

In this section we study a situation when the gain and
absorbing media are weakly saturated by ML pulses. In this
case one can obtain an explicit expression for the pulse shape
by solving analytically the fast-stage equations. Let us con-
sider the ML solution A��+T�=ei�A��−�T� with periodic la-
ser intensity. Here �T=Tp−T is the small difference between
the pulse repetition period Tp and the cavity round-trip time.
Substituting this solution into Eq. �21� we get

�−1��A�� − �T� + A�� − �T�

= �
e�1−i�g�g�P�/2−�1−i�q�q�P�/2−i��+��A��� . �38�

In Eq. �38� g�P� and q�P� are the solutions of the fast stage
equations �28�. In the limit �→� corresponding to infinite

FIG. 4. Background stability boundaries calculated using four
different sets of equations. Solid lines LN and TN indicate the lead-
ing and trailing edge instability boundaries obtained using the gen-
eralized New model. Solid lines LH and TH indicate similar bound-
aries obtained using the generalized Haus model. The
corresponding instability boundaries calculated using the original
New and Haus equations are shown by dashed lines. Filled �empty�
dots indicate trailing �leading� edge instability boundary calculated
by numerical integration of Eqs. �21�–�23�. Parameters are the same
as in Fig. 3 �with �g=�q=�=0�.
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bandwidth of the spectral filtering element the duration of the
pulse vanishes and the period of ML solution tends to the
cavity round-trip time, i.e., �p ,�T��−1. Introducing in this
limit the rescaled time variable �=�� we rewrite Eq. �38� in
the form

��a�� − c� + a�� − c� = F�P�a��� , �39�

where a���=�−1/2A���, P���=�−�
� �a�s��2ds, and c

=lim�→����T�. The function F�P� is obtained by substitut-
ing the solutions of Eqs. �28� into Eq. �38�:

F�P� = �
e−i��+����1 + e−sP����eQ1 − 1���1−i�q�

��1 −
1 − e−G1

�esP���−Q1 − e−Q1 + 1�1/s�1−i�g��−1/2

.

�40�

Equations �39� and �40� describe a ML pulse shape in the
limit of infinitely broad Lorentzian bandwidth. For a laser
operating close enough to the threshold, the normalized pulse
energy is small P�����P�1/s, which means that both the
absorber and the amplifier are weakly saturated. Under this
approximation, which underlies Haus’s theory �2�, Eqs. �29�
and �30� together with the function F�P� in Eq. �39� can be
expanded in power series up to the second-order terms in
P���. Substituting this expansion into Eq. �39� we obtain

c� c

2
− 1���a��� − �1 − c���a���

+ �F0 − 1 + F0�P��� +
F0�

2
P���2a��� = 0. �41�

where F0, F0�, and F0� denote the function F�P� and its de-
rivatives all evaluated at P=0. In Eq. �41� we have used the
approximation a��−c��a���−ca����+c2���a��� /2 which
implies parabolic gain dispersion. This approximation as-
suming that the third- and higher-order derivatives of a���
are much smaller than the second derivative is valid for a
laser operating near the lasing threshold. A solution of Eq.
�41� can be written in the form �7,21�

a��� =��P

2�p
ei�sech�1+i��� �

�p
 , �42�

where �P is the dimensionless pulse energy, �p=��p is the
normalized pulse width, and � and  describe, respectively,
the chirp and normalized frequency shift of the ML solution.
Substituting Eq. �42� into Eq. �41� and equating coefficients
in front of different powers of the hyperbolic tangent, we
obtain six real equations for six unknown parameters: �P,
�p, �, , c, and �. In the particular case when �g=�q=�
=0 we have �==�=0. In this case elimination of �p and c
leads to the following quadratic equation for the pulse en-
ergy:

2�F0 − 1� + F0��P +
3F0�

8
�P2 = 0, �43�

with real F0, F0�, and F0�.

Solving Eqs. �43�, �25�, �26�, �29�, and �30� for the pulse
parameters G1,2, Q1,2, and �P and substituting the solutions
into the inequalities �24�, we get the background stability
boundaries for the sech solution defined by Eq. �42�. This
generalizes analytical results obtained by Haus �2� to the
case of large gain and losses.

One can easily check using Eq. �40� that the equation
F0=1, corresponds to zero net gain at the beginning of the
fast stage. Hence, this equation defines the leading edge
background instability boundary. Furthermore, according to
Eq. �43�, the two conditions F0=1 and F0�=0 define a
codimension-2 point where the leading edge instability
boundary hits the lasing threshold. Solving these equations
for G1 and Q1 and taking into account that at �P=0 one has
G1=G2=g0 /� and Q1=Q2=q0 we recover the codimension
two point �34�. Hence, the background stability boundaries
calculated using the generalizations of New’s and Haus’s ap-
proaches originate from the same point in the parameter
space.

In the limit of small gain and loss per cavity round trip the
generalized model derived in this section is reduced to the
original Haus equations. To demonstrate this, we expand Eq.
�43� into power series up to the first-order terms in G1, Q1,
and ln 
. Then we obtain the following equation for the nor-
malized pulse energy:

G1 − Q1 + ln 
 −
1

2
�G1 − sQ1��P +

3

16
�G1 − s2Q1��P2 = 0.

�44�

In the limit when G1�s2Q1 it is equivalent to Eq. �36� of
Ref. �2�.

In Fig. 4 leading and trailing edge instability boundaries
calculated using the original Haus equations �2� are shown
by dashed lines LH and TH, respectively. The same bound-
aries obtained using the generalization of the Haus model
described in this section are indicated by solid lines LH and
TH. One can see that similarly to the original New model the
original Haus model is not capable of describing ML in pa-
rameter domain of semiconductor lasers. According to Fig. 4,
the generalized Haus’ equations work well only when the
pulse energy is small enough. The discrepancy between the
instability boundaries calculated using these equations and
those obtained by direct numerical integration of Eqs.
�21�–�23� increases with the pulse energy. On the other hand,
the results obtained using the generalized New approach re-
main in quite good agreement with the results of numerical
simulations even for strong saturation.

III. NUMERICAL RESULTS

As we have shown in the preceding sections, the delay
differential formulation of the ML problem allows for per-
forming analytical study in the limit �→�. Another impor-
tant advantage of this formulation is that it permits one to
make use of numerical techniques that have been developed
for the analysis of delay differential equations. In particular,
Eqs. �21�–�23� can be easily simulated and their bifurcations
can be traced in the parameter space with the help of stan-
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dard numerical codes. In this section we present the results
of numerical analysis of Eqs. �21�–�23� with T=1.875, 

=0.1, �=1.33�10−2, and �=0. The simplest stationary so-
lution of Eqs. �21�–�23� corresponds to zero electric field
intensity �laser off�:

A = 0, G = g0/�, Q = q0. �45�

Apart from this trivial steady state, Eqs. �21�–�23� can ex-
hibit continuous wave �cw� solutions in the form A���
=A0ei���. The normalized time-independent intensity of the
cw solution and its normalized frequency shift � can be
found by solving the equations


eG−Q − 1 − �2 = 0, �46�

� + tan��T� + ��gG − �qQ�/2 − �� = 0, �47�

where G and Q are expressed in terms of the laser intensity
�A0�2 by equating to zero the right-hand sides of Eqs. �22�
and �23�; the condition cos��T+ ��gG−�qQ� /2−���0
must be satisfied in addition to relations �46� and �47�. Tran-
scendental equations �46� and �47� have multiple solutions,
each corresponding to a certain cavity mode. The frequency
spacing between two adjacent cw solutions coincides with
the cold-cavity intermode frequency spacing in the limit �
→�. Let the cw solution with �=�0 have the smallest ab-
solute value of frequency detuning ��0�. This solution char-
acterized by the smallest effective losses bifurcates from the
steady state �45� at the linear threshold point g0=��q0

−ln 
+ln�1+�0
2��. All the other cw solutions have greater

threshold currents and therefore they bifurcate from the
trivial steady state when it is already unstable. In Fig. 5 we
summarize the results of the linear stability analysis of the
cw solution with �=�0, which has been performed with the
help of the DDEBIFTOOL package �22�. In this figure
Andronov-Hopf bifurcation curve H1 gives rise to a periodic
solution that, when stable, corresponds to a fundamental ML

regime with the pulse repetition period close to the cavity
round-trip time T. The Andronov-Hopf bifurcation curves Hn
with n=2,3 ,4 signal the onset of �yet typically unstable�
multiple pulse ML regimes with the repetition periods Tn
�T /n. The curve Hq indicates the Andronov-Hopf bifurca-
tion with the period approximately one order of magnitude
greater than T for the parameter values of Fig. 5. This fre-
quency is associated with the Q-switching instability.

The results of direct numerical integration of the DDE
model by means of the RADAR5 package �23� are presented in
Figs. 6–10. Bifurcation diagram in Fig. 6 shows extrema of
the laser intensity time dependence calculated for different
values of the pump parameter g0. To calculate this diagram
we have used the following procedure. First, Eqs. �21�–�23�
have been integrated from �=0 to ��2�103 in order to skip
transient behavior. Next, during the time interval ���200,
the maxima and minima of the intensity time trace have been
plotted for each given value of g0. As we see in Fig. 6, when
the pump parameter g0 is small enough, the laser exhibits a
regime with pulse power modulated in time by the
Q-switching frequency. The intensity time trace illustrating
this regime is shown in Fig. 7�a�. With the further increase of

FIG. 5. Andronov-Hopf bifurcations of the cw solution of Eqs.
�21�–�23�. Curves Hn indicate Andronov-Hopf bifurcations with the
frequency n�2�n /T�n=1,2 ,3 ,4�. Curve Hq corresponds to the
Andronov-Hopf bifurcation with Q-switching frequency. �=33.3,
�g,q=0, �=0. Other parameters are the same as in Fig. 3.

FIG. 6. Bifurcation diagram obtained by direct numerical simu-
lation of Eqs. �21�–�23� with q0=4.0. Other parameters are the same
as in Fig. 5.

FIG. 7. Nonperiodic intensity time traces. �a� ML solution
modulated by Q-switching frequency g0=0.67; �b� a regime that
appears after the breakup of the periodic ML regime shown in Fig.
8�c�, g0=4.67. The other parameters are the same as in Fig. 6.
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g0, the modulation regime undergoes a backward Andronov-
Hopf bifurcation and a transition to a fundamental periodic
ML regime �shown in Fig. 8�a�� occurs; note that an analyti-
cal study of Q-switching bifurcation of the ML regime was
performed in Ref. �24� within the framework of the Haus
master equation. With the further increase of the pump pa-
rameter a transition to regimes with approximately two and
three times higher pulse repetition frequency happens �see
Figs. 8�b� and 8�c��. These regimes are characterized by a
pulse peak intensity smaller than that of the fundamental ML
regime. The breakup of ML behavior occurs with the sudden
onset of chaotic modulation of the pulse power �see the in-
tensity time trace shown in Fig. 7�b��. Finally, at large gains
the laser undergoes a transition to cw operation with the

electric field intensity independent of time. The bifurcation
diagram in Fig. 6 appears to be in a qualitative agreement
with the experimental results of Refs. �20,25� where a
gradual transition from a self-pulsing regime to a ML one
was observed with the increase of the injection current in the
gain section. An experimental observation of a regime with
repetition period equal approximately to one-half of the cav-
ity round-trip time in a passively mode-locked ring semicon-
ductor laser was reported in Ref. �26�.

Figure 9 has been obtained in a similar way as Fig. 6, with
the linewidth enhancement factors taken as bifurcation pa-
rameters instead of g0. According to Fig. 9�a� which corre-
sponds to �q=3.0, the shortest ML pulses with the largest
peak power are observed in the situation when the linewidth
enhancement factors in the two sections are equal, �g=�q.
Such pulses are also characterized by the shortest width, as is
illustrated by Fig. 10. With the decrease of the linewidth
enhancement factor in the gain section ��g��q� the ML
pulse broadens, its amplitude decreases and finally a transi-
tion to a regime with nearly quasiperiodic laser intensity
takes place. This regime is characterized by sharp intensity
oscillations at the leading edge of ML pulse �curve 1 in Fig.
10�. The effect of the increase of �g above �q is even more
pronounced: very soon a transition from the ML regime with
periodic laser intensity to a chaotic regime takes place. We
have found that this transition is associated with the intermit-
tency between ML solution and chaotic intensity pulsations.
Indeed, slightly above the transition point, time intervals
characterized by almost regular ML behavior alternate with
irregular spiking. The duration of these “regular” time inter-
vals decreases with the increase of �g, and finally a fully
chaotic regime develops. The fact that the best quality of ML
pulses has been observed at �g=�q can be intuitively ex-
plained by the fact that gain and loss enter Eq. �21� with
opposite signs. Therefore, contributions of the linewidth en-
hancement factors must compensate each other, at least par-
tially, when �g�q�0. According to our numerical results, the
most complete compensation takes place for �g=�q, i.e.,
when the frequencies � of the cw solutions are independent
of the linear gain and loss parameters. In the case when the
linewidth enhancement factors in the two sections are equal,

FIG. 8. Periodic intensity time traces corresponding to different
ML regimes. �a� Fundamental ML regime, g0=2.0; �b� ML regime
with two pulses in the cavity, g0=3.0; �c� ML regime with three
pulses in the cavity, g0=3.6.

FIG. 9. Bifurcation diagrams obtained by changing the line-
width enhancement factors, g0=2.0. �a� Extrema of the intensity
time trace vs �g ,�q=3.0. �b� Extrema of the intensity time trace vs
�g=�q. The other parameters are the same as in Fig. 6.

FIG. 10. ML pulse shape. �1� �g=1.0; �2� �g=2.0; �3� �g=3.0.
Other parameters are the same as in Fig. 9.
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their increase almost does not affect the pulse peak power, as
can be seen from Fig. 9�b�. The breakup of the ML regime
�at �g=�q�5� leads to a sudden development of a chaotic
behavior.

Figure 11 shows the time dependencies of the electric
field intensity and the round-trip net gain parameter G���
=G���−Q���+ln 
 for two fundamental ML regimes corre-
sponding to different pump parameters. In Fig. 11�a� corre-
sponding to g0=1.2 the net gain is negative between pulses
and becomes positive only during short time intervals when
the pulse amplitude is large. Therefore, the solution shown in
this figure has a stable background according to New’s cri-
terion. On the contrary, Fig. 11�b� corresponding to g0
=1.67 presents a stable periodic solution of Eqs. �21�–�23�
having an unstable background at the leading edge. The ex-
istence of stable ML pulses with unstable background at the
trailing edge in passively mode-locked laser was theoreti-
cally predicted in Refs. �9,27�. Pulses with unstable back-
ground at the leading edge similar to those shown in Fig.
11�b�, were found up to now only in models of synchro-
nously pumped mode-locked lasers �28–30�. Note that the
physical mechanisms of the unstable background formation
are different in actively and passively mode-locked lasers. In
Fig. 11�b� the net gain window is opened in the course of the
carrier density relaxation process: For the parameter values
typical of semiconductor lasers, gain recovers very slowly
���1�, and continues to recover when the absorption has
already almost completely achieved its unsaturated value. As
a result, a net gain window appears. It is caused neither by
the arrival of a pulse, as in the classical passive ML mecha-
nism �3�, nor by external pumping, as in the active ML. As
we have already mentioned, the background instability does
not automatically cause the instability of the ML regime as a
whole. We analyze the effect of background perturbations in
the next section.

IV. EFFECT OF SPONTANEOUS EMISSION NOISE

In this section we take into account the spontaneous emis-
sion noise by adding a noise source of a certain power D in
the right-hand side of Eq. �21�. Since the main effect of the
perturbations consists in filling the low-intensity intervals be-
tween pulses with stochastic background �28�, we consider
Eq. �21� at the slow stage of the ML solution where the
saturable gain G��� and loss Q��� obey Eqs. �25� and �26�. At
the slow stage, when � is large, one may use the approxima-
tion A��+�−1���−1��A���+A��� in the left-hand side of Eq.
�21�, which transforms this equation into the map

A�� + T + �−1� = R���A��� + B��� , �48�

where B��� describes the noise, and R��� is defined by Eq.
�15�. Note that Eq. �48� does not take into account spectral
filtering any longer. In order to include this filtering into
consideration, we assume that the time evolution of the noise
term in Eq. �48� is described by the Ornstein-Uhlenbeck pro-
cess

�−1��B��� + B��� = �D���� ,

where ���� is the �-correlated noise source, ������*�����
=���−���. The dispersion of B��� is then given by 1

2�D�1
−e−���.

Since the period of the ML pulse behaves as Tp�T
+c�−1, we see from Eq. �48� that after each round trip the
perturbations caused by the noise propagate toward the lead-
ing edge of a pulse when c�1 and toward the trailing edge
when c�1. The corresponding velocity per round trip is
given by v= �1−c� /�. Depending on the sign of the net gain
parameter, the perturbations can decay or grow in the course
of propagation. It follows from Eq. �48� that after k round
trips the amplitude of the background perturbation is

Ak��� = 

m=1

k

B�� − m�Tp + v���
j=1

m−1

eij�R�� − jv� ,

where we have used the property that for the ML solution
R��� is periodic up to the phase shift �, i.e., R��+Tp�
=R���ei�. The averaged power can be estimated as

Pk��� = �Ak���Ak
*���� �

�

2
D


m=1

k

exp�

j=1

m−1

G�� − jv� ,

�49�

where G���=G���−Q���+ln 
 is the net gain parameter. Be-
low we restrict our consideration to the case where the per-
turbations are delayed with respect to the pulses, i.e., v�0.
In all our simulations, e.g., for the parameter values of Fig.
11�b�, the stable ML pulses with unstable background at the
leading edge always satisfied this condition. The pulses with
v�0 and with unstable background at the trailing edge can
be considered in a similar way.

Since the velocity v��−1 is small, using the trapezoidal
rule we can estimate the sum in the exponent in Eq. �49� as

FIG. 11. Time dependencies of the laser intensity �solid line�
and the net gain parameter �dashed line�. �g=�q=2.0, q0=2.67, �
=15. �a� ML pulses with stable background, g0=1.2; �b� ML pulses
with unstable background at the leading edge, g0=1.67. Other pa-
rameters are the same as in Fig. 5.
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j=1

m−1

G�� − jv� = v−1�
�−�m−1/2�v

�−v/2

G�	�d	 + O�v� .

Then the power of the background fluctuations is estimated
as

P��� = DS���

with S��� �
�

2 

m�1,�m��2

exp�v−1�
�m

�−v/2

G�	�d	 ,

where �m	�− �m−1/2�v and �=�2 corresponds to the be-
ginning of the slow stage �see Fig. 11�b��. Since v−1 is large,
the main contribution to the sum is given by the values of �
close to those corresponding to the maxima of the cumula-
tive gain ��

�−v/2G�	�d	. This allows us to obtain the estimates

S��� �
�

2
�1 − exp G����−1, �50�

S��� � �� �

2vG���*�
exp�v−1�

�*

�

G�	�d	 −
1

2
G��� ,

�51�

where �50� corresponds to the net gain G�	� negative for all
�2�	��, and �51� corresponds to the net gain changing its
sign from negative to positive at 	=�* near the leading edge
of the next pulse �see Fig. 11�b��. At � close to �* one has to
use an appropriate matching between �50� and �51� �we omit
the formulas�.

In the case of unstable background at the leading edge,
the power of the background fluctuations grows with �, i.e.,
S��� attains its maximum S=S��1� at the end of the slow
stage. For computational purposes we define �1 as the mo-
ment when the nonlinear term in Eq. �23� becomes equal to
the relaxation term, i.e., ��Q��1�=0. Since the gain section
recovers and saturates much more slowly than the absorber
one, the similar event ��G=0 in Eq. �22� happens usually at
larger �.

We can now define the critical level of noise, above which
the ML solution can be destroyed, as

Dcr1 � S−1. �52�

For smaller D the ML pulse can be preserved, but still the
effect of noise on the pulse shape and on the duration of the
interval between pulses can be quite profound. To measure
this effect, we compare the power of background fluctuations
with the power of electromagnetic field for the unperturbed
ML pulse at the beginning of the fast stage �=�1. The latter
power is obtained by equating the right hand side of Eq. �23�
to zero, i.e., �A�2=s−1�q0−Q� / �1−e−Q�. Thus, we find the
second critical value of the noise power, above which the
effect of noise on the ML pulse shape can become signifi-
cant:

Dcr2 � �q0 − Q�/�s�1 − e−Q�S� , �53�

where Q=Q��1� and S are evaluated at the end of the slow
stage.

In Fig. 12 the dependence of the two critical values of the
noise power �see Eqs. �52� and �53�� on the linear gain pa-
rameter g0 is shown for the pulses having unstable back-
ground at their leading edge. One can see that Dcr1 and Dcr2
decrease very rapidly with the increase of the linear gain.
This is caused by the growth of the positive net gain window
at the pulse leading edge. Such growth results finally in the
destruction of the pulses, as is illustrated by Fig. 13 where
the phase portraits of ML regime are shown for different
values of the noise power. Therefore, unlike the Q-switching
bifurcation which occurs below the trailing edge instability
boundary, the mechanism of the pulse breakup above the
leading edge instability threshold has rather stochastic than
dynamic nature.

CONCLUSION

We have derived and studied analytically and numerically
a model for passive ML—a set of three differential equations
with time delay �21�–�23�. Near the lasing threshold, using
the approach described in Refs. �31,32�, Eq. �21� can be re-

FIG. 12. Dependence of the critical noise powers given by Eqs.
�52� and �53� on the linear gain parameter. The other parameters are
the same as for Fig. 11�b�.

FIG. 13. Phase portraits of noisy ML solutions. g0=1.6. �a� D
�Dcr2. �b� D�Dcr1. Parameters are the same as for Fig. 11�b�.
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duced to a partial differential equation of Ginzburg-Landau
type. This reduction reveals the connection between our
DDE model and Haus master equation. An important feature
of our model is, however, that, unlike the Haus master equa-
tion, it does not assume small gain and loss per cavity round
trip, low saturation, and infinitely broad spectral bandwidth.
Such assumptions �especially the small-gain and -loss ap-
proximation� are hardly satisfied for semiconductor lasers.
The only assumptions we adopt concern Lorentzian line
shape of spectral filtering and ring cavity geometry. The lat-
ter approximation seems to be quite reasonable, at least for
qualitative consideration of ML, unless colliding pulse ML
devices are considered.

Being more general than the models proposed by New
and Haus, our model includes both of them as particular
limits. In the limit of infinite bandwidth of the spectral fil-
tering element which is equivalent to the slow absorber ap-
proximation it allows analytical description, which is valid in
the case of large gain and loss per cavity round trip. In par-
ticular, this refers to the pulse background instability bound-
aries shown in Fig. 4, and the condition �35� which gives a
generalization of the well-known ML condition s�1. Ac-
cording to our results, in the parameter range typical of semi-
conductor lasers, background instability boundaries of ML
pulses can be quite well approximated using the generaliza-
tion of New’s approach described in Sec. II C.

Equations �21�–�23� can be easily simulated using stan-
dard codes developed for the solution of delay differential
equations. Numerical results obtained with the help of these
equations are in a qualitative agreement with the experimen-
tal data. We have found that in a ring laser the shortest pulses
with the highest peak powers are observed in the case when
linewidth enhancement factors in gain and absorbing sec-

tions are equal to each other. Decreasing �g below �q results
in the decrease of the pulse peak power and the increase of
the pulse width. On the other hand, for �g��q a mechanism
of the ML regime breakup associated with the transition from
regular ML pulsations to a chaotic regime via intermittency
has been observed. We have found that for nonzero linewidth
enhancement factors this latter mechanism is quite general,
like the known mechanisms associated with the Q-switching
instability and the transitions to multiple ML regimes. Stable
ML pulses with positive net gain at the leading edge have
been revealed in a certain laser parameter range. Such pulses
do not satisfy New’s background stability criterion. A quan-
titative approach to the description of their sensitivity to
noise is proposed in Sec. IV.

The delay differential model described in this paper can
be modified to study active and hybrid ML or to take into
account such additional physical effects observed in semi-
conductor lasers as, for example, fast nonlinearities associ-
ated with intraband relaxation processes. Moreover, under
certain approximations our model can be generalized to the
case of linear cavity laser design. This will be a subject of
future work.
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