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Optique Nonlinéaire Théorique, Université Libre de Bruxelles, Campus Plaine CP 231,

B-1050 Bruxelles, Belgium

Abstract: We consider a passive optical cavity containing a photonic
crystal and a purely absorptive two-level medium. The cavity is driven by
a superposition of two coherent beams forming a periodically modulated
pump. Using a coupled mode reduction and direct numerical modeling
of the full system we demonstrate the existence of bistability between
uniformly periodic states, modulational instabilities and localized structures
of light. All are found to exist within the conduction band of the photonic
material. Moreover, contrary to similar previously found intra-band struc-
tures, we show that these localized structures can be truly stationary states.
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1. Introduction

Dissipative structures in optical systems have been the subject of intense research during the
last years [1, 2, 3]. They result from the modulational instability [4] that triggers a spontaneous
transition from homogeneous steady states (HSS) to self-organized or ordered structures. These
can be either periodic or localized in space. The latter case corresponds to stationary localized
pulses that are formed in the plane transverse to the beam propagation direction. They are often
called cavity solitons, and have been observed experimentally in a wide class of optical systems:
lasers with saturable absorber [5, 6, 7], liquid crystal light valve with optical feedback [8, 9, 10],
single-mirror feedback systems using sodium vapor [11] and in semiconductor microresonators
[12].

Fig. 1. Schematic setup of the nonlinear cavity filled with a passive two-level medium (PM)
and a photonic crystal film (PCF). The Fabry-Perot cavity with flat Mirrors (M) is driven
by two pumping beam P1,2.

Recent research has demonstrated the existence of a new type of cavity localized structure
associated with Bragg reflection in lasers with saturable absorbers [13, 14], in discrete sets of
coupled lasers [15, 16] and resonators [17] and in photonic crystal films with Kerr nonlinear-
ity under Fano resonance conditions [18]. In the same vein, solitons in periodically patterned
semiconductor amplifiers, i.e. without feedback, have been theoretically predicted in [19]. On
the other hand, it has also been shown that the modulation of the refractive index can inhibit
modulational instability [20, 21].

In this article, we consider a nonlinear passive cavity with a photonic crystal pumped by two
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plane waves beams, see Fig. 1. Contrary to the purely refractive (Kerr) case in [18], we focus
on the purely dissipative response of a two-level medium driven at atomic resonance. We show
that the photonic crystal induces a modulational instability and creates conditions for existence
of stable Bragg-like localized structures in the transverse direction. These structures have zero
transverse velocity if the two coherent pumping beams are symmetric and the phase shift δ
between the pump intensity profile and the refractive index modulation is an integer multiple
of π . If these two conditions are not satisfied simultaneously then the localized structure drifts
with constant velocity.

Let the cavity decay rate and resonant frequency be denoted by κ = cT/(2L) and ω c, re-
spectively. Here L is the cavity length, T is the mirror transmissivity, and c is the velocity of
light. The driving field, on the other hand, is characterized by a frequency ω 0 and k0 = ω0/c.
The photonic crystal introduces a refractive index modulation ε = ε 0 (1+ Δε coskmx) along the
transverse direction. With a two-level medium having an unsaturated absorption coefficient α ,
the electric field envelope F and the population difference N can be described, in the mean-field
approximation, by the partial differential equations

∂F
∂ t

= P(x)−κF − i(ωc −ω0)F −αcNF +
ic

2k0

∂ 2F
∂x2 + iω0Δε cos(kmx)F, (1)

∂N
∂ t

= Γ
[
1−N

(
1+ |F|2

)]
. (2)

We write the driving field P in the form

P(x) =
ω0Δε

2

[
P1e−

i
2 (km(1+φ)x−δ ) +P2e

i
2 (km(1−φ)x−δ )

]
, (3)

where the scale ω0Δε/2 is chosen for maximum interaction with the refractive index grating.
Angle φ characterizes the detuning of the transverse component of the incident wave vector
from km and δ is the phase shift. For φ = 0 the driving field is in the Bragg resonance with
the photonic crystal. P1, P2 and F are expressed in units of the saturation field of the two-
level resonance. Had we chosen P(x) to consist of a single normally incident plane wave, the
resulting localized structures would essentially be the same as those existing with Δε = 0 but
with a small cos(kmx)-like modulation superimposed on them. Therefore, their size can be
estimated as [22]

Δx ∼ 1
k0

√
ω0

2κ
=

√
2L
k0T

. (4)

By contrast with this type of localized structures, the structures studied below have no counter-
part in the homogeneous case.

2. Coupled-mode reduction and scalings

The pump profile P(x) naturally leads us to seek for an electric field envelope of the form

F (x,t) = A1 (x,t)e−
i
2 (kmx−δ ) +A2 (x,t)e

i
2 (kmx−δ ) (5)

Substituting the expression (5) into Eq. (2) and neglecting higher harmonics we get N = N 0 +
N1e−i(kmx−δ ) +N2ei(kmx−δ ), where

N0 =
1+ |A1|2 + |A2|2

S
, N1 =

−A1A∗
2

S
, N2 =

−A∗
1A2

S
, (6)

S =
(

1+ |A1|2 + |A2|2
)2 −2 |A1|2 |A2|2 . (7)
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Substituting back into (1), we thus obtain, with the new time and space scales τ = ω 0 Δε t/2,
ξ =

(
k2

0 Δε/km
)

x,

∂A1

∂τ
= P1 expiqξ −(γ + iΩ)A1 + iA2e−iδ +

∂A1

∂ξ
−2C

1+ |A1|2
S

A1, (8)

∂A2

∂τ
= P2 expiqξ −(γ + iΩ)A2 + iA1eiδ − ∂A2

∂ξ
−2C

1+ |A2|2
S

A2, (9)

where the normalized cavity decay rate γ , the effective detuning Ω, the cooperativity parameter
C, and the normalized wave number shift q are defined by

γ =
2κ

ω0Δε
, Ω =

1
ω0Δε

(
ωc −ω0 +

c k2
m

4k0

)
, C =

α c
ω0Δε

, q =
k2

mφ
2k2

0Δε
. (10)

In the coupled mode equations (8) and (9), we have neglected the second order derivatives
∂ 2Aj/∂ξ 2. This is valid in the case when the size ΔxB of the Bragg localized structures studied
below is much larger than the characteristic scale k−1

m of the refractive index modulation. From
Eqs. (8) and (9) the dimensionless size of these structures can be estimated as Δξ B ∼ γ−1/2.
Therefore, using the relations (4) and (10) we get the following estimate for Δx B

ΔxB =
km

k2
0Δε

ΔξB ∼
√

ω0

2κΔε
km

k2
0

=
km

k0
√

Δε
Δx. (11)

Using these relations the condition k−1
m � ΔxB can be rewritten in the form

Δεγ � k2
m/k2

0 � 1, (12)

where the second inequality corresponds to the paraxial approximation under which Eqs. (1)
and (2) are valid. It follows from (11) and (12) that Δx B �√γΔx which means that when γ is
not very small the size of the Bragg localized structures is usually larger than Δx. Note, that
k2

m/k2
0 � 1 simply corresponds to the paraxial approximation. It will be shown below, that in

this case the numerical simulations of Eqs. (8) and (9) agree very well with those performed on
the full model (1) and (2).
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Fig. 2. Instability boundaries as a function of the effective detuning parameter Ω. (a) Pump
P1 = P2 = P versus Ω. The solid curve is the modulational instability boundary. The bista-
bility region is delimited by the three dashed curves. Grey region indicates photonic band
gap (BG). (b) Critical wavenumber at the modulational instability versus Ω. Parameters are
γ = 0.01, C = 0.4, δ = 0, and q = 0.
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Fig. 3. Stationary localized structures. Ω = 1.05. Other parameters are the same as in Fig. 2.
(a) Real and imaginary parts of the field amplitudes A1,2 for P1 = P2 = 0.225. Solid (bro-
ken) lines correspond to A1 (A2). (b) Bifurcation diagram. LS: localized structures, HSS:
homogeneous steady state. Broken lines correspond to unstable solutions.

3. Numerical results

Let us first examine the symmetric pumping situation, i.e., P1,2 ≡ P, with a zero phase shift
between the pump intensity and the refractive index, i.e., δ = 0 and at the exact Bragg resonance
q = φ = 0. The HSS’s can be either monostable or bistable. In the (P−Ω) parameter space,
the region of bistability is delimited by the approximately triangular domain in dotted line [see
Fig. 2]. In addition, the linear stability analysis of the HSS solutions of Eqs. (8) and (9) with
respect to a finite wavenumber perturbations shows that the system exhibits a modulational
instability. The results of this analysis is summarized in Fig. 2 where we plot the critical pump
amplitude as a function of the effective detuning. The critical wavenumbers Q corresponding to
the maximum gain are plotted in Fig. 2(b). From Fig. 2, we see that the modulational instability
takes place outside the photonic band gap. The band gap, indicated in this figure by the grey
area, is calculated from Eqs. (8) and (9) without dissipative terms as the region of non-existence
of solutions of the form exp(±iQξ ) for real Q and Ω.

When a modulational instability appears subcritically, localized structures are formed in the
hysteresis loop involving the HSS and periodic patterns [1, 2, 3]. In what follows, we focus
on the localized structures whose existence is ensured by the Bragg scattering at the periodic
refractive index modulation. These structures can not be generally traced back to the limit with
transversely homogeneous refractive index, where photonic band gap disappears. We find the
transverse profiles of the localized structures by solving numerically the nonlinear coupled
mode equations. Figure 3(a) represents typical profiles of the amplitudes A 1,2 corresponding
to bright stationary localized solutions which have been calculated for the case of symmetric
pumping, δ = 0, φ = 0, and P1 = P2, when the coupled mode equations are invariant under the
reflection transformation ξ → −ξ , A1 ↔ A2. The branch of the localized structures obtained
by varying the pump strength parameter P = P1 = P2 is shown in Fig. 3(b) together with the
branch of spatially homogeneous solutions of the coupled mode equations.

The localized structures found within the framework of the coupled mode approach exist
also in the full model, as we demonstrated by direct numerical modelling of Eqs. (1) and (2),
see Fig. 4. The localized structure shown in this figure is formed by the two waves counter-
propagating in the transverse direction and therefore it is characterized by oscillations of the
electric field intensity with the spatial frequency k equal to that of the refractive index modula-
tion and a phase shift π between the two neighboring intensity maxima, which fully complies
with predictions of the coupled mode approach. In that respect our structures are similar to the
so-called “staggered” solitary waves in discrete nonlinear systems [23] and different from the
“unstaggered” solitons reported in [19]. The phase of the intensity oscillations of the localized
structure shown in Fig. 4 coincides with that of the refractive index profile. From this figure we
see that the HSS of the coupled mode equations which serves as a background for the localized

#9444 - $15.00 USD Received 10 November 2005; revised 19 December 2005; accepted 19 December 2005

(C) 2006 OSA 9 January 2006 / Vol. 14,  No. 1 / OPTICS EXPRESS  5



solution in Fig. 3(a) corresponds to a spatially periodic solution of Eqs. (1) and (2). We now
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Fig. 4. Stationary localized structure obtained by direct numerical simulation of Eqs. (1,2).
Parameters are γ = 0.05, C = 2.0, δ = 0, φ = 0, P1 = P2 = 1.2, km = 2.5

√
Δε k0, and

ωc −ω0 = −0.3125 ω0 Δε .

turn to the case of asymmetric pumping. The localized structures then move with a constant
velocity v = dξ/dt and Fig. 5 illustrates the dependence of this velocity on the phase δ , the
imbalance between the amplitudes of the pump beams δP = (P2 −P1)/(P1 +P2), and the angle
of incidence φ . From Fig. 5(a) we see that a phase shift δ between the pump intensity and
the refractive index profiles results in a very small v, which is approximately four orders of
magnitude smaller than δ itself. This suggests a predominant influence from the cavity decay
rate γ � 1. However, v increases rapidly with δ and localized structures disappear as δ tends
to π/2. On the other hand, v depends linearly on the pump imbalance δP and on φ , although
much more sensitively so on the latter. This behavior is shown in Figs. 5(a) and (c).
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Fig. 5. Transverse velocity v = dξ/dt of a localized structure as a function of (a) the phase
shift δ , (b) pump imbalance δP = (P2−P1)/(P2 +P1), where P2 +P1 = 0.45, (c) incidence
angle φ . Other parameters are the same as in Fig. 3.

Finally, we note that Eqs. (8) and (9) are invariant with respect to the transformation A 1 →
−A∗

1, A2 → A∗
2, Ω →−Ω, δ → δ +π applied together with complex conjugation. In particular,

this means that the stationary localized structures found at δ = 0 can be transformed into the
structures with δ =±π for the same absolute value but opposite sign of the detuning parameter
Ω. Hence the existence of a similar diagram as in Fig. 2 for negative Ω. Unlike the structures
shown in Fig. 4, the structures with δ = ±π are characterized by intensity oscillations in anti-
phase with those of the refractive index profile.

In conclusion, using the nonlinear coupled mode approach and numerical modeling of the full
system, we have demonstrated the existence of bistability, modulational instability and stable
Bragg localized structures in the transverse section of an externally pumped passive cavity with
photonic crystal. The localized structures move if the pumping is asymmetric or if the phase
detuning δ is different from 0 or π . The coupled mode reduction similar to the one applied
above can be used to study other driven nonlinear systems with a photonic band gap and one
may expect that localized structures constitute a generic and general feature of such systems.
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