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Pulse interaction via gain and loss dynamics in passive mode locking
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Abstract

We study theoretically the effects of pulse interactions mediated by the gain and absorber dynamics in a passively mode-locked laser containing
a slow saturable absorber, and operating in a regime with several pulses coexisting in the cavity.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Passive mode locking provides a very effective technique
for generating short laser pulses with high quality and fast
repetition rate. The basic mechanism for pulse amplification is
the opening of a short temporal window of net gain due to the
dynamic interplay of a gain medium and a saturable absorber
inside the laser cavity [1]. This mechanism is well understood
since the analyses by New [2] and Haus [3] from simple models,
which could be handled analytically.

The fundamental mode-locking regime corresponds to a
single light pulse that travels round the laser cavity and hits the
output mirror periodically. This results in pulse emissions with
intervals equal to the round-trip time in the cavity. Operation
with multiple coexisting pulses has also been reported, either
of bound states of tightly packed pulses [4–11], or as pulse
trains with a separation much larger than the pulse width.
The formation of bound states was attributed to the interaction
of acoustic modes with light pulses [12] and to the coherent
pulse interactions via their fast decaying tails [13,14]. In
the case of widely separated pulses, they can be either
irregularly spaced [5,15–17] or form equally spaced sequences
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which were observed in soliton lasers [18–21], semiconductor
lasers coupled to an external cavity [22], and monolithic
semiconductor lasers [23]. Such equidistant sequences of pulses
are in any case easily achieved by using active modulation [18,
19,24–26]. The regimes with two and more equally spaced
mode-locked pulses in the cavity is usually referred to as
harmonic mode locking. These regimes are characterized by a
pulse repetition rate that is a multiple of that of the fundamental
mode-locking regime.

The existence of regular, widely spaced, passively mode-
locked multiple-pulse regimes was described in [27] by a
simple analytical model based on energy rate equations. It
was shown that two- or n-pulse operation is favored over
single pulse operation when the “dynamic gain” for the multi-
pulse state is greater than that of the single-pulse one. The
Q-switching instability of mode-locked solutions, which leads
to a modulation of the envelope of the pulse train with a
frequency that is typically much smaller than the mode-locking
frequency itself, can also be described within the framework of
simple rate equations [28]. A similar approach based on energy
balance considerations was used in [5] to describe an instability
leading to the transition from a single pulse to a multi-pulse
operation in a solid state laser. However, the understanding of
the mechanisms that lead to pulse ordering in the cavity and
to the corresponding time scales is challenging, because they
can be influenced by many different physical effects that can
take place in a mode-locked laser. The associated mathematical
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models all have their strengths, weaknesses, and limited
validity. Nevertheless, an investigation of these mechanisms
within different mathematical frameworks is valuable, because
the question is relevant to the production of pulse trains with
higher repetition rates, or by means of longer cavities, for
optical communication systems.

As soon as multiple pulses coexist in the cavity, they can
interact. The purpose of this work is to explore theoretically the
consequences of pulse interactions via the gain and absorber
dynamics on the stability of regimes of operation with multiple,
well-separated, evenly spaced pulses. To this end, we consider
a model for passive mode locking that is almost as simple as
the classical models by New [2] and Haus [3], except that it
is free from the usual approximations of small gain per cavity
round-trip and weak saturation. This is a necessary feature for
our purposes, because stable multiple-pulse operation tends to
appear only beyond a certain level of pumping above the lasing
threshold [5]. We thus need a model that remains valid for
high pulse intensities, which potentially requires a high gain
per cavity round-trip and induces strong gain and absorber
depletions. Otherwise, for the sake of simplicity, we keep the
description of the physics inside the laser as elementary as
possible.

The paper is organized as follows. In Section 2, we introduce
the model and mention the main simplifications involved.
Section 3 presents bifurcation diagrams computed by direct
numerical integration of the model and points out a number
of differences in the stability properties of single-pulse and
multiple-pulse regimes. In Section 4, we discuss one particular
instability of a two-pulse configuration that manifests itself as
a sudden jump towards the single-pulse solution as the gain
pumping is gradually decreased towards the lasing threshold.
We give evidence that the jump and the associated transient
oscillatory dynamics result from pulse interactions mediated by
the gain and absorber dynamics. In Section 5, we proceed to
an asymptotic analysis of the model based on the identification
of several well-separated time scales. This provides some
necessary background for the two next sections, where we
determine how the pulse interactions depend on their separation
distance. In Section 6, we consider the case where the laser
operates close to threshold, and do a local analysis in the
vicinity of some relevant codimension-2 point. We find that,
according to our model, two-pulse solutions emerge unstable
at the lasing threshold, and thus must stabilize through a
secondary bifurcation located outside the domain of validity of
the local analysis. In Section 7, by means of a global analysis,
we find the bifurcation and identify it as the cause for the
abrupt jump to single-pulse solutions mentioned above. At the
critical point, the branch of equally spaced two-pulse solutions
connects to an unstable limit cycle created by the interplay
of a fast pulse energy relaxation dynamics and a slow pulse
displacement dynamics resulting from the pulse interactions.
Based on this mechanism, we explain a scaling law that exists
between the period of the transient oscillations during the
jump and the pulse width. Conclusions are given in Section 8
and contrasted to [29], where a stabilization of multiple-
pulse configurations due to pulse interactions in a passively
mode-locked laser with a Kerr nonlinearity is predicted using
a theory valid near the lasing threshold.

2. Model

Our model for passive mode locking was derived in [30]
using a lumped element approach. We consider an optical
cavity containing a gain medium, a passive saturable absorber,
and a thin spectral filtering element whose purpose is to limit
the frequency bandwidth of the laser radiation. We assume
a ring cavity geometry, with one of the counter-propagating
waves suppressed so that the lasing is unidirectional. With the
additional assumption of a Lorentzian profile for the spectral
filter, the model is given by the following system of delay-
differential equations for the electric field amplitude A at the
entrance of the absorber medium, the saturable gain g, and the
saturable absorption level q as functions of time t :(

1 + γ −1 d
dt

)
A =

√
κ exp

{
1
2

[g (t − T ) − q (t − T )]
}

× A(t − T ), (1a)

dg

dt
= γg (G0 − g) − exp (−q)

[
exp(g) − 1

]
A2, (1b)

dq

dt
= γq (Q0 − q) − s

[
1 − exp(−q)

]
A2. (1c)

The two control parameters are the unsaturated gain G0 and
absorber level Q0. The other model parameters are the cavity’s
attenuation factor per round-trip κ , the cold-cavity round-trip
time T , the spectral filter width γ (which limits the minimum
width of the pulses), the gain and absorber recovery rates γg
and γq , and the ratio s of the saturation energies of the gain and
absorber media. Eqs. (1) are equivalent to the model derived
in [30] with g0 ≡ γgG0, q0 ≡ γq Q0, a ≡

√
Eg A, and the

amplitude-phase coupling constants αg and αq set to zero.
The model (1) neglects spatial effects associated with linear

cavity design, as well as any phase dynamics (since in the
absence of α factors the solutions of the field equation (1a) have
a fixed phase). The present analysis can be extended to the full
model derived in [30], which provides an accurate description
of a semiconductor laser (as it holds under conditions of strong
saturation and accounts for amplitude–phase coupling).

3. Bifurcation diagrams

Depending on the parameter values, Eq. (1) can exhibit
various dynamical regimes, including chaotic behavior.
However, most important from the practical viewpoint are the
regimes characterized by periodic trains of regularly spaced
mode-locked pulses. As illustrated schematically in Fig. 1,
mode-locking regimes can have different repetition rates, which
are proportional to the number of pulses emitted within the
cavity round-trip time. The fundamental mode-locking regime
is characterized by the emission of a single pulse per cavity
round-trip, while harmonic mode-locking regimes correspond
to pulse repetition rates equal to integer multiples of the
fundamental repetition rate. Inside each of the emission patterns
shown in Fig. 1, all pulses are identical and equidistant.
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Fig. 1. Regular pulse train solutions of Eq. (1): (a) fundamental regime, with
a pulse being emitted after every cavity round-trip; (b) second harmonic, with
twice the fundamental repetition rate; (c) third harmonic, with tripled repetition
rate.

Fig. 2. Maxima of the laser intensity A2 as a function of the unsaturated
gain G0, computed by direct numerical integration of Eqs. (1). The solution
branches labeled 1, 2, and 3 correspond to regular pulse trains with the
fundamental repetition rate and its second and third harmonics, respectively.
The branch labeled 0 corresponds to CW emission. Fixed parameter values are
Q0 = 4, κ = 0.1, γ = 100, γg = 0.025, γq = 1.875, s = 25, and (a) T = 1,
(b) T = 0.5 (dimensionless units).

The domains of existence of different mode-locking regimes
can overlap in parameter space. Fig. 2 shows two typical
bifurcation diagrams for the case of a slow absorber where the
relaxation time of the absorber is much longer than the duration
of a pulse. They have been obtained by slowly sweeping the
value of the unsaturated gain parameter G0 back and forth so as
to explore the whole domains of stability of several branches of
pulsed emission regimes. For all solutions with non-stationary
electric field envelope, only the maxima of the light intensity
time dependence are shown. The branch of CW regime, which
is unstable for the most part, is labeled 0 in Fig. 2.

In Fig. 2(a), three branches of pulsed regimes can be
distinguished, corresponding to the periodic pulse trains with
one, two, and three emitted pulses per cavity round-trip. These
regimes are similar to those illustrated by Fig. 1. As the control
parameter is swept back and forth, the various branches of
periodic pulse trains suffer various kinds of transitions and
instabilities. The single-pulse emission domain is limited to
the right by a gradual shrinking of the pulse peak intensity
to the CW level, indicating the collapse of the pulsed regime
onto the unstable steady state. This event is quickly followed
by a transition to the two-pulse branch, which itself eventually
undergoes a similar collapse. In addition, two instabilities
leading to non-uniform pulse trains can be observed in Fig. 2(a).
One of them lies around G0 ' 350 and involves a transition
to a quasiperiodic solution with four pulses per round-trip.
The other lies on the single-pulse branch, at G0 ' 90, and
can be identified as a Q-switching instability [31], as we have
found the envelope of the resulting oscillatory pulse train to
be modulated at the Q-switching frequency. Q-switching is
a process in which the laser response undergoes a periodic
modulation on a time scale much larger than the round-trip
time, typically on the order of the geometric mean of the photon
and gain medium population lifetimes in the cavity. It is caused
by an alternation between two stages: one where the gain builds
up for as long as the absorber can inhibit the amplification
of radiation, followed by another where strong laser emission
turns on and saturates the absorber, gradually depleting the gain
medium back to its initial value.

Fig. 2(a) also features yet another kind of instability that
manifests itself as an abrupt jump away from the destabilized
state. Two such events can be observed, one at G0 ' 190
and the other at G0 ' 240. Remarkably enough, these jumps
only occur on the two- and three-pulse branches (and form the
left boundaries of their stability domains). They all lead to the
fundamental-mode branch, which in contrast suffers no similar
instability. This suggests a significant difference between the
physical mechanisms ruling the stability of the fundamental
mode and its harmonics.

In Fig. 2(b), all parameter values are the same as in Fig. 2(a)
except that the round-trip time T is twice as small. This diagram
shows a similar (although simpler) organization. It contains
only two branches of uniform pulse trains. Again, the single-
pulse branch is bounded to the left by a Q-switching instability
(at G0 ' 130), whereas the two-pulse branch features an
abrupt jump to the fundamental mode-locking regime (at G0 '

300). One can see that the single-pulse branch in Fig. 2(b)
follows very closely the two-pulse branch in Fig. 2(a). This
naturally follows from the laser cavity in Fig. 2(a) being twice
as long as that in Fig. 2(b), so that they can share the same
mode of emission as both the fundamental mode of the shorter
cavity and the second harmonic of the longer cavity. Note,
however, that unlike the fundamental mode-locking regime
in Fig. 2(b) the two-pulse regime shown in Fig. 2(a) does
suffer a jump instability. This gives further evidence that there
are qualitatively different dynamics at play determining the
stability of the fundamental mode and its harmonics.

A different representation of the same dynamics is provided
by Fig. 3. There, the number M of pulses, rather than the
intensity maxima, is represented as a function of the unsaturated
gain G0, showing the various transitions and hysteresis domains
between the different branches of solutions. Note that the
destabilized parts of those branches where the envelope of
the pulsed emission patterns becomes modulated (including
the quasiperiodic four-pulse regime mentioned above) are
displayed as well, and are undistinguished from the uniform
pulse trains in this figure. The layout of the different branches of
mode-locked regimes shows the usual ramping towards higher
repetition rates as a function of the pumping that has been
observed in other studies [6,21,27]. For the parameter values
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Fig. 3. Number M of pulses per round-trip as a function of the unsaturated gain
G0, computed by the same procedure and with the same conditions as Fig. 2(a)
and (b).

we chose, though, the maximum number of pulses is limited
due to the relatively moderate ratio of the round-trip and filter
time scales.

4. Jump instabilities

These jump instabilities deserve a closer look. Fig. 4 shows
the successive intensity maxima as a function of time, during a
short time window spanning the duration of the jump from the
two-pulse branch to the single-pulse branch in Fig. 2(a). The
successive maxima are represented as an alternation of small
dots and thick dots, allowing the independent tracking of the
evolutions of the two pulses in the cavity. The pattern starts
out symmetric in the two pulses. Then a symmetry breaking
occurs, leading to the growth and saturation of one of the pulses,
and to the shrinking and vanishing of the other. The transient
evolution exhibits amplified oscillations where the two pulse
amplitudes oscillate in anti-phase, which is a clear indication
of some interaction mechanism between them, leading to a
periodic exchange of energy. The two pulses are too far apart
to interact coherently via their exponentially decaying tails;
nevertheless they can still interact incoherently via the gain
and absorber dynamics. Such interactions, being a collective
phenomenon, obviously need the coexistence of at least two
pulses in the cavity to take place, and thus cannot occur
within the fundamental single-pulse emission regime. Having
observed no jump instability on the fundamental branch in
Fig. 2, we can already foresee that pulse interactions are an
essential part of the mechanism causing the jumps from the
branches of higher harmonics.

The transient oscillations in Fig. 4 have a rather well-
defined period. We have found it to be typically longer than the
Q-switching period, and have observed that it tends to double
as the spectral filter is made four times as wide, which suggests
a square-root scaling law between the oscillation frequency
and the pulse width. The limited information provided by the
numerical data displayed in Fig. 4 alone does not enable us to
understand the exact nature of the mechanism leading to these
amplified oscillations, or to explain the square-root scaling law.
Fig. 4. Intensity maxima as a function of time, during the transition from the
two-pulse branch to the single-pulse branch that occurs in Fig. 2(a) at G0 '

190. Successive maxima are represented alternately as thick and small dots.

The main purpose of the analysis that follows is to shed some
light on these matters.

5. Analysis

The dynamics revealed by Fig. 4 features at least three
distinct time scales of importance, namely: (i) the pulse width,
typically on the order of magnitude of the inverse of the filter
width γ ; (ii) the gain and absorber recovery times; and (iii) the
duration of the jump, which extends over many round-trips. By
reformulating our model equations in the limit of very narrow
pulses (i.e., γ T large) and a slow absorber, we shall be able to
find clear relations between the different time scales.

5.1. Fast time scale: Pulse amplification

In this subsection, our goal is to obtain a system of equations
that determines the shape of each emitted pulse on theO

(
γ −1

)
time scale and hence we define

τ ≡ γ t. (2)

Let us now introduce an index m, with 1 ≤ m < ∞, counting
the successive instants tm where one of the pulses hits the output
mirror. Let us further define:

Am (t) ≡ γ −
1
2 A (t + tm) , gm (t) ≡ g (t + tm) ,

qm (t) ≡ q (t + tm) .
(3)

If M is the number of pulses coexisting in the cavity, then the
pulse that hits the output mirror at t = tm hits it again after
one round-trip at t = tm+M , and tm+M − tm represents the
corresponding round-trip time. We assume that

tm − tm−M ≡ T + γ −1δm, (4)

where the constants γ −1δm describe possible small deviations
of the round-trip times from their cold-cavity value T . These
deviations are to be determined later on in the analysis.

Substituting the relations (3) and (4) in the model equations
(1) and neglecting the terms of order O(γ −1) in Eqs. (1b) and
(1c), we arrive at the system(

1 +
d

dτ

)
Am+M (τ − δm+M ) =

√
κ exp

[
1
2

(gm − qm)

]
×Am, (5a)

dgm

dτ
= − exp (−qm)

[
exp(gm) − 1

]
A2

m, (5b)

dqm

dτ
= −s

[
1 − exp(−qm)

]
A2

m . (5c)
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Comparing Eqs. (1b), (1c), (5b) and (5c), one notes that we
have neglected the linear terms of the former equations, which
after rescaling have become of orderO(γ −1). It reflects the fact
that during the pulse emission the linear terms of Eqs. (1b) and
(1c) are dominated by the nonlinear ones, because the latter are
proportional to the pulse intensity A2.

The solutionsAm of Eq. (5a) describe, for each m, the shape
of the pulse that hits the output mirror for the m-th time, on a
time scale τ comparable to the spectral filter width. In the limit
γ → ∞, the time τ ranges over the interval (−∞, ∞). The
constants δm in Eq. (5a), which are so far unspecified, provide
some freedom to impose constraints on the pulse shapes. A
desirable requirement is that Eq. (5a) admits localized, finite-
energy solutions, a condition that can be expressed as:∫

+∞

−∞

dτA2
m < ∞. (6)

It turns out that this constraint is enough to determine the
constants δm , at least in principle. (In practice, their explicit
computation is not a trivial problem without further simplifying
assumptions of the kinds introduced in Sections 6 and 7.)

The system (5) is a set of delay-differential equations in τ

and a set of recurrence relations in m. As a recurrence system,
it is not complete. It determines the transformation of the pulse
shapes after each round-trip, that is, it givesAm+M as a function
of Am . However, it does not relate the gain and absorber state
variables gm and qm between the passings of successive pulses,
that is, for distinct values of m. The missing relations are
obtained in the next subsection.

5.2. Intermediate time scale: Gain and absorber recovery

Between pulse passings, the electric field vanishes inside
the gain and absorber media, which then recover exponentially
according to Eqs. (1b) and (1c). More precisely, during this
stage we neglect the nonlinear terms in Eqs. (1b) and (1c) by
setting A = 0, which makes the equations linear. The limit
values g±

m ≡ gm (τ → ±∞) and q±
m ≡ qm (τ → ±∞) of gm

and qm obtained from Eqs. (5) represent their states right before
(for the “−” sign) and right after (for the “+” sign) the m-th
passing of a pulse. The exponential recovery of the gain and
absorber media is expressed by

g−
m − G0 =

(
g+

m−1 − G0
)

exp
[
−γg (tm − tm−1)

]
, (7a)

q−
m − Q0 =

(
q+

m−1 − Q0
)

exp
[
−γq (tm − tm−1)

]
. (7b)

The recovery relations (7) provide boundary conditions for
the gain and absorber depletion Eqs. (5b) and (5c) and relate
the gain and absorber states between successive pulse passings.

In the limit of large γ , the original model equations (1) are
singular, but we have desingularized them by separating the fast
time scale τ for the pulse shapes from the longer time scale for
the pulse separations tm − tm−1, and by using Eqs. (6) and (7) as
conditions on the solutions of Eqs. (5) over an infinite interval
of τ . Given the first M pulse emission instants t1, t2, . . . , tM as
initial data, Eqs. (5)–(7) determine the complete solution profile
during the first round-trip. They also supply the round-trip time
deviations δm , from which the next M emission instants are
obtained via Eq. (4). The solution profile can then be computed
for subsequent round-trips by iteration of this procedure.
Eqs. (4)–(7) together thus form a well-posed problem.

5.3. Slow time scale: Pulse drift

It is possible to take advantage of the smallness of the
parameter γ −1 that appears explicitly in Eq. (4) to emphasize
the existence of a time scale much longer than the round-trip
time in the system (4)–(7).

The first M pulse emission instants t1, t2, . . . , tM all occur
within the time window [0, T ], and constitute the necessary
initial data for the problem (4)–(7). All the subsequent
emissions are caused by the cyclic reappearance of the M
initial pulses in the solution after each round-trip in the cavity.
Therefore, tm+nM for 1 ≤ m ≤ M and 0 ≤ n < ∞ can be
thought of as the instant where the m-th pulse hits the output
mirror in the cavity and is emitted for the (n + 1)-th time.
Eq. (4) implies that successive emissions of the same pulse are
separated by time intervals very close to the cold-cavity round-
trip time T . We can then divide the time axis into a sequence of
time intervals of duration T and consider the quantities

tn
m ≡ tm+nM − nT, (8)

which, for given m and n, represent the instant of the (n + 1)-th
emission of the m-th pulse, measured relatively to the beginning
of the (n + 1)-th time window. In terms of those, Eq. (4) now
reads

tn
m − tn−1

m = γ −1δn
m, (9)

where we have defined

δn
m ≡ δm+nM . (10)

Eq. (9) indicates that, in the limit γ → ∞, the relative emission
instants tn

m for a given pulse are shifted by a very smallO
(
γ −1

)
amount from one time window to the next. We can interpret
this as a very slow drift of the pulse positions, as n increases,
relatively to the parameterized time window [nT, (n + 1) T ].
This suggests looking for solutions of the system (4)–(7) where
the other variables also vary little during a round-trip, and
follow adiabatically these slow pulse displacements. We can
write this condition compactly as

Zm − Zm−M = O
(
γ −1

)
, (11)

where Zm represents the state vector {Am, gm, qm, δm}.
Adapting to our problem the spirit of a classical multiple

scale analysis, where several copies of the time variable are
introduced to describe the different scales, we now treat the
round-trip index n as a slow time variable. We introduce the
dimensionless variable

N ≡ (γ T )−1 n (12)

and treat it as continuous rather than discrete, since it increases
only by a small amount each time n is incremented by one. In
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this way, we get as a limit of Eq. (9) the dynamical equation

dtm(N )

dN
= T δm (N ) (13)

for the drift of the pulse positions. Consistently with our
assumption that the evolution of Zm follows the pulse drift
adiabatically, all quantities in the state vector Zm now must also
be taken to depend on N , namely: Zm = Zm (N ).

Finally, we may close the infinite systems (5) and (7) by
dropping the O

(
γ −1

)
small corrections in Eqs. (4) and (11).

This gives the following periodicity conditions in m:

tm (N ) − tm−M (N ) = T, Zm (N ) = Zm−M (N ) , (14)

which imply that only a finite number of variables in the system
(5)–(7) are independent. Namely, the range of the index m is
infinite, but every system variable can be expressed in terms of
another variable with 1 ≤ m ≤ M via Eqs. (14).

Together, Eqs. (5)–(7) and (13) and (14) constitute a well-
posed problem that determines the relative pulse positions
tm (N ) from their initial values tm (0), and henceforth we will
refer to them collectively as the drift equations. They can
be interpreted as a classical slow–fast system. The singular
parameter γ is not contained explicitly in them, and serves only
to separate the different time scales. According to Eq. (12), a
unit increase in N corresponds to a number of round-trips on
the order of γ T , or a time scale on the order of γ T 2. The
relative pulse positions tm vary as functions of the slow variable
N according to Eq. (13), and can thus be viewed as parameters
of a slow motion manifold. For a given choice of the initial
emission instants tm (0), Eqs. (5)–(7) together with (14) can be
used to recover the complete initial solution profile in the time
window [0, T ]. This means that the fast dynamics are assumed
to be already at equilibrium in this manifold of pulse solutions.

The time intervals tm(N ) − tm−1(N ) between consecutive
pulse emission instants are directly related to the separation
distances between the pulses travelling in the cavity at time
t = γ T 2 N . Therefore, the drift rates dtm

dN determined by
Eq. (13) essentially measure the group velocities of the pulses.
The drift equations thus describe the influence of the pulses on
each other’s velocities. In the two next sections, we make use of
them to study the interactions between pairs of pulses and how
they depend on the pulse separation.

6. Pulse interactions near threshold

The resolution of the drift equations is not a trivial
problem, in particular because one of them, Eq. (5a), is a
delay-differential equation and another, Eq. (6), is an integral
constraint on its solutions. In this section, we make the extra
assumption that the system is close to the lasing threshold. It
turns out that both difficulties vanish in this case.

At the lasing threshold, the gain and absorber remain
completely unsaturated, and the gain exactly compensates the
combined losses from the cavity and from the absorber so that
the coefficient of Am in the right-hand side of Eq. (5a) is unity.
This gives the threshold condition:

√
κ exp

[
1
2

(G0 − Q0)

]
= 1, (15)
which defines a line in the plane (G0, Q0). In a close vicinity of
the threshold, the energy in one pulse is very small and the gain
and absorber remain almost unsaturated during the whole pulse
amplification process. From Eqs. (5b) and (5c), the depletions
1gm and 1qm of the gain and absorber during the passing of a
pulse are given by

1gm = −exp (−Q0)
[
exp(G0) − 1

]
pm +O

(
p2

m

)
, (16a)

1qm = −s
[
1 − exp(−Q0)

]
pm +O

(
p2

m

)
, (16b)

where

pm =

∫ τ

−∞

dτA2
m (17)

represents the accumulated pulse energy up to time τ .
According to Eqs. (16), the net gain increase 1gm−1qm during
the pulse emission is approximately a linear function of pm ,
unless the coefficients of the linear terms in the expansions
(16) are equal, in which case 1gm − 1qm is dominated by the
quadratic term in pm . This condition reads:

exp (−Q0)
[
exp(G0) − 1

]
= s

[
1 − exp(−Q0)

]
. (18)

Eqs. (15) and (18) together define a codimension-2 point in

parameter space, which we denote
(

G(0)
0 , Q(0)

0

)
. The vicinity

of this particular point of the threshold line is where the relevant
dynamics happens. Indeed, for the pulse amplification to remain
limited to a finite time window, as required for stable mode
locking, the evolution of the net gain cannot be monotonous
and thus must be at least quadratic in pm .

The perturbative analysis in the vicinity of the codimension-
2 point is straightforward. We introduce a formal order
parameter ε measuring the distance to this point by rewriting
the control parameters as G0 = G(0)

0 + εG(1)
0 and Q0 = Q(0)

0 +

εQ(1)
0 , where εG(1)

0 and εQ(1)
0 describe small deviations of G0

and Q0 from their reference values. We also introduce a scaled
time variable τ = ε−1τ (1) and the power series expansions
Zm = Z(0)

m +εZ(1)
m +ε2Z(2)

m +. . ., withA(0)
m = 0 so as to account

for the smallness of the pulse amplitude near threshold. We
carry out these substitutions in Eqs. (5)–(7) and (14), expand in
powers of ε, and equate separately all the contributions of the
same order in ε, obtaining a hierarchy of systems of equations.
We skip the calculation details and do not write the solutions
explicitly, but point out that the leading-order expressions for
the pulse shapes, A(1)

m , are given by hyperbolic secants:

A(1)
m = Amax

m sech
(
w−1

m τ (1)
)

, (19)

where the amplitude maxima Amax
m and the width parameters

wm get determined in the course of the analysis.
A good amount of information on the dynamics in the

vicinity of the codimension-2 point can be obtained from the
solutions to the perturbative problem. Fig. 5 shows, in a two-
parameter space, the lasing threshold line and the background
instability threshold lines for the fundamental mode-locking
regime and its second harmonic. Background stability means
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Fig. 5. Local background stability map in the vicinity of the codimension-2
point defined by Eqs. (15) and (18). Parameter values other than G0 and Q0 are
as in Fig. 2a. The solid line is the lasing threshold, and the lines labeled T and
L are respectively the trailing-edge instability threshold and the leading-edge
instability threshold for the fundamental mode-locked regime (dashed lines)
and its second harmonic (dotted lines).

Fig. 6. Relative pulse velocity (arbitrary units) as a function of the pulse
separation (in units of the cold-cavity round-trip) for a mode-locked regime
with two pulses coexisting in the laser cavity. The computation is local to
the codimension-2 point defined by Eqs. (15) and (18). Parameter values are
G0 = 35, Q0 = 1, and all others as in Fig. 5.

that the net gain lies below threshold everywhere outside of the
strict temporal window corresponding to the pulse emission,
and is a requirement for stable mode-locked operation,
especially in the presence of noise [30]. The background
stability domains for the fundamental and second-harmonic
mode-locked regimes are a pair of narrow, partly overlapping
sectors of the (G0, Q0) plane that originate at the codimension-
2 point. They are each bounded by a trailing edge instability
line (T) and a leading edge instability line (L), where the
background is marginally stable at the trailing or leading edge
of the pulse, respectively. This is in agreement with Figure 3
in [30], where a different approach is used to study the model
(1), showing the validity of the present approach.

Background stability alone does not guarantee a stable
mode-locked operation. If several mode-locked pulses coexist
inside the laser cavity, their interactions can be responsible
for an instability. This is illustrated by Fig. 6, which
shows, for a two-pulse regime, how the relative pulse drift
velocity d

dN (t2 − t1) depends on the pulse separation t2 −

t1. The dot in the diagram corresponds to the configuration
where the two pulses are separated by half the cavity length,
leading to the emission of a regularly spaced pulse train at
twice the fundamental repetition rate. This configuration is
an equilibrium, because it lies on the line where the relative
pulse velocity vanishes. This is a natural consequence of the
symmetry of the roles played by the two pulses. The slope of
the velocity curve in the vicinity of this equilibrium determines
its stability with respect to small pulse displacements. Fig. 6
shows a situation where the regular pulse train is an unstable
equilibrium. Indeed, if the two pulses are brought a little closer
to each other, then the sign of the relative velocity indicates that
they will get even closer over time. This creates an effective
attraction between the two pulses, which keeps getting stronger
as the separation distance decreases. Ultimately, this leads to a
collision of the pulses.

It turns out that the situation depicted in Fig. 6 is general
to our model in the vicinity of the codimension-2 point. More
precisely, our computations show that, in the physically relevant
case where the absorber relaxes faster than the gain medium
(γq > γg), the only possible equilibrium separation is t2 − t1 =

T/2, and this equilibrium is always unstable. This result, being
local, does not contradict the possibility of a stable two-pulse
configuration sufficiently far away from the codimension-2
point. Nevertheless, it means that the two-pulse solution cannot
be stable arbitrarily close to the threshold line, even though
it could have a stable background. It must always emerge
unstable at the threshold, and must undergo some bifurcation
before becoming observable. This bifurcation lies outside of the
domain of validity of the local approach, and its identification
is the purpose of a global analysis that is carried out in the next
section.

7. Pulse interactions away from threshold

Away from the codimension-2 point, the analysis of
Section 6 breaks down, and therefore provides no ground for
Eq. (19) anymore. Nevertheless, we assume that the pulse shape
remains reasonably well approximated by a hyperbolic secant,
and write: Am ' Amax

m sech
(
w−1

m τ
)
. Although no asymptotic

argument exists to support this assumption, it has proven to
give good results in practice [31]. The solution parametersAmax

m
and wm need to be estimated from the pulse shape Eq. (5a),
along with the round-trip time deviations δm . To this end, we
derive three independent integral relations from Eq. (5a). The
following choice, although arbitrary, is a simple and reasonable
possibility among others:∫

∞

−∞

dτ L (τ )2
=

∫
∞

−∞

dτ R (τ )2 ,∫
∞

−∞

dτ L (τ ) =

∫
∞

−∞

dτ R (τ ) ,∫
∞

−∞

dτ τ L (τ ) =

∫
∞

−∞

dτ τ R (τ ) ,

(20)

where L (τ ) and R (τ ) represent respectively the left-hand side
and the right-hand side of Eq. (5a). The choice of the first of
those three relations was originally motivated by its usefulness
in an analysis of the original model equations (1) in the absence
of filtering (γ = ∞) [31]. Also, the first two relations present
the advantage that both sides of the equality are independently
invariant with respect to a time translation, and are therefore
independent of δm . This has turned out to be convenient in
a study of mode-locked pulses where their velocities are not
directly relevant [31].
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Fig. 7. Global stability map for the fundamental mode-locked regime and
its second harmonic, whose bifurcations are represented as dashed lines and
dotted lines, respectively. The parameter values are as in Fig. 5. The solid
line is the lasing threshold. The other curves are labeled as follows: T =

trailing-edge instability threshold, L = leading-edge instability threshold,
F = fold (limit point) bifurcation, J = jump instability.

Substituting the hyperbolic secant ansatz Am = Amax
m sech(

w−1
m τ

)
into Eqs. (20) gives, for all m, three conditions

relating implicitly the pulse parameters Amax
m , wm , and δm to

some integral functions of the gain and absorber depletion
profiles gm (τ ) and qm (τ ), which appear in Eqs. (20) through
R (τ ). By replacing the delay-differential equation (5a) for
the pulse shape with these three conditions, we transform the
system (5)–(7) and (14) into a set of ordinary differential
equations for gm and qm with boundary and integral conditions.
These equations form a simpler problem, and although they
cannot be explicitly solved analytically, they can be studied
using the continuation software AUTO [32].

This approach has been used to construct Fig. 7, which
shows a two-parameter bifurcation diagram of the fundamental
mode-locked regime and its second harmonic in the plane
(G0, Q0). This diagram is a global version of Fig. 5. In the
vicinity of the codimension-2 point, both figures agree well.
Away from the lasing threshold, Fig. 7 shows a slight curvature
of the background stability threshold curves (T and L) and
features some additional bifurcation curves. It is instructive
to compare Fig. 7 with one of the two numerical bifurcation
diagrams discussed in the beginning of this paper.

In Fig. 2(a), the stability domain of the fundamental
mode-locked regime is bounded to the left by a Q-switching
instability [31], and to the right by a point where the pulse peak
intensity shrinks to the CW value. On the one hand, the value
of G0 at the onset of the Q-switching instability in Fig. 2(a)
matches well the value of G0 at the trailing-edge instability for
Q0 = 4 in Fig. 7, and indeed the proximity of these two critical
values is a known fact [31]. On the other hand, the rightmost
stability boundary in Fig. 2(a) can be naturally identified to one
of the F curves in Fig. 7, which represent limit points where
the pulse amplitude goes to zero. The numerical agreement is
less good in this case, but the discrepancy is easily explained
from the fact that the hyperbolic secant ansatz for the pulse
shape is only an approximation, and becomes less realistic as
the laser operates away from the lasing threshold. Note, finally,
that the leading-edge instability curves (L) in Fig. 7 do not
correspond to any remarkable event in Fig. 2(a). This means
that stable mode-locked pulses can subsist even in the presence
Fig. 8. Relative pulse velocity (arbitrary units) as a function of the pulse
separation (in units of the cold-cavity round-trip) for a mode-locked regime
with two pulses coexisting in the laser cavity. Parameter values are as in Fig. 7,
with (a) G0 = 194.8, (b) G0 = 214.8, (c) G0 = 234.8.

of an unstable background. This phenomenon, which has been
reported earlier in [33,34], can occur if the relative group
velocities of the pulses and of the low-intensity background
are such as to sweep fluctuations towards the pulse before they
get a chance to grow and alter the light wave pattern. The
introduction of a weak level of noise in our model equations (1)
is sufficient to oppose this effect and reveal the leading-edge
instabilities in numerical simulations [30].

In addition to the bifurcations and instabilities mentioned so
far, Fig. 7 features a curve labeled J, which AUTO identifies as
a symmetry breaking of the second harmonic, i.e., a bifurcation
to a solution that consists of two pulses with distinct shape
characteristics. This symmetry breaking obviously needs the
coexistence of several pulses to take place, and so it cannot
manifest itself in the fundamental mode-locked regime. It can
be identified as the cause of the jump that forms the leftmost
boundary of the stability domain of the second harmonic
branch in Fig. 2(a). The exact nature of this bifurcation is best
elucidated by studying how the pulse velocities depend on the
pulse separation on either side of the critical point.

Fig. 8 contains three diagrams that show, for the two-
pulse regime, how the relative pulse drift velocity d

dN (t2 − t1)
depends on the pulse separation t2 − t1 in three different
situations. Fig. 8(a), (b), (c) correspond to values of G0 that
lie respectively slightly below, just at, and slightly above
the symmetry breaking point. These diagrams are similar to
Fig. 6, except that they are computed using the global approach
described at the beginning of this section. Again, the black dot
represents an equilibrium that corresponds to the symmetric
two-pulse configuration, and whose stability is indicated by the
slope of the velocity curves at this point. Fig. 8 reveals that the
symmetric two-pulse configuration is stable only to the right
of the symmetry breaking point, in agreement with Section 6’s
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Fig. 9. Slow manifold of the van der Pol equations (21) for ε → 0 and (a)
λ = −1, (b) λ = 0, (c) λ = 1.

conclusion that it cannot be stable arbitrarily close to the lasing
threshold.

Note also the characteristic “S” shape of the velocity curve in
Fig. 8(c). Because the relative velocity d

dN (t2 − t1) represents
the rate of change of the pulse separation as a function of the
slowest time scale, this S curve can be thought of as a slow
manifold similar to the one that is the main building block of the
van der Pol oscillator [35]. Fig. 8(c) thus suggests the existence
of a limit cycle (as indicated by the dashed arrows) that results
from the interplay between a fast pulse energy relaxation
dynamics and a slow pulse drift dynamics. The symmetry
breaking point corresponds to a Hopf bifurcation from the
symmetric two-pulse solution to this limit cycle. Fig. 8 also
reveals that the bifurcation is subcritical, so the limit cycle must
be unstable, and cannot be observed directly. We can show,
however, that a van der Pol scenario is consistent with the onset
of transient oscillations during the jump from the two-pulse
branch to the single-pulse branch, which we observed in Fig. 4.

The normal form for a van der Pol limit cycle emerging from
a subcritical Hopf bifurcation can be written as

u̇ = εv, v̇ = v3
− λv − u, (21)

where λ is the bifurcation parameter, and the small constant
ε defines the time scale on the slow manifold. For λ > 0,
Eqs. (21) are equivalent to the van der Pol equations as defined
in Chap. 4 of [35] up to a rescaling and a reversal of time. Phase
plane representations of the slow manifold are given in Fig. 9
for three different values of λ. Attempting a rigorous derivation
of the normal form (21) from the drift equations would involve
exceedingly tedious calculations. However, its validity as a
description of the dynamics near the symmetry breaking point
is suggested first by the strong similarity between Figs. 8 and 9,
and also because the normal form (21) allows us to explain the
scaling law between the transient oscillation frequency during
the jump and the spectral filter width, which we mentioned
at the end of Section 4. Sufficiently close to the bifurcation
(i.e., for |λ| � ε), the eigenvalues µ that determine the stability
of the steady state of Eqs. (21) are given by

µ = ±i
√

ε −
λ

2
+O

(
λ2

)
. (22)

For λ < 0, these eigenvalues give rise to amplified oscillations
with a frequency that scales as the square root of the rate of
evolution ε along the slow manifold. Now, remember from
Eq. (12) that in our mode-locking problem, the slow time scale
is proportional to the spectral filter width γ , and thus Eq. (22)
predicts that the transient oscillation period P and the filter
width γ are related by P ∼
√

γ , which is consistent with
observations from numerical simulations.

8. Conclusions

We have studied the effects of pulse interactions mediated
by the gain and absorber dynamics in passively mode-locked
lasing regimes with several coexisting, regularly spaced pulses
in the laser cavity. We focused on the case of a slow absorber,
and found that pulse interactions can be responsible for a
particular kind of instability characterized by oscillations in
the pulse energies and separation distances with a frequency
that scales as the square root of the pulse width. We have
identified the instability as a subcritical Hopf bifurcation to
an unstable van der Pol limit cycle, thereby explaining the
frequency scaling law. Due to this mechanism, stable mode-
locked regimes with several coexisting pulses cannot exist
arbitrarily close to the lasing threshold in our model, in contrast
to the fundamental single-pulse regime.

Our findings must be contrasted with [29], where the
gain dynamics in a passively mode-locked soliton laser is
found to induce an effective repulsion force between adjacent
solitons, which actually contributes to stabilize multiple-pulse
regimes, rather than causing an instability. The reason for the
disagreement is that our model and that of [29] include different
physical mechanisms: pulse shaping is provided by a slow
saturable absorber in our case, and by a Kerr nonlinearity
in [29]. Moreover, the latter also accounts for group-velocity
dispersion. The contrast between the behaviors of the two
models suggests that the consequences of pulse interactions
can be highly dependent on the implementation details of the
particular laser system considered. In the future, this motivates
further studies of pulse interactions in extended versions of the
model (1) including additional physical effects.
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