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1. Introduction

Frequency swept sources have greatly improved the acquisition speed and sensitivity of opti-
cal coherence tomography (OCT). The cavities of swept sources designed as fiber ring lasers
include two basic components: a gain element (typically a semiconductor optical amplifier
(SOA)) and a fast tunable filter. The tuning rate of the filter and the time required for building
up the lasing action from spontaneous emission mostly define the maximum achievable sweep
rate. Isolators are also typically included in the cavity to ensure unidirectional circulation of the
light. Conventional swept laser sources can have cavity lengths of several meters that act to limit
the sweep rate while maintaining efficient lasing [1]. By incorporating an optical delay so that
the cavity roundtrip matches the tuning period of the filter, the laser can be made to operate in
the so-called Fourier Domain Mode Locked (FDML) regime [2]. This is characterized by high
efficiency and more coherent lasing due to the fact that the lasing does not have to continually
restart from amplified spontaneous emission and the whole sweep is stored in the cavity. The
length of the FDML laser cavity is thus necessarily in the range of several kilometers to match
filter sweep rates of tens of kHz. Other sources used in OCT include superluminescent diodes,
Kerr-lens mode locked lasers and supercontinuum sources (see [3] and references within).

The excellent performance demonstrated by FDML lasers as light sources for OCT has mo-
tivated both experimental and theoretical studies of the laser properties. For example, an ex-
perimental approach for linewidth measurement is presented in [4] where a fast synchronous
time gating method reveals a linewidth of several GHz while theoretical research has primar-
ily focused on defining the influence of different cavity components and the physical effects
governing the laser performance [5, 6].

Studies of swept source intensity outputs have revealed an asymmetry in the output intensity
within one period of the modulation between the forward filter sweep (the filter moving from
shorter to longer wavelengths) and the backward filter sweep (the filter moving from longer
to shorter wavelengths). For a conventional swept source a significantly lower intensity was
observed in the backward sweep compared to that observed in the forward sweep [1]. This
power drop [7, 8] as well as a linewidth asymmetry in the forward and backward sweeps of
the laser were observed for FDML lasers in [6]. Theoretical descriptions have relied on the
study of partial differential equations describing the propagation in optical fiber and these have
confirmed that the interplay of SOA nonlinearity and the direction of the sweep is responsible
for the observed asymmetry in both long and intermediate laser cavities [8–11]. This property
is crucial for OCT applications as only one direction of the sweep can thus be used for the
imaging system. With modifications of FDML lasers such as the application of a buffering
technique [7], the introduction of broadband dispersion compensation in the cavity [12] and
SOA modulation [13], current FDML OCT systems operate with a sweep rate in MHz range.
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Typically the filter tuning frequency is slightly detuned from the roundtrip time. We define
the detuning as ffilter − 1

T where ffilter is the sweep rate of the filter and T is the roundtrip
time. The detuning affects some aspects of the FDML laser performance such as the number of
roundtrip times required for the FDML to operate in a stationary regime after self starting [10].
Also, the sweep direction asymmetry in the intensity traces is reversed when the detuning is
changed from positive to negative [10].

Here, we describe the dynamics of an FDML both experimentally and theoretically using
a delay differential equation model. We study the laser output as a function of the detuning
and show that the asymmetry in the output has a fundamental origin related to the field-matter
interactions in the laser. One half of the sweep consists of jumps between stable modes while
the other consists of a complex oscillating output. We explain the source of this asymmetry and
show that it arises generically in the swept ring laser source geometry by examining FDML,
quasistatic and conventional swept-source regimes.

2. Experimental setup

In the experimental setup we used a standard configuration of an FDML laser as presented in
Fig. 1. The gain medium was provided by a semiconductor optical amplifier (SOA) (Thorlabs,
BOA 1132) with 32.1 dB small signal gain, 16.9 dBm saturation output power and 88.1 nm
optical 3 dB bandwidth. The amplified spontaneous emission peak wavelength was 1303.8 nm.
The SOA had two incorporated isolators. The wavelength selective element in the cavity was
a fiber Fabry-Pérot tunable narrow band (50 pm) optical bandpass filter (MicronOptics) with
about 20 THz free spectral range and 1.3 dB insertion loss. Fiber optical isolators with 42 dB
peak isolation were placed before and after the filter to avoid parasitic back reflections. The
laser power was optimized with a polarization controller. The total length of the cavity was
about 20 km with most of this from a long SMF-28 optical fiber delay. The filter was tuned
with an Agilent 33500 Series 30 MHz waveform generator. The frequency corresponding to the
round trip in the ring cavity was 10,175.687 Hz. A 50/50 beam splitter was used as an output
tap coupler. An optical spectrum analyzer, a DC-coupled broadband 12 GHz photoreciever
(Newport, 1554-B) and a real time oscilloscope of 12 GHz bandwidth were used to analyze the
laser output.

3. Experimental results

3.1. FDML swept source regime

In order to investigate the emitted signal in real time the output of the laser was connected
to a fast optical detector and the signal analyzed using a real-time oscilloscope with 12 GHz
bandwidth. The tuning range of the filter was varied between 0.5 nm and 12 nm. A typical
output optical spectrum is presented in Fig. 2.

As previously reported, the detuning strongly influences the laser output. The intensity within
one roundtrip time for positive detuning is shown in Fig. 3(a) and for negative detuning in Fig.
3(b). In both cases the magnitude of the detuning was approximately 15 mHz. The tuning volt-
age is shown above the intensity in red, and the turning point of the sweep is approximately at
0 μs indicating the moment when the sweep changes from decreasing wavelength to increasing
wavelength. An obvious qualitative change in the laser output is observed close to the turning
point for both cases. For the positive detuning and forward wavelength sweep case, the output
resembled a series of jumps from one stable output to another while the backward wavelength
sweep resulted in complex GHz oscillations, as shown in the inset. For the negative detuning
case the situation was reversed.

As the sweeping range was varied the same qualitative dependence on the detuning was ob-
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Fig. 1. Experimental set-up of the ring laser. Iso: Isolator. FFP-TF: Fiber Fabry-Pérot Tun-
able Filter. AWG: Arbitrary Waveform Generator. SOA: Semiconductor Optical Amplifier.
OSC: Oscilloscope. SMF: Single Mode Fiber. PC: Polarization Controller.
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Fig. 2. Example of optical spectrum in FDML regime.

served while the number of dropouts decreased as the span was made smaller. By varying the
central frequency of the filter through the range 1297 nm to 1342 nm (centred approximately
on the minimum dispersion position) while keeping the sweeping range the same, it was possi-
ble to investigate the influence of chromatic dispersion. For sufficient detunings the qualitative
properties of the laser intensity remained unchanged in this range demonstrating that the disper-
sion played a weak role, if any, in the genesis of the observed asymmetry. Nonetheless, while
it is not the phenomenon responsible for the asymmetry, it is possible to observe some compli-
cating effects resulting from dispersion for extremely low detunings but we do not pursue these
in this work.

3.2. Quasistatic regimes

Physically a perfectly synchronous FDML regime and a static filter regime should be related
by a simple change of reference frame (and this intuitive idea is expressed formally below in
Section 4.1). Thus one might expect a quasistatic regime where the filter tuning frequency is
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kept extremely low (100 mHz) to be similarly related to the slightly detuned FDML regime and
one should expect to see the same dynamics in both cases. This is indeed the case and the same
asymmetry was observed with pronounced dropouts in the forward direction of the sweep and
a complex signal for the backward direction of the sweep as shown in Fig. 4.

To consider the effect of cavity length, such as losses, dispersion and its sensitivity to envi-
ronmental temperature fluctuations,we now consider a conventional swept source regime where
the 20 km fiber delay is removed from the cavity leaving a cavity length of about 17 m. The fil-
ter tuning frequency was 100 mHz again and the same behavior was observed with the dropouts
between stable outputs for the increasing wavelength part of the sweep and complex oscilla-
tions for the decreasing part. Thus the phenomenon appears to be generic for the geometry of
the system.

4. Theory

4.1. Model equations and CW solutions

To model the FDML laser theoretically we use a delay differential equation model similar to
that used to describe passively mode locked lasers in [14–16] but without the equation for
saturable absorption. It is given by a set of two differential equations with time delay

∂tA+A− iΔ(t)A =
√

κe(1−iα)G(t−T )/2A(t −T ) , (1)

∂tG = γ
[
g0 −G− (

eG −1
) |A|2

]
, (2)

where A(t) is the electric field envelope at the entrance of the SOA and the carrier density is
modeled via a saturable gain G(t). The position of the central frequency of the spectral filter is
defined by the time dependent quantity Δ(t) = r sin(Ωt), where the amplitude r and frequency
Ω of the sweep are normalized to the filter bandwidth Γ. The time variable t is normalized to the
inverse filter bandwidth Γ−1. For simplicity the gain bandwidth is assumed to be infinitely wide.
The parameters κ and α are the linear attenuation factor per cavity round trip and the linewidth
enhancement factor respectively and g0 and γ are the linear unsaturated gain parameter and
normalized gain relaxation rate in the SOA, respectively. The normalized delay time is T � 1.
Since, as mentioned above, the qualitative properties of the laser intensity time traces remain
unchanged for different central wavelengths of the spectrum, we ignore chromatic dispersion
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Fig. 3. Intensity as measured on the oscilloscope for (a) a detuning of +15mHz and (b) a
detuning of -15mHz. The sweeping voltage of the filter is shown (in red) above the filter.
The turning point of the sweep is approximately at 0 μs and the central wavelength of
the filter is decreasing on the left and increasing on the right. The asymmetry has clearly
reversed with the change of sign of the detuning.
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Fig. 4. Intensity as measured on the oscilloscope in a quasistatic regime. The filter sweep
frequency was 100 mHz. The sweeping voltage of the filter is shown (in red) above the
intensity. The turning point of the sweep is at 0 s and the central wavelength of the filter is
decreasing on the left and increasing on the right.

together with some other phenomena such as the Kerr nonlinearity in the fiber delay line, and
show that this minimal model is sufficient to understand the dynamics of the system.

Let us consider a static filter and the consequent CW solutions of Eqs. (1) and (2) with
constant laser intensity and gain, A = A0eiωt and G = G0. Substituting these into Eqs. (1) and
(2) we get the following three equations for the modal amplitude A0, frequency ω , and saturated
gain G0:

1 =
√

κeG0/2 cosθ , Δ−ω =
√

κeG0/2 sinθ , g0 −G0 = (eG0 −1)R, (3)

where R = |A0|2 and θ = αG0
2 +ωT . The first two of these equations can be rewritten in the

form

1+(Δ−ω)2 = κeG0 , Δ−ω = tan

(
αG0

2
+Tω

)
.

Eqs. (3) have multiple solutions corresponding to longitudinal laser modes, which can be
numbered by an index n. The intensities of these modes are given by

Rn =
κ
[
g0 − ln

(
1+(Δ−ωn)

2

κ

)]

1−κ +(Δ−ωn)2 (4)

with the frequencies ωn obeying the transcendental equation

ωn = Δ− tan

[
ωnT +

α
2

ln

(
1+(Δ−ωn)

2

κ

)]
. (5)

Figure 5 shows a typical example of a CW solution.
Besides this static filter regime we will consider several others, all of which are defined

through Δ(t). First let us change the reference frame to one comoving with the filter. This is
achieved with the transformation

A(t) = a(t)ei
´ t

0 Δ(τ)dτ . (6)

Substituting this into Eq. (1) yields:

∂ta+a =
√

κe(1−iα)G(t−T )/2−i
´ t
t−T Δ(τ)dτa(t −T ) .
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Fig. 5. Intensity of a CW solution of the model Eqs. (1) and (2) as a function of ω −Δ. In
the limit T → ∞ (or α → 0) it is symmetric with respect to ω = Δ. The parameter values
are γ = 0.1, κ = 0.2, α = 2.0 and T � 1.

Now let us consider the FDML regime where the filter is swept with a period exactly equal to
the cavity round-trip time. In this case Δ(t) = r sin(Ωt) with Ω = 2π/T . With this choice for
Δ(t) and performing the integration in the exponential the system becomes autonomous:

∂ta+a =
√

κe(1−iα)G(t−T )/2a(t −T ) ,

∂tG = γ
[
g0 −G− (

eG −1
) |a|2

]
.

This is identical in form to the system with a static filter centered at Δ = 0. The CW solu-
tions have the same form as those of Eqs. (1) and (2), a(t) = aneiωnt , in the comoving frame.
However, unlike the CW solutions that appear in the genuine absence of a frequency sweep
corresponding to the usual cavity longitudinal laser modes, these solutions are “FDML modes”
since in the lab frame they correspond to the chirped frequency swept solutions

A(t) = aneiωnt+i
´ t

0 Δ(τ)dτ , (7)

where |an|2 = Rn and ωn are defined by Eqs. (4) and (5). This is the formal demonstration of the
earlier intuitive idea of the equivalence of the static and exactly synchronous FDML operations.

Let us now consider the quasistatic case where Δ(t) = r sin(εt) with ε � 2π/T . Following
the above steps we find

∂ta+a =
√

κe(1−iα)G(t−T )/2+iψ(t)a(t −T ) , (8)

with ψ(t) = rT sin(εt) and dψ(t)/dt = O(ε), where we have used sin(εT ) ≈ εT . One might
expect that this should be formally equivalent to slightly detuned FDML operation. To test this
we consider a period of modulation close to the cavity round trip time, Δ(t) = r sin(Ωt) with
Ω = 2π/T +ε and ε � Ω. Following the same steps and using the same relation sin(εT )≈ εT
as above we get the same Eq. (8) but with

ψ(t) = rT
ε
Ω

sin(Ωt) . (9)

Here, as before the phase ψ is a slowly varying function of time, dψ(t)/dt = O(ε). The dif-
ference however is that while in the quasistatic case the results of our stability analysis will
concern the usual CW longitudinal modes Aneiωnt , in the case of slightly detuned FDML oper-
ation these results will be applied to the chirped modes.

#189874 - $15.00 USD Received 7 May 2013; revised 27 Jun 2013; accepted 27 Jun 2013; published 6 Aug 2013
(C) 2013 OSA 12 August 2013 | Vol. 21,  No. 16 | DOI:10.1364/OE.21.019240 | OPTICS EXPRESS  19246



4.2. Stability of CW solutions and numerical results

We consider now the stability of the CW solutions (4) and (5) in the quasistatic regime where
the sweep frequency is changed very slowly in time, Ω � 2π/T .

When the central frequency of the filter is fixed only those CW solutions are stable for which
|ω −Δ| is sufficiently small. Therefore, when the filter frequency is swept adiabatically, transi-
tions between different groups of modes should take place. To study these transitions in more
detail let us consider the stability of the CW solutions (4) and (5). The system (1) and (2)
linearized at a CW solution given by R,ω and G0 from Eq. 3 can be represented as

∂t�x = A�x+B�x(t −T ) ,

where

�x =

⎛
⎝

ReA
ImA

G

⎞
⎠ ,

A =

⎛
⎝

−1 ω −Δ 0
Δ−ω −1 0

−2γ(eG0 −1)
√

R 0 −γ(1+ eG0R)

⎞
⎠ ,

and

B =

⎛
⎜⎝

1 Δ−ω
√

R
2 (1+αω −αΔ)

ω −Δ 1 −
√

R
2 (α +Δ−ω)

0 0 0

⎞
⎟⎠ .

The characteristic equation is

det
(
−λ I+A +Be−λT

)
= 0,

where I is the identity matrix. Following [17–20] we decompose the solutions of the charac-
teristic equation into two parts with different scaling properties in T . These are the so-called
pseudocontinuous spectrum which scales as Re(λ ) ∼ 1/T and the strongly stable (unstable)
spectrum which scales as Re(λ ) ∼ 1 for large T [20]. The pseudocontinuous part is found as
follows. We can write λ as a series of terms of increasing powers of 1/T . To first order we have

λ = iν0 +
μ1 + iν1

T

for real ν0, μ1 and ν1. Then the characteristic equation can be represented in the form

det(A − iν0I+YB) = 0,

and so
[
γ(1+ eG0R)+ iν0

][
(Y −1)2(Δ−ω)2 +(Y −1− iν0)

2]

= γRY (eG0 −1)
[
(Y −1)

(
1+(Δ−ω)2)+ iν0(α(Δ−ω)−1)

]
, (10)

where Y = e−(μ1+iν1)−iν0T . Therefore, the real parts of the eigenvalues in the pseudocontinuous
spectrum can be estimated as μ1(ν0) = −Re [lnY (ν0)]. In particular, at ν0 = 0 we have two
solutions

μ1 = ν1 = 0, and μ1 =−Re

[
ln

(
1+ eG0R

1+R

)]
< 0 .
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Fig. 6. Real parts of the eigenvalues of the CW solution vs their imaginary parts. Panels (a)
and (b) illustrate modulational and Turing instabilities, respectively. The parameter values
are the same as in Fig. 5.

The first of these solutions corresponds to the zero eigenvalue, λ = 0, related to the phase shift
invariance of the model Eqs. (1) and (2) and the second to an eigenvalue with negative real part.
In the limit T → ∞ the zero eigenvalue gives rise to a branch μ1(ν0) which is tangent to the
imaginary axis μ1 = 0 at the point μ1 = ν0 = 0 of the (μ1,ν0)-plane (see Fig. 6).

The quasi-continuous branches shown in Fig. 6 are composed of a set of densely packed
discrete eigenvalues with their imaginary parts behaving as νk ≈ 2πk/T as T → ∞ with νk+1 −
νk = 2π/T equal to the spacing of the longitudinal cavity modes. In Fig. 6 (a) a modulational-
like instability is shown where eigenvalues with small nonzero k-numbers, 0 < |k|< kc, where
kc is come critical number, have crossed the imaginary axis. The instability of a given mode is
associated with the growth of perturbations of the closest longitudinal modes. In Fig. 6 (b) a
Turing-like instability is shown where eigenvalues with sufficiently large k-numbers centered
around some |k|= k0 acquire positive real parts.

A CW solution is modulationally unstable when the inequality d2μ1(0)
dν2

0
> 0 holds, so that the

zero eigenvalue is a local minimum of μ1(ν0) at ν0 = 0. This condition can be rewritten in the
form

[α(Δ−ω)−1]2 <
2
(
1+α2

)(
1+ eG0R

)
(Δ−ω)2

(eG0 −1)R
, (11)

where R and ω are defined by (4) and (5), respectively. It follows from this inequality that
the mode at the filter centre frequency ω = Δ, is always stable with respect to modulational
instability. With an increase of |ω −Δ| a modulation instability of the the CW solution sets in
(see Fig. 6(a)).

Table 1. Parameter values for simulations

Parameter Description Value

γ Normalized carrier relaxation rate 0.1
r Normalized frequency sweep amplitude 5
T Normalized cavity round trip time 200
κ Linear attenuation factor 0.2
α Linewidth enhancement factor 2.0
g0 Unsaturated gain per round trip 3.0
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Fig. 7. Instability boundaries for the CW solutions. Solid and dashed lines show modula-
tional and Turing instabilities, respectively. The parameter values are given in Tab. 1.

The boundaries of the modulational (Turing) instability are indicated by the solid (dashed)
lines in Fig. 7. It is seen from this figure that depending on the parameter values and the sign of
ω −Δ the destabilization of the CW solution can take place either via a modulational instability
or via a Turing instability. For zero α due to the symmetry of the model equations, the CW
solution and its stability properties depend only on the absolute value |ω −Δ|. Thus, at α = 0
the instability experienced by the CW regime is the same for both directions of the sweep of
the filter central frequency Δ. This symmetry is lost for sufficiently large values of α explaining
the asymmetry of the experimentally observed time-traces with respect to the frequency sweep
direction since typically SOAs such as that used in the experiment display an α greater than
or approximately equal to 2. When the CW state is destabilized via a (long wavelength) mod-
ulational instability a transition to a complex and possibly chaotic, oscillating solution takes
place, see Fig. 8. This suggests that the modulational instability is supercritical resulting in the
creation of a stable oscillating solution from the destabilization of the CW regime. On the other
hand, destabilization of the CW solution via the Turing instability results in a frequency jump
to another CW solution with a frequency jump of the order of 2πk0/T . This suggests that the
Turing instability is subcritical in the sense that any solution created from the destabilization
of the CW mode is also unstable. A numerical simulation of the output is shown in Fig. 8. The
simulation parameters are presented in Tab. 1.
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Fig. 8. Direct simulation of the model equations displaying the experimentally relevant
asymmetry of the output intensity with respect to sweep direction. The parameter values
are given in Tab. 1. The turning point of the modulation is at the 0 point of the x-axis and
the sweeping voltage of the filter is shown (in red) above the intensity.
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In the case when the central frequency of the filter is swept with a period close to the cavity
round trip time one needs to use Eq. (8) with the term ψ(t) = rT ε

Ω sin(Ωt) in the exponential
describing a slowly evolving phase accumulated due to the presence of a small frequency de-
tuning ε between the filter sweep rate and the inverse cavity round trip time (ε = Ω− 2π/T ).
The form is precisely that of the quasistatic case and so, for sufficient detunings, the asymme-
try must be preserved with abrupt frequency jumps arising from a Turing-like instability in one
sweep direction and complex oscillations from a modulational instability in the other. However,
because of the very different rates in the sine arguments, the asymmetry arises within one cav-
ity round trip rather than over the long ε−1 time scale of the quasistatic case. Furthermore, it is
seen from Eqs. (8) and (9) that in the FDML case a change of the sign of the frequency sweep
detuning ε →−ε is equivalent to a reversal of the frequency sweep direction. This explains the
experimental result that the sweep direction asymmetry in the intensity traces is reversed when
the detuning is changed from positive to negative.

5. Conclusions

To conclude, an analysis of the dynamics of an FDML laser is presented. Experimentally it was
shown that an asymmetry in the output of an FDML source is observed, dependent on the sweep
direction. When the frequency of the sweep is slightly greater than that of the cavity round trip
the increasing wavelength part of the sweep results in a series of discrete frequency jumps while
the decreasing wavelength part of the sweep results in a complex oscillating output. When the
frequency of the sweep is slightly less than that of cavity round trip the asymmetry is reversed.
Qualitatively similar results were found for a quasistatic regime and for a short cavity swept
source. Further, the results were unchanged as the central wavelength of the optical spectrum
was varied and so the phenomenon seems to be independent of cavity length and dispersion and
thus most probably a result of the semiconductor carrier dynamics in the SOA. A mathematical
model of an FDML laser based on a system of delay differential equations for the electric field
envelope and carrier density in the semiconductor optical amplifier was proposed and analyzed
analytically and numerically. We showed that the physics of the problem could be analyzed
via the quasistatic regime by virtue of a transformation to a reference frame comoving with
the filter. In particular a study of the evolution of the stability of the static CW solutions when
undergoing an adiabatically slow sweep of the filter can explain the observations in the quasi-
FDML regime. We showed that a modulational instability of the CW solution is responsible
for the transitions to complex oscillating outputs and a Turing-type instability for the abrupt
frequency jumps. Furthermore, this asymmetry is a consequence of the presence of a nonzero
linewidth enhancement factor in the semiconductor optical amplifier. Finally, it is shown that
slightly detuned FDML operation is formally equivalent to the quasistatic case but with the
transitions between frequency swept FDML modes instead of the standard longitudinal laser
modes. Our analysis explains also why the change of the sign of the frequency sweep detuning
from the inverse cavity round trip time is equivalent to the reversal of the sweep direction.
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