
1 3

DOI 10.1007/s00340-015-6030-3
Appl. Phys. B (2015) 118:539–548

Pulse repetition‑frequency multiplication in a coupled cavity 
passively mode‑locked semiconductor lasers

R. M. Arkhipov · A. Amann · A. G. Vladimirov 

Received: 7 October 2014 / Accepted: 24 January 2015 / Published online: 15 February 2015 
© Springer-Verlag Berlin Heidelberg 2015

1 Introduction

Passively mode-locked semiconductor lasers generate short 
optical pulses with high repetition rates varying from few 
to hundreds of GHz. They have important applications in 
optical telecommunications, sampling, and division mul-
tiplexing [1–6]. Optical spectrum of these lasers is a fre-
quency comb with the line spacing equal to the pulse 
repetition rate of the mode-locked regime. This repetition 
rate is limited by the fact that active medium length must 
be sufficiently large to achieve laser generation as well 
as by the operational frequencies of the optical modula-
tors [7]. Therefore, different methods for pulse repeti-
tion frequency multiplication in such lasers have been used. 
Among them are the schemes employing colliding pulse 
mode-locking [8], the group delay dispersion in optical fib-
ers (temporal fractional Talbot effect in optical fibers) [9, 
10], chirped fiber Bragg grating based on the same Tal-
bot effect [11, 12], and a number of uniform fiber Bragg 
gratings [7]. Another method of increasing the pulse rep-
etition rate in a mode-locked laser is based on the use of 
a Fabry–Perot interferometer as an external spectral filter. 
This method is attractive due to its simplicity and robust-
ness since commercially available Fabry–Perot filters 
may be employed [13, 14]. Experimentally it was realized 
by different authors, see for example, Refs. [13–17]. The 
idea of this method is the following [13]. If the separation 
between transmission peaks of the Fabry–Perot interferom-
eter is exactly m times (m is an integer number) larger than 
the pulse repetition rate of the laser, then only those laser 
modes will be transmitted through the Fabry–Perot filter 
which coincide with the transmission lines of this filter. 
Since this leads to an increase in the separation between the 
resulting laser modes by m times, one can expect that the 
repetition frequency can be increased m times [13]. Typical 
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solid-state mode-locked femtosecond lasers have free spec-
tral range from about 100 MHz to 1 GHz [18, 19]. On the 
other hand, for the precision measurements of astronomical 
objects, a comb spacing of 10–30 GHz is ideal [19]. This 
is why filtering of femtosecond-laser frequency combs by 
an external Fabry–Perot cavity is used to generate a broad 
spectrum of resolvable lines for astronomical measure-
ments, for instance, in astronomical spectrograph calibra-
tion (see reviews [19–21]).

The problem of mode selection in single section semi-
conductor lasers is one of the most important problems in 
the control of laser radiation parameters [22]. In particu-
lar, semiconductor lasers with a fixed and predetermined 
number of primary modes are of interest for a number of 
applications. For example, two-color devices are useful 
for terahertz generation by photomixing [23]. In order to 
achieve a single-mode operation in Fabry–Perot semicon-
ductor lasers, different methods have been used. In a dis-
tributed feedback laser, a Bragg grating in the active cav-
ity can result in single-mode emission [24]. An alternative 
technique that can modify the lasing spectrum is the incor-
poration of a number of scattering centers in the form of 
slots into the laser cavity [25, 26]. This technique enables 
the design of single-mode lasers, two-mode lasers, or pas-
sively mode-locked discrete mode lasers [27, 28].

Furthermore, systems consisting of optically coupled 
lasers can exhibit a very rich variety of different dynami-
cal phenomena and have much in common with other non-
linear systems [29–33]. For example, in optically coupled 
phase-locked lasers the break up of phase locking can lead 
to the appearance of chaotic dynamics [31]. The nonlinear 
dynamics in passively mode-locked semiconductor lasers 
is an active area of research nowadays [34]. In particular, 
in [35–39], the dynamics of passively mode-locked semi-
conductor lasers was studied theoretically using a system 
of delay differential equations (DDEs) model and experi-
mentally. The dynamics of optically injected and hybrid 
mode-locked semiconductor lasers was considered, e.g., 
in [40, 41].

Optical bistability have been intensively investigated for 
decades because of its potential application in all-optical 
logic and signal processing, see, e.g., [42]. The existence of 
optical bistability in the system comprising a cavity mode 
and an ensemble of two-level atoms was demonstrated the-
oretically in [43]. It was shown that two stable CW regimes 
may coexist in this system and a hysteresis was observed 
between CW regimes when the frequency of the exter-
nal harmonic signal was changed. Optical bistability was 
also studied theoretically and experimentally in optically 
injected semiconductor lasers [44], semiconductor lasers 
with optical feedback [45, 46], two coupled semiconductor 
lasers [47], optically injected two-section semiconductor 
lasers [48], and other laser systems.

Here using a DDE model, we study the dynamics of pas-
sively mode-locked semiconductor ring laser coupled to 
an external passive cavity. The external cavity in this case 
is used as a filter which suppresses certain longitudinal 
modes of the passively mode-locked laser. We demonstrate 
an increase in pulse repetition frequency fp by a factor of 
2 and 3 when the external cavity length is two and three 
times smaller than the active cavity. We study the depend-
ence of mode-locked regimes on the model parameters and 
coupling coefficients between the two cavities. We dem-
onstrate that changing the relative phase between the two 
electric fields in the two cavities leads to a periodic appear-
ance of mode-locking windows with the pulse repetition 
rates 2fp and 3fp, respectively. The period and width of 
these mode-locking windows depend on the passive cavity 
length.

Finally, we demonstrate the existence of optical bista-
bility between a mode-locked regime and irregular pulsa-
tions in the model equations. We have found that a bistable 
behavior arises when the relative phase between electric 
fields in two cavities and the pumping power are changed.

2  Model equations

Our analysis is based on a set of DDE describing time evo-
lution of the electric field amplitudes in the active cavity 
A1(t) and in the external cavity A2(t), as well as the satura-
ble gain G(t), and the saturable absorption Q(t) in the gain 
and saturable absorber (SA) sections of the active cavity 
(see Fig. 1). This model is given by:

Fig. 1  Schematic representation of mode-locked laser coupled to 
a passive cavity. The active cavity contains gain section, saturable 
absorber section, and a spectral filtering element with the bandwidth 
γ1. External passive cavity contains only a spectral filtering element 
with the bandwidth γ2 which is assumed to be much larger than that 
of the active cavity, γ1 ≪ γ2. Parameters κ , κ1, and κ2 are the reflec-
tivities of the mirrors M3, M2, and M5, respectively
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Here T1 (T2) is the round-trip time in the active (passive) 
cavity. The parameters φ and ψ describe the phase shifts of 
the fields A1 and A2 after the round trip in the active and 
passive cavity, respectively. Equations (1)–(4) generalize 
the model of a passively mode-locked semiconductor laser 
proposed in [35–37] to the case of two coupled cavities. 
DDE model proposed in [35–37] was derived from trave-
ling wave equations (TWE) assuming the unidirectional 
propagation of light in the ring cavity. It was demonstrated 
in Refs. [38, 49, 50] that the results obtained within the 
framework of the DDE model are in agreement with those 
obtained using the TWE model. However, the DDE model 
does not take into account some effects related to counter-
propagating waves interaction, which are important, e.g., in 
colliding pulse mode locking.

The parameters κ , κ1, and κ2 describe the reflectivities 
of the mirrors 3, 2, and 5, respectively, see Fig. 1. Typical 
values and a short description of the model parameters are 
given in Table 1. Each of the two coupled cavities has its 
own spectral filtering element. Since the passive cavity is 
empty, we assume that the spectral filtering bandwidth is 
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much larger in the passive cavity than in the active one, 
γ2 ≫ γ1. Below, for simplicity, we will consider the case 
when ψ = 0. The effect of the phase φ on the dynamics 
of coupled cavity laser is studied in Sect. 5. Let the active 
cavity round-trip time be equal to 25 ps. This corresponds 
to the pulse repetition frequency close to 40 GHz in the 
absence of external cavity and to T1 = 2.5 in the normal-
ized units of Eqs. (1)–(4) [37], where the time is normal-
ized to the carrier relaxation time in the absorber section 
(10 ps).

3  Results of numerical simulations

3.1  80 GHz mode-locking regimes

In this section, we present the results of numerical simu-
lations of Eqs. (1)–(4) with the parameter values given 
in Table 1. We demonstrate that when the external cavity 
length is approximately twice smaller than the laser cavity 
length, T2 ≈ T1/2, an increase in the pulse repetition fre-
quency by a factor of two can be achieved. First, we study 
the evolution of dynamical regimes with the increase in 
the reflectivity κ of the mirror 3. The bifurcation diagram 
in Fig. 2 shows the laser pulse peak intensity as a func-
tion of κ. To calculate this diagram, we have used the fol-
lowing procedure. At each given value of the parameter κ,  
Eqs. (1)–(4) have been integrated from t = 0 to t = 5,000 
in order to skip the transient behavior. Next, during the 
time interval from t = 5,000 to t = 7,000, the maxima of 
the intensity time trace |A1(t)|

2 have been plotted.
In Fig. 3, four different examples of the laser inten-

sity time trace are given. When the reflectivity κ is small 
(strong coupling), the laser operates in a CW regime with 
the electric field intensity independent of time. The inten-
sity time trace illustrating this regime is shown in Fig. 3a. 

Table 1  Typical parameter 
values used in simulations Spectral filtering bandwidth in the active cavity γ1 15

Spectral filtering bandwidth in the passive cavity γ2 50

Nonresonant field intensity attenuation factor per cavity round trip κ1 = κ2 0.3

Linewidth enhancement factor in gain section αg 0

Linewidth enhancement factor in saturable absorber section αq 0

Pump parameter g0 0.5

Unsaturated absorption q0 2

Carrier relaxation rate in gain section γg 0.01

Carrier relaxation rate in saturable absorber section γq 1

Ratio of gain to absorber saturation intensities 10

Optical phase shift in the active cavity ψ 0

Optical phase shift in the passive cavity φ 0

Active cavity round-trip time T1 2.5

Passive cavity round-trip time T2 T1/2, T1/3
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This regime is indicated as CW in Fig. 2. An increase in κ 
leads to the appearance a harmonic mode-locking regime 
(ML2) with the pulse repetition frequency close to 80 GHz 
(see  Fig. 3b). In this regime, the laser emits two pulses per 
active cavity round-trip time T1. The peak intensity of these 
pulses increases with κ for κ ≤ 0.5. Further increase in the 

reflectivity κ up to 0.8 leads to a decrease in the pulse peak 
intensity. When κ becomes larger than 0.8, a transition to a 
regime ML2a with two pulses in the cavity having different 
peak intensities takes place via a period doubling bifurca-
tion (Fig. 3c). One of these pulses has a larger pulse peak 
power and the other smaller than the peak power of the 
harmonic mode-locking regime with two identical pulses 
shown in Fig. 3b. Finally, at large coupling strengths κ = 1, 
the laser undergoes a transition to fundamental mode-lock-
ing regime with the repetition frequency 38.88 GHz, see 
Fig. 3d.

Figure 4 has been obtained in a similar way as Fig. 2, 
but with the linear gain, g0 taken as a bifurcation param-
eter instead of κ. As it is seen from Fig. 4, when the linear 
gain g0 is small enough, the laser exhibits a Q-switching 
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regime QS with the laser intensity oscillating at a low fre-
quency (around 2 GHz), which is approximately one order 
of magnitude smaller than the pulse repetition frequency fp 
of the fundamental mode-locking regime. The correspond-
ing time trace and power spectrum are presented in Fig. 5. 
Q-switching regimes in passively mode-locked quantum 
dot lasers were studied theoretically using a DDE model 
in [39]. For 0.161 < g0 < 0.361, the laser operates in a CW 
regime. With further increase in the pump parameter g0, a 
transition to a harmonic mode-locking regime with approx-
imately twice higher repetition rate appears. This regime is 
similar to that shown in Fig. 3b. Finally, for g0 > 1.5, a CW 
regime becomes stable.

3.2  120-GHz mode-locking regimes

In this subsection, we study the dynamics of a passively 
mode-locked semiconductor laser coupled to a passive cavity 
of length L/3, where L is the active cavity length (T2 = T1/3

). In the simulations, we have used the parameter values 
q0 = 3, κ1 = 0.3, and κ2 = 0.9. Other parameter values are 
given in Table 1. Similarly to the case discussed in the previ-
ous section, when the coupling strength κ is large enough, 
one can expect the appearance of harmonic mode-locking 
regime with “multiplied” pulse repetition frequency 3fp. 
Such regimes were observed in numerical simulations of a 
DDE model of solitary passively mode-locked semiconduc-
tor laser without external cavity (κ = 1) at sufficiently large 
values of the pumping parameter g0 [37].

Bifurcation diagram illustrating the dependence of the 
pulse peak power |A1|

2 on the reflectivity κ is presented 
in Fig. 6. When κ < 0.05, the laser exhibits periodic pul-
sations (ML3a) with the period close to 2T1/3 determined 
by the sum of the lengths of the two cavities. Two inten-
sity time traces of this regime corresponding to κ = 0.01 
and κ = 0.03 are plotted in Fig. 7a, b. At slightly larger 
reflectivities, the laser starts to operate in a CW regime (see 
Fig. 7c). Then, when κ becomes close to 0.07, harmonic 
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mode-locking regime with the “multiplied” pulse repeti-
tion frequency close to 3fp appears. The field intensity time 
trace for this regime is shown in Fig. 7d. Finally, at suf-
ficiently large κ, a transition from the harmonic mode-lock-
ing regime to a CW regime takes place.

To study the effect of the injection current on the har-
monic mode-locking regime with the pulse repetition fre-
quency 3fp, in Fig. 8, we present a bifurcation diagram 
illustrating the dependence of pulse peak power |A1|

2 on 
the pump parameter g0. This figure corresponds to the fixed 
value of the reflectivity κ = 0.15, for which this regime 
occurs in Fig. 6. When g0 is small enough, the laser oper-
ates in Q-switching (QS) regime (see Fig. 9), which corre-
sponds to a periodic pulse train with the pulse peak power 
oscillating at low frequency close to 1.7 GHz. At larger g0 
close to 0.3 harmonic mode-locking regime with the pulse 
repetition frequency close to 3fp (ML3) appears, as it is seen 
in Fig. 7d. Finally, for g0 > 0.66, a CW regime becomes 
stable.

Our analysis indicates that the harmonic mode-locking 
regimes with the pulse repetition rate 3fp can be observed 
not only in the case when the passive cavity is three 
times shorter than the active one T2 = T1/3, but also for 
T2 = 2T1/3. In both cases, every third mode of the active 
cavity coincides with a certain mode of the external passive 
cavity, and hence, the mode-locking regimes with the pulse 
repetition rate 3fp can be expected. Bifurcation diagram 
obtained for the case T2 = 2T1/3 is similar to that shown 
in Fig. 6.

4  Nonzero linewidth enhancement factors

In this subsection, we study the effect of the linewidth 
enhancement factors on the dynamics of Eqs. (1)–(4). It 

is known that for sufficiently large linewidth enhancement 
factors, mode-locking regime can be destabilized and irreg-
ular pulsations can appear. The influence of the α-factors 
on the dynamics of passively mode-locked semiconduc-
tor laser without external cavity was studied in [37]. Fig-
ure 10 was obtained by taking the linewidth enhancement 
factors as bifurcation parameters. It is seen from Fig. 10a 
corresponding to αq = 1.0 that the largest pulse peak pow-
ers were observed in the case when the linewidth enhance-
ment factors in the two sections are approximately equal: 
αg ≈ αq. This can be intuitively explained as follows [37]. 
Since gain and loss enter in Eq. (1) with opposite signs, the 
contributions of the gain and absorption sections into the 
pulse chirp must compensate each other, at least partially, 
when the two linewidth enhancement factors have the same 
sign. When αg is increased, the pulse peak power decreases 
and a transition to irregular pulsations and CW regime 
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Fig. 10  Bifurcation diagrams obtained by changing the linewidth 
enhancement factors αg and αq. T2 = T1/2. a Pulse peak power ver-
sus αg, αq = 1.0, b pulse peak power versus αg = αq, κ = 0.5. Other 
parameters are given in Table 1
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takes place (starting from αg ≃ 1.7). Similar behavior was 
observed for αg = αq, see Fig. 10b: The pulse peak power 
decreases with the increase in the two linewidth enhance-
ment factors and a transition to regime with irregular pulsa-
tions takes place at αg = αq ≃ 3. It was found in [37] that 
this transition is associated with the intermittency between 
mode-locking solution and irregular intensity pulsations. 
Slightly above the transition point, time intervals charac-
terized by almost regular mode-locking behavior alternate 
with irregular spiking. The duration of the “regular” time 
intervals decreases with the increase in αg, and finally, a 
regime with irregular pulsations develops. The break up of 
mode-locking regime can be explained by the presence of 
intracavity dispersion. When the linewidth enhancement 
factors are large, frequencies of the laser modes become 
nonequidistant due to the strong intracavity dispersion, and 
mode-locking regime disappears.

5  Influence of the relative phase φ

In the previous section, we assumed that the phase shifts 
in both cavities are equal to zero, φ = ψ = 0. This means 
that the frequency of the central mode of the active cavity 
coincides with that of the passive cavity. In order to satisfy 
this condition, it is necessary to make optical length of the 
external cavity n times smaller than the optical length of 
the active cavity (L2 = L1/n, n-integer number) with the 
precision of a small fraction of a wavelength. However, 
since in reality it is rather difficult to build the two cavi-
ties with such a high precision, it is interesting to consider 
the dynamics of the coupled cavity laser in the case when 
the central mode of the passive cavity is shifted in fre-
quency with respect to that of the active cavity, φ �= 0. To 
this end, we take the phase φ as the bifurcation parameter 
and perform numerical integration of the model Eqs. (1)–
(4) with the parameters given in Table 1, T2 = T1/2, and 
κ = 0.5. Bifurcation diagram illustrating the dependence of 
the pulse peak power |A1|

2 on the parameter φ is presented 
in Fig. 11. It is seen that this dependence has a multi-res-
onant character and is periodic with the period 2π. This 
periodicity can be easily understood by taking into account 
the invariance of Eqs. (1)–(2) under the transformation 
φ → φ + 2π. In Fig. 11, the values of φ characterized by a 
single-valued pulse peak power (peak powers of all pulses 
in the intensity time trace are equal, see Fig. 12a) corre-
spond to mode-locking regimes with the pulse repetition 
frequency close to 2fp. The pulse peak power of this regime 
achieves its maximums at φ = kπ with k = 0, ±1, ±2 . . ..  
Finally, near φ = (1/2 + k)π regimes with nonperiodic 
pulsations of the pulse peak power are observed. The inten-
sity time traces of these regimes corresponding to a cloud 
of points in Fig. 11 are shown in Fig. 12b for φ = π

2
.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

φ/π

|A
1|2 , a

.u
.

NPPNPP

CW

ML
2

ML
2

CW

Fig. 11  Pulse peak power |A1|
2 versus φ. κ = 0.5, κ1 = 0.3, κ2 = 0.3, 

and T2 = T1/2. Other parameters are given in Table 1. NPP indicates 
a regime with nonperiodic pulsations of the electric field, see Fig. 12b

6980 6985 6990 6995 7000
0

0.5

1
|A

1|2 , a
.u

.

time

6930 6940 6950 6960 6970 6980 6990 7000
0

0.2

0.4

|A
1|2 , a

.u
.

time

(a)

(b)

Fig. 12  Intensity time traces |A1(t)|
2 calculated for different values 

of the parameter φ. a 80 GHz mode-locking, φ = π, b regime of 
nonperiodic pulsations NPP, φ = 0.5π. κ1 = κ2 = 0.3, κ = 0.5, and 
T2 = T1/2. Other parameter values are given in Table 1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

φ/π

|A
1|2 , a

.u
.

NPP NPP
NPP

ML
3

ML
3 ML

3

Fig. 13  Bifurcation diagram of the pulse peak power |A1|
2 versus φ. 

κ = 0.15, κ1 = 0.3, κ2 = 0.9, and T2 = T1/3). Other parameter values 
are given in Table 1
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Resonant behavior similar to that presented in 
Fig. 11 was observed in the case T2 = T1/3 as well, 
see Fig. 13. However, in this case, the maximal pulse 
peak power of the harmonic mode-locking regime at 
φ = 2πk

3
, k = 0, ±1, ±2 . . . is larger than that in the case 

T2 = T1/2, and the windows of nonperiodic pulsations are 
located around φ =

(2k+1)π
3

, k = 0, ±1, ±2 . . .. The nonpe-
riodic regimes appear as a result of destabilization of har-
monic mode-locking due to the interference between the 
electric fields in the two cavities. Note that the resonant 
behavior shown Fig. 11 is similar to the dependence of the 
transmission function of a Fabry–Perot cavity on the rela-
tive phase φ [51].

6  Optical bistability

Bistable devices are important in the field of optical signal 
processing. They can be used as optical logic elements. In 
the present section, we demonstrate the appearance of opti-
cal bistability in the model Eqs. (1)–(4). We consider the 
case of nonzero linewidth enhancement factors in the gain 
and absorber sections, αg = 3 and αq = 1. Fig. 14 shows the 
dependence of the pulse peak power |A1|

2 on the phase φ for 
T2 = T1/3. This figure was obtained by numerical integration 
of the model equations at each value of the parameter φ on an 
equidistant grid with the solution calculated at the previous 
value of φ taken as an initial condition. After the integration, 
the pulse peak powers plotted versus the phase φ. This pro-
cedure was repeated with stepwise increasing and stepwise 
decreasing of the phase parameter φ. Black circles and red 
crosses in Fig. 14 correspond to the case when the parameter 
φ was increased and decreased, respectively. It is seen from 
the figure that within the intervals 0.64π < φ < 0.74π and 
1.3π < φ < 1.4π, the laser exhibits a bistability between 
harmonic mode-locked states (ML3) with the repetition rate 
close to 120 GHz and nonperiodic regimes (NPP). Further-
more, our simulations indicate that the appearance of opti-
cal bistability in the system is related to nonzero linewidth 
enhancement factors in the gain and absorber sections.

In typical experiments on optical bistability, the laser 
output power is measured as a function of the injection cur-
rent [45–47]. The diagram shown in Fig. 15 was obtained 
in similar way as Figs. 4 and 8, but with the pump param-
eter g0 taken as a bifurcation parameter instead of the 
detuning φ. It corresponds to the case when the external 
cavity length is three times smaller than that of the active 
cavity, T2 = T1/3. It is seen from this figure that when the 
pump parameter is small, the laser operates in Q-switching 
regime (QS). With the increase in g0, a transition to har-
monic mode-locking regime with the pulse repetition 
rate close to 3fp (ML3f ) takes place, see black circles in 
Fig. 15. Finally, at g0 ≈ 1.5, the laser starts to operate in 

CW regime (CWf ). When the pump parameter is decreased 
(red crosses in Fig. 15), the laser starts from a CW regime 
(CWb in Fig. 15), but the electric field intensity in this case 
is larger than that of the regime CWf . The regime CWb is 
stable for g0 � 0.65. Below this value, a transition to a har-
monic mode-locking regime with the frequency close to 
3fp (ML3b) takes place. Further decrease in g0 leads to the 
transition to Q-switching regime QS coinciding with that 
obtained by increasing g0.

Physical mechanisms responsible for the appear-
ance of bistability can be different. For example, it was 
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Fig. 14  Bifurcation diagram of the pulse peak power |A1|
2 versus φ. 

q0 = 3, κ = 0.15, κ1 = 0.3, κ2 = 0.9, T2 = T1/3, αg = 3, and αq = 1.  
Black circles (red crosses) correspond to the case when φ was 
increased (decreased). Other parameter values are given in Table 1
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Fig. 15  Bifurcation diagram of the pulse 
peak power |A1|

2 versus pump parameter g0. 
q0 = 3, κ = 0.15, κ1 = 0.3, κ2 = 0.9, T2 = T1/3, αg = 3, αq = 1, and 
φ = 0. Black circles (red crosses) correspond to the case when g0 was 
increased (decreased). Other parameter values are given in Table 1. 
CWf  and CWb indicate two bistable CW regimes. ML3f  and ML3b 
correspond to harmonic mode-locking regimes with the pulse repeti-
tion frequency close to 120 GHz
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demonstrated in Ref. [47] that bistability in two coupled 
semiconductor lasers arises due to the gain saturation that 
is strongly affected by the mutual coupling of the two 
cavities.

To demonstrate that the bistability shown in Fig. 15 is 
related to the presence of the nonzero linewidth enhance-
ment factors in the model equations, we integrated these 
equations with αg taken as a bifurcation parameter and 
g0 = 2.98, see Fig. 16. Red crosses and black circles were 
obtained by decreasing and increasing the parameter αg 
from αg = 3 to αg = 0 along the branches CWb and CWf

, respectively, see Fig. 15. The result of these simulations 
is plotted in Fig. 16. It is seen from Fig. 16 that two sta-
ble CW branches coexist for αg < α∗

g ≈ 0.55. However, at 
small αg < α∗

g, the branch CWf  with smaller laser intensity 
becomes unstable and bistability disappears.

7  Conclusions

In conclusion, we have studied the dynamics of a 40-GHz 
passively mode-locked semiconductor laser coupled to an 
external passive cavity. Our analysis was based on a set 
of DDEs governing the time evolution of the electric field 
envelopes in the two cavities, saturable gain, and saturable 
absorption. We have shown that the dynamical behavior of 
the laser depends strongly on the length of the external cav-
ity, the coupling strength between the two cavities, pump-
ing parameter, and the relative phase φ. If the length of 
the external cavity is two or three times smaller than that 
of the active cavity and the coupling between two cavities 
is strong enough, it is possible to generate mode-locking 
pulses with the “multiplied” repetition frequency close to 
2fp or 3fp, respectively.

We have investigated the effect of the linewidth 
enhancement factors on a coupled cavity mode-locked laser 

dynamics. In particular, our numerical simulations indicate 
that at large linewidth enhancement factors, mode-locking 
regimes with the pulse repetition rates 2fp and 3fp can be 
destroyed, and as a result, irregular pulsations can develop. 
Break up of the mode-locking regimes can be attributed 
to the intermode distance variation due to the intracavity 
dispersion.

We have studied the effect of the phase φ describing the 
relative position of the frequency combs associated with 
active and passive cavity on the system behavior. Numeri-
cal simulations indicate that the pulse peak power has a 
periodic dependence on φ, and there is a transition between 
nonperiodic and mode-locking regimes when φ changes. 
This periodic dependence seems to have the similar nature 
as the dependence of the transmission function of a Fabry–
Perot cavity on the electric field phase.

We have demonstrated the existence of optical bistabil-
ity between different laser operation regimes. The bistabil-
ity arises only when the linewidth enhancement factors are 
nonzero in the gain and the saturable absorber sections. At 
zero or sufficiently small linewidth enhancement factors, 
no bistability was observed in our numerical simulations.
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