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Abstract. The discretization of a bilaterally constrained total varia-
tion minimization problem with conforming low order finite elements is
analyzed and three iterative schemes are proposed which differ in the
treatment of the non-differentiable terms. Unconditional stability and
convergence of the algorithms is addressed, an application to piecewise
constant image segmentation is presented and numerical experiments
are shown.

1. Introduction

In this paper we investigate iterative schemes for the solution of the bilat-
erally constrained ROF problem which consists in the minimization of the
functional

E(u) := |Du|(Ω) +
α

2
‖u− g‖2L2(Ω) + IK(u)

in the set of functions with bounded total variation |Du|(Ω), where IK is
the indicator functional of a convex set K ⊂ L2(Ω) characterized by two
obstacle functions. While existence and uniqueness of a minimizer of E
can be established using the direct method in the calculus of variations,
the non-differentiability of the total variation and the indicator functional
are challenging from a numerical point of view. The minimization problem
serves as a model problem for a wide class of functionals involving the total
variation and the indicator functional which comprises a bilateral constraint
on the variable u. For example, in [5, 11] the above minimization problem
is considered in the context of image denoising and the bilateral constraint
is imposed in order for the restored image to have pixel values lying in a
certain range, e.g., in the interval [0, 255]. In [10] Chan et al. show the
equivalence of a minimization problem occuring in image segmentation to
the minimization of a functional that resembles E with the quadratic fidelity
term replaced by a linear functional in u. The application of a regulariza-
tion term to a bilaterally constrained variable also occurs in the modelling of
damage processes in continuum mechanics, where the bilaterally constrained
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variable is the damage variable and the regularization term consists of a dif-
ferentiable Lp-norm (p ≥ 2) of the gradient of the damage variable (cf. [18])
or the total variation of the damage variable (cf. [20]) while the constraint
ensures that the damage variable takes on values only in the interval [0, 1].

In the recent years many PDE-based algorithms have been proposed for
the classical ROF functional proposed by Rudin, Osher and Fatemi in [19],
where the bilateral constraint is omitted, reaching from primal-dual meth-
ods, combinations of regularization and standard minimization techniques
and dual methods to the alternate direction method of multipliers, aug-
mented Lagrangian methods and split Brègman methods, see, e.g., [3, 22]
for an overview of many of those algorithms. Regarding the bilaterally con-
strained ROF problem Casas et al. proposed in [7] an active set strategy
using the anisotropic BV -seminorm. This ansatz works with the primal
formulation of the problem and does not use regularization. However, a
penalization approach is used to solve auxiliary subproblems. In [5], moti-
vated by the dual approach of Chambolle in [8], Beck and Teboulle suggest a
monotone fast iterative shrinkage/thresholding algorithm (MFISTA) for the
dual of the bilaterally constrained ROF problem for which the convergence
rate O(1/k2) with k being the iteration counter is proven. Yet, as in [8], the
constant entering the convergence rate grows like O(1/h2) with h being the
mesh size of the underlying grid. Chan et al. proposed in [11] an augmented
Lagrangian method, which has already been successfully applied to the ROF
problem by Wu and Tai in [21].

The aim of this paper is to compare three different approaches for the iter-
ative minimization of E and to identify the most appropriate method with
particular view to applications in materials science. To this extent, we in-
troduce a finite element discretization with globally continuous piecewise
affine finite elements. The iterative algorithms differ in the treatment of
the two challenging terms appearing in E. The first approach uses splitting
techniques for both the total variation and the bilateral constraint and is
a variant of the augmented Lagrangian method proposed in [11], where the
involved norms are properly weighted in order to ensure unconditional sta-
bility of the method, see also [3] where the authors proposed a properly
weighted augmented Lagrangian method for the classical ROF problem.
The next ansatz uses regularization to handle the non-differentiability of
the total variation and the indicator functional and employs a semi-implicit
subgradient flow which turns out to be unconditionally stable and will be
referred to as the Heron-penalty method. For the classical ROF problem the
Heron method has already been introduced in [3]. The third algorithm uses
a combination of the regularization and the splitting approach, i.e., using
the observation made in [3] that a regularization approach seems to be the
most appropriate to deal with the total variation, we employ a regularization
for the total variation and a splitting technique for the bilateral constraint,
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which we call the Heron-split method.

The outline of the paper is as follows. In Section 2 we give some basic
notation and introduce the space of functions with bounded variation as
well as the globally continuous piecewise affine and the piecewise constant
finite element space. We present the minimization problem in Section 3 and
discuss existence and uniqueness of a minimizer. In Section 4 we consider
the finite element discretization and prove convergence of discrete minimiz-
ers to the continuous solution before we present the three algorithms and
address their stability in Section 5. In Section 6 we address the minimization
of the functional

Eseg(u) :=

∫
Ω
|Du|+ α

∫
Ω
fudx+ IK(u),

prove convergence of discrete energies to the minimal energy and recall a
minimization problem arising in an image segmentation model discussed by
Chan et al. in [10]. We finally provide results of numerical experiments
for the three iterative schemes applied to the bilaterally constrained ROF
problem and for a particular choice of g and two different values of α as well
as for the image segmentation problem in Section 7.

2. Preliminaries

2.1. Notation. Let Ω ⊂ Rd, d = 2, 3, be a bounded Lipschitz domain. We
denote by ‖ · ‖ the L2-norm on Ω induced by the scalar product

(v, w) :=

∫
Ω
v · w dx

for scalar functions or vector fields v, w ∈ L2(Ω;R`), ` ∈ {1, d}. The Eu-
clidean norm will be denoted by |·|. We will work with the space of functions
of bounded variation BV (Ω) ⊂ L1(Ω) which contains all functions v ∈ L1(Ω)
for which the total variation given by

|Du|(Ω) =

∫
Ω
|Du| := sup

{
−
∫

Ω
udiv q dx : q ∈ C1

c (Ω;Rd), |q| ≤ 1 a.e.
}

is finite. The space BV (Ω) equipped with the norm ‖u‖BV := ‖u‖L1(Ω) +
|Du|(Ω) is a Banach space. For more details concerning the space BV (Ω)
we refer, e.g., to [1].
For a sequence (aj)j∈N and a step size τ > 0 we let

dta
j+1 :=

aj+1 − aj

τ

be the backward difference quotient.
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2.2. Finite element spaces. Throughout the paper we let c be a generic
constant. We denote by (Th)h>0 a family of uniform triangulations of Ω with
mesh sizes h = maxT∈Th hT where hT is the diameter of the simplex T . For
a given triangulation Th the set Nh contains the corresponding nodes and we
consider the finite element spaces of continuous, piecewise affine functions

S1(Th) :=
{
vh ∈ C(Ω) : vh|T affine for all T ∈ Th

}
and of elementwise constant functions (r = 1) or vector fields (r = d)

L0(Th)r :=
{
qh ∈ L∞(Ω;Rr) : qh|T constant for all T ∈ Th

}
.

We also denote by T`, ` ∈ N, a triangulation of Ω generated from an initial
triangulation T0 by ` uniform refinements and the integer ` being related to
the mesh size h by h = c2−`. The set of nodes N` is defined correspondigly.

We introduce on S1(Th) the discrete norm ‖ · ‖h induced by the discrete
scalar product

(v, w)h :=
∑
z∈Nh

βzv(z)w(z)

for v, w ∈ S1(Th), where βz =
∫

Ω ϕz dx and ϕz ∈ S1(Th) is the nodal basis

function associated with the node z ∈ Nh. The norm ‖ · ‖h and the L2-norm
are related on S1(Th) as follows.

Lemma 2.1. For vh ∈ S1(Th) we have

‖vh‖ ≤ ‖vh‖h ≤ (d+ 2)1/2‖vh‖.

The proof of Lemma 2.1 can be found, e.g., in [2, Lemma 3.9].

3. Model problem

For a function g ∈ L∞(Ω) and a parameter α > 0 we consider the constrained
minimization problem defined by the functional

E(u) :=

∫
Ω
|Du|+ α

2
‖u− g‖2 + IK(u)

in the set of functions BV (Ω) ∩ L2(Ω). The convex set K is given by

K := {v ∈ L2(Ω) : χ ≤ v ≤ ψ a.e.}
with χ, ψ ∈ BV (Ω) ∩ L∞(Ω) and χ < ψ almost everywhere. We will refer
to this minimization problem as the bilaterally constrained ROF problem.

Proposition 3.1 (Existence and Uniqueness). There exists a unique mini-
mizer u ∈ BV (Ω) ∩ L2(Ω) of E.

Proof. The set of feasible functions is nonempty and the functional E is
bounded from below. Hence, there exists an infimizing sequence (uj)j which
is bounded in BV (Ω)∩L2(Ω) due to the coercivity of E. The compact em-
bedding of BV (Ω) into L1(Ω) (cf. [1]) and the boundedness of the sequence
imply the existence of a - not relabelled - weakly convergent subsequence
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uj ⇀ u in BV (Ω) and by passing to a further subsequence uj ⇀ u in
BV (Ω) ∩ L2(Ω). Since uj → u in L1(Ω) there exists a further subsequence
such that uj → u almost everywhere in Ω. This implies that χ ≤ u ≤ ψ
almost everywhere in Ω since χ ≤ uj ≤ ψ for all j ∈ N. The weak lower semi-
continuity of E (cf. [1]) then yields that u is a minimizer of E. Uniqueness
follows by the strict convexity of E. �

Remark 3.2. In fact, we have u ∈ BV (Ω) ∩ L∞(Ω) since χ, ψ ∈ L∞(Ω).

We define the functionals G : L2(Ω)→ R∪{∞}, H : L2(Ω)→ R∪{∞} and
F : L2(Ω)→ R ∪ {∞} by G(v) := α

2 ‖v − g‖
2, H(v) := IK(v) and

F (v) :=


∫

Ω
|Dv|, if v ∈ BV (Ω) ∩ L2(Ω),

∞, if v ∈ L2(Ω) \BV (Ω).

Lemma 3.3. Let u be the unique minimizer of E in BV (Ω)∩L2(Ω). Then
for any v ∈ BV (Ω) ∩ L2(Ω) we have

α

2
‖u− v‖2 ≤ E(v)− E(u).

Proof. We note that G is Fréchet-differentiable, i.e., we have ∂G(v) =
{δG(v)} with δG(v)[w] = α(v−g, w) for v, w ∈ L2(Ω). Since u is a minimizer
of E, we have

0 ∈ ∂E(u) = ∂(F +G+H)(u).

Standard arguments from convex analysis (cf. [1, Thm. 9.5.4]) yield

−δG(u) ∈ ∂(F +H)(u).

The strong convexity of G and the subgradient inequality then imply that
for arbitrary v ∈ BV (Ω) ∩ L2(Ω)

α

2
‖u− v‖2 = −δG(u)[v − u] +G(v)−G(u)

≤ F (v) +G(v) +H(v)− F (u)−G(u)−H(u)

= E(v)− E(u),

which proves the lemma. �

4. Finite element discretization

For simplicity, we assume throughout the paper that for a family of tri-
angulations (Th)h>0 the obstacle functions χ and ψ are such that there
exists h0 > 0 and χ, ψ ∈ S1(Th) for all h ≤ h0 and we assume h ≤ h0 in the
sequel. Let us then remark that IK(vh) is finite for vh ∈ S1(Th) if and only
if χ(z) ≤ vh(z) ≤ ψ(z) at all nodes z ∈ Nh.
We then seek a discrete minimizer uh ∈ S1(Th) of

E(uh) =

∫
Ω
|∇uh|dx+

α

2
‖uh − g‖2 + IK(uh)
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in S1(Th), where we used that |Dv|(Ω) = ‖∇v‖L1(Ω) for v ∈W 1,1(Ω). Exis-
tence and uniqueness can be proven following the arguments of the proof of
Proposition 3.1.

Proposition 4.1. Let u and uh be the unique minimizers of E in BV (Ω)∩
L2(Ω) and S1(Th), respectively. Then we have

α

2
‖u− uh‖2 ≤ ch1/2.

Proof. Following the arguments in the proof of [2, Thm. 10.7] we note that
by Lemma 3.3 we have for v = uh and for arbitrary vh ∈ S1(Th) that

α

2
‖u− uh‖2 ≤ E(uh)− E(u)

≤ E(vh)− E(u).(1)

Let uε,h ∈ S1(Th) be as in [2, Lemma 10.1], i.e., such that uε,h → u with

respect to intermediate convergence. We define the truncation v 7→ vK for
v ∈ L1(Ω) by

vK := max{min{ψ, v}, χ} pointwise.

One can check that the mapping v 7→ vK is Lipschitz continuous with re-
spect to the L1-norm. Let Jh : L1(Ω) → S1(Th) be the Chen-Nochetto
quasi-interpolation operator introduced in [12] by Chen and Nochetto. We
then have Jhv ∈ K if v ∈ K. Choosing vh = JhuKε,h in (1) and using

‖∇JhuKε,h‖L1(Ω) ≤ ‖∇uKε,h‖L1(Ω) ≤ ‖∇uε,h‖L1(Ω), the binomial formula, the

identity uK = u and the Lipschitz continuity of the truncation operator we
obtain

E(JhuKε,h)− E(u)

=

∫
Ω
|∇JhuKε,h|dx+

α

2
‖JhuKε,h − g‖2 −

∫
Ω
|Du|+ α

2
‖u− g‖2

≤
∫

Ω
|∇uε,h| dx−

∫
Ω
|Du|+ α

2

∫
Ω

(JhuKε,h − u)(JhuKε,h + u− 2g) dx

≤ c(hε−1 + ε)|Du|(Ω) +
α

2
‖JhuKε,h − uK‖L1(Ω)‖JhuKε,h + u− 2g‖L∞(Ω)

≤ c(hε−1 + ε)|Du|(Ω) + c
α

2

(
‖JhuKε,h − uKε,h‖L1(Ω) + ‖uKε,h − uK‖L1(Ω)

)
≤ c(hε−1 + ε)|Du|(Ω) + c

α

2

(
h‖∇uε,h‖L1(Ω) + ‖uε,h − u‖L1(Ω)

)
≤ c(hε−1 + ε)|Du|(Ω) + c(h+ h2ε−1 + hε+ ε)|Du|(Ω),

where we have used the quasi-interpolation estimate ‖v − Jhv‖L1(Ω) ≤
ch‖∇v‖L1(Ω) for all v ∈ W 1,1(Ω) (cf. [12, 16]). The choice ε = h1/2 con-
cludes the proof. �
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Remark 4.2. The error estimate is suboptimal in the sense that for u ∈
BV (Ω) ∩ L∞(Ω) we have the approximation property

inf
vh∈S1(Th)

‖u− vh‖ ≤ ch1/2,

cf. [4, Thm. 6.5]. On highly symmetric triangulations and for an anisotropic
version of the total variation this quasioptimal convergence rate can be proved
for related minimization problems, cf. [4].

5. Iterative solution

The iterative minimization of E is difficult due to the non-differentiability
of the seminorm and the occurrence of the constraints. In this section we
will discuss three approaches to deal with these difficulties.

5.1. Splitting. We introduce for uh ∈ S1(Th) the auxiliary variables ph =
∇uh ∈ L0(Th)d and sh = uh ∈ S1(Th) and incorporate Lagrange multipliers
λh ∈ L0(Th)d and ηh ∈ S1(Th) to enforce these relations. Note that since
the sequence (∇uh)h>0 of discrete minimizers uh of E may not be bounded
in L2(Ω) but only in L1(Ω) we have to measure these quantities in a weaker
norm than the L2-norm. We therefore equip the space L0(Th)d with the
weighted L2-scalar product

(ph, qh)w := hd
∫

Ω
ph · qh dx

and induced norm ‖ · ‖w. An inverse estimate shows that (∇uh)h>0 is
bounded with respect to ‖ · ‖w, cf. [3].
We then consider the consistently stabilized Lagrange functional

Lh(uh, ph, sh;λh, ηh) :=

∫
Ω
|ph| dx+

α

2
‖uh − g‖2 + IK(sh)

+ (λh, ph −∇uh)w +
σ1

2
‖ph −∇uh‖2w + (ηh, sh − uh)h +

σ2

2
‖sh − uh‖2h.

The parameters σ1 and σ2 are assumed to be positive. We then have
that (uh, ph, sh;λh, ηh) is a saddle point for Lh if and only if uh minimizes E
(cf. [21, Thm. 4.1] for the same result for the ROF functional without
bilateral constraint). Indeed, since

Lh(uh, ph, sh;µh, νh) ≤ Lh(uh, ph, sh;λh, ηh)

for all (µh, νh) we obtain ph = ∇uh and sh = uh. Then we have

E(uh) = Lh(uh, ph, sh;λh, µh) ≤ Lh(vh,∇vh, vh;λh, µh)

=

∫
Ω
|∇vh|dx+

α

2
‖vh − g‖2 + IK(vh) = E(vh)

for all vh ∈ S1(Th), i.e., uh minmizes E. Conversely, if uh minimizes E we
choose ph = ∇uh and sh = uh. Since uh is the unique minimizer of E we
have

0 ∈ ∂E(uh) = ∂F (uh) + ∂G(uh) + ∂H(uh),
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cf. [17, Thm. 23.8]. In particular, there exist −λh ∈ ∂F̃ (∇uh) and −ηh ∈
∂H(uh) with

(2) −α(uh − g) = −divh λh + ηh,

cf. [17, Thm. 23.9], where the operator divh : L0(Th)→ S1(Th) is defined by

(−divh µh, vh) = (µh,∇vh) for all vh ∈ S1(Th), µh ∈ L0(Th), and F̃ (qh) :=
‖qh‖L1(Ω). With our particular choice of ph and sh we have

Lh(uh, ph, sh;µh, νh) = Lh(uh, ph, sh;λh, ηh)

for all (µh, νh). One can show that the function

(vh, qh, rh) 7→ Lh(vh, qh, rh;λh, ηh)

has a minimizer (v∗h, q
∗
h, r
∗
h). The optimality conditions read

σ1(q∗h −∇v∗h,∇vh)w + σ2(r∗h − v∗h, vh)h

+(λh,∇vh)w + (ηh, v
∗
h)h = α(v∗h − g, vh),

−λh + σ1(∇v∗h − q∗h) ∈ ∂F̃ (q∗h),

−ηh + σ2(v∗h − r∗h) ∈ ∂H(r∗h).

Using (2) and the particular choice of functions λh and ηh we observe that
the triple (uh, ph, sh) satisfies these optimality conditions. Altogether, we
have

min
uh

E(uh) = min
(uh,ph,sh)

max
(λh,ηh)

Lh(uh, ph, sh;λh, ηh).

Due to the fact that ph is elementwise constant and that mass lumping is
used for the Lagrange multiplier ηh and the auxiliary variable sh the mini-
mization with respect to ph and sh can be done explicitly on each element
and in each node, respectively. We approximate a saddle-point with the
following iterative scheme (cf. [13]).

Algorithm 5.1 (Split-split method). Choose (p0
h, s

0
h) ∈ L0(Th)d × S1(Th)

and (λ0
h, η

0
h) ∈ L0(Th)d × S1(Th) and set j = 0.

(1) Compute the minimizer uj+1
h of

uh 7→ Lh(uh, p
j
h, s

j
h;λjh, η

j
h),

i.e., find uj+1
h ∈ S1(Th) such that

α(uj+1
h − g, vh)− (λjh,∇vh)w − σ1(pjh −∇u

j+1
h ,∇vh)w

− (ηjh, vh)h − σ2(sjh − u
j+1
h , vh)h = 0

for all vh ∈ S1(Th).

(2) Compute the minimizing (pj+1
h , sj+1

h ) of

(ph, sh) 7→ Lh(uj+1
h , ph, sh;λjh, η

j
h),
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i.e., define (pj+1
h , sj+1

h ) ∈ L0(Th)d × S1(Th) via

pj+1
h =

1

σ1

(
|σ1∇uj+1

h − λjh| − h
−d)

+

σ1∇uj+1
h − λjh

|σ1∇uj+1
h − λjh|

,

where (t)+ = max{t, 0}, and

sh(z) = max
{
χ(z),min

{
uj+1
h (z)−

ηjh(z)

σ2
, ψ(z)

}}
.

for all z ∈ Nh.
(3) Update

λj+1
h = λjh + σ1(pj+1

h −∇uj+1
h ),

ηj+1
h = ηjh + σ2(sj+1

h − uj+1
h ),

and stop if 1
σ1
‖λj+1

h − λjh‖w + ‖pj+1
h − pjh‖w ≤ εstop and 1

σ2
‖ηj+1
h − ηjh‖h +

‖sj+1
h − sjh‖h ≤ εstop. Increase j → j + 1 and continue with (1) otherwise.

The following stability estimate for the split-split method is a consequence
of general results for splitting methods, see, e.g., [13, 14], and arguments
exploiting only the (strong) convexity of the involved functionals, which
have been used by Wu and Tai in [21] for the classical ROF problem. It

implies the convergence ‖λj+1
h − λjh‖w + ‖pj+1

h − pjh‖w → 0 and ‖ηj+1
h −

ηjh‖h + ‖sj+1
h − sjh‖h → 0, i.e., Algorithm 5.1 terminates.

Proposition 5.2. Let (uh, ph, sh;λh, ηh) be a saddle-point of Lh with ph =
∇uh and sh = uh. For arbitrary initializations of Algorithm 5.1 we have for
any J ≥ 0

1

2

(
‖ηh − ηJ+1

h ‖2h + ‖λh − λJ+1
h ‖2w + σ2

1‖ph − pJ+1
h ‖2w + σ2

2‖sh − sJ+1
h ‖2h

)
+

1

2

J∑
j=0

(
σ1‖pj+1

h − pjh‖
2
w + σ2‖sj+1

h − sjh‖
2
h

+
1

σ1
‖λj+1

h − λjh‖
2
w +

1

σ2
‖ηj+1
h − ηjh‖

2
h + α‖uh − uj+1

h ‖2
)

≤ 1

2

(
‖ηh − η0

h‖2h + ‖λh − λ0
h‖2w + σ2

1‖∇uh − p0
h‖2w + σ2

2‖uh − s0
h‖2h
)
.

5.2. Regularization and penalization. Another way to approximate the
discrete minimizer uh of E is to regularize the BV -seminorm, introduce an
auxiliary variable sh = uh and to penalize the difference sh − uh with a
penalization parameter δ > 0 while allowing uh to penetrate the obstacles.
We obtain the functional

Eh,ε,δ(vh, rh) :=

∫
Ω
|∇vh|ε dx+

α

2
‖vh − g‖2 +

1

2δ
‖rh − vh‖2h + IK(rh),
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where |∇vh|ε = (|∇vh|2 + ε2)1/2 and ε, δ > 0. The introduction of sh de-
couples the two nonlinearities. A similar approach has been used by Hin-
termüller et al. in [15] for the predual of the classical ROF problem and
an alternate minimization technique has been employed for the numerical
solution.

Remark 5.3. Note that in contrast to the other two methods, the constraint
uh ∈ K is enforced only in the limit as δ → 0.

We can establish the existence of a discrete minimizer (uh,ε,δ, sh,ε,δ) ∈ S1(Th)×
S1(Th) of Eh,ε,δ using the direct method in the calculus of variations. Let ΠK,h

be the projection operator from S1(Th) ontoK with respect to (·, ·)h, i.e., ΠK,h

is defined by

ΠK,hvh(z) :=


vh(z), if χ(z) ≤ vh(z) ≤ ψ(z),

ψ(z), if vh(z) > ψ(z),

χ(z), if vh(z) < χ(z),

for vh ∈ S1(Th) and all z ∈ Nh. The optimality conditions for a minimizing
pair (uh,ε,δ, sh,ε,δ) then imply the relation sh,ε,δ = ΠK,huh,ε,δ.

Proposition 5.4. Let uh ∈ S1(Th) and (uh,ε,δ, sh,ε,δ) ∈ S1(Th)× S1(Th) be
the unique minimizer of E and a minimizer of Eh,ε,δ, respectively, and let
(vh, rh) ∈ S1(Th)× S1(Th) be arbitrary. Then we have

α

2
‖vh − uh,ε,δ‖2 ≤ Eh,ε,δ(vh, rh)− Eh,ε,δ(uh,ε,δ, sh,ε,δ),(3)

and in particular

α

2
‖uh − uh,ε,δ‖2 +

1

4δ
‖sh,ε,δ − uh,ε,δ‖2 ≤ c(ε+ δ),

α

2
‖uh −ΠK,huh,ε,δ‖2 ≤ c(ε+ δ).

Proof. The proof of (3) is analogous to the proof of Lemma 3.3. Since
uh ∈ K we can choose (vh, rh) = (uh, uh) in (3). Observing that |x| ≤ |x|ε ≤
|x|+ε for x ∈ Rd, using Lemma 2.1, the minimality property of uh, the iden-
tity sh,ε,δ = ΠK,huh,ε,δ, the estimate ‖∇ΠK,huh,ε,δ‖L1(Ω) ≤ ‖∇uh,ε,δ‖L1(Ω), a
binomial formula and Young’s inequality we deduce

α

2
‖uh − uh,ε,δ‖2 ≤ Eh,ε,δ(uh, uh)− Eh,ε,δ(uh,ε,δ, sh,ε,δ)

=

∫
Ω
|∇uh|ε dx+

α

2
‖uh − g‖2

−
∫

Ω
|∇uh,ε,δ|ε dx− α

2
‖uh,ε,δ − g‖2 −

1

2δ
‖sh,ε,δ − uh,ε,δ‖2h

≤ ε|Ω|+
∫

Ω
|∇uh|dx+

α

2
‖uh − g‖2
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−
∫

Ω
|∇uh,ε,δ| dx−

α

2
‖uh,ε,δ − g‖2 −

1

2δ
‖sh,ε,δ − uh,ε,δ‖2

≤ ε|Ω|+
∫

Ω
|∇ΠK,huh,ε,δ| dx+

α

2
‖ΠK,huh,ε,δ − g‖2

−
∫

Ω
|∇uh,ε,δ| dx−

α

2
‖uh,ε,δ − g‖2 −

1

2δ
‖sh,ε,δ − uh,ε,δ‖2

≤ ε|Ω| − 1

2δ
‖sh,ε,δ − uh,ε,δ‖2 +

α

2

∫
Ω

(sh,ε,δ − uh,ε,δ)(sh,ε,δ + uh,ε,δ − 2g) dx

≤ ε|Ω| − 1

2δ
‖sh,ε,δ − uh,ε,δ‖2 +

1

4δ
‖sh,ε,δ − uh,ε,δ‖2

+
α2

4
δ‖sh,ε,δ + uh,ε,δ − 2g‖2

= ε|Ω| − 1

4δ
‖sh,ε,δ − uh,ε,δ‖2 +

α2

4
δ‖sh,ε,δ + uh,ε,δ − 2g‖2,

which implies the second estimate. To prove the third estimate we note that
similarly to Lemma 3.3 we have

α

2
‖vh − uh‖2 ≤ E(vh)− E(uh)

for arbitrary vh ∈ S1(Th) ∩K. Choosing vh = sh,ε,δ we deduce

α

2
‖uh − sh,ε,δ‖2 ≤

∫
Ω
|∇sh,ε,δ|dx+

α

2
‖sh,ε,δ − g‖2

−
∫

Ω
|∇uh|dx−

α

2
‖uh − g‖2

≤
∫

Ω
|∇sh,ε,δ|ε dx+

α

2
‖sh,ε,δ − g‖2

−
∫

Ω
|∇uh|ε dx− α

2
‖uh − g‖2 + ε|Ω|

≤
∫

Ω
|∇sh,ε,δ|ε dx+

α

2
‖sh,ε,δ − g‖2

−
∫

Ω
|∇uh,ε,δ|ε dx− α

2
‖uh,ε,δ − g‖2 + ε|Ω|

≤ ε|Ω|+ α

2
‖sh,ε,δ − uh,ε,δ‖‖sh,ε,δ + uh,ε,δ − 2g‖,

where the third inequality is due to the fact that∫
Ω
|∇uh,ε,δ|ε+

α

2
‖uh,ε,δ − g‖2

≤
∫

Ω
|∇uh,ε,δ|ε +

α

2
‖uh,ε,δ − g‖2 +

1

2δ
‖uh,ε,δ − sh,ε,δ‖2h

≤
∫

Ω
|∇uh|ε +

α

2
‖uh − g‖2.

The second estimate then implies the third estimate. �
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Remark 5.5. With a view to recovering the convergence rate from Proposi-
tion 4.1 we choose ε = h1/2/|Ω| and δ = h1/2/α or ε = h/|Ω| and δ = h/α to

recover the optimal convergence rate O(h1/2), cf. [2, Rmk. 10.9 (ii)] and [4,
Thm. 6.5].

In order to define a stable numerical method for the approximation of a min-
imizer (uh,ε,δ, sh,ε,δ) ∈ S1(Th)×S1(Th) of Eh,ε,δ we consider for an auxiliary

variable ph = |∇uh,ε,δ|
1/2
ε the functional

Ẽh,ε,δ(vh, qh, rh) :=

∫
Ω

|∇vh|2 + ε2

2q2
h

+
q2
h

2
dx+

α

2
‖vh − g‖2

+
1

2δ
‖rh − vh‖2h + IK(rh).

Note that for fixed (vh, rh) it follows that

min
qh∈L0(Th),qh>0

Ẽh,ε,δ(vh, qh, rh) = Eh,ε,δ(vh, rh)

with optimal qh given by

qh = (|∇vh|2 + ε2)1/4.

Due to the seperate convexity of the functional Ẽh,ε,δ with respect to vh, qh
and rh we use a decoupled semi-implicit subgradient flow whose iterates can
be determined explicitly.

Algorithm 5.6 (Heron-penalty method). Choose (u0
h, p

0
h, s

0
h) ∈ S1(Th) ×

L0(Th)× S1(Th) such that χ ≤ s0
h ≤ ψ and p0

h ≥
√
ε. Set j = 0.

(1) Compute the minimizer uj+1
h of

uh 7→ Ẽh,ε,δ(uh, p
j
h, s

j
h) +

1

2τ
‖uh − ujh‖

2,

i.e., uj+1
h ∈ S1(Th) such that

(−dtuj+1
h , vh) =

∫
Ω

∇uj+1
h · ∇vh
(pjh)2

dx

+ α(uj+1
h − g, vh)− 1

δ
(sjh − u

j+1
h , vh)h

for all vh ∈ S1(Th).

(2) Compute the minimizing (pj+1
h , sj+1

h ) of

(ph, sh) 7→ Ih,ε,δ(u
j+1
h , ph, sh) +

1

2τ
‖ph − pjh‖

2 +
1

2τ
‖sh − sjh‖

2
h,

i.e., define (pj+1
h , sj+1

h ) ∈ L0(Th)d × S1(Th) via

(−dtpj+1
h , qh) =

∫
Ω

(
pj+1
h −

|∇uj+1
h |2 + ε2

(pj+1
h )3

)
qh dx
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for all qh ∈ L0(Th), and

sj+1
h (z) = max

{
χ(z),min

{δsjh(z) + τuj+1
h (z)

τ + δ
, ψ(z)

}}
for all z ∈ Nh.

(3) Stop if ‖dtuj+1
h ‖ + ‖dtpj+1

h ‖ + ‖dtsj+1
h ‖h ≤ εstop. Otherwise, increase

j → j + 1 and continue with (1).

The following proposition guarantees stability and convergence of the algo-
rithm.

Proposition 5.7. Let τ > 0, u0
h ∈ S1(Th), s0

h ∈ S1(Th) with χ ≤ s0
h ≤ ψ

and p0
h ∈ L0(Th) with p0

h > 0 be arbitrary initializations of Algorithm 5.6 and

let the sequences (ujh)j∈N, (sjh)j∈N and (pjh)j∈N be generated by Algorithm 5.6.
Then for arbitrary J ∈ N the stability estimate

τ
J∑
j=0

‖dtuj+1
h ‖2 + ‖dtpj+1

h ‖2 + ‖dtsj+1
h ‖2h

+ Ẽh,ε,δ(u
J
h , p

J
h , s

J
h) ≤ Ẽh,ε,δ(u0

h, p
0
h, s

0
h),

(4)

holds. Particularly, Algorithm 5.6 terminates and
(
Ẽh,ε,δ(u

j
h, p

j
h, s

j
h)
)
j∈N

is monotonically decreasing. Furthermore, every convergent subsequence

(uj`h , s
j`
h )`∈N ⊂ S1(Th) × S1(Th) converges to a minimizer (uh,ε,δ, sh,ε,δ) ∈

S1(Th)× S1(Th) of Eh,ε,δ.

Proof. The proof of the stability estimate follows as in the proof of [3,

Theorem III.4] by choosing −dtuj+1
h , −dtpj+1

h and −dtsj+1
h in the optimal-

ity conditions defining the iterates in Algorithm 5.6 and using the seper-

ate convexity of Ẽh,ε,δ. The stability estimate (4) implies that the se-

quence (ujh)j is bounded. We choose a subsequence (uj`h )` which converges

to some uh,ε,δ ∈ S1(Th). Since dtu
j
h → 0 it follows that uj`+1

h → uh,ε,δ as well
and by the equivalence of norms on finite-dimensional spaces we also have

∇uj`h → ∇uh,ε,δ and ∇uj`+1
h → ∇uh,ε,δ. Furthermore, since dtp

j`+1
h → 0 the

optimality condition for the iterates (pj`+1
h )` implies

|∇uj`+1
h |2 + ε2

(pj`+1
h )3

− pj`+1
h → 0,

which means that pj`h → (|∇uh,ε,δ|2 + ε2)1/4. The optimality condition for

the iterate uj`+1
h and dtu

j`+1
h → 0 then imply that

1

δ
(sj`h − u

j`+1
h , vh)h →

∫
Ω

∇uh,ε,δ · ∇vh
(|∇uh,ε,δ|2 + ε2)1/2

dx+ α

∫
Ω

(uh,ε,δ − g)vh dx
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as `→∞ for all vh ∈ S1(Th), i.e., (sj`h )` converges to some function sh,ε,δ ∈
S1(Th). The optimality condition for the iterate sj`+1

h reads

(−dtsj`+1
h , rh − sj`+1

h )h +
1

δ
(uj`+1
h − sj`+1

h , rh − sj`+1
h )h + IK(sj`+1

h ) ≤ IK(rh)

for all rh ∈ K ∩ S1(Th). This means that for `→∞ we have

1

δ
(uh,ε,δ − sh,ε,δ, rh − sh,ε,δ)h + IK(sh,ε,δ) ≤ IK(rh)

for all rh ∈ K∩S1(Th), i.e., (uh,ε,δ, sh,ε,δ) satisfies the necessary and sufficient
optimality conditions for a minimizer of Eh,ε,δ. �

Remark 5.8. Note that due to Proposition 5.4 all minimizers (uh,ε,δ, sh,ε,δ)
of Eh,ε,δ are within the ball in L2(Ω) around the unique minimizer uh of E

with radius c(ε+ δ). Therefore, by Proposition 5.7 the iterates (ujh, s
j
h) gen-

erated by Algorithm 5.6 get arbitrarily close to this ball around uh.

5.3. Regularization and splitting. Alternatively, we may consider only
a regularization of the BV -seminorm and seek a minimizer uh,ε ∈ S1(Th) of
the functional

Eε(vh) :=

∫
Ω
|∇vh|ε dx+

α

2
‖vh − g‖2 + IK(vh).

In order to enforce the constraint strictly we can use an augmented La-
grangian ansatz, i.e., work with the regularized augmented Lagrangian func-
tional

Lh,ε(vh, rh; νh) :=

∫
Ω
|∇vh|ε dx+

α

2
‖vh − g‖2

+ (νh, rh − vh)h +
σ

2
‖rh − vh‖2h + IK(rh)

to approximate the unique minimizer uh,ε ∈ S1(Th) of Eε. We can use the
following iteration to approximate the unique minimizer uh,ε.

Algorithm 5.9 (Regularized splitting method). Choose η0
h ∈ S1(Th) and

set j = 0.

(1) Compute a minimizer (uj+1
h , sj+1

h ) ∈ S1(Th)× S1(Th) of

(uh, sh) 7→ Lh,ε(uh, sh; ηjh).

(2) Update

ηj+1
h = ηjh + σ(sj+1

h − uj+1
h ).

and stop if 1
σ‖η

j+1
h − ηjh‖h ≤ εstop.

Remark 5.10. The stability (and convergence) of Algorithm 5.9 follows
from the theory of augmented Lagrangian methods (cf. [13, 14]) using ar-
guments from [21] which avoid differentiability assumptions on the involved
functionals but exploit their (strong) convexity.
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Since the minimizer in step (1) of Algorithm 5.9 is not directly accessible
we consider for j ∈ N the augmented functional

L̃h,ε(uh, ph, sh; ηjh) :=

∫
Ω

|∇uh|2 + ε2

2p2
h

+
p2
h

2
dx+

α

2
‖uh − g‖2

+ (ηjh, sh − uh)h +
σ

2
‖sh − uh‖2h + IK(sh).

Noting that L̃h,ε is separately convex in uh, ph and sh we use as in the
Heron-penalty method a semi-implicit subgradient flow to approximate a

minimizer (uj+1
h , sj+1

h ) of Lh,ε(uh, sh; ηjh) in the (j + 1)-th iteration.

Algorithm 5.11 (Heron-split method). Choose (u0
h, p

0
h, s

0
h) ∈ S1(Th) ×

L0(Th) × S1(Th) and η0
h ∈ S1(Th) such that χh ≤ s0

h ≤ ψh and p0
h ≥

√
ε.

Set j = 0.

(1) Set uj+1,0
h = ujh, pj+1,0

h = pjh and sj+1,0
h = sjh.

(2) For ` = 0, . . . ,M − 1: first compute the minimizer uj+1,`+1
h of

uh 7→ L̃h,ε(uh, p
j+1,`
h , sj+1,`

h ; ηjh) +
1

2τ
‖uh − uj+1,`

h ‖2,

and then compute the minimizing (pj+1,`+1
h , sj+1,`+1

h ) of

(ph, sh) 7→ L̃h,ε(u
j+1,`+1
h , ph, sh; ηjh) +

1

2τ
‖ph − pj+1,`

h ‖2 +
1

2τ
‖sh − sj+1,`

h ‖2h.

(3) Set uj+1
h = uj+1,M

h , pj+1
h = pj+1,M

h and sj+1
h = sj+1,M

h .
(4) Update

ηj+1
h = ηjh + σ(sj+1

h − uj+1
h ),

and stop if 1
σ‖η

j+1
h − ηjh‖h ≤ εstop. Otherwise, increase j → j + 1 and

continue with (1).

Remark 5.12. (i) Instead of the fixed number M of inner iterations in
step (2) of Algorithm 5.11 one can also stop the inner iteration using the
stopping criterion

‖dtuj+1,`+1
h ‖+ ‖dtpj+1,`+1

h ‖+ ‖dtsj+1,`+1
h ‖h ≤ ε̃stop.

(ii) In our experiments we will set M = 1 and use the stopping criterion

‖dtuj+1
h ‖+ ‖dtpj+1

h ‖+ ‖dtsj+1
h ‖h +

1

σ
‖ηj+1
h − ηjh‖h ≤ εstop

in step (4) of Algorithm 5.11. We will refer to this setting as the Heron-split
method.

6. Application to piecewise constant segmentation

In this section we investigate the constrained minimization problem

min
u∈BV (Ω)

Eseg(u) := min
u∈BV (Ω)

∫
Ω
|Du|+ α

∫
Ω
fudx+ IK(u)
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with f ∈ L∞(Ω) and K := {v ∈ L2(Ω) : 0 ≤ v ≤ 1 a.e.}. This constrained
minimization problem occurs, e.g., in the piecewise constant segmentation
of images discussed in [10] where one aims at minimizing for a given image
g ∈ L∞(Ω) the nonconvex functional

MS(Σ, c1, c2) :=

∫
Ω
|DχΣ|+ α

∫
Σ

(c1 − g)2 dx+ α

∫
Ω\Σ

(c2 − g)2 dx

with χΣ being the characteristic function of the unknown set Σ. The au-
thors propose an alternating minimization with respect to the unknown
variables Σ, c1 and c2. For a fixed set Σ the optimal c1 and c2 are given by

c1 =
1

|Σ|

∫
Σ
g dx and c2 =

1

|Ω \ Σ|

∫
Ω\Σ

g dx.

However, the major difficulty amounts to solving the minimization problem
defined by the functional MS(·, c1, c2) for fixed c1 and c2. Berkels et al. con-
sidered a relaxed functional of MS(·, c1, c2) in [6], employed a finite element
discretization and used the primal-dual method proposed by Chambolle and
Pock in [9] using adaptive refinement techniques as well.
The crucial observation is that one may solve this global optimization prob-
lem defined by MS(·, c1, c2) by computing a minimizer u of Eseg with χ ≡
0, ψ ≡ 1 and

f := (c1 − g)2 − (c2 − g)2.

Then, for almost every γ ∈ [0, 1], the set

Σ := {x ∈ Rd : u(x) ≥ γ}
is a minimizer of MS(·, c1, c2), cf. [10, Thm. 2].

One can establish the existence of a minimizer u ∈ BV (Ω) ∩ K of Eseg,
however, the minimizer may not be unique. Restricting the minimization
of Eseg to S1(Th) then also provides a minimizer uh ∈ S1(Th). Analogously
to Lemma 4.1 we obtain the following estimate.

Lemma 6.1. Let u and uh be minimizers of Eseg on BV (Ω) and on S1(Th),
respectively. We then have

Eseg(uh)− Eseg(u) ≤ ch1/2.

Proof. The proof is analogous to that of Lemma 4.1 and we therefore omit
it. �

The authors in [10] furthermore observed that the functional

Ẽseg(u) :=

∫
Ω
|Du|+

∫
Ω
βθ(u) + αfu dx,

where θ(ξ) := max{0, 2|ξ− 1
2 |−1}, has the same minimizers as Eseg provided

that β > α
2 ‖f‖L∞(Ω), cf. [10, Claim 1]. They employ a regularization of the

BV -seminorm and of the function θ and use an explicit gradient descent

scheme to approximate a minimizer of Ẽseg and Eseg, respectively.
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We remark that this procedure may be practical in this specific situa-

tion, however, the construction of the functional Ẽseg only enables one to
deal with this particular constrained minimization problem defined by Eseg.
Since we can adapt the iterative schemes presented in Section 5 to the min-
imization of Eseg after making minor adjustments we will also present nu-
merical experiments for the piecewise constant segmentation problem in the
next section. We conclude this section with a result which is analogous to
Proposition 5.4.

Proposition 6.2. Let uh ∈ S1(Th) and (uh,ε,δ, sh,ε,δ) ∈ S1(Th)× S1(Th) be
minimizers of Eseg and of the functional

Esegh,ε,δ(vh, rh) :=

∫
Ω
|∇vh|ε dx+ α

∫
Ω
fuh dx+

1

2δ
‖vh − rh‖2h + IK(rh),

respectively. Then we have

Eseg(uh)− Esegh,ε,δ(uh,ε,δ, sh,ε,δ) +
1

4δ
‖uh,ε,δ − sh,ε,δ‖2 ≤ c(ε+ δ).

Proof. Observing that for a ∈ Rd we have |a| ≤ |a|ε ≤ |a| + ε and that
ΠKuh,ε,δ = sh,ε,δ, and using the arguments in the proof of Proposition 5.4
we obtain

Eseg(uh)− Eh,ε,δ(uh,ε,δ, sh,ε,δ) ≤ Eh,ε,δ(uh, uh)− Eh,ε,δ(uh,ε,δ, sh,ε,δ)

=

∫
Ω
|∇uh|ε dx+ α

∫
Ω
fuh dx

−
∫

Ω
|∇uh,ε,δ|ε dx− α

∫
Ω
fuh,ε,δ dx− 1

2δ
‖sh,ε,δ − uh,ε,δ‖2h

≤ ε|Ω|+
∫

Ω
|∇uh|dx+ α

∫
Ω
fuh dx

−
∫

Ω
|∇uh,ε,δ| dx− α

∫
Ω
fuh,ε,δ dx− 1

2δ
‖sh,ε,δ − uh,ε,δ‖2

≤ ε|Ω|+
∫

Ω
|∇ΠKuh,ε,δ| dx+ α

∫
Ω
fΠKuh,ε,δ dx

−
∫

Ω
|∇uh,ε,δ| dx− α

∫
Ω
fuh,ε,δ dx− 1

2δ
‖sh,ε,δ − uh,ε,δ‖2

≤ ε|Ω| − 1

2δ
‖sh,ε,δ − uh,ε,δ‖2 + α‖f‖‖uh,ε,δ − sh,ε,δ‖

≤ ε|Ω| − 1

2δ
‖sh,ε,δ − uh,ε,δ‖2 +

1

4δ
‖sh,ε,δ − uh,ε,δ‖2 + α2δ‖f‖2.

This proves the assertion. �

Remark 6.3. In order to recover the convergence rate from Lemma 6.1 we

choose δ = h1/2

α‖f‖ .
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7. Numerical Experiments

7.1. Constrained ROF. We investigate two examples which differ only
in the choice of the parameter α > 0. In both cases the algorithms are
initialized as follows: we set p0

h = λ0
h = 0, η0

h = 0, s0
h = (χ + ψ)/2 and

σ1 = h−3/2 (see [3]) in Algorithm 5.1. We start Algorithm 5.6 with ε = h,

τ = 1, u0
h = (χ + ψ)/2, p0

h = ε1/2 and s0
h = u0

h, and Algorithm 5.11 with

ε = h, τ = 1, u0
h = (χ + ψ)/2, p0

h = ε1/2, s0
h = u0

h and η0
h = 0. To

compare the accuracy of the algorithms we use precomputed approximate
minimizers ũh of E generated by Algorithm 5.1 with σ2 = α, (ũh,ε,δ, s̃h,ε,δ)
of Eh,ε,δ generated by Algorithm 5.6 with both δ = h/α and δ = h, and ũh,ε
of Eε generated by Algorithm 5.11 with σ = α after 104 iterations. The
stopping criteria have been chosen as follows:

• Split-split method:

(5) ‖ũh − ujh‖ ≤ 10−3

• Heron-penalty method:

(6) max{‖ũh,ε,δ − ujh‖, ‖s̃h,ε,δ − s
j
h‖} ≤ 10−3

• Heron-split method:

(7) ‖ũh,ε − ujh‖ ≤ 10−3

Example 7.1. We let d = 2, Ω = (0, 1)2, χ ≡ 1/5, ψ ≡ 1/2 and α = 50.
Moreover, given a uniform triangulation T5 of Ω with mesh size h =

√
22−5,

we let g̃ ∈ S1(T5) to be the continuous, piecewise affine approximation of the
characteristic function χB1/5(xΩ) of the closed ball with radius 1/5 around

the center xΩ of Ω, i.e., g̃ is defined by

g̃(z) :=

{
1, if z ∈ B1/5(xΩ)

0, else

for z ∈ N5. We then set g := g̃ + ξ5 where ξ5 ∈ S1(T5) whose coefficient
vector is a sample of a random variable uniformly distributed in the inter-
val [−1/2, 1/2].

In Table 1 we displayed the iteration numbers needed by the algorithms to
satisfy the stopping criteria (5), (6) and (7). Since the optimal choice of the
step sizes σ2 and σ for the split-split method and the Heron-split method,
respectively, are not clear, we ran the algorithms for three different choices
of step sizes. As one can observe the choice σ2 = α and σ = α, respectively,
lead to the smallest iteration numbers which is due to the balance of fit-
to-data and fit-to-constraint, i.e., when σ2 = σ = α is chosen the split-
split algorithm and the Heron-split method try to recover the datum g and
to satisfy the bilateral constraint simultaneously. Regarding the Heron-
penalty method, we ran the algorithm for the choices δ = h/α and δ = h.
Obviously, due to a worse conditioning, the iteration numbers for the choice
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Split-split Heron-penalty Heron-split

σ2 δ σ

h 1 α 1/h h/α h 1 α 1/h√
2/25 344 39 37 89 42 892 52 57√
2/26 289 79 79 143 55 576 77 77√
2/27 283 77 78 211 69 473 94 94√
2/28 287 115 120 426 101 373 148 151

Table 1. Iteration numbers with (5), (6), (7) for Exam-

ple 7.1 and σ1 = h−3/2 for the split-split method and τ = 1
for the Heron-penalty and the Heron-split method.
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Figure 1. L2-error between approximate minimizer ũh of E

(generated by the split-split method) and iterates ujh, sjh of

the Heron-penalty method, h =
√

22−6, ε = h, for Exam-

ple 7.1. Note that the iterates ujh serve as good approxima-
tions of ũh when δ = h/α.

δ = h/α are much larger than for δ = h. However, for δ = h the iterates ujh
generated by the Heron-penalty method stay far from the minimizer uh
of E and the distance corresponds to the magnitude of α as predicted by
Proposition 5.4. This effect is also illustrated in Figure 1 where the L2-error



20 SÖREN BARTELS AND MARIJO MILICEVIC

between the approximate minimizer ũh of E generated by the split-split

method and the iterates ujh and sjh, respectively, generated by the Heron-
penalty method for both δ = h/α and δ = h is plotted against the number
of iterations. For δ = h/α we see that the final iterates uNh and sNh serve as
good approximations of ũh and the approximation error is of order h. Yet,

for δ = h, the iterates ujh do not have practical approximation properties and
one would have to decrease the mesh size significantly to obtain a similar
accuracy as for δ = h/α. Still, one can also observe that the different
choices of δ do not considerably affect the approximation properties of the

iterates sjh, i.e., one may set δ = h and choose the final iterate sNh as an
approximation of ũh.

Example 7.2. The setting is as in Example 7.1 except for the parameter α,
which is set to α = 500 here.

In Table 2 the iteration numbers for Example 7.2 are displayed. We see
that the effect of higher iteration numbers for the split-split method and the
Heron-split method for the choice σ2 = σ = 1 and for the choice δ = h/α in
the Heron-penalty method are now even more pronounced due to the choice

of a large α. Moreover, Figure 2 shows once again that the iterates ujh gen-
erated by the Heron-penalty method for δ = h may not be used as a good

approximation of ũh since the constant α affects the L2-distance between ujh
and ũh while the iterates sjh seem to define accurate approximations of ũh
almost independently of the choice of δ.
The overall conclusion of the experiments is that the split-split method with
σ2 = α, Heron-penalty method with δ = h and the Heron-split method with
σ = α lead to the smallest iteration numbers and have a similar performance.
An advantage of the Heron-penalty method is that the choice of parameters
is clear while the choice of the step sizes σ2 and σ in the split-split method
and the Heron-split method, respectively, remain unclear in general. How-
ever, the penalization parameter δ in the Heron-penalty method has to scale

as h/α for the iterates ujh to be close to uh.

Split-split Heron-penalty Heron-split

σ2 δ σ

h 1 α 1/h h/α h 1 α 1/h√
2/25 2745 10 124 74 24 4592 15 189√
2/26 2808 15 65 156 27 3586 21 72√
2/27 2847 23 35 298 35 3133 25 42√
2/28 − 29 30 572 43 − 33 37

Table 2. Iteration numbers with (5), (6), (7) for Exam-

ple 7.2 and σ1 = h−3/2 for the split-split method and τ = 1
for the Heron-penalty and the Heron-split method.
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Figure 2. L2-error between approximate minimizer ũh of E

(generated by the split-split method) and iterates ujh, sjh of

the Heron-penalty method, h =
√

22−6, ε = h, for Exam-

ple 7.2. Again, the iterates ujh approximate ũh properly when
δ = h/α.

7.2. Piecewise constant segmentation. In this section we report nu-
merical experiments for the binary image segmentation model presented in
Section 6. We consider the two-phase image segmentation of the image
“cameraman”. To this extent, we let g be the continuous piecewise affine
function with coefficient vector whose entries consist of the (scaled) gray-
values of the image ranging from 0 to 1. We further let α = 1500, χ ≡ 0,
ψ ≡ 1, and consider the following algorithm of [10] which involves the solu-
tion of a constrained TV -minimization problem.

Algorithm 7.3. Choose c0
1, c

0
2 ∈ R and γ ∈ [0, 1]. Set k = 0.

(1) Compute for f = (ck1− g)2− (ck2− g)2 an approximate minimizer ũk+1
h ∈

S1(Th) of the functional

Eseg(vh) =

∫
Ω
|∇vh|+ α

∫
Ω
fvh dx+ IK(vh)

using either the split-split method or the Heron-penalty method or the Heron-
split method.
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(2) Define uk+1
h by

uk+1
h (z) =

{
1, if ũk+1

h (z) ≥ γ,
0, if ũk+1

h (z) < γ,

for z ∈ Nh. Set

Σk+1 =
⋃
{T ∈ Th : uk+1

h |T ≡ 1}.
(3) Set

ck+1
1 =

1

|Σk+1|

∫
Σk+1

g dx and ck+1
2 =

1

|Ω \ Σk+1|

∫
Ω\Σk+1

g dx.

(4) Stop if

|MS(Σk+1, ck+1
1 , ck+1

2 )−MS(Σk, ck1, c
k
2)|

|MS(Σk+1, ck+1
1 , ck+1

2 )|
≤ εstop.

Otherwise, increase k → k + 1 and continue with (1).

Using a uniform triangulation with mesh size h ∼ 2−8 we chose c0
1 = 1 and

c0
2 = 0 and set the thresholding parameter to γ = 1/2. We set εstop = 10−3

in step (4). In step (2), we initialize the algorithms as in the preceding

subsection and used ε = h1/2 for the Heron-penalty and the Heron-split
method. We set δ = h1/2 in the Heron-penalty method and used σ2 = σ =
α‖f‖ in the split-split and the Heron-split method and τ = 1 in the Heron-
penalty and the Heron-split method. The stopping criteria in step (2) were
chosen as follows:

• Split-split method:(
‖λj+1

h − λjh‖
2
w + h−3‖pj+1

h − pjh‖
2
w

)1/2 ≤ 10−3 and( 1

σ2
2

‖ηj+1
h − ηjh‖

2
h + ‖sj+1

h − sjh‖
2
h

)1/2
≤ 10−3

(8)

• Heron-penalty method:

(9)
(
‖dtuj+1

h ‖2 + ‖dtpj+1
h ‖2 + ‖dtsj+1

h ‖2h
)1/2 ≤ 10−3

• Heron-split method:(
‖dtuj+1

h ‖2 + ‖dtpj+1
h ‖2

)1/2 ≤ 10−3 and( 1

σ2
‖ηj+1
h − ηjh‖

2
h + ‖sj+1

h − sjh‖
2
h

)1/2
≤ 10−3

(10)

Figure 3 shows the original image and the outputs of Algorithm 7.3 using the
split-split method, the Heron-penalty method and the Heron-split method

in step (2), respectively, where we used the iterates sjh as approximations
of a minimizer in step (2) in the Heron-penalty method. The three white
horizontal lines in the outputs are due to image conversion. One can observe
that all outputs are visually almost the same. The output of the split-split
method and the Heron-split method visually do not differ at all, whereas
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(a) Original image (b) Split-split

(c) Heron-penalize (d) Heron-split

Figure 3. Original image and outputs of Algorithm 7.3 us-
ing the split-split, Heron-penalty and Heron-split method in
step (2), respectively (horizontal white lines are due to image
conversion).

the image generated by the Heron-penalty method has two black dots which
do not appear in the other two images. These dots are not contained in

the output of the Heron-penalty method when using δ = h1/2

α‖f‖ . The final

values of c1 and c2 were c1 = 0.5946 and c2 = 0.1144 for both the split-
split method and the Heron-split method and c1 = 0.5951, c2 = 0.1147 for
the Heron-penalty method. The final values of the energy MS(Σ, c1, c2)
were 25.3745, 25.3863 and 25.3711 for the split-split method, the Heron-
penalty method and the Heron-split method, respectively. The split-split
method needed 5000 iterations in total for termination (6 outer iterations),
while the Heron-penalty method needed 1382 iterations in total (7 outer
iterations) and the Heron-split method needed 857 iterations in total (6

outer iterations). The Heron-penalty method with δ = h1/2

α‖f‖ needed 1675
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iterations in total (6 outer iterations). Using ujh generated by the Heron-
penalty method as approximations for the minimizer in step (2) led to the

same results as for the case using sjh.
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