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Abstract. Various iterative methods are available for the approximate
solution of nonsmooth minimization problems. For a popular nonsmooth
minimization problem arising in image processing the suitable applica-
tion of three prototypical methods and their stability is discussed. The
methods are compared experimentally with a focus on choice of stopping
criteria, influence of rough initial data, step sizes as well as mesh sizes
and an overview of existing algorithms is given.

1. Introduction

In this paper we deal with the minimization of the TV -L2 functional

I(u) = |Du|(Ω) +
α

2
‖u− g‖2L2(Ω)

which is a prototypical model problem for total variation regularized min-
imization problems. The minimization of functionals that involve the BV -
seminorm |Du|(Ω) are particularly interesting in applications where func-
tions with discontinuities are desired, such as in image denoising where sharp
edges of images should be preserved, or in the modelling of perfect elasto-
plasticity, damage and fracture in continuum mechanics where spatial jumps
should be allowed for the symmetric gradient of the displacement field or
the damage variable, respectively, see, e.g., [6, 21, 40].
The minimization of I, the so called unconstrained ROF problem (or simply
ROF problem), has been first proposed in [39] in the context of an image de-
noising problem. Despite the seemingly simple structure of the functional I,
its minimization by numerical methods poses a challenging problem due to
the non-differentiability of the BV -seminorm. Since its introduction in the
aforementioned paper many algorithms for the minimization of I have been
developed many of which motivated by image processing problems.

I.A. Regularization. The authors in [39] considered a regularization of the
BV -seminorm and employed an explicit time discretization of the parabolic
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PDE with homogeneous Neumann boundary condition

∂tu = −div

(
∇u√

|∇u|2 + ε2

)
+ α(u− g)

with a finite difference discretization of the involved differential operators.
The drawbacks of this approach are that we lose the possibility of sharp
jumps of minimizers across lower-dimensional subsets on the one hand and
that the condition on the time-step size is very restrictive, namely τ ≤ ch2

with h being the mesh size of the underlying grid, on the other hand. A
similar technique has been proposed in [42, 23] where the authors applied a
fixed-point iteration to solve the perturbed Euler-Lagrange equation

−div

(
∇u
|∇u|ε

)
+ α(u− g) = 0

with |∇u|ε =
√
|∇u|2 + ε2. The authors in [17] considered a Newton method

for the primal-dual system

|∇u|εp−∇u = 0,

−div p+ α(u− g) = 0,

and observed that the Newton iteration for this system is better behaved
than the Newton iteration for the Euler-Lagrange equation. However, it
remains unclear how the convergence depends on the regularization param-
eter ε.
In general, the performance of algorithms based on regularization approaches
depends critically on the regularization parameter ε. By introducing an aux-
iliary variable sh we devise a fully practical, unconditionally stable iterative
method to solve the regularized Euler-Lagrange equations.

I.B. Splitting methods. Another class of methods is based on a splitting
ansatz where a new variable σ = ∇u is introduced which transforms the
minimization of the TV -L2 functional with respect to u into the constrained
minimization problem

inf
σ,u

∫
Ω
|σ| dx+

α

2
‖u− g‖2L2(Ω) s.t. σ = ∇u.

In [44] the authors proposed an alternating minimization scheme with re-
spect to the variables u and σ for a functional that results from the L1-L2

functional after adding the penalization term δ−1

2 ‖σ − ∇u‖L2(Ω) that en-
forces the constraint when decreasing the penalization parameter δ. In [32]
the authors introduce the so-called split Brègman method which employs a
Brègman iterative scheme [11] in order to approximate a minimizer of the
constrained L1-L2 minimization problem and to enforce the equality con-
straint strictly via the Brègman iteration. A closely related method is the
augmented Lagrangian method [29] that has been applied in [45] to the con-
strained L1-L2 minimization problem, where, in addition to the penalization
term, the term (λ, σ−∇u)L2 with λ being a Lagrange multiplier is added in
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order to strictly enforce the constraint σ = ∇u. In [45], it has also been noted
that the iteration scheme in the augmented Lagrangian method is equiva-
lent to that in the split Brègman method. Another alternating minimization
scheme, which is closely related to the augmented Lagrangian method, has
been proposed in [41] where the variable uh is updated via minimization of
the Lagrangian functional instead of the augmented Lagrangian functional,
i.e., omitting the penalization term in the update rule for uh, while σh is
updated by minimizing the augmented Lagrangian functional. Yet, this al-
gorithm requires a step size τ = O(h2) for convergence. In [31] the authors
discuss acceleration techniques for the augmented Lagrangian method and
the alternating minimization algorithm proposed in [41]. In order to enforce
stability, a restart condition has to be included in the accelerated augmented
Lagrangian method which may negatively affect the performance.
A critical aspect of most proposed splitting methods is that the consistency
error σ −∇u is measured in the L2-norm. However, since the minimizer u
of I lies only in BV (Ω), we cannot in general expect sequences (∇uh)h>0

of approximations to be bounded in L2(Ω). We therefore consider the aug-
mented Lagrangian method with a weighted L2-norm for which the sequence
(∇uh)h>0 is guaranteed to be bounded due to an inverse estimate and its
boundedness in L1(Ω).

I.C. Saddle-point approach. Another approach is based on the definition
of theBV -seminorm as the operator norm of the distributional derivativeDu
and converts the TV -L2 minimization problem into the problem of finding
a saddle-point of the functional

S(u, p) = −
∫

Ω
u div pdx+

α

2
‖u− g‖2L2(Ω) − IK1(0)(p).

In [14], starting from a finite difference discretization of the functional I,
the authors defined a primal-dual algorithm, which is a proximal-point al-
gorithm for finding a saddle-point of S. Stability is guaranteed by choosing
the involved step size as τ = O(h). Various acceleration techniques are also
discussed in [14] where variable step sizes and variable extrapolation param-
eters are considered. In [4], the author adapted the ideas from [14] to define
a primal-dual algorithm for the approximation of a saddle-point of S using
finite elements which takes the form of a semi-implicit time discretization of
an L2-(sub-)gradient flow based on the optimality conditions for a saddle-
point of S. The restrictive step size τ = O(h) is required for stability as
well. Recently, the author in [3] noted that if g ∈ L∞(Ω) then the discrete
minimizers of I are uniformly bounded in C(Ω)∩BV (Ω). This motivates to

use a discrete variant of the inner product in H1/2(Ω) as a preconditioner
for the linear system of equations associated to the optimality condition for
uh and yields a weaker restriction on the step size, namely τ = O(h1/2).



4 SÖREN BARTELS AND MARIJO MILICEVIC

I.D. Other approaches. Further methods are based on the dual functional
of I, the so called dual methods. In [12], the author considers the dual func-
tional of a finite difference discretization of I and proposes a semi-implicit
gradient-descent algorithm for solving the associated constrained optimiza-
tion problem which requires a step size of order τ = O(h2). In [15], the
authors start from a finite difference discretization of I and introduce two
new variables u1 and u2 in such a way that a forward difference quotient in
horizontal direction is applied to u1 and a forward difference quotient in ver-
tical direction is applied to u2. The resulting constraints are enforced with
Lagrange multipliers. The obtained saddle-point problem is then converted
into a maximization problem in the two Lagrange multipliers.
In [35] the authors reformulate the ROF problem as a bilaterally constrained
optimization problem by considering the predual of the TV -L2 functional
with anisotropic BV -seminorm, that is, the `1-norm of ∇u. They propose
semi-smooth Newton methods (cf. [34]) for regularized versions of the pre-
dual problem.
In [30] the constrained ROF problem (cf. [39]) is formulated as a second-
order cone programm which is in turn solved by an interior-point algorithm.
This method is related to the approach in [17], as observed in [46].
Finally, starting from a discretization of I, the authors in [22] decompose the
variable u into its level sets and transform the minimization problem into
independent binary Markov Random Fields associated to each level set. The
minimization is then realized with a graph cut algorithm.

I.E. Objectives. This paper aims at answering the question which PDE-
based methods may be the most appropriate, accurate and effective ones
for the minimization of total variation regularized minimization problems in
order to have a clear and unified statement for total variation minimization
problems arising both in image processing and in other applications such as,
e.g., continuum mechanics. Based on the given overview it seems sufficient
to take iterative schemes for regularized variants of I, primal-dual schemes
for the saddle-point problem defined by S and splitting methods into con-
sideration since these are prototypical methods in the context of PDEs and
for which a rigorous numerical analysis can be carried out in the sense that
a stability estimate is available which is robust in the discretization param-
eters.

I.F. Outline. The paper is structured as follows: in Section 2 we state the
model problem, review important properties of the minimizer of the func-
tional I, state some duality relations and recall the finite element discretiza-
tion of the ROF problem. We also introduce some basic notation regarding
iterative solution schemes and review identities that are important in the
solution of subdifferential inclusions. In Section 3 we introduce the Heron
method, which is an iterative scheme for solving the discrete minimization
problem associated with a regularization of I and discuss its stability. The
properly weighted augmented Lagrangian method is introduced in Section 4
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and we establish an adequately weighted L2-norm in order to guarantee sta-
bility of the method before we review the primal-dual method proposed in
[3, 4] in Section 5. In Section 6 we show experimental results for two exam-
ples with different data functions g and different values of α. In Section 7
we give for each approach stated in the introduction an explanation why
we decided to not include them into our comparison. After concluding the
paper in Section 8, we discuss the computation of roots of quartic algebraic
equations which is needed in the Heron method in Appendix A.

2. Preliminaries

II.A. ROF model problem. For a bounded Lipschitz domain Ω ⊂ Rd, a
given function g ∈ L∞(Ω), and a parameter α > 0 we consider the mini-
mization of

I(u) =

∫
Ω
|Du|+ α

2
‖u− g‖2.

Here, ‖ · ‖ denotes the L2-norm on Ω and the first term on the right-hand
side is the total variation of u ∈ L1(Ω), given by∫

Ω
|Du| = sup

{
−
∫

Ω
u div q dx : q ∈ C1

c (Ω;Rd), |q| ≤ 1 a.e.
}
,

where | · | denotes the Euclidean norm. Due to the convexity of the total
variation and strong convexity of the squared L2-norm there exists a unique
minimizer u ∈ BV (Ω) ∩ L2(Ω) for I such that

α

2
‖u− v‖2 ≤ I(v)− I(u)

for every v ∈ BV (Ω) ∩ L2(Ω). The space BV (Ω) ⊂ L1(Ω) consists of all
v ∈ L1(Ω) with finite total variation. For more details concerning the space
BV (Ω) see, e.g., [1, 2]. A cut-off argument and the chain rule in BV (Ω)
imply that we have

‖u‖L∞(Ω) ≤ ‖g‖L∞(Ω).

For u ∈ BV (Ω) ∩ L2(Ω) the supremum in the characterization of the total
variation of u can be taken in the set of functions q ∈ HN (div; Ω), where

HN (div; Ω) =
{
q ∈ L2(Ω;Rd) : div q ∈ L2(Ω), q · n = 0 on ∂Ω

}
.

The minimization of I is thus equivalent to a saddle-point problem defined
by the functional

Ŝ(u, p) = −
∫

Ω
udiv p dx+

α

2
‖u− g‖2 − IK1(0)(p)

with the indicator functional IK1(0) of the set K1(0) consisting of all vector

fields in L2(Ω;Rd) with length uniformly bounded by one. The optimality
conditions for a saddle point (u, p) ∈ BV (Ω) ∩ L2(Ω)×HN (div; Ω) read

−div p+ α(u− g) = 0, p ∈ ∂|∇u|.
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The subdifferential inclusion for p is equivalent to

p(x) ∈

{
{∇u(x)/|∇u(x)|} if ∇u(x) 6= 0,

K1(0) if ∇u(x) = 0,

for almost every x ∈ Ω. Eliminating u = (div p + αg)/α from the saddle-
point functional we see that p is maximal for

D(p) = − 1

α

∫
Ω

(div p+ αg) div p dx+
1

2α
‖ div p‖2 − IK1(0)(p)

= − 1

2α
‖ div p+ αg‖2 +

α

2
‖g‖2 − IK1(0)(p).

This dual problem admits solutions which are nonunique in general. It can
be shown that strong duality, i.e., infu I(u) = suppD(p), holds, cf. [25].

II.B. Finite element discretization. For a regular triangulation Th of Ω
into triangles or tetrahedra of maximal diameter h > 0, we define the space
of continuous, elementwise affine functions on Th via

S1(Th) =
{
vh ∈ C(Ω) : vh|T affine for all T ∈ Th

}
.

Elementwise constant functions are contained in the space

L0(Th) =
{
qh ∈ L∞(Ω) : qh|T constant for all T ∈ Th

}
and the set of elementwise constant vector fields is denoted by L0(Th)d. Note
that unless Th consists of one element only, we have L0(Th)d 6⊂ HN (div; Ω).
The restriction of the minimization of I to S1(Th) ⊂W 1,1(Ω) leads to min-
imizing

I(uh) =

∫
Ω
|∇uh| dx+

α

2
‖uh − g‖2

and admits a unique minimizer for which we have the error estimate

α

2
‖u− uh‖2 ≤ I(uh)− I(u) ≤ min

vh∈S1(Th)
I(vh)− I(u) ≤ ch1/2, (1)

cf. [43, 7]. The error estimate is suboptimal in the sense that for every
u ∈ BV (Ω) ∩ L∞(Ω) we have

min
vh∈S1(Th)

‖u− vh‖2 ≤ ch,

cf. [5], but this rate cannot be expected in general. Numerical approxi-
mations of u appear to be closer to the true solution than this estimate
guarantees but this seems to be related to the staircasing effect of the ROF
model which implies that solutions tend to develop steps instead of smooth
transitions. A discrete saddle-point formulation is defined by the functional

S(uh, ph) =

∫
Ω
∇uh · ph dx− IK1(0)(ph) +

α

2
‖uh − g‖2
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for (uh, ph) ∈ S1(Th)×L0(Th)d. The corresponding nonconforming discrete
dual formulation seeks ph ∈ L0(Th)d as a maximizer for

Dh(ph) = − 1

2α
‖∇′hph + αg‖2 +

α

2
‖g‖2 − IK1(0)(ph).

The operator ∇′h : L0(Th)d → S1(Th) is for qh ∈ L0(Th)d defined by wh =
∇′hqh with wh ∈ S1(Th) such that∫

Ω
vhwh dx = −

∫
Ω
∇vh · qh dx

for all vh ∈ S1(Th) and is an approximation of the divergence operator
subject to homogeneous Neumann boundary conditions.

II.C. Iterative solution. The iterative schemes for the numerical solu-
tion of the discretized ROF problem discussed below may be regarded as
discretizations of evolution equations. Accordingly, we use the backward
difference quotient operator dt, defined for a step size τ > 0 and a sequence
(aj)j≥0 via

dta
j+1 =

(
aj+1 − aj

)
/τ

for j = 0, 1, . . . . We often abbreviate the L2-inner product by

(v, w) =

∫
Ω
v · w dx

for functions or vector fields v, w ∈ L2(Ω;R`), ` ∈ {1, d}. Implicitly dis-
cretized gradient or subdifferential flows lead to sequences of minimization
problems which seek for given pj the minimizer pj+1 of the mapping

p 7→ 1

2τ
‖p− pj‖2 + F (p).

The related optimality condition reads

−dtpj+1 ∈ ∂F (pj+1).

An important ingredient for the development of efficient numerical methods
for the ROF model is that certain related nonlinearities in such minimization
problems can be solved explicitly, e.g., the minimization of

p 7→ 1

2
‖p− q‖2 + IK1(0)(p)

is solved by the best approximation of q within K1(0) and given by the
pointwise shrinkage operation

p =
q

max{1, |q|}
.

Via convex duality this is related to the solution of minimization problems
of the form

s 7→ 1

2
‖s− r‖2 + c1

∫
Ω
|s|dx.
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The strong convexity of the squared L2-norm implies the unique solvability
with the pointwise optimality condition

r − s ∈ c1∂|s|,

where ∂|s| denotes the subdifferential of the modulus at s. For s 6= 0 it
follows that

r − s = c1
s

|s|
⇐⇒ r = (c1 + |s|) s

|s|
,

i.e., s is parallel to r with modulus given by

|r| = c1 + |s| ⇐⇒ |s| = |r| − c1.

If s = 0 then it follows that

r ∈ c1B1(0) ⇐⇒ |r| ≤ c1.

Hence, the minimizing s is given by the pointwise operation

s = (|r| − c1)+
r

|r|
,

where (t)+ = max{t, 0}.

3. Regularization

A canonical way to deal with the nondifferentiability of the minimization
follows from a regularization of the functional I, i.e., considering for a
given ε > 0 the minimization of the functional

Iε(uh) =

∫
Ω

(|∇uh|2 + ε2)1/2 dx+
α

2
‖uh − g‖2

for uh ∈ S1(Th). Noting that

|a| ≤ (|a|2 + ε2)1/2 ≤ |a|+ ε

it follows that for the numerical solution uε,h ∈ S1(Th) of the regularized
problem we have

α

2
‖u− uε,h‖2 ≤ I(uε,h)− I(u)

≤ min
vh∈S1(Th)

Iε(vh)− I(u)

≤ min
vh∈S1(Th)

I(vh)− I(u) + ε|Ω|

≤ ch1/2 + ε|Ω|,

cf. [5], which suggests to choose ε = O(h1/2) to retain the same qualitative
approximation properties as for the unregularized problem. In order not
to violate the best possible convergence rate O(h1/2) we choose ε = O(h).
Similarly, we have for the discrete minimizer uh ∈ S1(Th) of I

α

2
||uh − uε,h||2 ≤ ε|Ω|. (2)
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The inequality (2) will be useful in our experimental comparison. The prac-
tical computation of uε,h is difficult since classical iterative schemes such
as Newton or descent methods may depend critically on ε. To construct a
stable numerical method we note that for every a ≥ 0 we have

a1/2 = inf
s 6=0

a

2s2
+
s2

2
.

The optimal s satisfies s = a1/4. This motivates to consider the augmented
functional

Îε(uh, sh) =

∫
Ω

|∇uh|2 + ε2

2s2
h

+
s2
h

2
dx+

α

2
‖uh − g‖2

for (uh, sh) ∈ S1(Th) ∈ L0(Th). Note that we have

min
sh∈L0(Th)

Îε(uh, sh) = Iε(uh)

for every uh ∈ S1(Th) with optimal sh given by

sh =
(
|∇uh|2 + ε2

)1/4
.

An important aspect is that for a sequence (uh)h>0 which is bounded in
W 1,1(Ω) we have that the corresponding sequence (sh)h>0 is bounded in L2(Ω).
This is not the case for the frequently employed variant

Î ′ε(uh, sh) =

∫
Ω

sh
(
|∇uh|2 + ε2

)
2

+
1

2sh
dx+

α

2
‖uh − g‖2,

often referred to as a half-quadratic functional, where for given uh the opti-
mal sh is given by sh = (|∇uh|2 + ε2)−1/2, cf. [23, 18]. A rigorous functional
analytical framework is important to define a robust iterative scheme for

minimizing Îε. Noting that Îε is separately convex, we use a decoupled gra-
dient descent method in both variables, defined by the following algorithm.

Algorithm III.1 (Heron method). Choose τ > 0 and (u0
h, s

0
h) ∈ S1(Th) ×

L0(Th) with s0
h > 0 in Ω, set j = 0.

(1) Compute the minimizer uj+1
h ∈ S1(Th) of the mapping uh 7→ Îε(uh, s

j
h)+

1
2τ ‖uh − u

j
h‖

2, i.e., uj+1
h satisfies

(dtu
j+1
h , vh) = −

∫
Ω

∇uj+1
h · ∇vh
(sjh)2

dx− α
∫

Ω
(uj+1
h − g)vh dx

for all vh ∈ S1(Th).

(2) Compute the minimizer sj+1
h ∈ L0(Th), sj+1

h > 0, of the mapping sh 7→
Îε(u

j+1
h , sh) + 1

2τ ‖sh − s
j
h‖

2, i.e., sj+1
h satisfies

(dts
j+1
h , rh) =

∫
Ω

(
|∇uj+1

h |2 + ε2

(sj+1
h )3

− sj+1
h

)
rh dx
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for all rh ∈ L0(Th), and sj+1
h > 0.

(3) Stop if ‖dtuj+1
h ‖ + ‖dtsj+1

h ‖ ≤ εstop; increase j → j + 1 and continue
with (1) otherwise.

The iteration is well-defined. While uj+1
h is a solution of a linear system of

equations, the equation defining sj+1
h is nonlinear but can be solved explicitly

elementwise with a uniformly positive solution.

Lemma III.2. If s0
h > 0, then the function sj+1

h ∈ L0(Th) satisfies sj+1
h > 0

and

sj+1
h − sjh = τ

|∇uj+1
h |2 + ε2

(sj+1
h )3

− τsj+1
h .

If we initialize s0
h such that s0

h ≥
√
ε, we have sj+1

h ≥
√
ε for all j ≥ 0.

Proof. Choosing the characteristic function rh = χT for arbitrary T ∈ Th in
Algorithm III.1 we obtain the first assertion. Note that for every T ∈ Th,

the value sj+1
h |T is the unique positive zero of the continuous, monotonically

increasing function f j+1
T : (0,∞)→ R,

f j+1
T (x) :=

(
1 +

1

τ

)
x−
|∇uj+1

h |T |2 + ε2

x3
−
sjh|T
τ

.

It follows from the fact that for x =
(
|∇uj+1

h |T |2+ε2

1+ 1
τ

)1/4
we have

f j+1
T (x) = −

sjh|T
τ

< 0

since s0
h > 0. By the strict monotonicity of f j+1

T it follows that sj+1
h >(

|∇uj+1
h |2+ε2

1+ 1
τ

)1/4
. If we initialize s0

h such that s0
h ≥
√
ε, we get

f j+1
T (
√
ε) =

√
ε− sjh|T
τ

−
|∇uj+1

h |T |2

ε3/2
≤
√
ε− sjh|T
τ

≤ 0,

and thus sj+1
h ≥

√
ε for all j ≥ 0. �

Remark III.3. Consider the fourth order polynomial

f̂ j+1
T (x) := x4 −

sjh|T
1 + τ

x3 − τ

1 + τ
(|∇uj+1

h |T |2 + ε2). (3)

The fact that x = 0 is not a zero of f̂ j+1
T implies that f j+1

T - extended

to R \ {0} - and f̂ j+1
T share the same real zeros. The properties of f j+1

T

therefore yield that f̂ j+1
T has one positive, one negative and two complex

conjugate zeros and sj+1
h |T is the positive zero of f̂ j+1

T (x). This information

enables us to explicitly compute sj+1
h |T on each element T ∈ Th and in

Appendix A we provide a corresponding formula.
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Unconditional global convergence, termination and energy decay of the Heron

method follows from choosing vh = dtu
j+1
h and rh = dts

j+1
h in the optimal-

ity conditions for the iterates so that due to the separate convexity of Îε we
have

‖dtuj+1
h ‖2 + ‖dtsj+1

h ‖2

= −δuÎε(uj+1
h , sjh)[dtu

j+1
h ]− δsÎε(uj+1

h , sj+1
h )[dts

j+1
h ]

≤ 1

τ

(
Îε(u

j
h, s

j
h)− Îε(uj+1

h , sjh)
)

+
1

τ

(
Îε(u

j+1
h , sjh)− Îε(uj+1

h , sj+1
h )

)
.

A summation over j = 0, 1, . . . , J and multiplication by τ imply that

Îε(u
J+1
h , sJ+1

h ) + τ

J∑
j=0

(
‖dtuj+1

h ‖2 + ‖dtsj+1
h ‖2

)
≤ Îε(u0

h, s
0
h). (4)

Hence, dtu
j+1
h → 0 and dts

j+1
h → 0 so that the algorithm terminates. More-

over, these quantities are the residuals in the equations so that (ujh, s
j
h)

converge to a discrete minimizer for Îε. Note that the right-hand side of (4)
remains bounded as ε, h→ 0 if the sequence (∇u0

h)h>0 is uniformly bounded

in L1(Ω) and if, e.g., s0
h =

(
|∇u0

h|2 + ε2
)1/4

.

Remark III.4. One may also use other regularizations of the BV -seminorm,
e.g., the Huber regularization

|∇uh|ε =


|∇uh|2

2ε
, if |∇uh| ≤ ε,

|∇uh| − ε
2 , if |∇uh| > ε.

However, the quality of computed approximations should not depend on the
employed regularization but only on the degree of regularization determined
by ε.

4. Augmentation

By introducing the variable σh = ∇uh and enforcing this identity via a
Lagrange multiplier and a stabilizing term, the determination of the min-
imizer uh of I is equivalent to computing a saddle point (uh, σh;λh) ∈
S1(Th)× L0(Th)d × L0(Th)d for

Lτ (uh, σh;λh) =

∫
Ω
|σh|dx+

α

2
‖uh− g‖2 + (λh, σh−∇uh)h+

τ

2
‖σh−∇uh‖2h

with a scalar product (·, ·)h on L0(Th)d and corresponding norm ‖ · ‖h. We
then have

min
uh

I(uh) = min
(uh,σh)

max
λh

Lτ (uh, σh;λh).

The following algorithm for computing a saddle point for Lτ is uncondition-
ally convergent and performs ascent steps in the variable λh.
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Algorithm IV.1 (Splitting method). Choose τ > 0 and (σ0
h, λ

0
h), and set

j = 0. Let ‖ · ‖h = c
1/2
w ‖ · ‖.

(1) Compute the minimizer uj+1
h of the mapping uh 7→ Lτ (uh, σ

j
h;λjh), i.e.,

compute uj+1
h ∈ S1(Th) such that

α

∫
Ω

(uj+1
h − g)vh dx− (λjh,∇vh)h + τ(∇uj+1

h − σjh, vh)h = 0

for all vh ∈ S1(Th).

(2) Compute the minimizer σj+1
h of the mapping σh 7→ Lτ (uj+1

h , σh;λjh), i.e.,

σj+1
h ∈ L0(Th)d with

−λjh + τ(∇uj+1
h − σj+1

h ) ∈ 1

cw
∂|σj+1

h |

with solution given by

σj+1
h =

1

τ

(
|τ∇uj+1

h − λjh| − c
−1
w

)
+

τ∇uj+1
h − λjh

|τ∇uj+1
h − λjh|

.

(3) Compute the maximizer of the mapping λh 7→ Lτ (uj+1
h , σj+1

h ;λh) −
1
2τ ‖λh − λ

j
h‖

2, i.e., set

λj+1
h = λjh + τ(σj+1

h −∇uj+1
h ),

and stop if ‖λj+1
h −λjh‖h+τ‖σj+1

h −σjh‖h ≤ εstop; otherwise increase j → j+1,
and continue with (1).

The scalar product (·, ·)h on L0(Th)d has to be carefully chosen in order
to have a stable numerical method. The frequently employed choice of the
L2-scalar product cannot be expected to lead to a uniformly stable method
since (∇uh)h>0 is not uniformly bounded in L2(Ω). Instead the sequence
is bounded in L1(Ω) and an inverse estimate shows that for the weighted
L2-norm

‖qh‖h = hd/2‖qh‖
the sequence (∇uh)h>0 remains bounded as h → 0. This is related to a
softer treatment of the constraint ∇uh = σh. Omitting the weighting factor
cw = hd overpenalizes the constraint and results in a locking of the method.
This effect is visible in the stability estimate for the splitting method, which
guarantees that for every saddle point (uh, σh;λh) with σh = ∇uh we have

τ

J∑
j=0

(
α‖uh − uj+1

h ‖2 +
τ

2
‖∇uj+1

h − σj+1
h ‖2h + τ3‖dtσj+1

h ‖2h
)

≤ 1

2

(
‖λh − λ0

h‖2h + τ2‖∇uh − σ0
h‖2h
)
,

(5)

cf. [28, 29]. In particular, ‖λj+1
h − λjh‖h + τ‖σj+1

h − σjh‖h → 0 as j → ∞
and the splitting method terminates. Moreover, due to the choice of the
weighted norm, the right-hand side of (5) remains bounded as h→ 0.
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Remark IV.2. If we have at the j-th iteration λj+1
h −λjh = 0 and τ(σj+1

h −
σjh) = 0, then, noting that τ(σj+1

h −∇uj+1
h ) = λj+1

h −λjh = 0, the variational

(in-)equalities defining the iterates uj+1
h , σj+1

h and λj+1
h in Algorithm IV.1

read

0 = α(uj+1
h − g, vh)− (λjh,∇vh)h + τ(∇uj+1

h − σjh, vh)h

= α(uj+1
h − g, vh)− (λj+1

h ,∇vh)h + (τ(∇uj+1
h − σj+1

h ), vh)h

= α(uj+1
h − g, vh)− (λj+1

h ,∇vh)h

for all vh ∈ S1(Th), as well as

λj+1
h = λjh + τ(σj+1

h −∇uj+1
h ) ∈ 1

cw
∂|σj+1

h |

and

0 = λj+1
h − λjh = τ(σj+1

h −∇uj+1
h ) ⇐⇒ ∇uj+1

h = σj+1
h .

Since these are exactly the optimality conditions for a saddle-point of Lτ we

have that (uj+1
h , σj+1

h ;λj+1
h ) is a saddle-point of Lτ . This means that the

pair
(
λj+1
h − λjh, τ(σj+1

h − σjh)
)

can be regarded as the residual of the system

that is being solved and that ‖λj+1
h − λjh‖h + τ‖σj+1

h − σjh‖h is an accurate
measure of optimality.

Remark IV.3. Algorithm IV.1 belongs to the class of alternating direction
method of multipliers (ADMM) and is a special case of the Douglas-Rachford
splitting method, cf., e.g., [9, 24, 37].

In the sequel we refer to Algorithm IV.1 as the splitting method or the
augmented Lagrangian method.

5. Saddle-point formulation

Due to the strong convexity, the minimizer uh for I can be determined by
computing a saddle point (uh, ph) ∈ S1(Th)× L0(Th)d for the functional

S(uh, ph) =

∫
Ω
∇uh · ph dx− IK1(0)(ph) +

α

2
‖uh − g‖2.

The following primal-dual method chooses inner products on S1(Th) and
L0(Th) and alternatingly performs descent and ascent steps for the variables
uh and ph.

Algorithm V.1 (Primal-dual method). Choose τ > 0 and (u0
h, p

0
h) ∈ S1(Th)×

L0(Th)d, and set j = 0 and dtu
0
h = 0.

(1) Set ũj+1
h = ujh + τdtu

j
h.

(2) Compute pj+1
h ∈ L0(Th)d maximal for ph 7→ S(ũj+1

h , ph)− 1
2τ ‖ph − p

j
h‖

2,
i.e., set

pj+1
h =

pjh + τ∇ũj+1
h

max{1, |pjh + τ∇ũj+1
h |}

.
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(3) Compute uj+1
h ∈ S1(Th) minimal for uh 7→ S(uh, p

j+1
h ) + 1

2τ ‖uh − u
j
h‖

2
h,

i.e.,

(dtu
j+1
h , vh)h = −

∫
Ω
∇vh · pj+1

h dx− α
∫

Ω
(uj+1
h − g)vh dx

for all vh ∈ S1(Th).

(4) Stop if ‖dtuj+1
h ‖h + ‖dtpj+1

h ‖ ≤ εstop; increase j → j + 1 and continue
with (1) otherwise.

The inner product (·, ·)h should be chosen such that the iteration is stable
under moderate conditions on the step size. On the other hand, it has to
be simple enough to allow for an efficient solution of the equations and the
discrete saddle points should be uniformly bounded in these norms as h→ 0.
Choosing the L2-norm, the iteration is well-defined and convergent under
the condition τ ≤ c′h. Observing that a discrete interpolation estimate
controls a discrete version of the H1/2-norm by the W 1,1-seminorm and the
L∞-norm, one may use the inner product

(vh, wh)h = (vh, wh) + h(∇vh,∇wh) (6)

for which the primal-dual method is convergent under the less restrictive
condition τ ≤ ch1/2. In particular, we have the stability estimate

C
τ2

2

( J∑
j=1

‖dtujh‖
2
h + ‖dtpjh‖

2

)
+ ατ

J∑
j=1

‖uh − ujh‖
2

≤ 1

2
‖uh − u0

h‖2h +
1

2
‖ph − p0

h‖2,

(7)

where (uh, ph) is a saddle point for S, cf. [3, 5]. The discrete interpolation
estimate shows that the right-hand side of (7) remains bounded as h → 0,
cf. [3].

Remark V.2 (Choice of c). In [3] the convergence of Algorithm V.1 is
proven. Using the inner product (6), we observe that for any vh ∈ S1(Th)
we have

‖∇vh‖2 ≤
1

h
(‖vh‖2 + h‖∇vh‖2) =

1

h
‖vh‖2h,

so this inverse estimate holds with constant 1 and factor h−1/2 when defining
the inner product with h being the maximal mesh size of the underlying
triangulation. However, the discrete interpolation estimate stated in [3] reads

hmin‖∇vh‖2 ≤ c̃‖∇vh‖L1(Ω)‖vh‖L∞(Ω)

with c̃ depending on the minimal angle occuring in the triangulation and
hmin the minimal diameter appearing in the triangulation. Therefore, the
right-hand side in (7) remains bounded as h → 0 if the ratio h/hmin is
uniformly bounded from above, i.e., if Th is quasi-uniform. When making
use of Young’s inequality

τγ1/2‖∇dtuk−1
h ‖γ−1/2‖dtpkh‖ ≤ τ2γ

2
‖∇dtuk−1

h ‖+
1

2γ
‖dtpkh‖2
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for arbitrary 1 < γ < 2 and of the inverse estimate mentioned above in the
convergence proof of Algorithm V.1 we obtain convergence of the algorithm
for any τ < (h/γ)1/2, and hence for any τ < h1/2. In our experiments

presented below the choice τ = h1/2 also guaranteed convergence.

Remarks V.3. (1) The primal-dual method belongs to the class of proximal-
point algorithms, cf., e.g., [14, 33, 38].
(2) In [14] the convergence rate O(1/J) for the primal-dual algorithm has

been shown. The same convergence rate holds for the H1/2-primal-dual
method, however, the h-dependent constant entering the convergence rate
is smaller for the H1/2-primal-dual method due to the less restrictive condi-
tion on the step size.

In what follows we refer to the primal-dual method with scalar product
(vh, wh)h = (vh, wh)+h(∇vh,∇wh) as the H1/2-primal-dual method whereas
the primal-dual method with scalar product (vh, wh)h = (vh, wh) will be
simply referred to as the primal-dual method.

6. Comparison

VI.A. Setup. We tested the performance of Algorithms III.1, IV.1 and V.1
(H1/2-primal-dual method) for two different choices of data g and α. We
assume that all occuring linear systems of equations can be solved with
linear complexity. In our realization all systems are solved using Matlab ’s
backslash operator. We therefore restrict to comparing iteration numbers.
In each experiment, we investigated the influence of the following aspects:

• Meshes: The computations were done using uniform triangulations
Th consisting of halved squares with mesh sizes h =

√
22−` and

refinement levels ` ∈ {5, . . . , 9}. We denote by T` the triangulation
Th with mesh size h =

√
22−`.

• Initialization: We started the algorithms with two different initial-
izations of u0

h, namely u0
h = 0 and u0

h = Ihg. In both experiments,

we used p0
h = 0 for the H1/2-primal-dual method, s0

h = ε1/2 for the
Heron method and σ0

h = 0 and λ0
h = 0 for the splitting method. The

regularization parameter is chosen to be ε = h in order to allow for
the optimal convergence rate for the primal variable in the L2-norm.
• Step sizes: We ran the methods using different step sizes τ for the

splitting algorithm and the Heron method. For the H1/2-primal-dual
method the step size has been chosen as τ =

√
h and as τ =

√
3h/8.

• Common stopping criterion: In each experiment we used two
different stopping criteria to stop the iteration. To determine how
many iteration steps in the algorithms are needed to achieve a given
quality, we compared the difference of the iterates to a precomputed
reference solution ũh obtained with the primal-dual method after
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104 iterations. Recalling the inequality (2) we may choose

||ũh − unh|| ≤
(

2ε|Ω|
α

)1/2

(8)

as a stopping criterion. Here, unh denotes the n-th iterate of any of the
algorithms. This stopping criterion enables us to do a fair compar-
ison between all three algorithms since, for fixed h, the primal-dual
method and the splitting algorithm approximate uh ≈ ũh whereas
the Heron method approximates uε,h, i.e., the L2-distance between
uh ≈ ũh and the iterates generated by the Heron method is not
guaranteed to strictly fall below the error tolerance in (8), cf. (2).
Note that the approximations corresponding to the stopping crite-
rion (8) with ε = h which are generated by each of the algorithms
will qualitatively be of the same accuracy as uh, cf. (1) and (2).
• General stopping criteria: The following stopping criteria are de-

rived by the optimality conditions for the iterates in each algorithm.
Our motivation was to control meaningful residual quantities that
are guaranteed to converge in the interations.

H1/2-primal-dual method: We note that if (uj+1
h , pj+1

h ) ∈ S1(Th) ×
L0(Th)d is such that dtu

j+1
h = 0 and dtp

j+1
h = 0, we have that

(uj+1
h , pj+1

h ) is a saddle-point of S. This gives rise to the stopping
criterion (

||dtuj+1
h ||2h + ||dtpj+1

h ||2

I(û)

)1/2

≤ h1/2

50
, (9)

where I(û) = α
2 ‖g‖

2 with û ≡ 0 is an upper bound for the energy
I(uh) and serves as a normalization factor.
Heron method: We use the stopping criterion(

||dtuj+1
h ||2 + ||dtsj+1

h ||2

I(û)

)1/2

≤ min
(

1,
1

τ

)h1/2

50
. (10)

Here, we use the factor min
(
1, 1

τ

)
on the right-hand side because

otherwise the stopping criterion would be artificially fulfilled after
very few steps if τ was being increased significantly while the output
would still not be close to the minimizer (uh, sh).
Splitting algorithm: The observations made in Remark IV.2 justify
to choose the stopping criterion as(

||λj+1
h − λjh||

2
h + τ2||σj+1

h − σjh||
2
h

I(û)

)1/2

≤ c−1/2
w min(τcw, 1)

h1/2

50
. (11)
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Here, the additional factors c
−1/2
w and min(τcw, 1) on the right-hand

side are necessary in order to obtain meaningful outputs in the sense
that the gradient of uh is sufficiently well approximated and in order
to generate similar outputs independently of the choice of the step
size τ .

VI.B. Noisy image. Our first comparison uses a characteristic function of
a disk that is randomly perturbed at the pixel scale of a given triangulation.
We compare different stopping criteria and the influence of rough initial data
and different choices of step sizes.

Example VI.1. We let d = 2, Ω = (0, 1)2 and α = 20. Let T0 be the trian-
gulation of Ω into two triangles with diagonal parallel to (−1, 1)T . Consider
the triangulation T5 of Ω generated from five red refinements of T0. Denoting
by xΩ = (1/2, 1/2)T the center of Ω, we define the function g as the continu-
ous, piecewise linear function g = Ih(χB1/5(xΩ) + ξh) with ξh ∈ S1(T5) whose

coefficient vector is a sample of an in the interval [−1/10, 1/10] uniformly
distributed random variable.

Table 1 and Table 2 display the number of iterations needed until the stop-
ping criteria (9), (10), (11) and the stopping criterion (8), respectively, were
satisfied for Example VI.1. A dash (−) means that we did not run the algo-
rithm for the corresponding parameters because on the previous refinement
level the number of iterations has already exceeded 103.
We observe that the Heron method reaches the prescribed accuracy for both
choices of initial data u0

h and all refinement levels after a smaller number of

iterations than the H1/2-primal-dual method and the augmented Lagrangian
(splitting) method, yet, one has to be aware of the fact that, for fixed h, the
Heron method approximates the discrete solution of the regularized func-
tional Iε while the H1/2-primal-dual method and the augmented Lagrangian
method approximate the minimizer uh ∈ S1(T`) of the functional I. How-
ever, the minimization of I over S1(T`) is already qualitatively a regulariza-
tion since it is W 1,1-conforming due to the continuity property of functions
in S1(T`).

The choice τ = h1/2 for the H1/2-primal-dual method, although not justified
by the stability estimate (7) but for every τ < h1/2, and τ = h−3/2 for the
splitting method yield the smallest iteration numbers and seem to have
a similar or even the same behavior. While the iteration of the splitting
method is independent of u0

h, cf. Algorithm IV.1 and (5), the initialization

of u0
h enters the right-hand side of the stability estimate (7) of the H1/2-

primal-dual method. In [3], the author elaborated that the right-hand side
of (7) is bounded h-independently if uh−u0

h is uniformly bounded in L∞(Ω)∩
W 1,1(Ω). This does not need to be the case for the initialization u0

h = Ihg
since we only require g ∈ L∞(Ω) and the numerical experiments in [3] show
that the iteration numbers may be larger for u0

h = Ihg than for u0
h = 0. The
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(a) Noisy image Ihg (b) Reference solution ũh

(c) H1/2 − PD (d) Heron

(e) Splitting

Figure 1. Noisy image Ihg, reference solution ũh and out-
puts of the three algorithms with residual control, cf. (9),
(10), (11), h =

√
22−5 and u0

h = 0 for Example VI.1.
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(a) H1/2 − PD (b) Heron

(c) Splitting

Figure 2. Outputs of the three algorithms with comparison
to reference solution, cf. (8), h =

√
22−5 and u0

h = 0 for
Example VI.1.

experiments in [3] also indicate that this effect is even more pronounced
when the metrics on which the gradient flow is based are too strong, e.g.,
for the choice (vh, wh)h = (vh, wh) + (∇vh,∇wh). This seems to contradict
the results in Tables 1 and 2 at the first glance since the iteration numbers
for u0

h = Ihg are at most as large as the iteration numbers for u0
h = 0.

However, this can be explained by the larger step size for the H1/2-primal-
dual method used in our experiments which are 7 to 10 times larger than
the step size τ = h1/2/10 considered for the H1/2-primal-dual method in [3].
Since the step size influences the distance between two consecutive iterates
un+1
h and unh with respect to ‖ · ‖h, a larger step size enables the method to

faster diverge from u0
h. Note that

√
3h/8 for h =

√
22−9 is still larger than√

h/10 for h =
√

22−4. The closeness of uh and g in the L2-sense is in turn
determined by the parameter α.
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Figure 3. Energy I of iterates unh for the three algorithms

with residual control, cf. (9), (10), (11), h =
√

22−5, u0
h = 0,

and energy of the reference solution ũh for Example VI.1.

Let us finally observe that the Heron method appears to be robust regarding
the choice of the initialization of u0

h. Yet, it is not ensured that the right-
hand side of the stability estimate (4) for the Heron method is bounded
h-independently when u0

h = Ihg is chosen, so that the choice u0
h = 0 seems

to be reasonable both theoretically and practically.
Figure 1 shows the plot of the noisy image Ihg, the reference solution ũh, the
outputs of the H1/2-primal-dual method with τ =

√
h, the Heron method

with τ = 1 and the splitting method with τ = h−3/2 for Example VI.1 and
for the residual-based stopping criteria (9), (10) and (11) on T5. We ob-
serve that the outputs of all three algorithms are nearly indistinguishable
from the reference solution. This is also underlined by the energy plot in
Figure 3 which particularly indicates that the residual-based stopping cri-
teria (9), (10) and (11) define an accurate measure of optimality. Figure 2
shows the outputs of the three iterative methods using the L2-stopping cri-
terion (8) on T5. Note that the outputs visually considerably differ from the
reference solution which is also recognizable in the corresponding energy plot
in Figure 4. This is, however, due to the fact that the approximations were
computed on a coarse grid. For smaller ε = h the outputs corresponding to
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Figure 4. Energy of iterates unh for the three algorithms

with L2-based stopping criterion (8), h =
√

22−5, u0
h = 0,

and energy of the reference solution ũh for Example VI.1.

the L2-stopping criterion (8) do not significantly differ from the reference
solution. It is noteworthy that the energy of the final iterate of the Heron
method using the L2-stopping criterion is much closer to the energy of the
reference solution than the final iterates of the other two algorithms.

VI.C. Real image. We finally report numerical results for the benchmark
image ”cameraman”.

Example VI.2. We let d = 2, Ω = (0, 1)2 and α = 500. Let T0 be as before
and T6 generated from six red refinements of T0. Given a low resolution of
the image ”cameraman” consisting of 4225 pixels we define the function g̃h ∈
S1(T6) by using the (scaled) gray-values ranging from 0 to 1 as coefficients of
the nodal basis functions ϕz of the corresponding nodes z of the triangulation
T6. Then g is defined as g = g̃h + ξh with ξh ∈ S1(T6) as is Example VI.1.

The experiments for Example VI.2 show similar results as before in Exam-
ple VI.1. Again, the Heron method outperforms the other two methods in
terms of required iterations for both sets of stopping criteria, which can be
seen in Tables 3 and 4. Moreover, the Heron method is robust with re-
spect to the choice of u0

h. It is worth mentioning that the iteration numbers
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(a) Noisy image Ihg (b) Reference solution ũh

(c) H1/2 − PD (d) Heron

(e) Splitting

Figure 5. Noisy image Ihg, reference solution ũh and out-
puts of the three algorithms with residual control, cf. (9),
(10), (11), h =

√
22−6 and u0

h = 0 for Example VI.2.
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(a) H1/2 − PD (b) Heron

(c) Splitting

Figure 6. Outputs of the three algorithms with comparison
to reference solution, cf. (8), h =

√
22−6 and u0

h = 0 for
Example VI.2.

for the H1/2-primal-dual method seem not to depend on the initialization
of u0

h. Our explanation for this observation is that the large value of α,
namely α = 500, forces the first iterate u1

h to be immediately very close
to g and it therefore does not make a difference if we start the algorithm
with u0

h = 0 or u0
h = Ihg. In general, of course, the interplay between the

step size τ and the parameter α and the L2-distance between uh and u0
h play

a crucial role regarding the performance of the (H1/2-) primal-dual method.
Let us also note that the difference between the iteration numbers in Table 3
and Table 4 is not as pronounced as in Example VI.1 which is on the one
hand due to the stricter error tolerance in (8) because of the larger α and on
the other hand because the minimization of I is dominated by the fidelity
term α‖u− g‖2 due to the large α.
The energy plots in Figures 7 and 8 once more provide an experimental
justification of our choice of stopping criteria (9), (10) and (11).
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Figure 7. Energy I of iterates unh for the three algorithms

with residual control, cf. (9), (10), (11), h =
√

22−6, u0
h = 0,

and energy of the reference solution ũh for Example VI.2.

7. Discussion of other methods

VII.A. Semi-implicit L2-gradient flow. A frequently employed method
to minimize the regularized ROF functional is the semi-implicit discretiza-
tion of the L2-gradient flow, i.e.,

(dtu
j+1
h , vh) +

∫
Ω

∇uj+1
h · ∇vh

(|∇ujh|2 + ε2)1/2
dx+ α(uj+1

h − g, vh) = 0,

cf., e.g., [27, 26]. Our experiments indicate a similar behavior of the semi-
implicit L2-gradient flow compared to the Heron method and indicate sta-
bility and convergence independently of τ . Since the authors are unaware
of a corresponding stability estimate we did not include this method in our
comparison.

VII.B. Dual Method. Following [12], after introducing discrete gradient
and discrete divergence operators ∇h and divh, respectively, the minimiza-
tion of a finite difference discretization Ih of I can be transformed into a
nonlinear projection problem in such a way that the discrete minimizer uh
of Ih can be written as uh = g − 1

α divh ph where ph is a solution to the
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with L2-based stopping criterion (8), h =
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and energy of the reference solution ũh for Example VI.2.

discrete constrained minimization problem

min
ph
‖divh ph − αg‖2 s.t. |ph| ≤ 1.

With a Lagrange multiplier λh the optimality condition reads

−∇h
(

divh ph − αg
)

+ λhph = 0.

The author observed that the relation λh = |(∇h(divh ph−αg))| holds point-
wise and suggested the semi-implicit gradient descent algorithm

pn+1
h = pnh + τ

(
(∇h(divh p

n
h − αg)− |(∇h(divh p

n
h − αg))|pn+1

h

)
with τ > 0 and p0

h = 0. Convergence of the algorithm has been shown
for τ ≤ 1/8. However, this is related to the definition of the differential
operators via forward differences. A rescaling yields the condition τ = O(h2)
on the step size with h being the mesh size. This restrictive condition on
the step size causes a slow convergence behavior.
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VII.C. Semi-smooth Newton method. In [35], the authors start from
the TV -L2 functional, where the anisotropic BV -seminorm is defined by∫

Ω
|Du| = sup

{
−
∫

Ω
udiv q dx : q ∈ C1

c (Ω;Rd), |q|`∞ ≤ 1 a.e.
}
,

and consider the predual problem given by

inf
p∈HN (div;Ω)

1

2
‖ div p+ αg‖2 s.t. − 1 ≤ pi ≤ 1 for all 1 ≤ i ≤ d.

Since the predual problem may not have a unique solution a semi-smooth
Newton method is suggested for a discretization of the regularized predual
problem

inf
p∈HN (div;Ω)

1

2
‖div p+ αg‖2 +

γ

2
‖Πdiv,0p‖2 s.t. − 1 ≤ pi ≤ 1, (12)

with γ > 0 and Πdiv,0 : L2(Ω)→ HN,0(div; Ω) being the projection in L2(Ω)
onto the space of divergence-free vector fields inHN (div; Ω). Furthermore, in
an infinite-dimensional setting, a semi-smooth Newton method is considered
for the regularized problem

inf
p∈H1

0 (Ω;Rd)

1

2c
‖∇p‖2 +

1

2
‖ div p+ αg‖2 +

γ

2
‖Πdiv,0p‖2

+
1

2c
‖max(0, c(p− 1))‖2 +

1

2c
‖min(0, c(p+ 1))‖2

(13)

with c > 0. In the formal limit c → ∞, we arrive at (12), cf. [35]. It
is proven that both semi-smooth Newton methods are locally superlinerly
convergent. However, the dependence of the performance of the semi-smooth
Newton method for (12) on the parameter γ and on the dimension of the
problem is not clear since the convergence analysis for the semi-smooth
Newton iteration for (13) is based on the additional regularizing terms.

VII.D. Accelerated primal-dual method. In [14] the authors discussed,
apart from the primal-dual method, an acceleration technique for their
primal-dual method by considering variable step sizes for both the primal
and the dual variable and a variable extrapolation parameter. With given
τ0 > 0, σ0 = ch2/τ we let

dtu
n+1
h =

un+1
h − unh
τn

, dtp
n+1
h =

pn+1
h − pnh
σn

and ũn+1
h = unh + θn(un+1

h − unh). The step sizes and the extrapolation pa-
rameter θn are updated in each iteration according to θn+1 = 1/

√
1 + 2γτn,

τn+1 = θn+1τn and σn+1 = σn/σn+1, where γ can be chosen as, e.g., γ = α,
and stems from the strong convexity of the L2-data fidelity term. Yet, exper-
iments show that the success of the acceleration procedure strongly depends
on the initial step size τ0 and on the given data g and α as well as on the
choice of γ. This behavior is also theoretically predictable when taking the
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error bound for ‖uh − unh‖2 in [14, Theorem 2] into account. While one can
make the first summand in the error bound arbitrarily small by choosing τ0

sufficiently large, one may influence the size of the second summand only by
choosing p0

h close enough to ph. In cases with a relatively small α, such as in
Example VI.1, the acceleration procedure did not significantly decrease the
number of iterations when compared to the method without adaptive step
sizes, and, surprisingly, the choice of a small τ0 led to less iterations than for
a large τ0. Still, considering the stopping criterion (8), for examples where α
was large, the acceleration scheme needed significantly fewer iterations (for
τ0 = 106) than the primal-dual method without acceleration but required

still more iterations than the H1/2-primal-dual method. A further disad-
vantage is that it is not clear which stopping criterion can be considered if
we do not have a good guess of the solution uh because it is not obvious at
the first glance if ‖dtunh‖2 + ‖dtpnh‖2 with dtu

n
h and dtp

n
h defined as above is

a good measure of optimality.

VII.E. Graph Cut Algorithm. In [22], after discretizing I, the authors
decompose the variable u into its level sets and reformulate the minimization
problem into independent binary Markov random fields associated to each
level set. In order for this approach to work the authors make the crucial
assumption that the image u takes on values only in a discrete set L, where
L is, for instance, having a grayscale image, the set L = {0, . . . , 255}. This,
however, is an assumption that does not serve our purposes and we therefore
did not include this approach in our comparison.

VII.F. Newton method for regularized saddle-point functional. In [17]
the authors proposed a Newton iteration for the primal-dual system

|∇u|εp−∇u = 0,

−div p+ α(u− g) = 0,

below referred to as CGM method, where |∇u|ε =
√
|∇u|2 + ε2. They sug-

gested the following step size for the dual variable p in order to ensure
solvability of the linear system of equations: if δpn+1

h is the solution for the
dual variable of the (n+ 1)-th Newton iteration and if |pnh| < 1 holds for all

x ∈ Ω, then we set pn+1
h = pnh + γδpn+1

h with

γ = ρmax{s : |pnh + sδpn+1
h | < 1 ∀x ∈ Ω}, 0 < ρ < 1.

In our experiments the CGM method approached the solution very fast
within the first few iterations but then developed oscillations, for instance,
considering Example VI.1, it developed oscillations along the jump set and
did not converge, cf. Figures 9 and 10. Due to missing statements concern-
ing the relation of convergence of the method and the critical parameters ε
and h, we decided not to compare the CGM method with the other algo-
rithms.
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(a) 5th CGM-iterate u5
h (b) 6th CGM-iterate u6

h

(c) 55th CGM-iterate u55
h

Figure 9. Outputs of the CGM method defined in VII.F
after 5, 6 and 55 iterations, respectively, h =

√
22−5, ε = h,

ρ = 0.99, u0
h = 0, p0

h = 0, for Example VI.1.

VII.G. Block coordinate descent algorithm. In the recent paper [15],
the authors consider a finite difference discretization of the anisotropic BV -
seminorm, i.e., defined via the `1-norm of ∇u, and split it into the horizontal
components TV1 and the vertical components TV2. After introducing two
new variables u1 and u2, they obtain the saddle-point problem

inf
u1,u2,u

sup
λ1,λ2

TV1(u1) + (λ1, u− u1) + TV2(u2) + (λ2, u− u2) +
λ

2
‖u− g‖2

with Lagrange multipliers λ1 and λ2. Exchanging infimum and supremum
and solving the inner minimization problem yields the dual problem

sup
λ1,λ2

(
−TV ∗1 (λ1)− TV ∗2 (λ2)− 1

2α
‖λ1 + λ2‖2 + (λ1 + λ2, g)

)
.
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Figure 10. Energy of iterates unh for the CGM method de-

fined in VII.F, 0 ≤ n ≤ 100, h =
√

22−5, ε = h, ρ = 0.99,
u0
h = 0, p0

h = 0, and energy of the reference solution ũh for
Example VI.1.

The authors suggest to solve this optimization problem via alternating mini-
mization which, as they observe, simplifies toMN independent one-dimensional
ROF problems, where M × N is the size of the image. Since this ap-
proach seems to be only applicable to the ROF problem with anisotropic
BV -seminorm, we did not further consider this approach.

VII.H. Splitting and alternating minimization. In [44] a splitting ap-
proach is also the starting point for the definition of the algorithm suggested
therein. As in the augmented Lagrangian method, the variable σ = ∇u is
introduced and leads to the minimization of the functional∫

Ω
|σ| dx+

δ−1

2
‖σ −∇u‖2 +

α

2
‖u− g‖2

with δ > 0. Here, the constraint σ = ∇u is included in the functional by
penalization. The authors then propose an alternating minimization tech-
nique with respect to the variables σ and u. Since the constraint is not
strictly enforced via a Lagrange multiplier the constraint is satisfied only
in the limit δ → 0. This is, however, a major drawback since the involved
matrices that arise in the linear systems of equations that have to be solved
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in each step become ill-conditioned as δ tends to 0. Besides, we do not have
such a relation as in (2) in order to determine an optimal scaling of δ to
recover the optimal convergence rate. Particularly, we do not know how
stopping criteria should look like to attain an accurate approximation.

The iteration scheme of the alternating minimization algorithm (AMA)
proposed in [41] coincides with the iteration scheme of the augmented La-
grangian method in Algorithm IV.1 with ‖ · ‖h = ‖ · ‖ except from the

updating rule for the variable uh, i.e., for j ≥ 0, the iterate uj+1
h is defined

as the minimizer of the mapping

uh 7→
∫

Ω
|σjh|dx+

α

2
‖uh − g‖2 + (λjh, σ

j
h −∇uhj).

However, this numerical method requires τ = O(h2), which is impracti-
cal. In [31] the authors discuss acceleration techniques for the augmented
Lagrangian method and the AMA proposed in [41]. In order to enforce
stability, a restart condition has to be included in the accelerated aug-
mented Lagrangian method. In our experiments, the accelerated augmented
Lagrangian method was faster than the standard augmented Lagrangian
method in some cases. However, in some situations the number of restarts
negatively affected the performance of the acceleration which resulted in
higher iteration numbers than for the augmented Lagrangian method with-
out acceleration. Since we cannot control the number of restarts we did not
further consider the accelerated augmented Lagrangian method. The ac-
celeration technique for the AMA was not able to compensate for the slow
convergence due to the restrictive condition τ = O(h2).

VII.I. Second-order cone programming. Considering the constrained
ROF problem, i.e., the minimization of |Du|(Ω) subject to the constraint
‖u−g‖2 < η2 with η2 being an estimate of the variance of the noise in the im-
age g, a finite difference discretization of the constrained ROF problem has
been reformulated as a second-order cone program (SOCP) in [30]. The re-
ported numerical experiments indicate that the SOCP can compute accurate
approximations within a few iterations. However, although not explicitly
introduced, during the iterative solution of the SOCP by an interior-point
method as proposed a regularization of the problem is implicitly introduced
by adding a barrier funtional to solve the second-order cone constraints,
where the influence of the regularization parameter remains unclear. In our
opinion, since the interior-point method uses Newton iterations the behav-
ior of the SOCP with regards to mesh-dependent parameters is not clear.
Moreover, since the reformulation of the ROF problem as a SOCP is based
on a finite difference discretization of the ROF functional we decided to not
further investigate the SOCP in this paper.

VII.J. Split Brègman Method. The split Brègman algorithm [32] pro-
posed for the ROF functional is an iterative algorithm for the constrained
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minimization problem

min
σh,uh

∫
Ω
|σh|dx+

α

2
‖uh − g‖2 s.t. σh = ∇uh.

Applying Brègman iteration to the penalized functional∫
Ω
|σh|dx+

α

2
‖uh − g‖2 +

τ

2
‖σh −∇uh‖2

defines the following iteration: given η0
h ∈ S1(Th), µ0

h ∈ L0(Th)d, compute
for k ≥ 0

(uk+1
h , σk+1

h ) = argmin
(u,σ)

Dηkh,µ
k
h(u, σ;ukh, σ

k
h) +

τ

2
‖σ −∇u‖2

= argmin
(u,σ)

‖σ‖L1(Ω) +
α

2
‖u− g‖2 − ‖σkh‖L1(Ω) −

α

2
‖ukh − g‖2

− (ηkh, u− ukh)− (µkh, σ − σkh) +
τ

2
‖σ −∇u‖2

and set

ηk+1
h = ηkh + τ divh(σk+1

h −∇uk+1
h ), µk+1

h = µkh + τ(∇uk+1
h − σk+1

h )

where divh : L0(Th)d → S1(Th) is the adjoint operator of ∇ : S1(Th) →
L0(Th)d, i.e., (divh qh, vh) = −(qh,∇vh) for all qh ∈ L0(Th)d, vh ∈ S1(Th).
The function

Dηkh,µ
k
h(u, σ;ukh, σ

k
h) =‖σ‖L1(Ω) +

α

2
‖u− g‖2 − ‖σkh‖L1(Ω) −

α

2
‖ukh − g‖2

− (ηkh, u− ukh)− (µkh, σ − σkh)

is also known as the Brègman distance corresponding to the functional

‖σ‖L1(Ω) +
α

2
‖u− g‖2

we are considering here, and (ηkh, µ
k
h) is a subgradient of the aforementioned

functional at the point (ukh, σ
k
h). Due to the separate convexity of the func-

tional that is being minimized in each iteration an alternating minimization
can be employed to decouple the minimization problem. Thus, we get the
following optimality conditions for the iterates:

α(uk+1
h − g, vh)− (ηkh, vh)− τ(σkh −∇uk+1

h ,∇vh) = 0,

τ(∇uk+1
h − σk+1

h + µkh, qh − σk+1
h ) + ‖σk+1

h ‖L1(Ω) ≤ ‖qh‖L1(Ω)

for all (vh, qh) ∈ S1(Th) × L0(Th)d. Consider the k-th iterate λkh of the

Lagrange multiplier in the augmented Lagrangian method. If we set ηkh =

divh λ
k
h and µkh = −λkh the split Brègman iteration coincides with the aug-

mented Lagrangian method, as has been observed in [45]. Since here the
constraint is also measured in the L2-norm and since sequences of minimiz-
ers (∇uh)h>0 may not be bounded in L2(Ω), this method is not guaranteed
to be robust or may require small step sizes.
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8. Conclusions

We compared three approaches for the numerical solution of total variation
regularized minimization problems by considering the prototypical problem
of minimizing the ROF functional. The nonlinearity that arises in the formal
Euler-Lagrange equation for the ROF problem and the nondifferentiability
of the BV -seminorm cause considerable problems when trying to carry out
a rigorous numerical analysis for approximation schemes. Although there
exist many algorithms for approximately solving the ROF problem, which
may also have a good performance with regards to the special application
in image processing, the dependence of many of those algorithms on criti-
cal parameters is not well-understood. However, for the three schemes we
considered in this paper, which are all of gradient descent and gradient
ascent type with expected convergence behavior O(1/J), there is a rigor-
ous analysis available. In particular, we have modified the Heron method
and the augmented Lagrangian method to such an extent that, in view of
the infinite-dimensional setting, robustness of the schemes is guaranteed.
We have seen that the Heron method needs the least iteration numbers
for a given accuracy, is robust regarding the initialization and its stability
is independent of the step size. The (H1/2-)primal-dual method is slower
due to the restriction on the step size, i.e., τ = O(h) for the primal-dual

method and τ = O(h1/2) for the H1/2-primal-dual method. It is not based
on an explicit regularization of the BV -seminorm in contrast to the Heron
method. However, by seeking a discrete minimizer of the ROF functional
in S1(Th) ⊂W 1,1(Ω) we approximate the minimizer of the continuous prob-
lem by continuous functions which resembles a regularization of the problem
which nevertheless allows for sharp approximations of discontinuities. More
general approaches for the approximation of BV -regularized problems are
splitting methods. We considered the augmented Lagrangian method with
a weighted L2-norm in order to ensure unconditional stability and we ex-
perimentally observed that the augmented Lagrangian method performs as
well as the H1/2-primal-dual method for the step size τ = h−3/2.

9. Appendix A

IX.A. Roots of Quartic Equations. Having (3) in mind we consider the
problem of finding the roots of a quartic equation

x4 + ax3 + bx2 + cx+ d = 0. (14)

with a, b, c, d ∈ R. A comprehensive discussion of this topic can be found,
e.g., in [10]. With the substitution x = y − 1

4a we equivalently obtain

y4 + b̃y2 + c̃y + d̃ = 0 (15)
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with b̃ = −3
8a

2+b, c̃ = 1
8a

3− ab
2 +c and d̃ = − 3

256a
4+ a2b

16 −
ac
4 +d. Adding 1

4 b̃
2

on both sides yields (
y2 +

1

2
b̃
)2

=
1

4
b̃2 − c̃y − d̃.

Our goal is to produce a perfect square on the right-hand side. The following
procedure is due to Lodovico Ferrari. We introduce a new variable z, which
is to be specified later, within the square on the left-hand side and obtain(

y2 +
1

2
b̃+

1

2
z
)2

=
1

4
b̃2 − c̃y − d̃+

1

4
z2 + z

(
y2 +

1

2
b̃
)

= zy2 − c̃y +
1

4
z2 +

1

2
b̃z +

1

4
b̃2 − d̃. (16)

Now the right-hand side is a perfect square with respect to y if and only if
the associated discriminant vanishes, i.e., if and only if

0 = 4z
(1

4
z2 +

1

2
b̃z +

1

4
b̃2 − d̃

)
− c̃2 (17)

= z3 + 2b̃z2 + (̃b2 − 4d̃)z − c̃2. (18)

The cubic polynomial in (18) is called cubic resolvent. We see that with z
being any root of the cubic resolvent the term in (16) simplifies to a perfect
square. Indeed, we have using (17)(

y2 +
1

2
b̃+

1

2
z
)2

= z
(
y2 − c̃

z
y +

c̃2

4z2

)
= z
(
y − c̃

2z

)2
.

We can take z to be, for instance, a real root of (18) and obtain

y2 +
1

2
b̃+

1

2
z = ±

√
z
(
y − c̃

2z

)
,

so we have two quadratic algebraic equations in y and can compute the
roots of (15). We obtain the roots {xi}1≤i≤4 of our original equation with
the relation xi = yi − 1

4a.

IX.B. Roots of Cubic Equations. In order to obtain the roots of (18)
we briefly discuss how to compute the roots of a cubic algebraic equation.
Given an equation of the form

x3 + ax2 + bx+ c = 0 (19)

we set x = y − a
3 and get

y3 + b̃y + c̃ = 0 (20)

with b̃ = b− a2

3 and c̃ = c− ab
3 + 2a3

27 . With a further substitution y = u+ v,
with - for the time being - arbitrary u and v, we get

y3 = (u+ v)3 = (u+ v)(u2 + 2uv + v2)

= u3 + v3 + 3uv(u+ v)

= u3 + v3 + 3uvy

⇔ y3 − 3uvy − (u3 + v3) = 0.
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Comparing coefficients yields

b̃ = −3uv, c̃ = −(u3 + v3).

According to Vieta’s formulas, u3 and v3 are the roots of the quadratic
algebraic equation

t2 + c̃t− b̃3

27
= 0.

Hence we have

u =
3

√√√√
− c̃

2
+

√
c̃2

4
+
b̃3

27
,

v =
3

√√√√
− c̃

2
−

√
c̃2

4
+
b̃3

27
.

The cube roots u and v have to be chosen such that uv = − b̃
3 ∈ R. Denoting

by u1, v1 the cube roots defined by 3
√
reiϕ/3 for a complex number reiϕ,

the two other cube roots are given by u2 = u1e
2πi/3, u3 = u1e

4πi/3 and
v2 = v1e

2πi/3, v3 = v1e
4πi/3, respectively. Since the product uv has to be

real, we get the three feasible pairs (u1, v1), (u2, v3) and (u3, v2). Hence, the
three roots of (20) are given by

y1 = u1 + v1,

y2 = u2 + v3,

y3 = u3 + v2.

The roots {xi}1≤i≤3 of (19) are then given by xi = yi − a
3 .
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