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Abstract

Phase-field models have already been proven to predict complex fracture patterns in two and
three dimensions for brittle fracture. In this paper we discuss a model for phase-field fracture at
finite deformations in more detail. Among the identification of crack location and projection of
crack growth the numerical stability is one of the main challenges in solid mechanics. In a first step
to investigate these assignments precisely we introduce a suitable weak formulation of the model
and propose a numerical solution method in terms of time and space discretization. Second the
mathematical background of the approach is examined and we show that the time-discrete solutions
converge in a weak sense to a solution of the time-continuous formulation. The analytically proven
approximation property is verified within numerical examples in two and three dimensions.

1 Introduction

In solid mechanics one of the main challenges is the prediction of crack growth and fragmentation patterns.
Regarding to the modeling side complicated structures and non-regular behavior of cracks turn numerical
simulations into a difficult task. The classical brittle fracture approach of Griffith and Irwin [Gri21, Irw58]
is based on an energy minimization setting for the whole structure. Let us consider a solid with domain
B0 ⊂ R

3 and boundary ∂B0 ≡ Γ ⊂ R
2 deforming within a time interval t ∈ [0, T ] ⊂ R

+. Each crack
that is located in a solid forms a new boundary surface Γ(t) of a priori unknown position which needs
to be identified. Therefore, the total potential energy of a homogenous but cracking solid is composed
of its material’s energy with a free Helmholtz energy density Ψ and of surface energy contributions from
growing crack boundaries.

E =

∫

B0

ΨdX +

∫

Γ(t)

Gc dΓ. (1.1)

For brittle fracture the material’s resistance to cracking Gc corresponds to the Griffith’s critical energy
release rate. However, the optimization of the energy functional (1.1) is a challenging task and can
not be deduced in general because of the moving boundary Γ(t). Several sophisticated discretization
techniques exist, e.g. cohesive zone models [Xu94, Or99, Roe03], eroded finite elements [Mar03, Suk03]
or eigenfracture strategies [Schm09, Pan12] to name some of them. In order to compute such moving
boundary problems, the focus is set on a phase-field model that is a diffuse-interface approach and has
gained attention to similar problems recently formulated in literature [HL04, Kar01, Mie10PF, Bor13,
Bor12]. The main idea of this ansatz is to mark the material’s state of the body by a continuous order
parameter s(x, t) which evolves in space x and time t.
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Because many different applications in solid mechanics can become very complex, it is important to ensure
the stability of the numerical simulation and the existence of a solution. Therefore, the mathematical
mathematical properties of the model and its numerical approximation strategy have to be investigated
in detail.

In the remaining part of the paper we will proceed as follows: In the next section we present the basic
equations of the phase-field approach to fracture for finite deformations and the spatial and temporal
discretization is provided. In Sect. 3 the analytical setup is introduced and, based on this, the time-
discretization proposed in Sect. 2 is revisited. In particular, it is proven that solutions constructed with the
time-discrete scheme converge to a solution of the time-continuous weak formulation. This convergence
result is confirmed within a series of numerical examples in Sect. 4. We demonstrate one two dimensional
example for a simple but typical problem of a mode-I-tension test to study different influencing factors.
Further, three dimensional examples are presented, amongst others a phase-field Benchmark problem
proposed in the framework of our DFG Priority Programm 1748, cf. [Mue2016]. Our numerical results
match with the proven analytical results.

2 Basic Equations

In the following the phase-field model and the related equations are proposed and examined in more
detail. The phase-field is by definition a continuous field and thus, the moving crack boundaries are
’smeared’ over a small but finite length. The order parameter s(x, t) : B0 × [0, T ] → R with s ∈ [0, 1]
characterizes the state of material, whereby s = 1 indicates the unbroken state and s = 0 the broken
state. The surface integral in (1.1) is approximated by a regularization using a crack density function
γ : R× R

3 → [0,∞):

∫

Γ(t)

dΓ ≈
∫

B0

γ(s(x, t),∇s(x, t)) dX (2.1)

This approximation (2.1) is inserted in the total potential energy (1.1) so that the optimization problem
can be formulated locally:

E =

∫

B0

(Ψ + Gcγ) dB0 → optimum (2.2)

There exist different ways to choose the crack density function which is only different from zero along
cracks by definition. Typically a second-order phase-field approach is defined as:

γ(s,∇s) :=
1

2lc
(1− s)2 +

lc
2
|∇s|2 (2.3)

with the fixed parameter lc ∈ (0, 1) which is a measure for the width of the diffuse interface zone, see
Fig. 5. Furthermore, the length-scale parameter lc weights the influence of the linear and the gradient
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Figure 1: Uniaxial model with a crack at x = 0 and with a continuous phase field s ∈ [0, 1]; phase field
approximation for a second order and a fourth order approximation of crack density function γ.
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term whereby the gradient enforces the regularization of the sharp interface. The insertion of (2.3) in
(2.2) leads to a potential which is related to the work of Ambrosio and Tortorelli [AT1990].
The evolution equation of the phase-field is stated in a general form

ṡ = MY, (2.4)

where the paramter M denotes the kinematic mobility and Y summarizes all driving forces which typically
represent a competition of bulk material and surface forces.

Y = δs(Ψ + Gcγ) = δsΨ+ Gcδsγ (2.5)

In particular, the phase-field model is based on the crack density function (2.3) and the driving force for
crack growth that consists of components of the free energy. The governing balance equations for the
phase-field fracture are summarized in Table 1 whereas we will focus on quasi-static simulations in this
paper such that the inertia terms in the balance of linear momentum will be neglected.

Table 1: Balance equations for a cracking solid subjected to body forces b̄ in B0, prescribed deformations
ϕ̄ on ∂BD

0 and tractions t̄ on ∂BN
0 with ∂BD

0 ∪ ∂BN
0 = ∂B0.

Balance of linear momentum: div(P ) + b̄ = ρ0ϕ̈ on B0

Boundary conditions: ϕ = ϕ̄ on ∂BD
0

P · ~n = t̄ on ∂BN
0

Phase-field equation: M
(

∂Ψ
∂s − Gc

lc
(1− s)− Gclc△s

)

= ṡ on B0

Boundary conditions: s = 1 on ∂BD
0

∇s · ~n = 0 on ∂BN
0

Because we set the focus on finite strains, a nonlinear material model and their split into compressive
and tensile parts which are only responsible for crack growth are considered in the following.

2.1 Finite elasticity

In the finite deformation regime a deformation mapping ϕ(X, t) : B0 × [0, T ] → R
3 is considered and the

deformation gradient F : B0 × [0, T ] → R
3×3 is defined as

F = ∇Xϕ =
∂ϕ

∂X
. (2.6)

Regarding the following notation the fields in capitals refer to the initial configuration. Furthermore, the
area vectors are mapped from the reference to the current configuration by using the so called cofactor
H : B0× [0, T ] → R

3×3 which is based on the definition of the tensor cross product introduced in [Bon15]

H = cof(F ) =
1

2
(F × F ). (2.7)

The volume map J : B0 × [0, T ] → R is also presented with the tensor cross product and is given by

J = det(F ) =
1

6
(F × F ) : F . (2.8)

By making use of the proposed extended kinematic set the free energy Ψ can be rewritten such that
the strain energy function fulfils the characteristic of polyconvexity, see Definition 3.1, which ensures the
existence of a minimum and a stable numerical approximation. We will refer to the mathematical point
of view in more detail in Sect. 3.1. Hence, the strain energy function becomes

Ψ = W (F ,H , J). (2.9)
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Moreover, the first Piola-Kirchhoff stress tensor P can be formulated as

P =
∂W

∂F
+

∂W

∂H
× F +

∂W

∂J
H. (2.10)

To take into account the anisotropy of fracture, in particular that only the tensile parts of the strain energy
function contribute the crack growth an anisotropic split has to be deduced. For that reason the strain
energy function (2.9) is formulated by using the invariants IC = J−2/3F : F and IIC = J−4/3H : H
which are based on the isochoric split of the deformation gradient F̄ = J−1/3F . This split decomposes
the deformation in a volumetric and an isochoric part to regard different behavior of the material in bulk
and shear. Then the invariants are decomposed in compressive and tensile parts as proposed in [Hesch17]

I±C = 3 + J−2/3〈F : F − 3〉± , (2.11)

II±C = 3 + J−4/3〈H : H − 3〉± , (2.12)

J± = 1 + 〈J − 1〉± . (2.13)

This anisotropic split is presented in Fig. 2 by way of example for the first invariant visually.

ICd

I±C

d

I+C

I−C

Figure 2: Illustration of the anisotropic split of the first invariant into tensile and compressive parts with
dimension d ∈ {2, 3}.

In consequence, the energy W is also split into tension induced and compression induced components

W (F ,H , J, s) = β(s)W (I+C , II+C , J+) +W (I−C , II−C , J−) (2.14)

whereas the degradation function β is given by

β : [0, 1] → [η,∞), β(s) := (η + s2). (2.15)

The parameter η is a very small value η ≪ 1 to catch numerical instabilities in the limit cases for the
phase-field.

2.2 Discretization

In this subsection the weak forms and the discretization are considered in more detail. The elastic
boundary value problem is based on the balance of linear momentum and the crack phase-field evolution,
cf. Table 1. For fixed time, these equations are rewritten in the weak form and the coupled problem
reads: Find ϕ ∈ B0 and s ∈ [0, 1] such that

∫

B0

P : ∇(δϕ) dB0 =

∫

B0

b̄ · δϕ dB0 +

∫

∂BN

0

t̄ · δϕ dΓ ∀δϕ ∈ U , (2.16)

and
∫

B0

ṡ · δs dB0 +

∫

B0

∂Ψ

∂s
· δs dB0 + 2Gclc

∫

B0

∇s∇(δs)dB0 − Gc

2lc

∫

B0

(1− s) · δs dB0 = 0 ∀δs ∈ X .

(2.17)
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The fraction ∂Ψ
∂s in (2.17) serves as a driving force for the phase-field. Moreover, the spaces of admissible

test functions U and X are defined as U = {ϕ ∈ H1(B0;R
3) |δϕ = 0 on ∂B0}, where H1(B0;R

3) denotes
the Sobolev functional space of square integrable functions with values in R

3 and with square integrable
weak first derivatives. Correspondingly the space of admissible test functions for the phase-field equation
can be formulated as X = {δs ∈ H1(B0) ∩ L∞(B0)|δs = 1 on ∂B0}.
To apply the finite element method in the following the domain B0 is subdivided into a finite set of
non-overlapping elements

B0 ≈ B0
h =

ne
⋃

e=1

B0e . (2.18)

Furthermore, within the discretization we use Lagrangian polynomials for both fields. In particular, the
ansatzfunctions for the mechanical field are denoted by Ni and the shape functions for the phase-field by
Ñi. The values ϕ̂

(i) and ŝ(i) are the nodal displacements and the nodal values for the phase-field.

ϕ ≈ ϕh =

nk
∑

i=1

Niϕ̂
(i), δϕh =

nk
∑

i=1

Niδϕ̂
(i) , (2.19)

s ≈ sh =

nk
∑

i=1

Ñiŝ
(i), δsh =

nk
∑

i=1

Ñiδŝ
(i). (2.20)

Inserting the proposed approximations (2.19) and (2.20) into the weak formulations (2.16) and (2.17)
the final finite element system results after a straightforward calculation. The time integration is based
on an implicit Euler-backward scheme regarding the phase-field parameter s, whereby the time interval
[0, T ] is divided into pairwise disjoint equidistant subintervals with the time step △t := tn+1− tn. At last
the system of equations is solved by making use of the Gaussian elimination method. There exist two
popular solution strategies for the non-linear system (2.16) and (2.17), the monolithic and the staggered
scheme. Making use of the first mentioned ansatz the fully-coupled system is solved in each timestep;
using the staggered scheme the solving part is split into the phase-field s and the mechanical field ϕ

which means that in each timestep both quantities are solved successively. For the analysis in Sect. 3
we will use this latter approach. Further information about different solution strategies can be found in
[Bil17].

3 Analytical Setup, Discretization, and Convergence Result

For the mathematical analysis of the regularized crack model given by equations (2.16)–(2.17) we define
the free energy functional E : [0, T ]×U× Z → R,

E(t,ϕ, s) :=

∫

B0

(

β(s)W1(M∇ϕ) +W2(M∇ϕ) + γ(s,∇s)
)

dX +

∫

∂BN

0

h ·ϕ dH2 (3.1)

on suitable Banach spaces U,Z with γ : R×R
3 → [0,∞) from (2.3) and β : R → [η,∞), with β(s) := η+s2

as in (2.15). Moreover,

M : R3×3 → R
3×3 × R

3×3 × R , MF := (F, cof F, detF ) (3.2)

maps a 3×3-matrix onto the vector of its minors and the properties of the densities Wi : R
3×3×R

3×3×R →
R are specified more precisely in Sec. 3.1.

In addition, we introduce the viscous dissipation potential Vα : Z → [0,∞)

Vα(ṡ) :=

∫

B0

(M−1

2
|ṡ|2 + αI(−∞,0](ṡ)

)

dX (3.3)
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with M−1 the inverse of the kinematic mobility M and I(−∞,0] : R → {0,∞} the characteristic function
of the the nonnegative real line, i.e., I(−∞,0](z) = 0 if z ∈ (−∞, 0] and I(−∞,0](z) = ∞ otherwise. This
constraint forces the time derivative ṡ to take its values (−∞, 0]. According to the definition s = 1 for
the unbroken and s = 0 for the completely broken state of the material, it thus ensures that the damage
of the material can only increase in time, i.e. the unidirectionality of the damage evolution. With the
prefactor α = const we indicate that we switch this constraint on or off, so that we can consider two
different types of models: A model with α = const > 0, where the unidirectionality constraint is active,
and a model where α = 0, where unidirectionality is not incorporated (i.e. 0 · ∞ = 0).

The elastic body undergoing damage is thus characterized by a suitable state space U×Z, the energy
functional E from (3.1) and the dissipation potential Vα from (3.3) and we refer to it as the (evolution)
system (U× Z,E,Vα)

In accordance with Section 2 we will show in Thm. 3.10 that a solution (ϕ, s) : [0, T ] → U × Z of
system (U× Z,E,Vα) is characterized for a.a. t ∈ (0, T ) by

for all ϕ̃ ∈ U : E(t,ϕ(t), s(t)) ≤ E(t, ϕ̃, s(t)) , (3.4a)

if α = 0 : M−1ṡ(t) + β′(s(t))W1(M∇ϕ(t)) + ω′(s(t))−∆s(t) = 0 in X
∗ , (3.4b)

if α > 0 : M−1ṡ(t) + β′(s(t))W1(M∇ϕ(t)) + ω′(s(t))−∆s(t) ≥ 0 in (X−)
∗ , (3.4c)

with X
∗ the dual of the Banach space X and (X−)

∗ the elements of X∗ restricted to elements of X− :=
{v ∈ X, v ≤ 0}. While, under the assumptions of [Bal02, Thm. 2.4], minimality condition (3.4a) is
equivalent to (the weak formulation in U of) its Euler-Lagrange equation, which is the weak formulation
of the mechanical force balance (2.16), the interpretation of (3.4b) & (3.4c) is more involved: On the
one hand, observe that minimizers in the damage variable s for the energy functional can be obtained
for Z := H1(B0) and a minimizer will in fact satisfy s ∈ X := H1(B0) ∩ L∞(B0). On the other
hand, due to the quadratic growth of Vα it would be a first choice to understand (3.4b), resp. (3.4c),
as an L2-gradient flow. However, β′(s(t))W (M∇ϕ(t)) + ω′(s(t)) − ∆s(t) ∈ L2(Ω) cannot be expected,
so that L2(Ω) is not the right choice for the state space. In fact, we will find in Lemma 3.9 that
DsE(t,ϕ(t), s(t)) := β′(s(t))W (M∇ϕ(t)) + ω′(s(t))−∆s(t) is bounded only in X

∗ the dual of the space
X := H1(Ω) ∩ L∞(Ω).

In fact, formulation (3.4c) for α > 0, ie.e when the unidirectionality constraint is active, corresponds
to a a one-sided variational inequality. This formulation has also been applied in [HK11] for a damage
model in the small-strain setting.

The proof of Thm. 3.10, i.e. of the existence of a solution (ϕ, s) : [0, T ] → U × Z of (U× Z,E,Vα),
which satisfies the governing equations (3.4) will be carried out in Section 3.3 using a discretization both
in time and in space. For this, we will consider an equidistant partition of the time interval

ΠN := {0 = t0N < t1N < . . . < tNN = T} with time-step size τN := tiN − ti−1
N → as N → ∞. (3.5)

In addition, for the analysis, we will also regularize the unidirectionality constraint I(−∞,0] by its corre-
sponding Yosida approximation, i.e. for each N ∈ N we introduce

VαN (ṡ) :=

∫

B0

(M−1

2
|ṡ|2 + α

N

2
|(ṡ)+|2

)

dX (3.6)

where (ṡ)+ := max{0, ṡ} is the positive part of ṡ. Starting out from an admissible inital datum (ϕ0, z0) ∈
U× Z, at each time-step tkN ∈ ΠN we then solve

ϕk
N ∈ argminϕ̃∈U

E(tkN , ϕ̃, sk−1
N ) , (3.7a)

skN ∈ argmins̃∈Z

(

E(tkN ,ϕk
N , s̃) + τNVαN (

s̃−sk−1

N

τN
)
)

. (3.7b)

Existence of solutions (ϕk
N , skN ) of (3.7) at each time-step tkN will be shown in Prop. 3.8. Using the

discrete solutions (ϕk
N , skN )Nk=1 we will construct suitable interpolants with respect to time and show in

our main result, Thm. 3.10, that these interpolants approximate a solution of the continuous problem
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(3.4). In fact, in addition we will also find that solutions of (3.4) obtained in this way, also satisfy an
energy dissipation estimate of the form:

E(t,ϕ(t), s(t)) +

∫ t

0

Vα(ṡ(τ)) dτ ≤ E(0,ϕ0, s0) +

∫ t

0

P(τ, s(τ)) dτ ,

with Vα from (3.3) and with P(τ, s(τ)) := sup{∂τE(τ, ϕ̂, s(τ)), ϕ̂ ∈ argminE(τ, ·, s(τ))} as a surrogate
for the partial time derivative. This surrogate is due to the non-uniquess of minimizers for polyconvex
energies as they arise in the finite strain setting.

3.1 Analytical Setup: Assumptions and Direct Implications

A physically reasonable deformation preserves orientation, which is ensured by

∇ϕ ∈ GL+(d) = {F ∈ R
d×d | detF > 0} .

Further natural requirements on the constitutive relations of particular importance are material frame
indifference (3.8a) and the non-interpenetration condition (3.8b):

Ŵ (RF ) = Ŵ (F ) for R ∈ SO(d), F ∈ R
d×d, (3.8a)

{

Ŵ (F ) = +∞ for detF ≤ 0,

Ŵ (F ) → +∞ for detF → 0+,
(3.8b)

since they are not compatible with convexity, which is a convenient claim in the setting of small strains.
To see the incompatibility with convexity consider P,Q ∈ SO(d), λ ∈ (0, 1), such that (λP + (1−λ)Q) 6∈
SO(d), which conforms to a strain. Then convexity together with material frame indifference yields the
following contradiction:

0 < Ŵ (λP + (1− λ)Q) ≤ λŴ (P ) + (1− λ)Ŵ (Q) = λŴ (I) + (1− λ)Ŵ (I) = 0.

The class of energy densities which fit to these natural requirements and which admit to prove existence
are the polyconvex energy densities. They were introduced by J.M. Ball in [Bal76].

Definition 3.1 (Polyconvexity). The function Ŵ : Rd×d → R∞ = R ∪ {∞} is called polyconvex if there
exists a convex function W̃ : Rµd → R∞, such that Ŵ (F ) = W̃ (M(F )) for all F ∈ R

d×d, where

M : Rd×d → R
µd with µd =

d
∑

s=1

(

d

s

)2

(3.9)

is the function, which maps a matrix to all its minors.

In [Bal76, p. 362] it was established that the polyconvexity of Ŵ : Rd×d → R implies its quasiconvexity.
By C.B. Morrey in [Mor52] it was proven that quasiconvexity is the notion of convexity which is necessary
and sufficient for the lower semicontinuity of the corresponding integral functionals, so that quasiconvexity
together with other technical assumptions ensures the existence of minimizers. But quasiconvexity does
not admit infinitely valued functions, i.e. Ŵ : Rd×d → R∞. However in [Bal76, Th. 7.3, p. 376] it was
shown that the polyconvexity of the density Ŵ : Rd×d → R∞ together with other technical assumptions
is sufficient for the existence of minimizers of infinitely valued functionals. More precisely, for the stored
elastic energy density W : R× R

3 → R given by

W (F , s) := β(s)W1(MF ) +W2(MF ) from (3.1) with β : R → [a,∞) from (3.10g) (3.10a)
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we make the following assumptions:

• Continuity: W (·, ·)∈C0(R3×3 × R,R), (3.10b)

• Polyconvexity: W1,W2 : R3×3 × R
3×3 × R → R are convex. (3.10c)

• Coercivity: There are constants p≥2, p2≥ p
p−1 , p3 > 1, c1, c2, c3, C>0 so that it holds for all

(F , s)∈R
3×3×R : c1|F |p + c2|cofF |p2 + c3|detF |p3 − C ≤ W (F , s) . (3.10d)

• Stress control:

For all s∈R we have W (·, s) ∈ C1(GL+(3),R) and there are

constants c>0, c̃≥0 such that for all (F , s)∈R
3×3×R it holds

|∂FW (F , s)F⊤| ≤ c(W (F , s) + c̃) . (3.10e)

• Uniform continuity of the stresses:

There is a modulus of continuity o : [0,∞] → [0,∞], δ>0 so that for all

(F , s)∈R
3×3×R and all C∈GL+(3) with |C−id| ≤ δ we have

|∂FW (CF , s)(CF )⊤ − ∂FW (F , s)F⊤| ≤ o(|C−id|)(W (F , s) + c̃) . (3.10f)

• Definition of β: β : R → [η,∞), β(s) = η + s2 . (3.10g)

The next lemma goes back on [Bal76]. A proof of the version below is given in [FM06].

Lemma 3.2. Let be satisfied. Then there is δ > 0 so that for all C∈GL+(3) with |C − Id| ≤ δ we have

W (CF , s) + c̃ ≤ 3
2 (W (F , s) + c̃) (3.11)

|∂FW (CF , s)F⊤| ≤ 3c (W (F , s) + c̃) . (3.12)

Moreover, for the function γ : R → [0,∞) we assume that

γ ∈ C2(R× R
3,R), γ(s,∇s) :=

1

2lc
(1− s)2 + lc

2 |∇s|2, . (3.13)

Now, as in (3.1) we consider a body with reference configuration B0 ⊂ R
3 consisting of a nonlinearly

elastic material, such that

B0 is a bounded Lipschitz domain, ∂BD
0 ⊂ ∂B0 with ∂BD

0 6= ∅, ∂BN
0 := ∂B0\∂BD

0 . (3.14)

This body undergoes a damage process driven by time-dependent exterior forces h(t) located on the
Neumann part ∂BN

0 ⊂ ∂B0 of the boundary. Moreover, the body is assumed to be clamped at the
remaining part ∂BD

0 of its boundary, so that the deformation is prescribed there: ϕ(t)=g(t) on ∂BD
0 .

Thus, the set of admissible deformations at time t ∈ [0, T ] is given by

U(t) := {φ ∈ W 1,p(Ω,R3) |φ = g(t) on ∂BD
0 } for

3

2
< p < ∞ (3.15)

with the weak W 1,p-topology. Observe that the assumption on the exponent p ∈ (3/2,∞) ensures that

W 1,p(B0,R
3) ⋐ Lp′

(B0,R
3) compactly, where p′ :=

p

p− 1
. (3.16)

Adapting the ideas of [FM06] from the setting where p > 3 to the present setting p ∈ (3/2,∞), we assume
that the Dirichlet datum can be extended to R

3 in the following way:

g∈C1([0, T ]× R
3,R3), ∇g∈BC1([0, T ]×R

3,Lin(R3,R3)), ∇2g∈B([0, T ]×R
3,Lin(R3×3,R3×3))), (3.17a)

with Cg := sup
t∈[0,T ],y∈R3

(|∇g(t, y)|+|∂t∇g(t, y)|+|∇2g(t, y)|), (3.17b)

|g(t, y)| ≤ cg(1 + |y|) for all (t, y) ∈ [0, T ]×R
3 , (3.17c)

|(∇g(t, y))−1| ≤ C̃g for all (t, y) ∈ [0, T ]×R
3. (3.17d)
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For the time-dependent Neumann datum we impose that

h ∈ C1([0, T ], Lp′

(∂BN
0 ,R

3)) with Ch := ‖h‖C1([0,T ],Lp′ (∂BN

0
,R3)) . (3.18)

To handle the time-dependent Dirichlet conditions one assumes that the deformation is of the form

ϕ(t,X) = g(t, y(X)) with y ∈ Y, where (3.19)

Y := {y ∈ W 1,p(Ω,Rd) | y = id on ∂BD
0 } for d < p < ∞ (3.20)

with the weak W 1,p-topology. By the chain rule, this composition leads to a multiplicative split of the
deformation gradient:

∇ϕ(t, x) = ∇Xg(t, y(X)) = ∇yg(t, y(X))∇Xy(X) = ∇g(t, y)∇y .

Furthermore, we introduce the space

Y0 := Y − {id} . (3.21)

Under consideration of (3.1) and the explanations along with (3.4) we choose the set of admissible
damage variables Z in (3.1) and the set of admissible test functions X in (3.4) as

Z := {s̃ ∈ H1(B0), s̃ = 1 in trace sense} (3.22a)

X := Z ∩ L∞(B0) (3.22b)

equipped with the respective weak topologies. The sets Y and Z form the state space Y × Z, which is
endowed with the weak topology of the product space.

For the closed subspace U0 ⊂ W 1,p(B0,R
3) one can prove Friedrich’s inequality by contradiction

using that the embedding W 1,p(B0,R
3) ⋐ Lp(B0,R

3×3) is compact.

Theorem 3.3 (Friedrich’s inequality). Let B0 ⊂ R
3 be a Lipschitz domain with Dirichlet conditions on

∂BD
0 ⊂ ∂B0, where ∂BD

0 6= ∅. Let 1 < p < ∞. There is a constant CF = CF (B0, p) such that the following
estimate holds for every y0 ∈ U0 :

‖y0‖W 1,p(B0,R3) ≤ CF ‖∇y0‖Lp(B0,R3×3) . (3.23)

The lemma below is a consequence of the growth restriction (3.17c).

Lemma 3.4. Let (3.14), (3.17) as well as (3.19) hold. For every y ∈ Y and ϕ(t) = g(t, y) it holds
‖ϕ(t)‖pW 1,p(B0,R3) ≤ Ĉg(‖y‖pW 1,p(B0,R3) + 1)

Proof. By the growth restriction (3.17c) one directly obtains

‖ϕ(t)‖pW 1,p(B0,R3) ≤ 2p−1cpg(L
3(B0) + ‖y‖pLp(B0,R3)) + Cp

g‖∇y‖pLp(B0,R3×3) .

Hence Ĉg := max{2p−1cpg, C
p
g , 2

p−1cpgL
3(B0)}.

Lemma 3.5. Let (3.17), (3.19) and (3.20) hold. Consider a sequence (yk)k∈N ⊂ Y such that yk ⇀ y in
Y. Then ϕk(t) = g(t, yk) ⇀ g(t, y) = ϕ(t) in U(t) for all t ∈ [0, T ].

Proof. We have the compact embeddings W 1,p(B0,R
3)⋐Lp(B0,R

3) and W 1,p(B0,R
3)⋐Lp′

(B0,R
3) by

(3.16) and hence yk → y in both in Lp′

(B0,R
3) and in Lp(B0,R

3). By (3.17a) & (3.17b) we now find
‖ϕk(t) − ϕ(t)‖Lp(B0,R3) ≤ supỹ∈R3 |∇g(t, ỹ)|‖yk(t) − y(t)‖Lp(B0,R3) ≤ Cg‖yk(t) − y(t)‖Lp(B0,R3) → 0 as

k → ∞. Furthermore, we obtain ∇ϕk(t) ⇀ ∇ϕ(t) in Lp(Ω,Rd×d), since ∇yk ⇀ ∇y in Lp(Ω,Rd×d) and
∇g(t, yk) → ∇g(t, y) in Lp′

(B0,R
3×3), which ensues from (3.17b) by ‖∇g(t, yk)−∇g(t, y)‖Lp′ (B0,R3×3) ≤

supỹ∈R3 |∇2g(t, ỹ)|‖yk(t)− y(t)‖Lp′ (B0,R3) ≤ Cg‖yk(t)− y(t)‖Lp′ (B0,R3) → 0 as k → ∞.
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Proposition 3.6 (Compactness of minors of gradients according to (3.10d)). Consider a sequence
(ϕk)k ⊂ U such that for all k ∈ N

C ≥ c1‖∇ϕk‖pLp(B0,R3×3) + c2‖cof∇ϕk‖p2

Lp2 (B0,R3×3) + c3‖det∇ϕk‖p3

Lp3 (B0,R)
− C . (3.24)

Then there exists a not relabeled subsequence (ϕk)k ⊂ U and ϕ ∈ U such that ϕk ⇀ ϕ in U, cof∇ϕk ⇀
cof∇ϕ in Lp2(B0,R

3 × 3), and det∇ϕk ⇀ det∇ϕ in Lp3(B0,R).

Proof. The proof can be retrieved from [Dac89, p. 183].

In the following we prove temporal regularity properties of the energy functional with respect to time,
based on assumption (3.17), (3.18) and (3.10). An analogous result was first obtained in [FM06, Lemma
5.5].

Proposition 3.7. Let (3.17), (3.18), and (3.10) be satisfied. Then there exist constants c0 ≥ 0, c1 > 0
such that for all (t∗, g(t∗, y), s) ∈ [0, T ]×U× Z with E(t∗, g(t∗, y), s) < ∞ it holds:
E(·, g(·, y), s) ∈ C1([0, T ]) with

∂tE(t, q)=

∫

B0

∂FW (F (t), s)F⊤:G(t)− 〈l̇(t), ϕ(t)〉 − 〈l(t), ∂tϕ(t)〉 (3.25)

for F (t) := ∇ϕ(t) and G(t) := (∇g(t, y))−1∂t∇g(t, y) and

|∂tE(t, g(t, y), s)| ≤ c1(E(t, g(t, y), s) + c0) for every t ∈ [0, T ] . (3.26)

Moreovoer, the following Lipschitz-setimate holds true:

|E(t, g(t, y), s)− E(τ, g(τ, y), s)| ≤ cE |t− τ | . (3.27)

Proof. We confine ourselves to prove the existence of ∂tE(·, q) and estimate (3.26) in a neighborhood
N(tq) of tq ∈ [0, T ]. Similarly to the small-strain setting, where an analogouse proof was carried out
in [TM10, Thm. 3.7], this is basically done with the mean value theorem of differentiability and the
dominated convergence theorem. But the different treatment of the inhomogeneous Dirichlet condition
requires different estimates, which will be carried out here. The existence of ∂tE(·, q) and the validity
of (3.26) on the whole interval [0, T ] can then be concluded with the same arguments as in the proof of
[TM10, Thm. 3.7].

Since ∂t
∫

ΓN

h(t)ϕ(t) dH2 exists by (3.17) & (3.18), it remains to show the existence of ∂t
∫

B0

W (∇ϕ(t) dX

in N(tq). For this we define for t ∈ N(tq)

h(x, t, α) :=

{

1
α (W (∇ϕ(t+α), s)−W (∇ϕ(t), s)) if α 6= 0

∂FW (∇ϕ(t), s)(∇ϕ(t))⊤:(∇g(t, y))−1∂t∇g(t, y) if α = 0

and we have to show that h(x, t, ·) ∈ C0([−αt, αt]) for αt suitably. By the mean value theorem of
differentiability we find α̃ = α̃(α) such that it holds for every α ∈ [−αt, αt]

1

α
(W (∇ϕ(t+α), s)−W (∇ϕ(t), s))

= ∂FW (∇ϕ(t+α̃), s)(∇ϕ(t+α̃))⊤:(∇g(t+α̃, y))−1∂t∇g(t+α̃, y) (3.28)

→ ∂FW (∇ϕ(t), s)(∇ϕ(t))⊤:(∇g(t, y))−1∂t∇g(t, y)

as α, α̃ → 0 by (3.2) and (3.17). In order to show that the integrals converge as well, we are going to
apply the dominated convergence theorem. For this, we have to construct an integrable majorant for
expression (3.28). Again by the mean value theorem of differentiability we first obtain α̂ such that

∇ϕ(t+α̃)=∇(ϕ(t)+∂tϕ(t+α̂)α̃)=
(

Id + α̃∂t∇g(t+α̂, y)(∇g(t, y))−1
)

∇ϕ(t)=C(α̃)∇ϕ(t)
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with C(α̃) → Id as α̃ → 0. Hence we conclude by (3.12) and (3.17):

|(3.28)| ≤ C̃gCg|∂FW (C(α̃), s)(∇ϕ(t))⊤C(α̃)⊤|
≤ C̃gCgdc(W (∇ϕ(t), s) + c̃)(

√
d+α̃CgC̃g) .

(3.29)

Now, estimate (3.26) is derived under consideration of

|∂tE(t, q)| ≤
∣

∣

∣

∫

B0

h(x, t, 0)
∣

∣

∣
+ |〈ḣ(t),ϕ(t)〉|+ |〈h(t), ∂tϕ(t)〉| . (3.30)

In view of (3.17), (3.18), Lemma 3.4, Friedrich’s inequality (3.23), Young’s inequality and 3.10d we derive
for the loading terms in (3.30) an estimate of the form

|〈ḣ(t),ϕ(t)〉|+ |〈h(t), ∂tϕ(t)〉| ≤ A1E(t, q) +B1.

For the elastic energy term in (3.30) estimate (3.29) and (3.17), (3.18) lead to

∣

∣

∣

∫

B0

h(x, t, 0)
∣

∣

∣
≤ (3.29) ≤ A2E(t, q) +B2,

so that inequality (3.26) is obtained.

3.2 Analytical Results on Convergence Properties

In this section we gather and explain all our analytical results.
In a first step we verify the existence of discrete solutions (ϕk

N , skN ) ∈ U×Z at each time-step tkN ∈ ΠN .

Proposition 3.8 (Existence of solutions for the discrete problem (3.7)). Let the assumptions (3.10),
(3.18), (3.17) & (3.14) hold true and (U× Z,E,VαN ) be given by (3.1), (3.6), (3.15), (3.22a). Consider
a partition ΠN of [0, T ] as in (3.5). Suppose that (y0, s0) ∈ Y ×Z is an admissible initial datum. Then,
the following statements hold true for each tkN ∈ ΠN as in (3.5):

1. There exists a pair (ykN , skN ) ∈ Y × Z such that (ϕ(tkN , ykN ), skN ) ∈ U × Z is a solution for mini-
mization problem (3.7).

2. Let the initial datum (y0, s0) ∈ Y × Z such that s0 ∈ [0, 1] a.e. on B0. Then, a solution skN of
(3.7b) also satisfies skN ∈ [0, 1] a.e. in B0 both for α = 0 and for α > 0 in (3.6), i.e. skN ∈ X =
H1(B0) ∩ L∞(B0).

Using the discrete solutions (ykN , skN )Nk=1 obtained in Prop. 3.8 we now introduce piecewise constant
left-continuous (yN , sN ) (right-continous (y

N
, sN )) piecewise constant interpolants and linear interpolants

sℓN as follows:

(yN (t), sN (t)) := (ykN , skN ) for all t ∈ (tk−1
N , tkN ] , (3.31a)

(y
N
(t), sN (t)) := (yk−1

N , sk−1
N ) for all t ∈ [tk−1

N , tkN ) , (3.31b)

sℓN :=
t−tk−1

N

τN
skN +

tkN−t
τN

sk−1
N (3.31c)

and accordingly, we set ϕN (t) := g(t, yN (t)) and ϕ
N
(t) := g(t, y

N
(t)).

For the interpolants (yN , y
N
, sN , sN , sℓN ) we then verify that they satisfy a discrete version of the

governing equations (3.4) and uniform apriori estimates.

Proposition 3.9 (Properties of the interpolants (yN , y
N
, sN , sN , sℓN )). Let the assumptions of Prop.

3.8 hold true with s0N ∈ [0, 1] a.e. in B0. Then the interpolants (yN , y
N
, sNN , sN , sℓN ) contructed from

solutions (ykN , skN )Nk=1 of problem (3.7) via (3.31) satisfy uniformly for all N ∈ N:

For all ϕ̃ ∈ U(t) : E(t,ϕN (t), sN (t)) ≤ E(t, ϕ̃, sN (t)) , (3.32a)

DsE(t,ϕN (t), sN (t)) + τNDVαN (ṡℓN (t)) = 0 in X
∗, i.e., for all s̃ ∈ X : (3.32b)

∫

B0

(

(

β′(sN (t))W1(M∇ϕN (t)))− 1
lc
(1− sN ) +M−1ṡℓN + αN(ṡℓN )+

)

s̃+ lc∇sN (t) : ∇s̃
)

)

dX = 0 .

11



In addition, the following energy-dissipation estimate holds true for all N ∈ N and t ∈ [0, T ]:

E(t,ϕN (t), sN (t)) +

∫ t

0

VαN (ṡℓN (τ)) dτ ≤ E(0,ϕ0
N , s0N ) +

∫ t

0

∂τE(τ, g(τ, yN (τ)), sN (τ)) dτ , (3.33)

where the partial time derivative ∂τE(τ, g(τ, yN (τ)), sN (τ)) is given by (3.25).
Furthermore, there is a constant C > 0 such that the following apriori estimates are satisfied uniformly

for all N ∈ N and all t ∈ [0, T ]:

E(t,ϕN (t), sN (t)) ≤ C, E(t,ϕ
N
(t), sN (t)) ≤ C,

∫ t

0

VαN (ṡℓN (τ)) dτ ≤ C, (3.34a)

‖yN (t)‖Y ≤ C & ‖y
N
(t)‖Y ≤ C , (3.34b)

‖ṡℓN‖L2(0,t;L2(B0)) ≤ C , (3.34c)

‖sN (t)‖Z ≤ C & ‖sN (t)‖Z ≤ C , (3.34d)

‖sN (t)‖L∞(B0) ≤ 1 & ‖sN (t)‖L∞(B0) ≤ 1 , (3.34e)

‖β(sN (t))W1(M∇ϕN (t))‖X∗ ≤ C . (3.34f)

Thanks to the apriori estimates (3.34) we are now in the position to extract a (not relabeled) sub-
sequence (yN , y

N
, sN , sN , sℓN )N of the interpolants, which converge to a limit pair (y, s) that satisfies

(3.4):

Theorem 3.10 (Convergence of the time-discrete solutions, existence of a solution for (3.4)). Let the
assumptions of Prop. 3.9 hold true. Then there is a (not relabeled) subsequence (yN , y

N
, sN , sN , sℓN )N

satisfying (3.32)–(3.34), a function y : [0, T ] → Y, and a pair (y, s) : [0, T ] → Y×X with ϕ(t) = g(t, y(t))
such that

sℓN ⇀ s in H1(0, T ;L2(B0)) , (3.35a)

sℓN , sN , sN ⇀ s in L2(0, T ;L2(B0)) , (3.35b)

sN (t), sN (t) ⇀ s(t) in X for all t ∈ [0, T ] , (3.35c)

yN (t) ⇀ y(t) in Y for a.a. t ∈ (0, T ) , (3.35d)

y
N
(t) ⇀ y(t) in Y for a.a. t ∈ (0, T ) , (3.35e)

Wi(M∇ϕN (t)) → Wi(M∇ϕ(t)) in L1(B0) for a.a. t ∈ (0, T ), i = 1, 2 . (3.35f)

In particular, the pair (y, s) : [0, T ] → Y ×X satisfies:

• For all t ∈ [0, T ], for all ϕ̃ ∈ U : E(t,ϕ(t), s(t)) ≤ E(t, ϕ̃, s(t)) , (3.36a)

• if α = 0, for a.a. t ∈ (0, T ), for all s̃ ∈ X : (3.36b)
∫

B0

(

(

β′(s(t))W1(M∇ϕ(t)))− 1
lc
(1− s(t)) +M−1ṡ(t)

)

s̃+ lc∇s(t) : ∇s̃
)

)

dX = 0 ,

• if α > 0, for a.a. t ∈ (0, T ), for all s̃ ∈ X such that s̃ ≤ 0 a.e. in B0 : (3.36c)
∫

B0

(

(

β′(s(t))W1(M∇ϕ(t)))− 1
lc
(1− s(t)) +M−1ṡ(t)

)

s̃+ lc∇s(t) : ∇s̃
)

)

dX ≥ 0 ,

• if α > 0, then ṡ(t) ≤ 0 for a.a. t ∈ (0, T ), a.e. in B0 , (3.36d)

• and the energy dissipation inequality for all t ∈ [0, T ]: (3.36e)

E(t,ϕ(t), s(t)) +

∫ t

0

Vα(ṡ(τ)) dτ ≤ E(0,ϕ0, s0) +

∫ t

0

P(τ, s(τ)) dτ ,

with Vα from (3.3) and with P(τ, s(τ)) := sup{∂τE(τ, ϕ̂, s(τ)), ϕ̂ ∈ argminE(τ, ·, s(τ))} as a surrogate for
the partial time derivative from (3.25).
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3.3 Proofs of Prop. 3.8–Thm. 3.10

3.3.1 Proof of Prop. 3.8

In order to establish the proof of Item 1, we will employ the direct method of the calculus of variations.
For this, we will verify the coercivity and the weak sequential lower semicontinuity of the functional
E(t, ·, ·). To deduce the latter for the polyconvex functional E(t, ·, ·) we use the following result on the
convergence of minors of gradients, which goes back on [Res67, Bal76], cf. also [MM09]. With this at
hand we now establish weak sequential lower semicontinuity and coercivity.

Lemma 3.11. Let (3.14), (3.17), (3.18) as well as (3.10a)–(3.10d) hold. Then, for all t ∈ [0, T ] the
following statements hold true:

1. E(t, ·, ·) is coercive on U×Z for all t ∈ [0, T ], in particular, there are constants B,C > 0 such that
for all (y, s) ∈ Y × Z with ϕ = g(t, y) it holds:

E(t,ϕ, s) ≤ C
(

‖y‖pW 1,p(B0,R3)+‖cof∇ϕ‖p2

Lp2 (B0,R3×3)+‖det∇ϕ‖3Lp3 (B0,R)

)

+ lc
2 ‖s‖2H1(B0)

−B. (3.37)

2. E(t, ·, ·) : U× Z → R has weakly sequentially compact sublevels.

Proof. Proof of 1.: Let (yk, sk)k∈N ⊂ Y × Z. By (2.3), (3.10d), (3.17), (3.18), Young’s inequality with

ε = ( c1p
2Cp

gC
p

F

)
1

p , Lemma 3.4 and Friedrich’s inequality it is:

E(t,ϕk, sk)

≥
(

c1‖∇ϕk(t)‖pLp(Ω,R3×3) + c2‖cof∇ϕk‖p2

Lp2 (B0,R3×3) + c3‖det∇ϕk‖3Lp3 (B0,R)
−CL3(B0)

+ lc
2 ‖s‖2H1(B0)

− 1
2lc

L3(B0)−
(

Ch

p′ε

)p′

− εp

p ‖ϕk(t)‖pW 1,p(B0,R3)

)

≥
(

c1
Cp

g
(21−p‖∇(yk−id)‖pLp(B0,R3×3)−3

1

pL3(B0)) + c2‖cof∇ϕk‖p2

Lp2 (B0,R3×3)

+c3‖det∇ϕk‖3Lp3 (B0,R)
−CL3(B0)+

lc
2 ‖s‖2H1(B0)

− εp

p (‖yk‖pW 1,p(B0,R3)+1)−B̃
)

≥
(

c1
Cp

gC
p

F

− εp

p

)

‖yk‖pW 1,p(B0,R3) + c2‖cof∇ϕk‖p2

Lp2 (B0,R3×3) + c3‖det∇ϕk‖3Lp3 (B0,R)
+ lc

2 ‖sk‖2H1(B0)
−B,

which states (3.37).
Proof of 2.: To establish the weak sequential compactness of the energy sublevels we now consider

a sequence (yk, sk)k∈N ⊂ Y×Z with E(t,ϕk, sk) ≤ C uniformly for all k ∈ N. Coercivity estimate (3.37)
thus allows us to employ Prop. 3.6, which implies the existence of a subsequence yk ⇀ y in Y, such that
ϕk ⇀ ϕ in U, cof∇ϕk ⇀ cof∇ϕ in Lp2(B0,R

3× 3), and det∇ϕk ⇀ det∇ϕ in Lp3(B0,R). Moreover, we
also find a subsequence sk ⇀ s in Z. It thus remains to deduce the weak sequential lower semicontinuity
of each of the contributions of E.

To establish the weak sequential lower semicontinuity of the functional
∫

B0

γ(·, ·)dX : Z×Z → [0,∞)

with γ from (2.3). We first note that γ ∈ C1(R × R
3,R) and bounded from below by 0. Moreover, the

gradient term is strictly convex and the compact embedding Z ⋐ L2(Ω) will ensure that sk → s strongly
in L2(B0) if sk ⇀ s in Z. Hence, the weak sequential lower semicontinuity of the integral functional
follows by [Dac89, Sec. 3, Thm. 3.4].

Assumption (3.18) and Lemma 3.5 ensure that
∫

∂BN

0

h(t), g(t, yk) dX →
∫

∂BN

0

h(t), g(t, y) dX. Fur-

ther taking into account Hypotheses (3.10b)–(3.10d), which state that W is a Carathéodory-function,
polyconvex and bounded from below for every F ∈ GL+(3), the weak sequential lower semicontinuity of
∫

B0

g(·)W1(M(·)) +W2(M(·))dX can be obtained by applying weak lower semicontinuity results for the

convex case, cf. [Dac89, Sec. 3, Thm. 3.4].

We are now in the position to verify the existence of minimizers for problem (3.4) via the direct
method of the calculus of variations.
Proof of Prop. 3.8, Item 1: Asume that s0N ∈ [0, 1] a.e. in B0. Thus, E(t1N , ·, s0N ) : U → R is
well-defined. We conclude the existence of a minimizer y1N ∈ YN such that ϕ1

N = g(t1N , y1n) via the direct
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method of the calculus of variations by applying Lemma 3.11 to E(t1N , ·, s0N ). Let tkN ∈ ΠN fixed and
assume that s1N ∈ [0, 1] (which we will show in Intem 2 by induction). Again, E(tkN , ·, sk−1

N ) : U → R is
well-defined and we may deduce the existence of a minimizer ykN ∈ YN such that ϕk

N = g(tkN , ykn) via
the direct method by applying Lemma 3.11 to E(tkN , ·, sk−1

N ). Similarly, the existence of a minimizer skN

follows from Lemma 3.11 applied to the functional E(tkN ,ϕk
N , ·) + τNVαN (

·−sk−1

N

τN
). For this, note that

VαN (
·−sk−1

N

τN
) only contains quadratic, convex lower order terms. �

Proof of Prop. 3.8, Item 2: We proceed by contradiction. For this, suppose that sk−1
N ∈ [0, 1]

a.e. in B0 but that there exist sets B0, B1 ⊂ B0 with L3(B0),L3(B1) > 0 such that skN < 0 a.e. on B0

and skN > 1 a.e. on B1. We test the minimality (3.7b) by s̃ := min{1,max{0, skN}}. In view of (3.10g),
(3.13), (3.1), and (3.6) we thus have

β(skN )W1(M∇ϕk
N ) ≥ β(s̃)W1(M∇ϕk

N ),

(1− skN )2 ≥ (1− s̃)2,
∫

B0

|∇skN | dX ≥
∫

B0

|∇s̃| dX,

VαN (
skN−sk−1

N

τN
) ≥ VαN (

s̃−sk−1

N

τN
).

Here, the first inequality follows from the monotonicity of β on [0,∞) and (−∞, 0]. To see the second
inequality observe that (1− s)2 > 1 = (1− s̃)2 for s < 0 and (1− s)2 > 0 = (1− s̃)2 for s > 1. The third
inequality follows from [MM79, Sec. 2], which implies that ∇s̃ = 0 on B = B0 ∪ B1 and ∇s̃ = ∇skN on
B0\B. The fourth inequality ensues from

for skN < 0, sk−1
N ≥ 0 :

( skN−sk−1

N

τN

)2 ≥
(−sk−1

N

τN

)2
& 0 =

( skN−sk−1

N

τN

)2

+
≥

(−sk−1

N

τN

)2

+
= 0,

for skN > 1, sk−1
N ≤ 1 :

( skN−sk−1

N

τN

)2 ≥
(−sk−1

N

τN

)2
&

( skN−sk−1

N

τN

)2

+
≥

(−sk−1

N

τN

)2

+
.

Alltogether, the four relations imply

E(tkN ,ϕk
N , s̃) + VαN (

s̃−sk−1

N

τN
) < E(tkN ,ϕk

N , skN ) + VαN (
skN−sk−1

N

τN
) ,

which is in contradiction to the minimality (??) of skN and hence skN ∈ [0, 1] a.e. in B0.
Note that the above contradicition argument holds in particular for k = 1 under the assumption that

s0N ∈ [0, 1] a.e. in B0, i.e., in this case we find that s1N ∈ [0, 1] a.e.. Therefore, the above argument allows
us to conclude the statement by induction. �

3.3.2 Proof of Prop. 3.9

We start with the proof of the discrete notion of solution (3.32).
Proof of (3.32a): We observe that a minimizer ϕk

N of problem (3.7a) equivalently satisfies for all
ϕ̃ ∈ U

E(tkN ,ϕk
N , sk−1

N ) ≤ E(tkN , ϕ̃, sk−1
N ) . (3.38)

Applying the definition of the interpolants (3.31) we find (3.32a).
Proof of (3.32b): We use that a minimizer skN of problem (3.7b) satisfies the corresponding Euler-

Lagrange equations for all s̃ ∈ X:

∫

B0

(

(

β′(skN )W1(M∇ϕk
N (tkN )))− 1

lc
(1−skN )+M−1(

skN−sk−1

N

τN
)+αN(

skN−sk−1

N

τN
)+

)

s̃+lc∇skN : ∇s̃
)

)

dX = 0 .

Again using the definition of the interpolants (3.31) we find (3.32b).
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Proof of (3.33): In order to find the energy dissipation estimate we test the minimality of skN in
(3.7b) by sk−1

N , exploit the minimality of ykN , and add and subtract E(tk−1
N ,ϕk−1

N , sk−1
N ),

E(tkN ,ϕk
N , skN ) + τNVαN (

skN−sk−1

N

τN
) ≤ E(tkN ,ϕk

N , sk−1
N )

≤ E(tkN ,ϕk−1
N , sk−1

N ) + E(tk−1
N ,ϕk−1

N , sk−1
N )− E(tk−1

N ,ϕk−1
N , sk−1

N )

= E(tkN ,ϕk−1
N , sk−1

N ) +

∫ tkN

tk−1

N

∂τE(τ, g(τ, y
k−1
N ), sk−1

N ) dτ .

(3.39)

Consider now t ∈ (tm−1
N , tmN ]. Then summing up the above relation over k ∈ {1, . . . ,m}, results in

E(tmN ,ϕm
N , smN ) +

m
∑

k=1

τNVαN (
skN−sk−1

N

τN
) ≤ E(t0N ,ϕ0

N , s0N ) +

m
∑

k=1

∫ tkN

tk−1

N

∂τE(τ, g(τ, y
k−1
N ), sk−1

N ) dτ .

Again by the definition of the interpolants and using that t ∈ (tm−1
N , tmN ] we see that this relation is

equivalent to (3.33).
Proof of (3.34): We now want to exploit the previously obtained discrete estimate (3.39) (3.33) to

deduce the apriori estimates (3.34). To do so, we apply (3.26) under the integral of (3.39). This allows
us to apply the classical Gronwall inequality and, following the arguments of e.g. [FM06], one finds for
every m ∈ {1, . . . , N}

E(tmN ,ϕm
N , smN ) +

m
∑

k=1

VαN (
skN − sk−1

N

τN
) ≤ C . (3.40)

This translates into (3.34a) and, thanks to (3.37), also yields the estimates (3.34b)–(3.34d). Moreover,
in view of s0N ∈ [0, 1], estimate (3.34e) is due to Prop. 3.8, Item 2. Now, thanks to the properties of β
and W1,W2, cf. (3.10g) & (3.10), and coercivity estimate (3.37) we can verify that there is a constant
c1, c2 > 0 such that for all s̃ ∈ X we have

∣

∣

∣

∫

B0

β′(sN (t))W1(M∇ϕN (t))s̃ dX
∣

∣

∣
≤ ‖s̃‖X

(

c1E(t,ϕN (t), sN (t)) + c2
)

.

This proves (3.34f). �

3.3.3 Proof of Theorem 3.10

Proof of convergences (3.35): In view of (3.34c) we find subsequence and a limit s ∈ H1(0, T ;L2(B0))
such that (3.35a) holds true. Similarly, by (3.34d) & (3.34e) we find further subequences and s, s ∈ X,

such that also s
∗
⇀ s and s

∗
⇀ s in L∞(0, T ;X). Since sℓN (t) − sN (t) = (t − tkN )ṡℓN (t) and sℓN (t) −

sN (t) = (t− tk−1
N )ṡℓN (t), we deduce from convergence (3.35a) that in fact s = s = s in L∞(0, T ;H1(B0)).

This proves convergences (3.35b) & (3.35c) due to the pointwise bounds in time (3.34d) & (3.34e).
Convergences (3.35d) & (3.35e) also follow by the boundedness in L∞(0, T ;Y) implied by the pointwise
in time bounds (3.34b). Observe that (3.35d) only holds on (0, T )\N with L3(N) = 0. We can define y(t)
for t ∈ N by choosing y(t) ∈ Y such that ϕ(t) = g(t, y(t)) ∈ argminϕ̃∈U(t)E(t, ϕ̃, s(t)). Moreover, it has
to be noted that, due to polyconvexity, i.e., the lack of (strict) convexity the uniqueness of minimizers is
not guaranteed. This is why y(t) and y(t) must not coincide.

It remains to verify the convergence of Wi(M∇ϕN (t)), i.e., (3.35f). For this we test the minimality
of ϕN (t) in (3.32a) by the limit ϕ(t) at any time t ∈ (0, T ), where (3.35d) holds true. Based on this we
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argue that

lim sup
N→∞

∫

B0

(

β(sN (t))W1(M∇ϕN (t)) +W2(M∇ϕN (t))
)

dX

≤
∫

B0

(

β(s(t))W1(M∇ϕ(t)) +W2(M∇ϕ(t))
)

dX

+ lim sup
N→∞

∫

∂BN

0

h · (ϕ(t)−ϕN (t)) dX + lim sup
N→∞

∫

B0

(β(sN (t))− β(s(t)))W1(M∇ϕ(t)) dX

=

∫

B0

(

β(s(t))W1(M∇ϕ(t)) +W2(M∇ϕ(t))
)

dX .

(3.41)

Here, the convergence of the Neumann boundary-term follwos by weak strong convergence arguments
taking into account (3.35d) and Prop. 3.6. The convergence of (β(sN (t))− β(s(t)))W1(M∇ϕ(t)) → 0 in
L1(B0) ensues by the dominated convergence theorem, using that convergence (3.35c) implies convergence
in measure and that (1 + η)W1(M∇ϕ(t)) +W2(M∇ϕ(t) provides a majorant. Since all terms are non-
negative and β(·)η > 0, estimate (3.41) implies that also

lim sup
N→∞

∫

B0

(

W1(M∇ϕN (t)) +W2(M∇ϕN (t))
)

dX ≤
∫

B0

(

W1(M∇ϕ(t)) +W2(M∇ϕ(t))
)

dX . (3.42)

On the other hand, we also have by lower semicontinuity

lim inf
N→∞

∫

B0

(

W1(M∇ϕN (t)) +W2(M∇ϕN (t))
)

dX ≥
∫

B0

(

W1(M∇ϕ(t)) +W2(M∇ϕ(t))
)

dX . (3.43)

Hence, (3.35f) is proven.
Proof of the minimality condition (3.36a): Thanks to convergence (3.35d) we find by Prop. 3.6

the weak convergences of the corresponding minors. Additionally, convergence (3.35b) yields the strong
convergence sN (t) → s(t) in L2(B0) for all t ∈ [0, T ], which in turn implies convergence in measure.
Using that

∫

B0

(

β(sN (t))W1(M∇ϕ(t)) +W2(M∇ϕ(t))
)

dx ≤
∫

B0

(

W1(M∇ϕ(t)) +W2(M∇ϕ(t))
)

dx we

have found a convergent majorant, which allows us to pass to the limit on the right-hand side of (3.32a) by
continuity. In turn, the limit passage on the left-hand side of (3.32a) is done by weak lower semicontinuity.
This proves (3.36a).

Proof of the evolution equation (3.36b) for α = 0: Let now α = 0 and we want to show (3.36b).
In view of convergences (3.35), we may apply weak-strong convergence arguments to pass to the limit in
(3.32b) as an equality, i.e., we find for a.e. t ∈ (0, T ), for every s̃ ∈ X

∫

B0

(

(

β′(s(t))W1(M∇ϕ(t))(t)− 1
lc
(1− s(t)) +M−1ṡ

)

s̃+ lc∇s(t) : ∇s̃
)

)

dX = 0 . (3.44)

More precisely, to obtain the first term we apply the dominated convergence theorem arguing that
β′(sN (t))W1(M∇ϕN (t)))s̃ → s(t))W1(M∇ϕ(t)))s̃ in measure, thanks to (3.35c) & (3.35f), and that
W1(M∇ϕN (t)))|s̃| provides a convergent majorant for s̃ ∈ X.

Proof of the evolution equation (3.36c) for α > 0: Let now α > 0. To show the validity of
(3.36c) we observe that αN(ṡℓN )+s̃ ≤ 0 for every s̃ ∈ X with s̃ ≤ 0 a.e. in B0. Hence, when moving
this term to the other side of the equation, we find that (3.32b) can be reformulated as a variational
inequality, i.e., for all s̃ ∈ X with s̃ ≤ 0 a.e. in B0:

0 ≤
∫

B0

(

(

β′(sN (t))W1(M∇ϕN (t)))− 1
lc
(1− sN ) +M−1ṡℓN

)

s̃+ lc∇sN (t) : ∇s̃
)

)

dX . (3.45)

We can then pass to the limit on the right-hand side of (3.45) using convergences (3.35) and weak-strong
convergence arguments and arguing by dominated convergence for the first term, as in the case α = 0.

Proof of nonpositivity (3.36d) if α > 0: From the third bound in (3.34a), we gather that

∫ T

0

∫

B0

(ṡℓN )+ dX dt ≤ C

αN
→ 0 as N → ∞ .
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By weak lower semicontinuity and convergence (3.35a) we conclude that

0 = lim inf
N→∞

∫ T

0

∫

B0

(ṡℓN )+ dX dt ≥
∫ T

0

∫

B0

(ṡ)+ dX dt ,

which implies that ṡ ≤ 0 a.e. in (0, T ), a.e. in B0.
Proof of the energy-dissipation estimate (3.36f): Thanks to convergences (3.35) we can pass to

the limit on the left-hand side of the dicrete energy-dissipation estimate (3.33) by lower semicontinuity
arguments, also using in the case α > 0 that VαN (ṡℓN (t)) ≥ V0(ṡ

ℓ
N (t)) and Vα(ṡ(t)) = V0(ṡ(t)) since

ṡ(t) ≤ 0 for a.e. t ∈ (0, T ) by (3.36d). On the right-hand side, the energy at initial time is constant wrt.
N ∈ N and we only have to take care about the limit passage in the powers of the external loadings. For
this, we want to show that

lim sup
N→∞

∫ t

0

∂τE(τ,ϕN
(τ), sN (τ) dτ ≤

∫ t

0

P(τ, s(τ)) dτ , (3.46)

where P(τ, s(τ)) := sup{∂τE(τ, ϕ̂, s(τ)), ϕ̂ ∈ argminE(τ, ·, s(τ))} is introduced as a surrogate for the
partial time derivative from (3.25). We can conclude (3.46) if we first show that

ϕ(τ) is a minimizer of E(τ, ·, s(τ)) (3.47)

and secondly verify that
∫ t

0

∂τE(τ,ϕN
(τ), sN (τ)) dτ →

∫ t

0

∂τE(τ,ϕ(τ), s(τ)) dτ . (3.48)

Clearly, these two properties imply (3.46) due to the definition of P. In addition, by the power control

estimate (3.26), we see that
∫ t

0
P(τ, s(τ)) dτ is well-defined and finite.

We now prove statement (3.47). For this, we introduce a further interpolant, i.e.

s
N
(t) := sk−1

N for all t ∈ [tkN , tk+1
N ) for k ∈ {1, . . . , N}, s

N
(t) := s0N for all t ∈ [t0N , t1N ) , (3.49)

which thus satisfies s
N
(t) = sN (t − τN ) = sN (t − 2τN ) for t ∈ [tkN , tk+1

N ) and all k ∈ {1, . . . , N}. With
similar arguments as for the proof of convergences (3.35b) & (3.35c) we find that

s
N
(t)

∗
⇀ s(t) in L∞(0, T ;X) . (3.50)

Using the interpolant s
N
, we can rewrite minimizality condition (3.38) for all ϕ̃ ∈ U(tN (t)) as

E(tN (t),ϕ
N
(t), s

N
(t)) ≤ E(tN (t), ϕ̃, s

N
(t)) . (3.51)

Using convergences (3.35e) & (3.50) and by repeating the arguments of the proof of minimality condition
(3.36a) we conclude (3.47).

We now turn to the proof of the convergence of the powers of the energy (3.46). For this, we will
adapt the arguments of [Tho10, Sec. 3] and [FM06, Prop. 3.3] to the present, rate-dependent situation.
More precisely, for I : [0, T ] × U × Z, I(t,ϕ, s) :=

∫

B0

W (∇ϕ, s) dX −
∫

∂BN

0

h · ϕdX we shall show in

Lemma 3.12 below that
1. It holds I(t,ϕm, sm) → I(t,ϕ, s) for every sequence sm ⇀ s in X and ϕm ⇀ ϕ in U such that

ϕm ∈ argmin{I(tm, ϕ̃, sm), ϕ̃ ∈ U}.
2. For every pair (y, s) such that E(0, g(0, y), s) < E the derivative ∂tE(·, g(·, y), s) = ∂tI(·, g(·, y), s)

is uniformly continuous.
The lower semicontinuity of I(t, ·, ·) in U× Z together with the above Items 1& 2 will allow us to apply
[FM06, Prop. 3.3], which then implies that ∂tI(t,ϕm, sm) → ∂tI(t,ϕ, s). In other words, this result
allows us to conclude that ∂τE(τ,ϕ(τ), s(τ)) → ∂τE(τ,ϕ(τ), s(τ)) pointwise in τ ∈ [0, T ]. Using again
the power control (3.26) providing an integrable majorant, the dominated convergence theorem yields
statement (3.48). Hence the upper energy-dissipation estimate (3.36f) is proven, so that the proof of
Thm. 3.10 is concluded. �

We now provide the following result, which was used for the proof of the upper energy dissipation
estimate (3.36f):
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Lemma 3.12 (Convergence of the energies and powers). Let the assumptions of Thm. 3.10 be satisfied
and denote I : [0, T ] × U × Z, I(t,ϕ, s) :=

∫

B0

W (∇ϕ, s) dX −
∫

∂BN

0

h · ϕdX. Then, the following

statements hold true:
1. It holds I(t,ϕm, sm) → I(t,ϕ, s) for every sequence sm ⇀ s in X and ϕm ⇀ ϕ in U such that

ϕm ∈ argmin{I(tm, ϕ̃, sm), ϕ̃ ∈ U}.
2. For every pair (y, s) such that E(0, g(0, y), s) < E the derivative ∂tE(·, g(·, y), s) = ∂tI(·, g(·, y), s)

is uniformly continuous, i.e., for each E, ε > 0 there is δ > 0 such that for all (y, s) with
E(0, g(0, y), s) < E it is

|∂tI(t, g(·, y), s)− ∂tI(τ, g(·, y), s)| < ε if |t− τ | < δ . (3.52)

Proof. We start with the proof Item 1. Consider a sequence sm ⇀ s in X with ‖sm‖L∞(B0) ≤ 1 and
y ∈ X such that E(0, g(0, y), s1) < E. Then we find that I(t, g(t, y), sm) → I(t, g(t, y), s). Note that the
convergence of the Neumann boundary terms is due to the assumptions (3.17) & (3.18). Moreover, the
convergence of the bulk term follows from the dominated convergence theorem, since W (t, g(t, y), sm) →
W (t, g(t, y), s) in measure thanks to convergence (3.35c) and since W (t, g(t, y), 1) provides an integrable
majorant. Moreover, ϕm minimizes I(tm, ·, sm). Hence, by assumptions (3.17) & (3.18) there is a constant
E such that I(t,ϕm, sm) < E for all t ∈ [0, T ]. Thus (3.27) holds and we infer

I(t,ϕm, sm)− cE |tm − t| ≤ I(tm,ϕm, sm) ≤ I(t,ϕ, sm) + cE |tm − t| → I(t,ϕ, s)

We conclude I(tm,ϕm, sm) → I(t,ϕ, s) exploiting the weak sequential lower semicontinuity

I(t,ϕ, s) ≤ lim inf
m→∞

(

I(t,ϕm, sm)− cE |tm − t|
)

≤ lim inf
m→∞

I(tm,ϕm, sm)

≤ lim sup
m→∞

I(tm,ϕm, sm) ≤ lim sup
m→∞

(

I(t,ϕ, sm) + cE |tm − t|
)

= I(t,ϕ, s) .

Hence Item 1 of the Lemma is verified.
We now prove Item 2. Consider (y, s) such that E(0, g(0, y), s) < E. Due to (3.17) and (3.18) we find

for every ε̃ > 0 a δ̃ > 0 such that for all τ, t∈ [0, T ] with |τ − t|< δ̃ we have ‖g(τ, y) − g(t, y)‖C1(B0,R3) +
‖ġ(τ, y)− ġ(t, y)‖C1(B0,R3) < ε̃. Choose now ε, E>0. By estimate (3.37) we obtain for t = 0:

‖y‖W 1,p(B0,R3) ≤
(

E(0,g(0,y),s)+C3

c3

)
1

p ≤
(

E+C3

c3

)
1

p

=: B̃ .

Thanks to the growth control (3.17c) for g his shows that g(t, y) for (y, s) with bounded energy at initial
time are uniformly bounded for every t ∈ [0, T ].

Furthermore we estimate

|∂tI(t, g(t, y), s)− ∂tI(τ, g(τ, y), s)|

≤
∣

∣

∣

∣

∫

B0

∂FW (∇g(t, y), s)(∇g(t, y))⊤ : ∇(ġ(t, y)− ġ(τ, y)) dX

∣

∣

∣

∣

(3.53)

+

∣

∣

∣

∣

∫

B0

(∂FW (∇g(t, y), s)(∇g(t, y))⊤ − ∂FW (∇g(τ, y), s))(∇g(τ, y))⊤ : ∇ġ(τ, y) dX

∣

∣

∣

∣

(3.54)

+

∣

∣

∣

∣

∣

∫

∂BN

0

(ḣ(t)− ḣ(τ)) · g(t, y) dX
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

∂BN

0

ḣ(τ) · (g(t, y)− g(τ, y)) dX

∣

∣

∣

∣

∣

(3.55)

+

∣

∣

∣

∣

∣

∫

∂BN

0

(h(t)− h(τ)) · ġ(t, y) dX
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

∂BN

0

h(τ) · (ġ(t, y)− ġ(τ, y)) dX

∣

∣

∣

∣

∣

, (3.56)

where, thanks to assumptions (3.17) & (3.18), each of the terms in (3.55) & (3.56) can be estimated from
above by ε/8 for |t− τ | < δ̃0 sufficiently small.

In view of (3.10d), (3.2) and Lipschitz estimate (3.27) we see that

(3.53) ≤ ‖∂FW (∇g(·, y), s)(∇g(·, y))⊤‖L1(B0)‖∇(ġ(t, y)− ġ(τ, y))‖L∞(B0,R3×3)

≤ (E(0, g(0, y), s) + CL3(B0) + cET + clB)‖∇(ġ(t, y)− ġ(τ, y))‖L∞(B0,R3×3) <
ε

4
,
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if |t−τ |<δ̃1 is sufficiently small. In view of (3.10f) and the Gronwall estimate we find

(3.54) ≤ cgω
(

‖∇(ġ(t, y)− ġ(τ, y))‖L∞

)(

‖W (∇g(t, y), s)‖L1

(

1 + exp(2ccg)
)

+C
)

<
ε

4

for |τ−t| < δ̃2 sufficiently small, where we used C := (1+exp(2ccg)ccg)c̃L
d(Ω). Hence we obtain (3.54)< ε

4

if |s−t|<δ̃2. Altogether we conclude that |∂tI(s, q)−∂tI(t, q)|<ε if |s−t| < δ := min{δ̃0, δ̃1, δ̃2}.

4 Numerical Examples

In this section we demonstrate the robustness of the proposed model and the analytical results by a series
of numerical examples.

4.1 Mode-I-tension test in two dimensions

As a first numerical example we choose a simple mode-I-tension test in two dimensions and consider a
squared plate with a required horizontal notch. The geometry and the related boundary conditions are
depicted in the left plot of Fig. 3. At the lower boundary of the plate the displacements are constrained in
horizontal and vertical direction and at the upper side prescribed displacements are applied incrementally
which are realized by making use of a dirichlet boundary condition. Furthermore, the mesh presented in
Fig. 3 is on the basis of the hierarchical refinement strategy ([Hesch15]) and consists of 20×20 quadratic
B-splines elements before making use of the refinement. After three local refinement levels in total 2656
elements with overall 12288 degrees of freedom are employed for the tension test.

u

5 5

5

5

Figure 3: Boundary conditions (left) of a mode-I-tension test and the related mesh based on a hierarchical
refinement strategy (right)

The following investigations and simulations are based on the non-linear Neo-Hookean material model
which is defined as

W (F, J) =
µ

2
(IC − 2) +

κ

2
(J − 1)2, (4.1)

with the shear modulus µ and the bulk modulus κ. Moreover, the proposed anisotropic split (2.11)
is applied within this phase-field model. The material parameter are chosen as the Lamè parameters
λ = 121.1538× 109 N

m2 , µ = 80.7692× 109 N

m2 and the critical energy release rate of Gc = 2.7× 103 N

m2 .
On the one hand the related length-scale parameter lc depends on the mesh size h and has to fullfill the
inequality lc > 2h in general, cf. [Mie10Th], which enables the approximation of a diffuse interface zone.
In this case using three level refinements the length scale parameter is set to lc = 1.25e − 5 m. On the
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Figure 4: Load-deflection curves for different lc and the same mesh

other hand lc operates also as material parameter which can be seen nicely in the load deflection curves
in Fig. 4.

The snapshot of the phase-field and the related crack propagation under tension are shown in the left
plot of Fig. 5. In order to examine the different solution techniques in more detail, the mode-I-tension test
was deduced within the monolithic and the staggered solution scheme. The right plot of Fig. 5 presents
the load-deflection curves which show the good accordance of the both solution schemes. However, it can
be also seen that the staggered scheme is quite more robust regarding the numerical simulation, because
the monotlithic curve is aborted earlier.
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Figure 5: Phase-field snapshot of the mode-I-tension test (left) and load-deflection curves for staggered
and monolithic scheme (right)

In a next step the influence of the timestep size is investigated in more detail. The timestep size will
be decreased by 0.1 manually during the simulation if the total time of 0.5 sec is achieved. Within this
assumption different timestep sizes are examined and the related load-deflection curves are shown in Fig.
6. The results are very similar regarding the crack initialization so that the timestep size do not influence
the results in a great measure.
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Figure 6: Load-deflection curves for different timestep sizes

4.2 Conchoidal fracture in three dimensions

In this section we simulate a three-dimensional bloc of brittle rock material which is loaded in such a
way, that it will crack by conchoidal fracture. The model has been suggested to work as a benchmark
problem [Mue2016] in the framework of our DFG Priority Programm 1748.

Conchoidal fracture is a specific type of brittle fracture which is observed in fine-grained or amorphous
materials such as rocks, minerals and glasses. Typically it results in a curved breakage surface. Since in
conchoidal fracture the shape of the broken surface is controlled only by the stresses state and not by a
preferred orientation of the material, the main challenge is to apply a numerical method to predict crack
propagation without an initial crack. This type of fracture is often induced by an impact, however, also
static loading can induce the mussel shell like shape. Therefore, in the following we employ a quasistatic
displacement driven loading regime and he simulation is based on the staggered solution technique.

2a

4a

4a

2a
2a

Figure 7: Geometry and loading of a bloc of brittle rock-like material subjected to tension on the upper
exterior surface.

We investigate a 4a× 4a× 2a bloc of stone material subjected to a prescribed displacement on part
of its upper boundary, 2a = 1m. The geometrical setup of the problem and the boundary conditions are
displayed in Fig. 7. On the lower boundary we prescribe Dirichlet conditions u = 0 and z = 0 for the
displacements and the crack phase field.
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In a first step this example is based on the non-linear Neo-Hookean material model

W (F, J) =
µ

2
(IC − 3) +

κ

2
(J − 1)2, (4.2)

with the proposed anisotropic split (2.11), the shear modulus µ and the bulk modulus κ whereby the sec-
ond invariant IIC drops out. The material parameters are chosen as Lamè constant λ = 100000 N/mm2,
shear modulus µ = 100000 N/mm2, and a critical energy release rate of Gc = 1 N/mm.

In a second step the Mooney-Rivlin material model is applied to take into account the assumption
(3.10d). The related strain energy function is given by

W (F,H, J) = c1(IC − 3) + c2(IIC − 3) +
c

2
(J − 1)2, (4.3)

with the proposed anisotropic split (2.11) and the coefficients c, c1, c2 ∈ R
+. The material parameters

are chosen as c = 1.6667× 105 N/mm2, c1 = 31000 N/mm2, c2 = 19000 N/mm2 which correspond to the
elasticity modulus E = 250000 N/mm2 and poisson ratio ν = 0.25 and a critical energy release rate of
Gc = 1 N/mm.

The finite element mesh requires a certain minimum element size h in order to resolve the with a
length scale parameter of lc = 0.2 m. Thus, we discretize the bloc with a structured mesh consisting of
27000 8-node brick elements. The mesh is not refined in the area where the crack is expected to propagate
— because we do not want to nudge the simulation in any direction.
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Figure 8: Force-displacement curve obtained for both non-linear elasticity models.

The specimen is subject to a displacement-driven deformation by prescribed incremental displace-
ments of 0.001mm until crack initiation. The subsequent deformation demands an adjustment of the
displacement increments to 0.0001mm up to the final deformation. The block cracks at a prescribed
displacement of about 3mm approximately, see Fig. 8. The behavior is characterized by a brutal and
complete crack growth. In Fig. 9 the crack evolution at different stages of the deformation is displayed
for both non-linear models (4.4) and (4.3).

In the non-linear elastic model we find crack initiation inside the bloc below the pulled surface. Please
note that the characteristic rippled surface of conchoidal fracture can nicely be observed.

4.3 Brick hole in three dimensions

In the following we investigate a three-dimensional block with a cylindric hole in the middle and of the
geometry 50×50×8 m. The geometry and the related mesh with a mesh size of h = 1 m are demonstrated
in the left plot of Fig. 10 which is based on piecewise Lagrangian polynomials. Furthermore, the upper
boundary is loaded by prescribing an incremental displacement whereas the lower boundary is constrained
in all directions by applying dirichlet boundary conditions ϕ = 0 and s = 1 for the displacements and
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Figure 9: Region of crack initiation, final state and crack surface in the Neo-Hookean (upper row) and
Mooney-Rivlin (lower row) model computed with a mesh of 30× 30× 30 elements.

the phase-field. The numerical computation is also based on the staggered scheme.
This example is also based on the non-linear Neo-Hookean material model in three dimensions

W (F, J) =
µ

2
(IC − 3) +

κ

2
(J − 1)2, (4.4)

with the proposed anisotropic split (2.11), the shear modulus µ and the bulk modulus κ. The material
parameter are chosen as the Lamè parameters λ = 121.1538 × 109 N

m2 , µ = 80.7692 × 109 N

m2 and the

critical energy release rate of Gc = 2.7× 103 N

m2 .
During the simulation it can be observed that the crack propagates horizontally. The results of the
phase-field in the current configuration are depicted in the right plot of Fig. 10. Moreover, the block
cracks at a prescribed displacement of about 0.017 m, see Fig. 11.

Figure 10: Mesh of the brickhole (left) and phase-field snapshot of the brickhole (right)
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Figure 11: Load-deflection curve of the example brickhole
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