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Data from functional magnetic resonance imaging (fMRI) consist of
time series of brain images that are characterized by a low signal-to-
noise ratio. In order to reduce noise and to improve signal detection,
the fMRI data are spatially smoothed. However, the common
application of a Gaussian filter does this at the cost of loss of
information on spatial extent and shape of the activation area. We
suggest to use the propagation–separation procedures introduced by
Polzehl and Spokoiny [Polzehl, J., Spokoiny, V. (2006). Propagation–
separation approach for local likelihood estimation. Probab. Theory
Relat. Fields 135, 335–362] instead. We show that this significantly
improves the information on the spatial extent and shape of the
activation region with similar results for the noise reduction. To com-
plete the statistical analysis, signal detection is based on thresholds
defined by random field theory. Effects of adaptive and non-adaptive
smoothing are illustrated by artificial examples and an analysis of
experimental data.
© 2006 Elsevier Inc. All rights reserved.
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Introduction

The aim of this paper is to offer an alternative approach for
using spatial information in the statistical evaluation of fMRI
experiments. fMRI data are characterized by a very low signal-to-
noise ratio (SNR). Signal detection is to be performed in each
voxel of a three-dimensional cube. This induces a severe multiple
test problem. A voxelwise analysis, using individual critical values,
produces a large portion of false-positive signals. At the same time
small signals are concealed due to high variability of the parameter
estimates. The use of a global critical value, that is, specification of
an error probability to observe a false-positive in any voxel, usually

leads to no signal detection at all. The situation is worsened with
fMRI studies aiming for ever increased resolution that is
subsequently lowering the SNR.

Several methods have been proposed to enhance signal detection
using spatial information present in fMRI data. This includes cluster
based methods using the spatial extent of detected activations at a
given threshold, Friston et al. (1994), together with peak intensity,
Poline et al. (1997), to test for activations. Others involve spatial
smoothing, using a Gaussian filter, with the amount of smoothing
chosen to match the spatial extent of the signal to be detected,
Worsley et al. (1996a). Scale space methods, Poline and Mazoyer
(1994) and Siegmund and Worsley (1995), attempt to achieve an
optimal amount of smoothing at the expense of possible lower
sensitivity. Thresholds for the tests are set by random field theory
(Adler, 1981, 2000; Worsley, 1994). Especially spatial smoothing
employing a non-adaptive Gaussian filter trades increased detect-
ability with loss of information on spatial extent and shape of the
activation areas.

Such loss is avoided by using a spatially adaptive method, like
the propagation– separation (PS) approach (Polzehl and Spokoiny,
2006), that preserves sizes and shapes of the activated areas. In this
paper we show how this method can be used in a fMRI analysis
and how it improves the inferred information on the spatial extent
and shape of the activated regions.

The use of such an idea, that is adaptive weights smoothing
(AWS) (Polzehl and Spokoiny, 2000), for fMRI analysis has already
been suggested in Polzehl and Spokoiny (2001). Several important
questions were left open at that time. The approach was restricted to
periodic activations. Furthermore it did not consider temporal and
spatial correlation present in the data. And finally it failed to provide
a formal solution to select appropriate thresholds for signal detec-
tion. In this paper we will overcome all these drawbacks and provide
a complete procedure for structurally adaptive fMRI analysis using
the PS approach.

The methodology does not use prior anatomical knowledge.
Proposals in this direction, see, e.g., Andrade et al. (2001) or
Kiebel and Friston (2002), can be combined with the smoothing
procedures presented here.
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The paper is organized as follows. The next section describes
the voxelwise analysis of fMRI time series. In the Spatial
smoothing and signal detection section, we outline our proposal
to apply adaptive smoothing to enhance signal detection using
spatial information. We then provide thresholds motivated by
random field theory, see Worsley (1994) and Worsley et al.
(1996b). The Results section provides results for experimental
fMRI data as well as an artificial example to underline the
advantages of the method in different situations.

Voxelwise analysis of time series

In fMRI the BOLD effect is used as a natural contrast
employing the fact that voxels with increased neuronal activity
are characterized by a higher oxygenation level (Ogawa et al.,
1990, 1992). The expected BOLD response can be modeled by a
convolution of the task indicator function with the hemodynamic
response function. This function models the fact that blood
oxygenation is subject to some delay and shows a more
complicated structure than a simple indicator function. In fMRI
experiments one finds a characteristic form for the measured
BOLD response. Several suggestions have been made to model the
hemodynamic response function h(t). We give the h(t) as the
difference of two gamma functions, Glover (1999):

h tð Þ ¼ t
d1

� �a1

exp � t � d1
b1

� �
� c

t
d2

� �a2

exp � t � d2
b2

� �

with a1=6, a2=12, b1=0.9, b2=0.9 and di=aibi, i=1, 2, c=0.35
and t the time in seconds. Given the stimulus s(t) as a task indicator
function, we arrive at the expected BOLD response as convolution
of s(t) and h(t):

xðtÞ ¼
Z l

0
hðuÞsðt � uÞdu:

The resulting function x(t) is evaluated at the T scan acquisition
times t. Approaches allowing for spatially varying latency of the
hemodynamic response, Worsley and Taylor (2006), could be used
alternatively.

We adopt the common view (Friston et al., 1995; Worsley and
Friston, 1995; Worsley et al., 2002) of a linear model for the time
series Yi=(Yit) in each voxel i after reconstruction of the raw data
and motion correction,

Yi ¼ Xbi þ ei; ð1Þ
where X denotes the design matrix. The first q columns of X
contain values of the expected BOLD response for the different
stimuli evaluated at scan acquisition times. The other p–q columns
are chosen to be orthogonal to the expected BOLD responses and
to account for a slowly varying drift and possible other external
effects. The error vector εi has zero expectation and is assumed to
be correlated in time. In order to access the variability of the
estimates of βi correctly we have to take the correlation structure of
the error vector εi into account. Here we follow Worsley (2005b)
assuming an AR(1) model to be sufficient for commonly used MRI
scanners. The autocorrelation coefficients ρi are estimated from the
residual vector ri=(ri1, … ,riT) of the fitted Model (1) as

Pqi ¼
XT
t¼2

ritriðt�1Þ
�XT

t¼1

r2it :

This estimate of the correlation coefficient is biased due to
fitting the linear Model (1) (Worsley et al., 2002). We therefore
apply the bias correction given by Worsley et al. (2002) leading to
an estimate ρ̃i .

We then use prewhitening to transform Model (1) into a linear
model with approximately independent errors. The prewhitened
linear model is obtained by multiplying the terms in Eq. (1) with
some matrix Ai depending on ρ̃i . The prewhitening procedure thus
results in a new linear model

Ỹit ¼ X̃ itbi þ ẽit ð2Þ
with Ỹi=AiYi, X̃i=AiX and ε̃i=Aiεi. In the new model the
distribution of the errors ε̃it are approximately independent of
time t, such that Var εi=σi

2 IT .
Finally least squares estimates β̃ i are obtained from Model (2)

as

b̃ ¼ ðX̃ TX̃ Þ�1X̃ TỸ :

The error variance σi
2 is estimated from the residuals r̃i of the

linear Model (2) as σ̃i
2 =Σ1

T r̃ it
2 / (T−p) leading to estimated

covariance matrices

Var b̃ ¼ r̃2ðX̃ TX̃ Þ�1:

Let c be a vector of contrasts that defines the effect of interest.
This leaves us with three-dimensional arrays Γ̃, S̃ containing the
estimated effects γ̃i=c

Tβ̃ i and their estimated standard deviations
s̃i=(c

T Var β̃ i c)
1/2. The voxelwise quotient θ̃i= γ̃i / s̃i of both arrays

forms a statistical parametric map (SPM) Θ̃. This map is
approximately a random t-field, see Worsley (1994). All arrays
carry a correlation structure induced by the spatial correlation in
the fMRI data.

Spatial smoothing and signal detection

A voxelwise signal detection may now be based on the SPM Θ,
that is, define a voxel as activated if the corresponding value in the
SPM Θ exceeds a critical value or threshold. Such an analysis is
inefficient in the sense that it either produces a large number of
false-positive signals or fails to detect many of the activations. The
first situation is typical for applying a voxelwise threshold to the
large number of voxels in the data cube while the second case is
characteristic if thresholds are controlled by a global significance
level.

In situations where activations have a spatial extent, spatial
smoothing of the array Γ̃ has the potential to improve both overall
sensitivity and specificity of signal detection. With Gaussian
smoothing we can achieve a reduction in the signal-to-noise ratio at
the cost of a possible bias at the border of the activated regions.
This leads to an increased power of the tests and therefore more
sensitivity and specificity of signal detection in all voxel except in
a neighborhood of the border of the region. The size of this
neighborhood depends on the amount of smoothing that is applied.
In this neighborhood, specificity of signal detection may decrease.
The optimal amount of smoothing depends on both signal strength
and spatial extent, see, e.g., Worsley and Friston (1995). We
illustrate in this paper that adaptive smoothing is able to avoid the
loss of specificity at the border of activated regions. The PS
approach naturally leads to an optimal local variance reduction and
effectively selects a locally optimal bandwidth.
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Spatial smoothing is usually applied to the original images in the
fMRI time series prior to parameter estimation in the linear model.
We note that for parameter estimation, except for effects from
prewhitening, the order in which non-adaptive spatial smoothing
and evaluation of the linear model are performed is arbitrary. If
temporal correlations are spatially homogeneous temporal and
spatial smoothing can be interchanged. If temporal correlations are
estimated the result may change slightly when the order of
smoothing and parameter estimation is reversed. Nevertheless
smoothing the effects γ̃i obtained from the original fMRI data
allows for a better assessment for the variance of estimated effects,
see the Properties of Γ̂ and Ŝ section.

For spatial adaptive smoothing the order of both steps is
important. The quality of adaptation heavily depends on the signal-
to-noise ratio present in the data. Parameter estimation in the linear
model serves as a variance and dimension reduction step prior to
spatial smoothing and therefore allows for a much better adaptation.

We propose to use a spatial adaptive smoothing procedure based
on the PS approach from Polzehl and Spokoiny (2006) on the array
of estimated parameters.

Propagation–separation approach

We shortly explain the main idea. Let us assume that for each
voxel with coordinates i=(ix, iy, iz) the parameter γi can be well
approximated by a constant within a local vicinity UðiÞ of voxel i.
This serves as our structural assumption.

Our estimation problem can now be viewed as consisting of
two parts. In order to efficiently estimate the parameter γi in a
voxel i, we need to describe a local model, that is, to assign weights
Wi={wi1, … , win}. If we knew the neighborhood UðiÞ we would
define local weights as wij ¼ Ij a UðiÞ and use the weighted least
squares estimate

ĝi ¼
X
j

w̃ijg̃j=
X
j

w̃ij with w̃ij ¼ wij=s̃
2
j ð3Þ

as an estimate of γi. Since γi and therefore UðiÞ are unknown, the
assignments will have to depend on the information on Γ that we
can extract from the estimates in Γ̃ and their estimated variances. If
we have good estimates γ̂j of γj, we can use this information to
infer on the set UðiÞ by testing the hypothesis

H : gj ¼ gi: ð4Þ

A weight wij can be specified based on the value of a test
statistic Tij, assigning zero weights if γj and γi are significantly
different. This provides us with a set of weights Wi={wi1, … , win}
that determines a local model in voxel i. These weights can then be
used to obtain new estimates of the parameter function γ in each
voxel i by Eq. (3).

We utilize the two steps in an iterative procedure. We start with a
very local model in each voxel i given by weights

wð0Þ
ij ¼ KlocðDði; j; hð0ÞÞÞ;

where Δ(i, j, h)= ((ix− jx)
2 / hx

2 + (iy− jy)
2 / hy

2+ (iz− jz)
2/hz

2)1/2 is a
weighted distance between voxels i and j. The initial vector of
bandwidths h(0) = (hx

(0), hy
(0), hz

(0)) is chosen very small, with its
components indirectly proportional to the size of a voxel in the three
coordinate directions. Kloc is a Gaussian kernel with FWHM=1,
truncated at 4=

ffiffiffiffiffiffiffiffiffi
8ln2

p
, that is, KlocðxÞ ¼ e�4 ln 2x2 IxV4=

ffiffiffiffiffiffiffiffi
8 ln 2

p . Except

from truncation this is the common choice in the fMRI and random
fields literature and used here for comparability. Initial estimates are
generated using Eq. (3).

We iterate two steps, refining the local models and estimation of
Γ. In the kth iteration new weights are generated as

wðkÞ
ij ¼ KlocðDði; j; hðkÞÞÞKstðfðkÞij Þ with fðkÞij ¼ T ðkÞ

ij =k

and a monotone non-decreasing kernel Kst. We use Kst (x)= (1−x)+
as a default. The term

T ðkÞ
ij ¼ N ðk�1Þ

i ðĝðk�1Þ
i � ĝ

ðk�1Þ
j Þ2

with Ni
(k − 1) =Σj w̃ij

(k − 1) is used to specify the penalty ζij
(k), see

Polzehl and Spokoiny (2006). The parameter λ is the main
parameter in our approach. It’s choice will be explained in the
Choice of parameters—propagation condition section.

Then we recompute the estimates employing the just defined
weights as

ĝ
ðkÞ
i ¼ 1

N ðkÞ
i

X
j
w̃ðkÞ
ij g̃j

where w̃ij
(k) =wij

(k) / s̃j and Ni
(k) =Σj w̃ ij

(k). The bandwidth h(k) is
increased by a constant factor with each iteration k.

The resulting procedure is essentially a multiscale procedure. In
each iteration, we allow for a different amount of smoothing by
increasing the bandwidth h(k). The resulting weighting scheme
excludes observations in voxel j from being used in estimating at
voxel i as soon as they are detected to have significantly different
expectations in one of the iteration steps. The weighting scheme
ensures that, with a high probability, such decisions are kept within
the following iterations. We refer to Polzehl and Spokoiny (2006)
for detailed properties of the weighting scheme.

Without spatial correlation γ̂i(k) has variance

V ðkÞ
i ¼ QðkÞ

i =ðN ðkÞ
i Þ2V1=N ðkÞ

i with QðkÞ
i ¼

X
j

ðw̃ðkÞ
ij Þ2s̃2j ;

that is, the term 1/Ni
(k) approximately reflects the variability of γ̂i

(k).

Correction for spatial correlation

In our situation we have to adjust for the spatial correlation
present in the data. The correlation in each direction is estimated as a
global value using the residuals from Model (2). This may also be
done locally, see, for example, Kiebel et al. (1999).

Let us assume that the spatial correlation present in Γ̃ results
from spatial smoothing using the location kernel Kloc and
employing bandwidths g=(gx, gy, gz) in the three coordinate
directions. This means that, for a interior voxel i, we assume the
elements of Γ̃ to be generated from a spatially uncorrelated field
Γ̌ with Var γ̌ l= šl2 as

g̃i ¼
X
j

KlocðDði; j; gÞÞg̃j=Ng with Ng ¼
X
j

KlocðDði; j; gÞÞ:

This results in

g̃
ðkÞ
i ¼ 1

N ðkÞ
i Ng

X
j

w̃ðkÞ
ij

X
j

Kloc Dðj; l; gÞÞǧl:ð
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Then the variance of γ̂ i
(k) is given by

Vˆ
ðkÞ
i ¼

P
l š

2
l

P
j w̃

ðkÞ
ij
KlocðDðj; l; gÞÞ

h i2
ðN ðkÞ

i Þ2N2
g

¼
P

l š
2
l

P
jw̃

ðkÞ
ij
KlocðDðj; l; gÞÞ

h i2
P

jðw̃ðkÞ
ij Þ2s̃2j N 2

g

V ðkÞ
i :

Let Qg=Σj Kloc(Δ(i, j, g))
2. Note that, except at the boundaries

of the data cube, the sums Qg and Ng do not depend on the voxel i.
Then for spatially homogeneous variances šl2=š2, that is, s̃i2=Qg/
Ng
2š2,

Vˆic

P
l

P
j w̃

ðkÞ
ij KlocðDðj; l; gÞÞ

h i2
P

jðw̃ðkÞ
ij Þ2Qg

V ðkÞ
i :

If the statistical penalty is negligible, that is, wij
(k)≈Kloc(Δ(i, j,

h(k))), then

Vˆ
ðkÞ

i c

P
l

P
j KlocðDði; j; hðkÞÞÞKlocðDðj; l; gÞÞ

h i2
P

j K
2
locðDði; j; hðkÞÞÞQg

V ðkÞ
i

¼ C g; hðkÞ
� �

V ðkÞ
i :

The factor C(g, h(k − 1))− 1 will be used as an adjustment to
Ni
(k − 1) in the definition of Tij

(k) to account for spatial
correlation.

PS algorithm for heteroscedastic and spatially correlated data

We now formally describe the resulting algorithm.

& Initialization: Set the initial bandwidth h(0) and compute, for
every i, the statistics

N ð0Þ
i ¼

X
j

KlocðDði; j; hð0ÞÞÞ=s̃2j ;

and

U ð0Þ
i ¼

X
j

KlocðDði; j; hð0ÞÞÞg̃j=s̃2j ;

and the estimates

ĝ
ð0Þ
i ¼ U ð0Þ

i =N ð0Þ
i :

Set k=1 and h(1) =chh
(0) for some ch>1.

& Adaptation: For every pair i, j, compute the penalty

fðkÞij ¼ ðkCðg; hðk�1ÞÞÞ�1T ðkÞ
ij

¼ ðkCðg; hðk�1ÞÞÞ�1N ðk�1Þ
i ðhˆðk�1Þ

i � hˆ
ðk�1Þ
j Þ2:

Compute weights wij
(k) as

wðkÞ
ij ¼ KlocðDði; j; hðkÞÞÞKstðfðkÞij Þ and w̃ðkÞ

ij ¼ wðkÞ
ij =s̃2j :

& Local estimation: Now compute new local MLE estimates γ̃i
(k) of

γi as

ĝ
ðkÞ
i ¼ U ðkÞ

i =N ðkÞ
i with N ðkÞ

i ¼
X
j

w̃ðkÞ
ij ;U ðkÞ

i

¼
X
j

w̃ðkÞ
ij g̃j:

& Stopping: Stop if k=k*, otherwise set h(k) =chh
(k− 1), increase k

by 1 and continue with the adaptation step.

An estimate of the variance of the final estimate γ̂ i
(k*) is given by

ŝ2i ¼ V̂ ðk*Þ
i ¼ Cðg; hðk*ÞÞQðk*Þ

i =ðN ðk*Þ
i Þ2

with Qðk*Þ
i ¼

X
j

ðw̃ðk*Þ
ij Þ2s̃2j :

Choice of parameters—propagation condition

The proposed procedure involves several parameters. The most
important one is the scale parameter λ in the statistical penalty ζij.
The special case λ=∞ simply leads to a kernel estimate with
bandwidth h(k*). We propose to chose λ as the smallest value
satisfying a propagation condition. This condition requires that, if
the local assumption is valid globally, that is, γi≡γ does not
depend on i, then at each step of the algorithm the adaptive
estimate approximately behaves like its non-adaptive counterpart
that employs the same bandwidth. Particularly the final estimate for
k*=∞ has approximately the same quality as the global estimate.
More formally we request that in this case for each k

EjĝðkÞ � ǧ ðkÞj < aEjǧ ðkÞ � gj ð5Þ
for a specified constant α>0. Here

ǧ
ðkÞ
i ¼

P
j KlocðDði; j; hðkÞÞÞ=s̃2j g̃jP
j KlocðDði; j; hðkÞÞÞ=s̃2j

denotes the non-adaptive kernel estimate employing the bandwidth
h(k) from step k. The value λ provided by this condition does not
depend on the unknown model parameter γ and can therefore be
approximately found by simulations. We set a default value for λ
using α=0.1.

The second parameter of interest is the number of iterations k*,
or equivalently the maximal bandwidth h(k*), which controls both
numerical complexity of the algorithm and smoothness within
homogeneous regions. The initial bandwidth is chosen as hð0Þ ¼
1; vyvx ;

vz
vx

� �
=

ffiffiffiffiffiffiffiffiffi
8ln2

p
in units of vxmm. The bandwidth is increased

after each iteration by a default factor ch=1.25
1/3.

Choosing parameters in this procedure by the propagation
condition (Eq. (5)) ensures the algorithm, under the hypothesis H:
γ=0, to behave like a corresponding non-adaptive smoothing
algorithm, that is a Gaussian filter employing the largest
bandwidth h(k*). This is important for the definition of thresholds
using random field theory. At the same time the separation
property of PS allows to clearly separate activated areas,
characterized by values of γ different from zero, from regions
not affected by the experiment. The maximum bandwidth of the
kernel used in the iterative procedure can be chosen as FWHM of
2–3 times voxel size as usual.
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Properties of Γ̂ and Ŝ

Adaptive spatial smoothing results in arrays Γ̂=(γ̂i) and Ŝ=(ŝi).
If no activation is present in any voxel, i.e., the hypothesis H: γi=0
holds for all i, choosing the smoothing parameter λ by the
propagation condition (Eq. (5)) ensures the properties of Γ̂ and Ŝ=
(ŝi) to approximately coincide with properties of the corresponding
arrays obtained by non-adaptive smoothing employing the kernel
Kloc with bandwidth h(k*).

We now shortly explain the effect of spatial smoothing on
properties of Ŝ=(ŝi). Let us assume that S2= (si

2) is an array of i.i.d.
χ2 variables with df degrees of freedom. Let weights wij be fixed.
Then the distribution of

Cs
P

si ¼ Cs

P
jw

2
ij s

2
jP

jwij

� �2

with Cs ¼
P

j w
2
ij ð
P

j wijÞ2
P

j w
4
ij can be well approximated by a

χ2-distribution with ðPj w
2
ij Þ2df =

P
j w

4
ij degrees of freedom. A

similar behavior is, for sufficiently large df, observed for

C̃sŝi ¼ C̃s

P
jw̃

2
ij s

2
jP

jw̃ij

� �2

with C̃s depending on both df and the weighting scheme. We see
that the degrees of freedom for Ŝ increase with its smoothness
induced by spatial smoothing. Note that this is in strict contrast to
the situation where spatial smoothing is applied to the original
observed images prior to estimation of parameters in the linear
Model (1), in which case the degrees of freedom are not affected by
the spatial smoothing.

Spatial smoothing provides, in each voxel, a sufficient number
of degrees of freedom, which allows to approximate the
distribution of the array Θ̂=(γ̂i / ŝi) by a (spatially inhomogeneous)
Gaussian field.

Defining p values

To define appropriate thresholds for rejecting the hypotheses H:
Θ̂=0, we follow the argumentation in Worsley et al. (1996a). For a
spatially homogeneous Gaussian random field with smoothness g=
(gx, gy, gz) in the coordinate directions, measured in FWHM, an
appropriate threshold for signal detection can be defined approxi-
mating the p value of an extreme event by its expected Euler
characteristic (EC). Worsley et al. (1996a) show that an approximate

p value of the maximum Zmax of a 3D Gaussian random field over a
specified search region is given by

PðZmax > zÞc
X3
d¼0

RdðV ; gÞqdðzÞ ð6Þ

where Rd is the d-dimensional resel count depending on the volume
Vof the search region and the smoothness measured by the FWHM
bandwidths g in mm. ρd (z) is the d-dimensional EC density for the
case of a Gaussian random field, see Worsley et al. (1996a). As an
alternative, the DLM method of Worsley (2005a) may be used.

Appropriate thresholds and p values are derived from the
properties of the generated random field under the null hypothesis,
i.e., the absence of any activation. In this case the properties of our
smoothing procedure are determined by our propagation condition,
see the Choice of parameters—propagation condition section,
especially Eq. (5). This condition ensures that, under the
hypothesis, the resulting random field has very similar properties
as the random field generated by a Gaussian filter employing the
bandwidth h(k*) from the last iteration. The difference is that, due to
the presence of the statistical penalty ζij, the weights wij are random
and slightly smaller compared to the kernel weights Kloc(Δ(i, j,
h(k*))) applied in case of a Gaussian filter. This effect is very small
and controlled by the propagation condition (Eq. (5)).

Under stationarity, approximative p values associated with a
signal in voxel i can be defined as

pi ¼
X3
d¼0

RdðV ; gðk*ÞÞqdðĥ iÞ: ð7Þ

where gðk*Þc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ hðk*Þ

2
q

is vector of the effective FWHM
bandwidths that measures the smoothness of the random field Θ̂.
These bandwidths depend on the bandwidth h(k*) from the last
iteration of the PS procedure and on the vector of bandwidths g
characterizing the smoothness of the random field Θ̃. We use the
p values (Eq. (7)) for thresholding.

The case of a non-stationary FWHM g can be addressed, see
Worsley et al. (1999) or Taylor and Adler (2003).

Results

In this section, we demonstrate various aspects of the procedure
introduced in the preceding sections in a series of examples.

Application to artificial data

We first start with an examination of artificial data to illustrate the
different behavior of our adaptive PS method and the corresponding

Fig. 1. Results for an artificial fMRI experiment, central slice (from left to right): (a) Signal size for the expected BOLD response assigned to the voxel. (b)
Voxelwise analysis without smoothing, employing voxelwise thresholds, (c) PS approach and (d) Gaussian filter.
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Gaussian filter in a known situation. We use a typical dimension of
64×64×26 voxels for the data cube. The activation area consists of
voxels with a distance between 5 and 7.5 or 10.5 to 12 from the
center of the cube. No activation is assigned to voxels in the two
central vertical slices, which induces gaps of width 2 between
activation areas (see left image in Fig. 1 to view the activation area in
a central slice). At each of these voxels a time series of 107 scans is
generated using a convolution of the hemodynamic response
function with a task indicator function with onset times at scans
18, 48 and 78 and a duration time of 15 scans. Heavy autocorrelated
noise following an AR(1) model with an autocorrelation parameter
of 0.3 is added at every voxel. Results for both methods, using a
FWHM bandwidth of h(k*) =3.05vx, that is k*=15, and a voxelwise
analysis are shown in Fig. 1. A voxelwise analysis, employing
voxelwise thresholds, produces a large portion of false-positives. On
the other hand, if thresholds are controlled by a global significance
level the analysis generally fails to detect many if not all activations.
For the PS method we observe almost no false-positive activations
(see Fig. 2 for details) and some none detected voxels. In contrast to
this smoothing by a Gaussian filter results in loss of spatial
information. Gaps between areas are only partly preserved in case of
non-adaptive smoothing.

The adaptive smoothing procedure leads to a much better signal
detection. In order to discuss this in more detail we show how the
detection depends on signal strength. The same configuration of
activated areas is used. We generate an artificial SPM Θ̃ of
estimated parameters for the BOLD response as signal plus
standard normal noise. Furthermore we assign χT

2 (T=100) random
variates to resemble variances of the estimated parameters.

In Fig. 2 signal detection using adaptive (PS) and Gaussian
smoothing is compared. We vary the SNR in the activation area
from 0.02 to 0.5. This is shown on the x-axis of the diagrams. The
number of detected voxels is increasing with the SNR with both
methods. However, the analysis using adaptive smoothing is
capable to detect smaller signals. Furthermore while the number of
false-positive detected voxels is practically zero, for Gaussian
filtering the number of false-positives increases with SNR. The
adaptive smoothing method naturally adapts to the different sizes
and shapes of activation areas rather than over-smoothing them.

Application to experimental data

With the results of the preceding section in mind, we now
consider experimental fMRI data. The images were acquired on a

Fig. 3. Application to a right handed finger tapping fMRI experiment. Upper row: non-adaptive smoothing with bandwidth (FWHM) h=10 mm. Lower row:
adaptive smoothing with maximal bandwidth (FWHM) h=10 mm.

Fig. 2. Analysis of artificial data for the configuration from Fig. 1. SNR in the activation area is varied from 0.02 to 0.5 (x-axis). The left figure illustrates the
dependence of the number of detected voxels on SNR. Circles and bullets correspond to non adaptive and adaptive smoothing, respectively. The (maximum)
bandwidth h(k*) is chosen according to the size of the activation area. The line indicates the true number of active voxels. The center figure shows the number of
not detected voxels. In the right figure the corresponding number of false-positives is provided.
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GE 3T scanner using 2D gradient echo EPI sequence with TE/
TR=40/2000 ms. 26 axial slices of 4-mm thickness and a matrix
size of 64×64 were acquired. Task were performed in three blocks
during 3.7 min of scanning time. The task for the data presented
here was right hand finger tapping, where each finger of the right
hand successively touched the thumb. The blocklength was 30 s on
and 30 s of, repeated three times after an initial of block of 42 s.
The first 4 scans were discarded, yielding 107 scans in total. The
statistical analysis was applied after motion correction using AFNI,
Cox (1996). The results of this analysis are compared for selected
slices in Fig. 3, the upper row showing Gaussian and the lower row
adaptive smoothing (PS). It is evident that the two results differ in
the detection of activation areas. PS provides a much better
rendering of the shape of activation areas. For example, the
characteristic hand motor area (arrow) is recognized better than in
the Gaussian filter result.

Additionally the density of the estimated signals γ̃ from Eq. (1)
in detected voxels differs for voxels detected using adaptive and
non adaptive smoothing. Fig. 4 illustrates this providing densities
of γ̃ for detected voxels (left plot) and voxels detected by only one
method (right plot). Note that the mean of γ̃ over voxels detected
exclusively using adaptive smoothing is much larger than the
corresponding quantity for the Gaussian filter.

Summary

We presented a general approach to integrate adaptive
smoothing into the analysis of fMRI experiments. Whereas this
approach yields a similar amount of noise reduction and sensitivity
as Gaussian filtering, it has the advantage that information on
shape and geometry of the activation areas is preserved. Our
method can be seen as an extension of the PS approach of Polzehl
and Spokoiny (2006) to spatially correlated data, in which the local
correlation structure is taken into account to define corresponding
local thresholds using random field theory. Additionally, it was
shown that smoothing the map of estimated parameters rather than
estimating the parameters from smoothed images increases the
number of degrees of freedom, such that the array Θ̂ is better
approximated by a Gaussian field.

As any filtering method, the application of spatially adaptive
smoothing increases the signal-to-noise ratio. In addition, it also
increases the effective spatial resolution of activated areas. This
may be of particular usefulness in experiments where different

activation areas are intermingled in a complex way, like the ocular
dominance columns in the visual cortex, or in experiments of brain
plasticity where the relocation of functions is being determined
(Dancause et al., 2005; Pascual-Leone et al., 2005).

Software

The procedures described in the Voxelwise analysis of time
series section and the Spatial smoothing and signal detection
section are implemented as a package for the R statistical
environment (R Development Core Team, 2005). The package
allows to read and write the AFNI (Cox, 1996) and ANALYZE
(Biomedical Imaging Resource, 2001) file formats. The R package
has been used to produce the results in the Results section.
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