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DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS �Spokoiny, V.1Abstrat. The paper is onerned with the problem of testing a linear hypothesis about regressionfuntion. We propose a new testing proedure based on the Haar transform whih is adaptive tounknown smoothness properties of the underlying funtion. The results desribe optimality propertiesof this proedure under mild onditions on the model.AMS Subjet Classi�ation. 62H25; Seondary 62G10.Otober, 8, 1999. 1. IntrodutionSuppose we are given data (Xi; Yi); i = 1; : : : ; n , with Xi 2 R1 , Yi 2 R1 , obeying the regression equationYi = f(Xi) + �i (1.1)where f is an unknown regression funtion and �i are zero mean random errors. Statistial analysis for suhmodels may fous on the qualitative features of the underlying funtion f . Partiularly, no-response modelorresponds to testing the simple zero hypothesis that f is a onstant funtion. Another typial example isonneted to the hypothesis of linearity. More generally one may onsider a parametri type hypothesis aboutf . In this paper, we restrit ourselves to the ase of the hypothesis of linearity. Using the hypothesis testingframework, we test the null hypothesis H0 : f `is linear', that is, f(x) = a+ bx for some onstants a; b , versusthe alternative H1 : f `is not linear'.The problem of testing a simple or parametrially spei�ed hypothesis is one of the lassial in statistialinferene, see e.g. Neyman (1937), Mann and Wald (1942), Lehmann (1957). Let � be a test i.e. a measurablefuntion of the observations Y1; : : : ; Yn with two values 0; 1 . As usual, the event f� = 0g is treated asaepting the hypothesis and � = 1 means that the hypothesis is rejeted. The quality of a test � is desribedin terms of the orresponding error probabilities of the �rst and seond kinds. Let P f denote the distributionof the data Y1; : : : ; Yn for a �xed model funtion f , see (1.1). If f oinides with a linear funtion f0 , thenthe error probability of the �rst kind at the point f0 is the probability under f0 to rejet the hypothesis,�f0(�) = P f0(� = 1):Similarly one de�nes the error probability �f (�) of the seond kind. If the funtion f is not linear, then�f (�) = P f (� = 0):Keywords and phrases: data-driven test, Haar basis, linear hypothesis, nonparametri alternative, regression model� The author is grateful to the anonymous Referee for helpful remarks and ritis.1 Weierstrass-Institute for Applied Analysis and Statistis, Mohrenstr. 39, 10117 Berlin Germany  EDP Sienes, SMAI 1999



2 SPOKOINY, V.Typially one aims to onstrut a test ' of the presribed level �0 , that is, satisfying for a given �0 > 0the ondition �f0(�) � �0 whih also has a nontrivial power 1 � �f (') > 0 against a possibly large lass ofalternatives f . A large number of proposals for onstruting suh tests an be found in the literature. Werefer to Hart (1997) where the reader an �nd historial remarks and further referenes. Note meanwhile, thatthe majority of results in this domain is onentrated either only on verifying the ondition �f0(�) � �0 oron studying asymptoti properties of the power funtion 1 � �f (') for a �xed or loal alternative. The loalalternative approah assumes that the hypothesis is tested versus alternatives approahing the null hypothesisfrom a spei� diretion. Many tests have been shown to have nontrivial asymptoti power against every suhloal alternative, see e.g. Bierens (1982, 1990), Eubank and Spiegelman (1990), Andrews (1997), Stute (1997)among others. However, it turns out that the �nite sample power of the proposed tests is not uniform withrespet to alternative diretions: some of diretional alternatives an be deteted easily, the others require a hugesample size. Moreover, Burnashev (1979) and Ingster (1982) have shown that no test an be uniformly powerfulagainst all the loal alternatives. This leads to onsidering the uniform power of the test over a large lass Fof alternatives, so that �f (') � �0 with some �0 < 1 � �0 uniformly over f 2 F . Following Ingster (1982,1993), we onsider the lass F(�) onsisting of smooth (in some sense) alternatives whih are also separatedfrom the set of linear funtions with the distane � , that is,infa;b kf(�)� a� b � k � �; (1.2)k � k being the usual L2 -norm. Then the quality of a test ' of the level �0 an be measured by a minimalseparation distane � suh that �f (�) � �0 for all f from F(�) . A test �� with the level �0 is optimal if itminimizes the orresponding value � . Under this approah, the goal is both to evaluate the minimal possibleseparation distane � and to desribe the orresponding optimal tests.It turns out that the struture of optimal tests and the orresponding separation distane strongly depend onthe smoothness lass F we onsider. Ingster (1982, 1993) desribed the optimal rate of deay of the separationdistane � to zero as the sample size n tends to in�nity for H�older and Sobolev funtion lasses, the aseof Besov lasses is onsidered in Lepski and Spokoiny (1998) and Spokoiny (1998). Sharp optimal asymptotiresults an be found in Ermakov (1990), Lepski and Tsybakov (1996), Ingster and Suslina (1998).Unfortunately all the mentioned proedures hardly apply in pratie sine the information about smoothnessproperties of the underlying funtion f is typially laking. Some adaptive (data-driven) smooth tests are pro-posed in Eubank and Hart (1992), Ledwina (1994), Fan (1996), Hart (1997) where the reader an found furtherreferenes. Spokoiny (1996, 1998) onsidered the problem of adaptive testing against a smooth alternative andonstruted an adaptive test whih is near optimal by a log log multiple for a wide range of smoothness lasses.Moreover, the test is rate optimal in the lass of adaptive tests, that is, this log log fator is an unavoidable pay-ment for the adaptive property. The inonveniene for pratial appliations is that this proedure is designedfor an idealized `signal + white noise' model and only the ase of a simple null is onsidered.The aim of this paper is to develop an adaptive testing method whih allows for a non-regular design, non-Gaussian errors with an unknown distribution and a non-simple null, and whih is omputationally simple andstable w.r.t. the design non-regularity. The latter property is ahieved by making use of the simplest waveletbasis, namely the Haar transform. It is worth mentioning that the Haar basis is not often used for estimatingthe regression funtion f from (1.1) beause of its non-regularity: the orresponding estimator is based onthe pieewise onstant approximation of the underlying funtion and it is only rate suboptimal. Nevertheless,Ingster (1993) has onstruted a �2 -test (also based on a pieewise onstant approximation) whih providesthe optimal testing rate in the `signal + white noise' framework. Here his onstrution is extended to the aseof testing the linear hypothesis for regression with unknown smoothness properties and with a deterministinon-regular design.Another remark onerns the assumption on the errors �i . Assuming i.i.d. errors with a known distribution,one an easily selet a ritial level for any test statisti using the Monte-Carlo or other resampling tehnique.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 3For pratial appliations, this approah needs to be justi�ed sine the underlying error distribution is typiallyunknown. The problem beomes even more ompliated if a data-driven test basing on the maximum of di�erenttest statistis is used. We establish some general results on the approximation of quadrati forms of independentrandom variables by similar quadrati forms of Gaussian random variables whih help to justify the followingreipe: if the ritial level of the onsidered test statisti is alulated for Gaussian errors, then it applies, atleast asymptotially, as the sample size grows, for an arbitrary errors distribution with bounded 6 moments.The paper is organized as follows. Setion 2 ontains the desription of the proposed testing proedure. Theproperties of this proedure are disussed in Setion 3. The proofs are postponed to Setion 4. In the Appendixwe ollet some general results for quadrati forms.2. Testing proedureWe onsider the univariate regression modelYi = f(Xi) + �i; i = 1; : : : ; n; (2.1)with additive homogeneous noise, that is, the errors �i are independent identially distributed with zero meanand the variane �2 : E�i = 0 and E�2i = �2 . The design points X1; : : : ; Xn are assumed to be resaled tothe interval [0; 1℄ , that is, Xi 2 [0; 1℄ for all i = 1; : : : ; n .The proposed test makes use of the Haar transform. We �rst reall some useful fats about the Haardeomposition and then explain the idea of the method.2.1. PreliminariesHereafter we denote by I the multi-index I = (j; k) with j = 0; 1; 2; : : : and k = 0; 1; : : : ; 2j � 1 , and letI be the set of all suh multi-indies. We also setIj = f(j; k); k = 0; 1; : : : ; 2j � 1gfor the index set orresponding to j -th level. Let now the funtion  (t) be de�ned by (t) =8>>><>>>:0 t < 0;1 0 � t < 1=2;�1 1=2 � t < 1;0 t > 1: (2.2)For every I = (j; k) , de�ne the Haar basis funtion hI byhI(t) = 2j=2 (2jt� k): (2.3)Clearly the funtion hI is supported on the interval AI = [2�jk; 2�j(k + 1)℄ . It is well known that eahmeasurable funtion f on [0; 1℄ an be deomposed in the following wayf(t) = 0 +XI2I IhI(t) = 0 + 1Xj=0 XI2Ij IhI(t): (2.4)This means that the problem of reovering the funtion f an be transformed into the problem of estimatingthe oeÆients I by given data. Sine we have only n observations, it makes no sense to estimate more (in



4 SPOKOINY, V.order) than n oeÆients. We restrit therefore the total number of onsidered levels j . Let some j be �xedsuh that 2j+1 < n . We also introdue the resaled basis funtions  I to provide Pi j I(Xi)j2 = 1 , that is, I(Xi) = ��1I hI(Xi);with �2I =Pni=1 h2I(Xi) . Next we replae the in�nite deomposition (2.4) by the �nite approximation PI2I(j) I I(t)where the index set I(j) ontains all level sets I` with ` � j . Taking into aount the struture of the nullhypothesis, we omplement the set of funtions ( I ; I 2 I`); ` � j , with two funtions  0 � 1 and  1(t) = t ,that is, we onsider the set of indies I(j) = f0; 1g+ j[̀=0 I`: (2.5)The idea of the proposed proedure is to estimate all the oeÆients (I ; I 2 I(j)) from the data Y1; : : : ; Ynand then to test that all the oeÆients I for I 6= 0; 1 are zero.For a funtion g , de�ne kgkn by kgk2n = 1n nXi=1 g2(Xi):De�ne also the olumn-vetor ��(j) = (��I ; I 2 I(j)) as a minimizer of the error of approximating f by alinear ombination of  I , I 2 I(j) :��(j) = arginf�(j) kf � XI2I(j) �I Ik2n: (2.6)This is a quadrati optimization problem with respet to the oeÆients f�I ; I 2 I(j)g . Therefore, the solution�� always exists but it is probably non unique. To get an expliit representation for �� we introdue matrixnotation.First of all, we make an agreement to identify every funtion g with the vetor (g(Xi); i = 1; : : : ; n)> inRn where the symbol > means transposition. Partiularly, the model funtion f is identi�ed with the vetor(f(Xi); i = 1; : : : ; n)> .Denote by Nj the number of elements at eah level j ,Nj = #(Ij) = 2j ; j = 0; 1; : : : ; jand let N(j) be the total number of elements in the set I(j) ,N(j) = 2 + jX̀=0N` = 1+ 2j+1: (2.7)Introdue n�N(j) -matrix 	(j) = ( i;I ; i = 1; : : : ; n; I 2 I(j)) with entries i;I =  I(Xi) =  I(Xi); I 2 I(j); i = 1; : : : ; n: (2.8)Clearly  I(Xi) = �1=pMI where MI is the number of design points in the interval AI orresponding to theindex I , and also  i;0 = n�1=2 and  i;1 = Xi �Pǹ=1X 2̀��1=2 . Now the approximation problem (2.6) an be



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 5rewritten in the form ��(j) = arginf�(j) kf �	(j)�(j)k2n:The solution to this quadrati problem an be represented as��(j) = �	(j)>	(j)��1	(j)>f: (2.9)Stritly speaking, this representation is valid only if the matrix 	(j)>	(j) is not degenerate. In the generalase, one may use the similar expression for ��(j) when understanding �	(j)>	(j)��1 as a pseudo-inversematrix.If the funtion f is linear, that is, f(x) = �0 + �1x , we learly get ��0 = �0 , ��1 = �1 and ��I = 0 forall I = (`; k) with ` � 0 and k � 0 . For a non-linear funtion f , the sum jP̀=0 PI2I` j��I j2 an be used toharaterize the deviation of f from the spae of linear funtions.Sine the funtion f is observed with a noise, we annot alulate diretly the oeÆients ��I and we onsiderthe least squares estimator b�(j) of the vetor ��(j) whih is de�ned by minimization of the sum of residualssquared: b�(j) = arginf�(j) kY �	(j)�(j)k2n = arginff�I2I(j)g nXi=10�Yi � XI2I(j) �I I(Xi)1A2 : (2.10)Here Y means the olumn-vetor with elements Yi; i = 1; : : : ; n .De�ne V (j) as the pseudo-inverse of 	(j)>	(j) , V (j) = �	(j)>	(j)�� It is a symmetri N(j)�N(j)matrix (by vI;I0 we denote its elements, I; I 0 2 I(j) ) andb�(j) = V (j)	(j)>Y : (2.11)The proposed test is based on the entered and standardized sum of empirial oeÆients squares: jP̀=0 PI2I` jb�I j2for some j . This idea goes bak to Neyman (1937) `smooth' test. Ingster (1982, 1993) suggested the speialhoie of j depending on the smoothness properties of the funtion f whih allows for a rate optimal testing.Spokoiny (1996) extended the method of Ingster (1993) to adaptive testing by onsidering all suh tests fordi�erent j simultaneously. Here we slightly modify that approah by onsidering the family of levelwise tests,that is, for every level j , we onstrut a test statisti based only on the empirial Haar oeÆients b�I forI 2 Ij , and the resulting test is de�ned as the maximum of all levelwise ones.Let some number j(n) be �xed suh that 2j(n)+1 < n and let, for every j � j(n) , the estimate b�(j) bede�ned by (2.10). Denote by b�j the part of the vetor b�(j) orresponding to the level j ,b�j = (b�I ; I 2 Ij):We analyze every suh vetor separately for all j � j(n) . Namely, for every j � j(n) , we use the statistibased on the sum PI2Ij jb�I j2 orresponding to j th resolution level.To de�ne our test, we have to study the properties of suh sums under the null hypothesis, i.e. when thefuntion f is linear: f(x) = �0 + �1x . We have already mentioned that in this situation f = 	(j)�� where��0 = �0 , ��1 = �1 and all remaining oeÆients ��I vanish. Therefore, using the model equation Y = f + � ,



6 SPOKOINY, V.we obtain b�(j) = V (j)	(j)>(f + �)= V (j)	(j)>	(j)�� + V (j)	(j)>�= �� + V (j)	(j)>�: (2.12)Obviously �(j) = V (j)	(j)>� is a random vetor in RN(j) with zero mean. Moreover, it holds for its ovarianematrix E�(j)�(j)> = V (j)	(j)>E��>	(j)V (j)= �2V (j)	(j)>	(j)V (j) = �2V (j): (2.13)Due to (2.12), the subvetor b�j of b�(j) oinides under the null with the orresponding subvetor �j of thevetor �(j) , and it holds under the null in view of (2.13)Eb�j = E�j = 0;Eb�jb�>j = E�j�>j = �2Vjwhere Vj is the submatrix of V (j) orresponding to the index subset Ij : Vj = (vI;I0 I; I 0 2 Ij) . Thispartiularly implies E XI2Ij jb�I j2 = E XI2Ij j�I j2 = �2 trVjwhere trA denotes the trae of a matrix A . Moreover, for the ase of Gaussian errors �i in (1.1), the estimatesb�I are also Gaussian random variables, and it holdsVar0�XI2Ij jb�I j21A = E0�XI2Ij jb�I j2 � �2 trVj1A2
= E0�XI2Ij j�I j2 � �2 trVj1A2 = 2�4 trV 2j ; (2.14)see (2.13). This leads to the obvious idea to use the entered and standardized sumTj = 1q2�4 trV 2j 0�XI2Ij jb�I j2 � �2 trVj1Aas a test statisti. To de�ne our testing proedure, we simply take the maximum of all suh statistis over theset of all onsidered Haar levels j .2.2. Testing proedureFirst we de�ne the �nest onsidered resolution level j(n) whih has to satisfy 2j(n)+1 < n and n2�j(n) !1 ,e.g. j(n) = [log2 n� log2 log2 n℄ : (2.15)



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 7where [a℄ denotes the integer part of a . For eah j � j(n) , let b�(j) be de�ned by (2.11). Denote by b�j thepart of the vetor b�(j) orresponding to the level j ,b�j = (b�I ; I 2 Ij)and let Vj be the submatrix of the matrix V (j) = �	(j)>	(j)�� orresponding to the level j , i.e. Vj =(vI;I0 ; I; I 0 2 Ij) . We onsider �2 -type statistisSj = kb�jk2 = XI2Ij b�2I : (2.16)and de�ne test statistis Tj by entering and Studentization of Sj :Tj = 1q2b�4 trV 2j 0�XI2Ij jb�I j2 � b�2 trVj1A (2.17)where b� is the estimate of the error standard deviation de�ned in the next subsetion. The proposed testrejets the null hypothesis, if at least one suh statisti is signi�antly large, that is,�� = 1 (T � > �) with T � = maxj=0;::: ;j(n) jTj j (2.18)where � is a ritial value. The hoie of � is disussed in Setion 2.4.2.3. Estimation of �2Reall that we assume a homogeneous additive noise in the model (1.1), that is, the errors �i are independentidentially distributed random variables ful�lling E�i = 0 and E�2i = �2 . The variane �2 is typially unknownin pratial appliations but this value is important for the de�nition of our test proedure. Below we disusshow it an be estimated from the data Y1; : : : ; Yn . We suppose for simpliity that the design points are orderedin a way that X1 � : : : � Xn . There are several proposals for variane estimation. One possibility is toestimate �2 by the expression of the form 12(n�1)Pn�1i=1 (Yi+1 � Yi)2 , see Rie (1984). We follow the proposalfrom Gasser et al. (1986) see also Hart (1997, Setion 5.3) whih provides an unbiased estimate of the varianeunder the linear null hypothesis.De�ne for i = 2; : : : ; n� 1 pseudo-residualsbei = (Xi+1 �Xi)(Xi+1 �Xi�1)Yi�1 + (Xi �Xi�1)(Xi+1 �Xi�1)Yi+1 � Yi = aiYi�1 + biYi+1 � Yiwhih are the result of joining Yi+1 and Yi�1 by a straight line and taking the di�erene between this line andYi . A variane estimate based on these pseudo-residuals isb�2 = 1n� 2 n�1Xi=2 be2ia2i + b2i + 1 : (2.19)It is easy to hek that Eb�2 = �2 if f is a linear funtion. Some other properties of this estimates are listedin Lemmas 4.1, 4.2 and 4.9 below.



8 SPOKOINY, V.2.4. Critial value �Here we disuss how to selet the ritial value � to provide, at least asymptotially for large n , the ondition�f0(��) � �0 for all linear funtions f0 . We apply a Monte-Carlo proedure by resampling from the no-responsemodel (whih is a partiular ase of a linear model) with standard normal errorsY �i;m = ��i;m; i = 1; : : : ; n;for m = 1; : : : ;M , where the design points X1; : : : ; Xn are the same as for the original model (1.1), ��1 ; : : : ; ��nare i.i.d. standard normal random variables and M is the onsidered number of Monte-Carlo samples.For every Monte-Carlo sample Y �1;m; : : : ; Y �n;m , we realulate the test statisti T �m from this sample usingthe previous proedure (inluding the step of variane estimation). Finally we de�ne the ritial value � as the�0 -level for the set fT �m; m = 1; : : : ;Mg :� = min(t :M�1 MXm=11(T �m > t) � �0) :3. Main resultsIn this setion we present the results desribing asymptoti properties of the proposed testing proedure. We�rst disuss the properties of the test under the null and then we onsider the power of the test.3.1. Behavior under the nullLet �� be the test introdued above. Our �rst result onerns the ase of Gaussian errors �i in the model( 1.1). In this situation, independently of the design, the nominal level of the test �� is lose to �0 providedthat the number M of Monte-Carlo samples is suÆiently large.Theorem 3.1. Let observations Yi; Xi , i = 1; : : : ; n; obey the regression model (1.1) with a deterministidesign X1; : : : ; Xn and with i.i.d Gaussian errors �i � N (0; �2) . If the funtion f is linear, f(x) = �0+ �1x ,then the value �f (��) = P f (�� = 1) does not depend on the oeÆients �0 and �1 and�f (��)! �0 M !1:Our next result deals with a more general situation when the errors �i are i.i.d. with 6 �nite moments. Inthis ase we need some mild regularity onditions on the design.Reall the notation AI = [2�jk; 2�j(k + 1)℄ and let MI stand for the number of design points in AI :MI = #fi : Xi 2 AIg . Design regularity partiularly means that eah interval AI ontains enough designpoints Xi .(D) (i) It holds for some positive onstants C� and C� and all j � j(n)infI2Ij 2jMI=n � C�;supI2Ij 2jMI=n � C�; (3.1)(ii) For some �xed onstant CD and all j � j(n)trV 2j � CD2j ;



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 9(iii) For some �xed onstant CV and all j � j(n)kV (j)k � CVHere the norm kAk of a symmetri matrix A is understood as the maximal eigenvalue of this matrix;(iv) For some D > 0 and all i , it holds Xi+1 �Xi � Dn�1 .Condition (D) is trivially ful�lled with C� = C� = CD = CV = D = 1 for the ase of the deterministiequidistant design when V (j) is the unit matrix.Theorem 3.2. Let observations Yi; Xi , i = 1; : : : ; n; obey the regression model (1.1) with a deterministidesign X1; : : : ; Xn satisfying (D) and with i.i.d. errors �i satisfying E�i = 0 , E�2i = �2 and Ej�2i � �2j3 ��6C6 where C6 is a �xed onstant. If the funtion f is linear, f(x) = �0 + �1x , then�f (��) � P f (�� = 1) � �0 + Æ1(n);where Æ1(n) depends on n , C6 and the onstants C�; C�; CD ; CV from ondition (D) only and Æ1(n)! 0 asn!1 .3.2. Sensitivity of the testNow we state the results onerning the sensitivity of the proposed test �� . The �rst assertion presentssuÆient onditions for deteting an alternative with a high probability. Next we demonstrate how theseonditions an be transferred into a more usual form about the rate of testing against a smooth alternative.Proposition 3.1. Let the design X1; : : : ; Xn obey (D) and the errors �1; : : : ; �n ful�ll the onditions of The-orem 3.2. Let then the regression funtion f be two times ontinuously di�erentiable and the seond derivativef 00 ful�ll the ondition: Z 10 jf 00(x)j2 � L2 (3.2)with some onstant L satisfying 8D3L2 � �2n3 . Let also ��j = (��I ; I 2 Ij) be the subvetor of the vetor��(j) from (2.9) orresponding to j th resolution level and let Vj be the orresponding ovariane submatrix,j = 1; : : : ; j(n) . If, for some j � j(n) , it holdsT �j � k��jk2�2q2 trV 2j � 3(�1=2n + 1)2; (3.3)with �n = maxf�; 2plog j(n)g , thenP (�� = 0) � Æ(n)! 0; n!1;where Æ(n) depends on n and the onstants C6; C�; C�; CD ; CV only.We shall show, see Lemma 4.2 that, at least for suÆiently large n , it holds � � 2plog j(n) (1 + on(1)) .Hene, the result of Proposition 3.1 means that the test �� detets with a probability lose to one any alternativefor whih at least one from the orresponding values T �j exeeds 6plog j(n) (1 + on(1)) . Therefore, the errorof the seond kind may our with a signi�ant probability only ifT �j � 6plog j(n) (1 + on(1)) ; 0 � j � j(n): (3.4)It remains to understand what follows for the funtion f from these inequalities.



10 SPOKOINY, V.3.3. Power against a smooth alternativeTo formulate the results on the power of the test against a smooth alternative, we have to introdue somesmoothness onditions on the funtion f . This an be done in di�erent ways. We hoose one based onthe auray of approximating this funtion by pieewise polynomials of ertain degree. Given j � j(n) ,denote by fAI ; I 2 Ijg the partition of the interval [0; 1℄ into intervals of length 2�j : if I = (j; k) , thenAI = [k2�j ; (k + 1)2�j) . Next, for a natural number s , de�ne Ps(j) as the set of pieewise polynomials ofdegree s� 1 on the partition fAIg i.e. every funtion g from Ps(j) oinides on eah AI with a polynomiala0 + a1x + : : : + as�1xs�1 where the oeÆients a0; : : : ; as�1 may depend on I . Now the ondition that afuntion f has regularity s an be understood in the sense that this funtion is approximated by funtionsfrom Ps(j) at the rate 2�js , or, more preisely,infg2Ps(j) �Z 10 jf(t)� g(t)j2dt�1=2 � Cs2�jswhere a positive onstant Cs depends on s only.In our onditions we hange the integral by summation over observation points. This helps to present theresults in a more readable form without hanging the sense of required onditions. It an be easily seen that ifthe design is regular, then the both forms are equivalent up to a onstant fator.Let now a funtion f be �xed. Let also j0 be suh that 2j0�1 � s . Set for j � j0rs(j) = infg2Ps(j�j0) kf � gkn = infg2Ps(j�j0)" nXi=1 jf(Xi)� g(Xi)j2#1=2 : (3.5)The quantity rs(j) haraterizes the auray of approximation of f by pieewise polynomials. In partiular,the Haar approximation orresponds to the ase with s = 1 .Theorem 3.3. Let ondition (D) hold, the errors �1; : : : ; �n ful�ll the onditions of Theorem 3.2, and theregression funtion f obey (3.2) with a onstant L satisfying 8D3L2 � �2n3 . There exist a onstant �depending on the values CV ; CD ; C�; C� only, suh that if, for some j � j(n) , the following inequality holdstrue: infa;b kf � a� b 1kn � ��rs(j) +p2j=2�n� (3.6)with  1(x) = x , then P f (�� = 0) � Æ(n)! 0; n!1;where Æ(n) is shown in Proposition 3.1.Remark 3.1. It is of interest to ompare this result with the existing results on the rate of hypothesis testing.For instane, it was shown in Ingster (1982, 1993) that if f belongs to a Sobolev ball Ws(1) withWs(1) = �f : Z 10 jf (s)(x)j2dx � 1� ;f (s) being s th derivative of f , then the optimal separation rate between the simple null f � 0 and a smoothalternative from Ws(1) is n�2s=(4s+1) .For our proedure, the following result is a straightforward orollary of Theorem 3.3 whih for the sake ofsimpliity is formulated for the equidistant design only.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 11Corollary 3.1. Let the design X1; : : : ; Xn be equidistant. (so that ondition (D) holds automatially), theerrors �1; : : : ; �n ful�ll the onditions of Theorem 3.2, and the underlying funtion f belong to a Sobolev ballWs(1) and f 00 ful�ll (3.2) with a onstant L satisfying 8L2 � �2n3 . Then there exists a onstant Cs > 0depending on s only and suh that, for n large enough, the inequalityinfa;b kf � a� b 1k2n � Cs(n=�n)� 2s4s+1 (3.7)implies P (�� = 0) � Æ(n)! 0where Æ(n) depends on the distribution of the errors "i only.Indeed, under the equidistant design, it holds rs(j) � Cn1=22�js for every funtion f from Ws(1) with a�xed onstant C depending on s only. Now the right hand-side of (3.7) arises via minimization of the sumCn1=22�js +p2j=2�n with respet to j .By omparison to the mentioned result of Ingster (1982) we observe that the proposed method leads to anear optimal rate up to a log-log multiple in the lass of all tests. Moreover, Spokoiny (1996) has shown (for the`signal + white noise' model) that this separation rate is optimal in the lass of all adaptive tests. The latterresult allows for a straightforward extension to Gaussian regression using the general asymptoti equivaleneresult, Brown and Low (1996). The additional smoothness ondition (3.2) with L2 � �2n3=8 is required forensuring a good quality of the pilot estimate of the unknown variane. This assumption is not restritive sinethe onstant L may rapidly grow with n . In partiular, the low bound results from Ingster (1993) and Spokoiny(1996) allow for a straightforward extension under this onstraint. We therefore, resume that the proposed testis rate optimal among all adaptive tests (at least for the ase of the equidistant design).Remark 3.2. The result of Theorem 3.3 helps to understand what happens in the ase when the design is notregular and, for instane, if there exist some intervals I with MI = 0 . It was already mentioned that theproedure applies in this situation as well and the error probability of the �rst kind is about �0 at least for nsuÆiently large and for Gaussian errors �i . Conerning the error probability of the seond kind, the inspetionof the proof shows that design irregularity dereases the sensitivity of our proedure in the following sense: thereexist smooth alternatives with probably large L2 -norm whih are not deteted. This may our e.g. in thesituation when f is deviated from the best linear approximation only in the domain with very few design pointsinside. 4. ProofsIn this setion we �rst prove Theorems 3.1 and 3.3 for the ase of Gaussian errors �i and then disuss thegeneralization to the general ase.4.1. Proof of Theorem 3.1It suÆes to hek that the distribution of the test statisti T � based on the Monte-Carlo sample Y �1 ; : : : ; Y �nis the same as for the original sample Y1; : : : ; Yn . The di�erene between these two samples is only in the lineartrend (whih an be nontrivial for the original sample but does not appear in the Monte-Carlo one) and in thenoise variane (we resample with the error variane 1 instead of �2 ). Note however that the linear trend inthe regression funtion makes no inuene on the onsidered test statistis Tj . Indeed, the numerator of thisstatisti is de�ned as the entered sum over Ij of the the empirial Haar oeÆients b�I squared, so that thelinear trend is removed automatially from the test statistis, see the proof of Theorem 3.3 for more details.Similarly, the estimate b�2 of the noise variane �2 is based on the pseudo-residuals bei whih are de�ned in away that the linear trend in the regression funtion anels out, see Lemma 4.1.



12 SPOKOINY, V.Further, for the ase of zero trend, both numerator and denominator of eah Tj is some quadrati forms ofthe errors �i whih an be represented as �i = �e�i with i.i.d. standard normal variables e�i , i = 1; : : : ; n . Thisyields, see (2.19), that the distribution of eah test statisti Tj does not depend on � . The same is obviouslytrue for the maximum T � and the assertion follows.4.2. Properties of the estimate b�2Here we disuss the properties of the estimate b�2 of the noise variane �2 . We present two results. The�rst one desribes the properties under the null, and the seond one applies under a smooth alternative as well.The results are stated under the Gaussian errors �i . For the extension, see Setion 4.5.Lemma 4.1. Let the regression funtion f be linear. Then Eb�2 = �2E �b�2 � �2�2 � 7�42(n� 2) :Proof. For the ase of a linear funtion f(x) = �0+ �1x , one easily gets with the oeÆients ai = (Xi+1�Xi)(Xi+1�Xi�1) ,bi = (Xi�Xi�1)(Xi+1�Xi�1) aif(Xi�1) + bif(Xi+1)� f(Xi) = 0:Now the model equation (1.1) implies b�2 = 1n� 2 n�1Xi=2 j�ij2with �i = ai�i�1 + bi�i+1 � �ipa2i + b2i + 1 :To estimate the di�erene jb�2 � �2j , we apply Proposition 5.1 from the Appendix. Let � denote the vetor(�2; : : : ; �n�1)> . Obviously E� = 0 . De�ne � = E��> . Observe �rst that1n� 2 tr� = 1n� 2 n�1Xi=2 �2(a2i + b2i + 1)(a2i + b2i + 1) = �2whih implies the equality Eb�2 = �2 by Proposition 5.1.Next, it is easy to hek that 2maxfa2i ; b2i g � a2i + b2i + 1 . Now, it obviously holds:E�2i = �2;jE�i�i+1j � qE�2iE�2i+1 = �2;jE�i�1�i+1j = �2bi�1ai+1q(a2i�1 + b2i�1 + 1)(a2i+1 + b2i+1 + 1) � �2=2;E�i�i0 = 0; ji0 � ij > 2;



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 13This allows to estimate tr�2 as follows:1(n� 2)2 tr �2 = 1(n� 2)2 n�1Xi=2 n�1Xj=2(E�i�j)2= 1(n� 2)2 n�1Xi=2 �(E�i�1�i)2 + (E�2i )2 + (E�i�i+1)2 + (E�i�i�2)2 + (E�i�i+2)2�� �4(n� 2)2 n�1Xi=2 (1 + 1 + 1 + 1=4 + 1=4)= 7�42(n� 2)whih implies the seond assertion of the lemma by Proposition 5.1.Next we show that b�2 estimate the true value �2 at the rate n�1=2 under a mild assumption on theregression funtion f and the design X1; : : : ; Xn . We again assume that the design points are renumbered toprovide X1 � X2 � : : : � Xn .Lemma 4.2. Let the design X1; : : : ; Xn ful�ll Xi+1 � Xi � Dn�1 with some onstant D . Let next theregression funtion f from (1.1) ful�lls the onditionZ 10 jf 00(x)j2dx � L2for some L � 0 satisfying 8L2D3n�3 � �2 . ThenE(b�2 � �2)2 � 9�4(n� 2)�1:Proof. The de�nition of the oeÆients ai and bi , see Setion 2.3, provides for any linear funtion `(x) theidentity ai`(Xi�1) + bi`(Xi+1)� `(Xi) = 0 . The appliation of `(x) = f 0(Xi)(x�Xi) yieldsjaif(Xi�1) + bif(Xi+1)� f(Xi)j� ai jf(Xi�1)� f(Xi)� f 0(Xi)(Xi�1 �Xi)j+ bi jf(Xi+1)� f(Xi)� f 0(Xi)(Xi+1 �Xi)j :Let f(Xi�1) � f(Xi) = (Xi�1 �Xi)f 0(u) for some u 2 [Xi�1 ; Xi℄ . Then, by the Cauhy-Shwarz inequalityand the ondition Xi �Xi�1 � Dn�1 ,jf(Xi�1)� f(Xi)� f 0(Xi)(Xi�1 �Xi)j � (Xi �Xi�1) �����Z Xiu f 00(s)ds������ (Xi �Xi�1) Z XiXi�1 jf 00(x)jdx � (Xi �Xi�1)3=2 Z XiXi�1 jf 00(x)j2dx!1=2 � (Dn�1)3=2Liwith L2i = RXiXi�1 jf 00(x)j2dx , and similarly for jf(Xi+1)� f(Xi)� f 0(Xi)(Xi+1 �Xi)j . These two boundsimply jaif(Xi�1) + bif(Xi+1)� f(Xi)j � (aiLi + biLi+1)(Dn�1)3=2: (4.1)



14 SPOKOINY, V.Next, de�ne �i = ai�i�1 + bi�i+1 � �ipa2i + b2i + 1 ; �i = aif(Xi�1) + bif(Xi+1)� f(Xi)pa2i + b2i + 1 :Then b�2 = 1n� 2 n�1Xi=2 j�i + �ij2 :To estimate the di�erene b�2 � �2 , we apply Proposition 5.2 from the Appendix. Let � = (�2; : : : ; �n�1)> .We know, see the proof of Lemma 4.1, that E� = 0 and the matrix � = E��> ful�lls1n� 2 tr� = �2; 1(n� 2)2 tr �2 � 7�42(n� 2) :The inequality 2maxfa2i ; b2i g � 1 + a2i + b2i and (4.1) providek�k2 = n�1Xi=2 �2i � D3n�3 n�1Xi=2 (aiLi + biLi+1)2a2i + b2i + 1� D3n�3 n�1Xi=2 (L2i + L2i+1) � 2D3n�3 Z 10 jf 00(x)j2dx � 2D3n�3L2The appliation of Proposition 5.2 from the Appendix with  = �pn�2 and " = �pn�2 yieldsE �b�2 � �2�2 = E �k+ "k2 � trV �2 � kk4 + 4kk2ptrV 2 + 2 trV 2:where V = (n� 2)�1� . This along with the inequalities trV 2 � 7�42(n�2) and 4kk2 � 8L2D3n�3(n � 2)�1 ��2(n� 2)�1 imply the required assertion.Lemma 4.3. Let Nj = 2j denote the number of elements in the set Ij . It holdstrVjq2 trV 2j �qNj=2:Proof. Clearly trV 2j = XI2Ij XI02Ij v2I;I0 � XI2Ij v2I;I :Next, the Cauhy-Shwarz inequality impliesN�1j trVj = N�1j XI2Ij vI;I � 0�N�1j XI2Ij v2I;I1A1=2and the assertion follows.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 15Lemma 4.4. Let � be the ritial value of the test seleted by the testing proedure. If design X1; : : : ; Xnful�lls (D) , then, for n suÆiently large,� � 2plog j(n) (1 + on(1)) :Proof. Reall that the ritial value � orresponds to the 1 � �0 -quantile of the distribution of the teststatisti T � = maxj�j(n) Tj under the no-response model f(x) � 0 and under the assumption of standardnormal errors �i , i = 1; : : : ; n . In suh a situation, the subvetor b�j of b�(j) oinides with the Gaussianvetor �j � N (0; Vj) , see Setion 2.1, and hene the orresponding statisti Tj an be represented in the formTj = k�jk2 � b�2 trVjb�2q2 trV 2j :and it suÆes to show that P � maxj�j(n) Tj > 2plog j(n)�1 + Æ1(n)�� � Æ2(n)with two numeri sequenes Æ1(n)! 0 and Æ2(n)! 0 .Now, for every z � 1 and a 2 (0; 1) ,�Tj > z + 1a � = 8<:k�jk2 � b�2 trVj�2q2 trV 2j > (z + 1)b�2a�2 9=;� 8<:k�jk2 � �2 trVj�2q2 trV 2j > z9=; [8<: (b�2 � �2) trVj�2q2 trV 2j > 19=; [ �b�2�2 < a� :This learly yields in view of Lemma 4.3P � maxj�j(n) Tj > z + 1a �� P �b�2�2 < a�+ P  b�2�2 � 1 > 1pNj(n)=2!+ j(n)Xj=0 P 0�k�jk2 � �2 trVj�2q2 trV 2j > z1A :We apply this bound with z = 1 + vn and a = 1 � v�1n where vn = 2plog j(n) . Let j1 be the minimalinteger satisfying CD2j1 � 2C2V v2n . It follows from ondition (D) that vn � kVjk�1qtrV 2j =2 for all j � j1 .An appliation of Proposition 5.1 from the Appendix with  = vn and t = 1 for j � j1 and with  = 1 andt = vn allows to boundP 0�k�jk2 � �2 trVj�2q2 trV 2j > vn + 11A � (e�v2n=4�vn=2 j � j1;e�vn=2 otherwise:



16 SPOKOINY, V.Lemma 4.1 and the Chebyshev inequality provideP �b�2�2 < 1� v�1n �+P  b�2�2 � 1 > 1pNj(n)=2!� v2n��4E �b�2 � �2�2 + 2E �b�2 � �2�2�4Nj(n) � 7v2n2(n� 2) + Nj(n)2(n� 2) = Æ3(n)! 0;sine, by de�nition of j(n) , it holds n=Nj(n) !1 . Therefore,P �T � > 2 + vn1� v�1n � � Æ3(n) + j1�1Xj=0 e�vn=2 + j(n)Xj=j1 e�v2n=4�vn=2� Æ3(n) + log2(2C2V v2n=CD)e�vn=2 + 1+j(n)j(n) e�vn=2 ! 0; n!1:4.3. Proof of Proposition 3.1We again restrit ourselves to the ase of Gaussian errors �i in (1.1). Reall that the vetor b�j is de�nedas the subvetor of b�(j) = �	(j)>	(j)��1	(j)>Y , j � j(n) . The model equation (1.1) yieldsb�(j) = �	(j)>	(j)��1	(j)>(f + �) = ��(j) + �(j)with ��(j) = V (j)	(j)>f and �(j) = V (j)	(j)>� where V (j) = �	(j)>	(j)��1 . Hene b�j = �j + �jwhere ��j (resp. �j ) is the subvetor of ��(j) (resp. of �(j) ) orresponding to the j th resolution level.This partiularly implies that �j is a zero mean random vetor with the ovariane matrix Vj whih is thesubmatrix of the matrix V (j) = �	(j)>	(j)��1 . Moreover, if the errors �i in (1.1) are Gaussian, then �j isa Gaussian random vetor with parameters (0; Vj) for eah j � j(n) .Let, for some j � j(n) , it holds T �j = k��jk2�2q2 trV 2j � 3(�1=2n + 1)2 (4.2)with �n = maxf�; 2plog j(n)g . We shall show that under this onditionP f (Tj < �) � Æ(n)! 0; n!1; (4.3)whih obviously implies the assertion.Observe �rst thatP (Tj < �) = P �k��j + �jk2 � b�2 trVj < �b�2q2 trV 2j �� P �k��j + �jk2 � �2 trVj < ��2q2 trV 2j + (b�2 � �2)��q2 trV 2j + trVj��� P �k��j + �jk2 � �2 trVj � k��jk2 < (�+ �1=2n )�2q2 trV 2j � k��jk2�+P �(b�2 � �2)��q2 trV 2j + trVj� < ��2�1=2n q2 trV 2j � :



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 17By Lemma 4.3 trVj (2 trV 2j )�1=2 �pNj=2 �pNj(n)=2 for all j � j(n) . Further, by Lemma 4.2P 0�b�2 � �2 < � �2�1=2n q2 trV 2j�q2 trV 2j + trVj1A� ��q2 trV 2j + trVj�2�4�n2 trV 2j E �b�2 � �2�2 � 9(�+pNj(n)=2)2�n(n� 2) = Æ4(n); n!1sine n=Nj(n) = n2�j(n) !1 .Next, for every positive u , the inequality k�k � 3u implies k�k2 � 2uk�k � 3u2 � 0 . Coupled with (4.2),this ensures with u = 3�1=2(�1=2n + 1)�j and �j = �(2 trV 2j )1=4 thatk��jk2 � p4=3k��jk(�1=2n + 1)�j + (�1=2n + 1)2�2j� k��jk(�1=2n + 1)�j + (�n + 2�1=2n + 1)�2j :Now Proposition 5.2 from the Appendix with  = 1 and t = �1=2n impliesP (Tj < �)� P �k��j + �jk2 � �2 trVj � k��jk2 < �(�1=2n + 1)k��jk�j � (�1=2n + 1)�2j �+ Æ4(n)� 2e��1=2n =2 + Æ4(n)! 0; n!1as required.4.4. Proof of Theorem 3.3For the proof, we use the result of Proposition 3.1. Namely we show that the ondition (3.6) of the theoremwith � large enough ontradit to the onstraintsT �j � tn; j � j(n); (4.4)with tn = 3�1 + �1=2n �2 and �n = maxf�; 2plog j(n)g .We begin by redution of the problem of testing a linear hypothesis to the problem with a simple nullhypothesis. De�ne oeÆients �0; �1 by(�0; �1) = arginf(a;b) kf � a� b 1kn = arginf(a;b) nXi=1(f(Xi)� a� bXi)2:and set f0 = f � �0 � �1 1:Note that for all j � 0 , the vetors ��(j) = V (j)	(j)f and �(j) = V (j)	(j)f0 have the same omponentsexept the �rst two. Obviously the smoothness properties of f and f0 also oinide andinfa;b kf � a� b 1kn = infa;b kf0 � a� b 1kn



18 SPOKOINY, V.Reall also, that the linear trend in the regression funtion has no inuene on our variane estimator b�2 .Hene, replaing f by f0 hanges nothing in the test behaviour and we may suppose from the beginning thatthe oeÆients ��0 and ��1 of the vetor ��(j) vanish.About this new funtion f we know thatkfkn = infa;b kf � a� b 1kn � %(n);infg2Ps(j) kf � gkn = rs(j); (4.5)for all j from zero to j(n) .Next we rewrite the onstraints from (4.4) in term of the vetors k��jk , j � j(n) . Reall that ��j is thesubvetor of ��(j) orresponding to j th level, and Vj is the orresponding submatrix of V (j) .Let L(j) stand for the linear spae generated by funtions  I , I 2 I(j) . We denote also by �(j)f theprojetion of f onto the spae L(j) with respet to the norm k � kn ,�(j)f = arginfh2L(j) kf � hkn:Partiularly, �(0)f denotes the projetion of f onto the spae of linear funtions (and hene, �(0)f = 0 )and, by de�nition of �(j) , �(j)f = XI2I(j) ��I I (4.6)where �I 's are the oeÆients of the vetor ��(j) .Lemma 4.5. For eah 1 � j � j(n) ,k�(j)fkn � k�(j � 1)fkn + k��jk:Proof. Sine L(j � 1) � L(j) , then �(j � 1)f = �(j � 1)�(j)f:When denoting f(j) = �(j)f , one has �(j � 1)f = �(j � 1)f(j) and we have to show thatk�(j � 1)f(j)kn � kf(j)kn � k��jk:In view of (4.6) f(j) = XI2I(j) ��I I :Denote by fj the part of this sum orresponding to the last level Ij in I(j) ,fj = XI2Ij ��I I :By onstrution, the funtions  I , I 2 Ij , are ortonormal w.r.t. to the inner produt k � kn and partiularlykfjk2n = XI2Ij j��I j2 = k��jk2:



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 19Next, obviously f(j)� fj 2 L(j � 1) , and by de�nition of �(j) ,kf(j)��(j � 1)f(j)kn � kf(j)� (f(j)� fj)kn = kfjkn = k��jkand the assertion follows by the triangle inequality.Lemma 4.6. Given j � j(n) , let (4.4) hold true for all ` � j . Thenk�(j)fk2n � �1�CV 2j=2tn (4.7)with �1 = 21=2(21=4 � 1)�2 .Proof. Reursive appliation of Lemma 4.5 givesk�(j)fkn � j�1X̀=0 k��̀k:Here we have used that �(0)f = 0 . Now (4.4) and (D:iii) yieldk��̀k2 � �2tnq2 trV 2̀ � �2tnqC2V 2`+1and thus, k�(j)fkn � jX̀=1 � �2`=2tnCV �1=2 = �(CV tn)1=2 jX̀=1 2`=4and the assertion follows by simple algebra.Let now j0 ful�ll 2j0 > s and Ps(j � j0) denote the spae of pieewise polynomials with piee length2�(j�j0) . Let now some j � j(n) be �xed and let g 2 Ps(j � j0) be suh thatkf � gkn � rs(j):Lemma 4.7. There is a onstant �2 > 0 depending on C�; C� and s only and suh that for eah j withj0 � j � j(n) kfkn � �2 fk�(j)fkn + rs(j)g :Proof. Let g 2 Ps(j � j0) be suh that kf � gkn � rs(j) . Thenkfkn � kgkn + rs(j)and, sine �(j) is a projetor,k�(j)fkn = k�(j)g +�(j)(f � g)kn � k�(j)gkn � k�(j)(f � g)kn� k�(j)gkn � rs(j)and the assertion follows from kgk2n � �3k�(j)gk2n:



20 SPOKOINY, V.Reall that g is a pieewise polynomial funtion on the partition AI , I 2 Ij�j0 and the projetion �(j)gmeans the approximation of eah polynomial on interval AI of length 2�(j�j0) by pieewise onstant funtionswith piee length 2�j . Therefore, it suÆes to prove that for eah piee AI and every polynomial P (x) =a0 + a1x+ : : :+ as�1xs�1 , it holds XAI [�(j)P (Xi)℄2 � �3XAI P 2(Xi)where the onstant �3 depends on C�; C� and s only. The similar fat with integration instead of summationover the design points in AI has been stated in Ingster (1993) and we present here only a sketh of the prooffor our situation.The key idea of the proof an be formulated as a separate statement.Lemma 4.8. Let P (x) be a polynomial of degree s � 1 and let m be an integer with m > s . De�ne Ak =[(k � 1)=m; k=m) for k = 1; : : : ;m . Then for every measure � on [0; 1℄ with 0 < C� � �(Ak) � C� > 0 forall k � m , mXk=1 �ZAk P (x)�(dx)�2 � �3 Z 10 P 2(x)�(dx):with a positive number �3 depending on C�; C� and s only.Proof. Let a = (a0; : : : ; as�1) be the vetor of oeÆients of P . Without loss of generality, we may assumethat kak1 = maxj=0;::: ;s�1fjaj jg � 1 . Obviously, bothkak2�;1 = mXk=1�ZAk P (x)�(dx)�2 ;kak2�;2 = Z 10 P 2(x)�(dx)are some Eulidean norms in the spae Rs . Next, kak�;2 = 0 only if a = 0 i.e. P (x) � 0 and the same appliesfor kak�;1 , sine P (x) has at most s � 1 roots and � is supported on m > s disjoint intervals. Note alsothat kak�;1 and kak�;2 are ontinuous funtionals of a and � and the spae Mm(C�; C�) of measures � on[0; 1℄ satisfying the ondition of the lemma is ompat in the weak topology. Hene,supa : kak1�1 sup�2Mm(C�;C�) kak�;2kak�;1 = �3 <1as required.Appliation of this result to eah interval AI , I 2 Ij�j0 yields the desirable assertion.The results of Lemma 4.5 through 4.7 yield the inequalitykfkn � �2 �rs(j) +p�1CV 2j=2�n�whih ontradits to the onstraints kfkn � ��rs(j) +p2j=2�n� if � > �2 , and the theorem is proved.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 214.5. Proof of Theorem 3.2Now we disregard the assumption that the errors �i in (1.1) are normally distributed and assume only thatthey have 6 �nite moments. We outline the proof of Theorem 3.2 only. Proposition 3.1 an be onsideredsimilarly.Lemma 4.9. Let the errors �i in (1.1) be i.i.d. and satisfy E�i = 0 , �2i = �2 and E ���2i � �2��3 � C6�6 .De�ne s24 = 2��4E(�21 � �2)2 . If the regression funtion f is linear thenE(b�2 � �2)2 � (s4 + 1=2)�4n� 2 :Proof. Similarly to the Gaussian ase disussed in Setion 4.2, it suÆes to onsider the ase of the no-responsemodel with the vanishing regression funtion. In this ase, the variane estimate b�2 is a quadrati form of theerrors �i whih allows for the following representation:b�2 = 1n� 2 n�1Xi=2 (ai�i�1 + bi�i+1 � �i)2a2i + b2i + 1where ai = (Xi+1�Xi)(Xi+1�Xi�1) , bi = (Xi�Xi�1)(Xi+1�Xi�1) , i = 1; : : : ; n . Simple algebra yields(n� 2)(b�2 � �2)= nXi=1 a2i (�2i�1 � �2) + b2i (�2i+1 � �2) + (�2i � �2)a2i + b2i + 1 + n�1Xi=2 aibi�i�1�i+1 � ai�i�1�i � bi�i�i+1a2i + b2i + 1= 1n� 2 n�1Xi=2 � a2i+1a2i+1 + b2i+1 + 1 + 1a2i + b2i + 1 + b2i�1a2i�1 + b2i�1 + 1� (�2i � �2)+ 2n� 2 n�1Xi=2 aibia2i + b2i + 1�i�1�i+1 � 2n� 2 n�1Xi=2 � aia2i + b2i + 1 + bi�1a2i�1 + b2i�1 + 1� �i�1�i= nXi=1 �ii(�2i � �2) +Xi6=j �ij�i�jwhere aj = bj = 0 for j = 0; 1; n; n+ 1 and �ij are some oeÆients. This learly implies Eb�2 = �2 . It isalso easy to see that (n� 2)2E(b�2 � �2)2 = �4 nXi=1 nXj=1 �2ij + �4(s4 � 3) nXi=1 �2iiwhere s4 = ��4E(�2i � �2)2 .One an easily hek that the matrix A with the entries �ij ful�lls�4 trA>A = �4 nXi=1 nXj=1 �2ij = tr�2



22 SPOKOINY, V.with the matrix � de�ned in Lemma 4.1 and hene, �4 trA>A � 72�4(n � 2) . Sine nPi=1�ii = n � 2 and�ii � 2 for all i , we derive 1n� 2 nXi=1 �2ii � maxi=1;::: ;n �iin� 2 nXi=1 �ii � 2and E(b�2 � �2)2 � 7�42(n� 2) + (s4 � 3)�4 2n� 2 � (s4 + 1=2)�4n� 2 :In the same way one an extend the result of Lemma 4.2 to the non-Gaussian ase: b�2 estimates the truevariane �2 at the rate n�1=2 provided that f is suÆiently smooth.Now we turn to Theorem 3.2. It obviously suÆes to show that the distribution of the test statisti T � anbe approximated by a similar distribution orresponding to the ase of Gaussian errors. Then the result followsfrom Theorem 3.1.As in the proof of Theorem 3.1, the general ase an be redued to the no-response model with the vanishingregression funtion. Further, sine the di�erene b�2��2 is of order n�1=2 , it suÆes to onsider the expressionsT 0j , j � j(n) , de�ned byT 0j = 1q2�4 trV 2j 0�XI2Ij jb�I j2 � �2 trVj1A = Sj � �2 trVjq2�4 trV 2jwhere b�I are elements of the vetor b�(j) , f. the proof of Lemma 4.4. Under the no-response hypothesis, thisvetor admits the representation: b�(j) =W (j)� with W (j) = �	(j)>	(j)��1	(j)> , see (2.12). If Ej denotesthe projetor from I(j) onto Ij keeping the oordinates xI with I 2 Ij , then b�j = Ejb�(j) = EjW (j)� andSj = kb�jk2 = �>W (j)>E>j EjW (j)� = �>Aj�with Aj = W (j)>E>j EjW (j) , so that Sj is a quadrati form of the errors �i . We also know that Vj =EjW (j)W (j)>E>j , and ESj = �2 trAj = �2 trVj . This form in its turn an be represented as a sum of adiagonal form T (1)j and a quadrati form T (2)j with vanishing diagonal terms. We �rst show that the impatof diagonal terms is negligible and then apply Corollary 5.2 to T (2)j 's.Let oi denote the i -th basis vetor in Rn . Then the i -th diagonal element aii of Aj is equal to o>i Ajoi :aii = o>i Ajoi= o>i 	(j)> �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1	(j)oi:Clearly �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1 � �	(j)>	(j)��2 = V (j)2 � C2V :Next, for every Haar level ` � j , there exists only one index I 2 I` suh that  I(Xi) 6= 0 . More preisely,for this index I , it holds  I(Xi) = �1=pMI where MI is the number of design points in the interval AI



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 23orresponding to the index I . Condition (D:i) implies MI � C�n2�` for every I 2 I` . Also  0(Xi) = n�1=2and  1(Xi) = Xi �Pni0=1X2i0��1=2 . Hene, the de�nition of the matrix 	(j) and ondition (D:i) providej	(j)oij � n�1=2 + nXi0=1X2i0!�1=2 + jX̀=0s 2`nC� < 3C�1=2� 2j=2n�1=2: (4.8)Therefore, aii � j	(j)oij2 �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1 � 9C�1� 2jn�1C2V :De�ne G2j = 2�4 trA2j . NotetrA2j = trW (j)>E>j EjW (j)W (j)>E>j EjW (j)= trEjW (j)W (j)>E>j EjW (j)W (j)>E>j = trV 2jso that T (1)j = G�1j Pni=1 aii(�2i � �2) . In view of ondition (D:ii) it holds trA2j � CD2j . Now, for everyÆ > 0 , P � maxj=0;::: ;j(n) T (1)j > Æ� � j(n)Xj=0 P �T (1)j > Æ�� Æ�2 j(n)Xj=0E ���T (1)j ���2� Æ�2 j(n)Xj=0G�2j �4s4 nXi=1 a2ii� Æ�2 j(n)Xj=0 2�1C�1D 2�js4n �9C�1� 2jn�1C2V �2� CÆ�2n�12j(n)+1 ! 0; n!1:Next we onsider T (2)j whih is obtained from T 0j by removing the diagonal terms. This quadrati form anbe approximated (in distribution) by a similar one with Gaussian errors e�i at a reasonable rate provided thatthe orresponding value CA , de�ned as n times the ratio of the maximal diagonal element of the matrix �4A2jto G2j = �4 trA2j , see (5.2) and Remark 5.1 in the Appendix, remains bounded.The i -th diagonal element di of A2j is equal to o>i A2joi :di = o>i A2joi= o>i n	(j) �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1	(j)>o2 oi= o>i 	(j)> �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1	(j)oi:



24 SPOKOINY, V.Clearly �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1� �	(j)>	(j)��3 = V (j)3 � C3V :The use of (4.8) providesdi � j	(j)oij2 �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1� 9C�1� 2jn�1C3Vand CA � 9C�1� C3V 2jCD2j = 9C�1� C3VCDthat is, the value CA is bounded by a �xed onstant depending on design regularity only.By Corollary 5.2, the joint distribution of T (2)j , j � j(n) , and the distribution of their maximum, anbe approximated by the distribution of similar quadrati forms of Gaussian r.v.'s whih implies the requiredassertion. 5. AppendixHere we briey disuss some general properties of quadrati forms of random variables. We �rst onsider thease when the underlying random variables are Gaussian and establish an exponential bound for deviations ofsuh forms over ertain level. Next we show how an arbitrary quadrati form of independent random variablesan be approximated (in distribution) by a similar quadrati form of Gaussian random variables.5.1. Deviation probabilities for quadrati forms of Gaussian random variablesLet "1; : : : ; "N be Gaussian random variables with zero mean and the ovariane N�N matrix V , i.e.V = E""> where " denotes the vetor " = ("1; : : : ; "N )> .We �rst present the following general results about quadrati forms of Gaussian random variables.Proposition 5.1. Let "1; : : : ; "N be Gaussian random variables with zero mean and the ovariane matrixV := E""> . Then Ek"k2 := E �"21 + : : :+E"2N� = trV;E �k"k2 � trV �2 = 2 trV 2:Moreover, for  � kV k�1ptrV 2=2 and eah t � 0 ,P ��(k"k2 � trV ) > ( + t)p2 trV 2� � e�t=2�2=4:Proof. Let V = U>�U be a diagonal representation of V with a diagonal matrix � = diagf�1; : : : ; �Ng andan ortonormal matrix U . It is well known that � = ��1=2U" is a standard Gaussian vetor and k"k2 = �>�� .Also it holds trV = �1 + : : : + �N , trV 2 = �21 + : : : + �2N and kV k = maxf�1; : : : ; �Ng . To bound the



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 25expression k"k2 � trV , we apply the exponential Chebyshev inequality: with eah � � 0 satisfying 2��i < 1and every zP �k"k2 � trV > z� � e��zE exp��(k"k2 � trV )	 = e��zE exp(� NXi=1 �i(�2i � 1))= e��z NYi=1E exp���i(�2i � 1)	 = exp(��z � � NXi=1 �i � NXi=1 12 log(1� 2��i)) :We now set � = 2p2 trV 2 so that 2��i = �ip2 tr V 2 < 1=2 and use that � log(1� u) � u+ u2 for 0 � u � 1=2 .This yields P �k"k2 � trV > ( + t)p2 trV 2� � exp �( + t)2 + 24 trV 2 NXi=1 �2i!= exp ��t=2� 2=4�as required. The bound for �(k"k2 � trV ) is proved in the same line.Further, for a deterministi vetor  = (1; : : : ; N )> from RN , we onsider quadrati forms of typek+ "k2 = NXj=1 jj + "j j2:Proposition 5.2. Let "1; : : : ; "N be Gaussian random variables with zero mean and the ovariane matrix V .Then it holds for any vetor  = (1; : : : ; N )> in RNEk+ "k2 = kk2 + trV;Var k+ "k2 := E �k+ "k2 � kk2 � trV �2 = 4>V + 2 trV 2;E �k+ "k2 � trV �2 = kk4 + 4>V + 2 trV 2 � kk4 + 4kk2ptrV 2+ 2 trV 2:Moreover, for every positive  with  � kV k�1ptrV 2=2 and every t � 0P ��(k+ "k2 � kk2 � trV ) > kk(2 trV 2)1=4 + ( + t)p2 trV 2� � 2e�2=4�t=2:Proof. With vetor notation, the studied quadrati form an be rewritten as k+ "k2 = (+ ")>(+ ") . Now,sine E"i = 0 , it holdsEk+ "k2 = E �kk2 + 2>"+ k"k2� = kk2 +Ek"k2 = kk2 + trV:Next, Var k+ "k2 = E �k+ "k2 �Ek+ "k2�2= E �2>"+ k"k2 � trV �2= 4Ej>"j2 + 4E>" �k"k2 � trV �+E �k"k2 � trV �2 :



26 SPOKOINY, V.The Gaussian vetor " � N (0; V ) ful�llsE " �k"k2 � trV � = 0;Ej>"j2 = >(E"">) = >V so that in view of Proposition 5.1 Var k+ "k2 = 4>V + 2 trV 2 as required. Similarly one obtainsE �k+ "k2 � trV �2 = kk4 + 4>V + 2 trV 2and by the Cauhy-Shwarz inequality >V  � kk2ptrV 2 .Let now  � 1 be �xed suh that  � kV k�1ptrV 2=2 . This partiularly means that kV k � ptrV 2=2 .Note that the salar produt >" is a linear ombination of the Gaussian zero mean random variables and itis therefore Gaussian as well with E>" = 0 and Ej>"j2 = >V  . This yields for every  � 1P �>" > p>V � � e�2=2:The ondition kV k �ptrV 2=2 provides >V  � kk2kV k � kk2ptrV 2=2 . Combining this inequality withthe previous one implies P �2>" > ( + t)kk(2 trV 2)1=4� � e�(+t)2=4:Next, by Proposition 5.1 P �k"k2 � trV > ( + t)p2 trV 2� � e�2=4�t=2:Summing up the previous estimates, we obtainP 0� NXj=1 jj + "j j2 � trV > kk2 + ( + t)kk(2 trV 2)1=4 + ( + t)p2 trV 21A= P �2>"+ k"k2 � trV > ( + t)kk(2 trV 2)1=4 + ( + t)p2 trV 2�� P �2>" > ( + t)kk(2 trV 2)1=4�+P �k"k2 � trV > ( + t)p2 trV 2�� 2e�2=4�t=2as required.5.2. Gaussian approximation for quadrati formsIn what follows we onsider quadrati forms Pni=1Pǹ=1 ai`�i�` of independent but not neessarily normalrandom variables �1; : : : �n with vanishing diagonal oeÆients, i.e. aii = 0 . We aim to show that, undermoment onditions on �i 's and mild assumptions on the oeÆients of the quadrati form, the asymptotidistribution of this quadrati form only weakly depends on the partiular distribution of �i 's and, as a onse-quene, it an be approximated by a distribution of a similar quadrati form of Gaussian r.v.'s with the same�rst and seond moments.Let A = (ai` ; i; j = 1; : : : ; n) be a n�n symmetri matrix with aii = 0 for all i , and let �1; : : : ; �n beindependent zero mean r.v.'s with E�4i < 1 for all i . De�ne �2i = E�2i . We study some properties of thequadrati form Pni=1Pnj=1 ai`�i�` .



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 27Lemma 5.1. It holds E nXi=1 nX̀=1 ai`�i�` = nXi=1 aii�2i = 0;E( nXi=1 nX̀=1 ai`�i�`)2 = 2 nXi=1 X̀6=i a2i`�2i �2̀: (5.1)Proof. Obvious. Here it is only important that the diagonal elements aii vanish.By A(�1; : : : ; �n) we denote the orresponding quadrati form, that isA(�1; : : : ; �n) = nXi=1 nX̀6=i ai`�i�`:Let also e�1; : : : ; e�n be a sequene of independent Gaussian r.v.'s with Ee�i = 0 and Ee�2i = �2i , i = 1; : : : ; n .De�ne another quadrati form A(e�1; : : : ; e�n) = nXi=1 X̀6=i ai`e�ie�`Clearly EA(e�1; : : : ; e�n) = 0 and EjA(e�1; : : : ; e�n)j2 = EjA(�1; : : : ; �n)j2 .Proposition 5.3. Let E�4i � C4�4i for some �xed onstant C4 � 3 . Let, for a symmetri matrix A withaii = 0 for i = 1; : : : ; n , and for a normalizing onstant G , the numbers CA be de�ned byCA = maxi=1;::: ;nnG�2 nX̀=1 a2i`�2i �2̀: (5.2)Then, for every three times ontinuously di�erentiable funtion f , it holds���Ef �G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)���� � 83f3(C4CA)3=2n�1=2where f3 means the maximum of the absolute value of the third derivative of f , that is, f3 = supx jf 000(x)j .Remark 5.1. The value CA an be easily evaluated for the ase of an homogeneous noise when all �2i oinidewith some �2 . Clearly eah sum di = nP̀=1a2i` is i -th diagonal element of A2 and CA � G�2 maxi=1;::: ;nfndig .Remark 5.2. The onditions of Proposition 5.3 do not guarantee that the distribution of G�1A(�1; : : : ; �n)is lose to some normal distribution. A typial example whih just meets in hypothesis testing frameworkorresponds to the quadrati form A(�1; : : : ; �n) = (�1 + : : : + �n)2 , whih, even with normal �i 's, is �21 -distributed.Proof. The hange �i for �i=�i and ai` for ai`�i�` allows to redue the general ase to the situation with�i = 1 for all i . Hene, for the sake of notation simpliity, we suppose that �2i = 1 , i = 1; : : : ; n .We use the following obvious inequality���Ef�G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)����� nXi=1 ���Ef �G�1A(�1; : : : ; �i; e�i+1; : : : ; e�n)��Ef �G�1A(�1; : : : ; �i�1; e�i; : : : ; e�n)����



28 SPOKOINY, V.where we assume �0 = e�n+1 = 0 . We evaluate the last summand here, the other an be bounded in the sameway. Denote un�1 = G�1 n�1Xi=1 n�1X̀6=i ai`�i�`;�n = G�1A(�1; : : : ; �n)� un�1 = 2G�1�n n�1Xi=1 ain�i ;e�n = G�1A(�1; : : : ; �n�1; e�n)� un�1 = 2G�1e�n n�1Xi=1 ain�i :The Taylor expansion yields���Ef �G�1A(�1; : : : ; �n��Ef �G�1A(�1; : : : ; �n�1; e�n)����� ���Ef 0(un�1)(�n � e�n)���+ 12 ���Ef 00(un�1)(�2n � e�2n)���+ f36 (E j�nj3 +Eje�nj3): (5.3)Sine �n and e�n are independent of �1; : : : ; �n�1 and sine E�n = Ee�n = 0 , E�2n = Ee�2n = 1 , taking theonditional expetation given �1; : : : ; �n�1 , we obtainE ��n � e�n j �1; : : : ; �n�1� = 0; E ��2n � e�2n j �1; : : : ; �n�1� = 0: (5.4)Further we evaluate Ej�nj3 and Eje�nj3 . Note �rst that, sine E�4n � C4 with C4 � 3 ,E n�1Xi=1 ain�i!4 = n�1Xi=1 a4inE�4i + 3 n�1X̀6=i a2ina2̀n� n�1Xi=1 a4in(C4 � 3) + 3 n�1Xi=1 a2in!2 � C4 n�1Xi=1 a2in!2 :Now the H�older inequality yields in view of Ej�nj3 � C3=44G3Ej�nj3 = Ej�nj3E �����2 n�1Xi=1 ain�i�����3� 8C3=44 8<:E n�1Xi=1 ain�i!49=;3=4 � 8C3=24  nXi=1 a2in!3=2and the ondition G�2Pni=1 a2in � n�1CA providesEj�nj3 � 8(C4CA)3=2n�3=2: (5.5)For the Gaussian r.v. sne�n , the similar bound applies:Eje�nj3 � 8(C4CA)3=2n�3=2: (5.6)



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 29Substituting these estimates as well as (5.4) in (5.3) implies�����Ef �A(�1; : : : ; �n)G ��Ef  A(�1; : : : ; �n�1; e�n)G !����� � 166 f3(C4CA)3=2n�3=2:Similar bounds hold for the other summands in (5.3). Summing them out, we obtain���Ef �G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)���� � 83f3(C4CA)3=2n�1=2as required.Corollary 5.1. Under the onditions of Proposition 5.3, for eah Æ > 0 and every xP �G�1A(�1; : : : ; �n) > x� � P �G�1A(e�1; : : : ; e�n) > x� Æ�+ Const:C3=2A n�1=2Æ�3with a onstant Const: depending on C4 only. If, in addition, G2 � EjA(�1; : : : ; �n)j2 , thenP �G�1A(�1; : : : ; �n) > x� � P �G�1A(e�1; : : : ; e�n) > x�+ Const:C3=2A n�1=2Æ�3 + Æ:Proof. Let a smooth funtion f ful�ll f(u) = 0 for u � �1 and f(u) = 1 for u � 0 . De�ne Cf =supu jf 000(u)j . Now, given x and Æ > 0 , set fx;Æ(u) = f(Æ�1(u � x)) . Obviously fx;Æ(u) = 0 for u � x � Æand fx;Æ(u) = 1 for u � x and also jf 000x;Æ(u)j � CfÆ�3 .Next, by Proposition 5.3P �G�1A(�1; : : : ; �n) > x� � Efx;Æ �G�1A(�1; : : : ; �n)�� Efx;Æ �G�1A(e�1; : : : ; e�n)�+ 83(CAC4)3=2CfÆ�3n�1=2:It remains to note thatEfx;Æ �G�1A(e�1; : : : ; e�n)� � P �G�1A(e�1; : : : ; e�n) > x� Æ�The last statement of the orollary follows from the obvious fat that the density of G�1A(e�1; : : : ; e�n) isbounded by 1 for every G with G2 � EjA(e�1; : : : ; e�n)j2 .5.3. A family of quadrati formsHere we briey disuss the situation arising in adaptive testing problem when the maximum of a family ofquadrati forms of �i 's is onsidered. We again aim to show that the joint distribution of this family (and thusthe distribution of the maximum) an be well approximated by the similar distribution for quadrati forms ofGaussian random variables.Let A1; : : : ; AM be a olletion of symmetri n�n -matries with vanishing diagonal elements. We ana-lyze the joint distribution of the standardized quadrati forms G�1m Am(�1; : : : ; �n) with independent randomvariables �i satisfying E�i = 0 , E�2i = �2i and E�4i < 1 , and some onstants Gm , m = 1; : : : ;M .More preisely, we intend to show that the distribution of this family is lose to the distribution of the familyfG�1m Am(e�1; : : : ; e�n); m = 1; : : : ;Mg with Gaussian variables e�i � N (0; �2i ) .



30 SPOKOINY, V.Proposition 5.4. Let the variables �i ful�ll E�4i � CE�4i and let every matrix Am satisfy the onditionsof Proposition 5.3 with the same onstant CA , m = 1; : : : ;M . Then, for every three times ontinuouslydi�erentiable funtion f in the spae RM , it holds���Ef �G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)���� � 83f3M3(C4CA)3=2n�1=2where G�1A denotes the vetor with elements G�1m Am and f3 means the maximum of the absolute value ofthe third derivative of f , that is, f3 = supx2RM maxi;j;k=1;::: ;M ���� �3f(x)�xi�xj�xk ���� :Proof. The proof follows the same line as in the ase of one quadrati forms when understanding G�1A , un�1 ,f 0(un�1) and �n as vetors in RM and f 00(un�1) as the M�M -matrix of the seond derivatives of f atun�1 . The only di�erene is that we apply the bound Ej�nj3 � M38(C4CA)3=2n�3=2 for the norm of �nwhih is M3 times larger than in the ase of M = 1 , f. (5.5). The details are left to the reader.A straightforward orollary of this results onerns the maximum of G�1m Am 's.Corollary 5.2. Let the onditions of Proposition 5.4 be ful�lled. ThenP �maxm�M G�1m Am(�1; : : : ; �n) � x��P �maxm�M G�1m Am(e�1; : : : ; e�n) � x� Æ�� Const:M3C3=2A n�1=2Æ�3with a onstant Const: depending on C4 only. If, in addition, G2m � EjAm(�1; : : : ; �n)j2 for all m � M ,then P �maxm�M G�1m Am(�1; : : : ; �n) � x��P �maxm�M G�1m Am(e�1; : : : ; e�n) � x�� Const:M3C3=2A n�1=2Æ�3 +MÆ:Proof. The �rst statement an be heked exatly as for the ase of M = 1 , see the proof of Corollary 5.1. Asregard to the seond statement, it suÆes to mention that the density of eah G�1m Am(e�1; : : : ; e�n) is boundedby 1 and hene the density of the maximum of G�1m Am(e�1; : : : ; e�n) 's is bounded by M .Remark 5.3. If M is not too large in the sense that M3n�1=2 is small, then, seleting a proper Æ , we anderive from this statement that the distribution of the maximum of G�1m Am(�1; : : : ; �n) 's is approximated bythe similar distributions for G�1m Am(e�1; : : : ; e�n) 's.Referenes[1℄ Andrews, D.W.K. (1997). A onditional Kolmogorov test. Eonometrika 58 1097{1128.[2℄ Bierens, H.J. (1982). Consistent model spei�ation tests. J. of Eonometris 20 105{134.[3℄ Bierens, H.J. (1990). A onsistent onditional moment test of funtional form. Eonometrika 58 1443{1458.[4℄ Brown, L.D. and Low, M.G. (1996). Asymptoti equivalene of nonparametri regression and white noise. Ann. Statist., 24,2384{2398.[5℄ Burnashev, M.V. (1979). On the minimax detetion of an inaurately known signal in a white Gaussian noise bakground.Theory Probab. Appl. 24 107{119.
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