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DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS �Spokoiny, V.1Abstra
t. The paper is 
on
erned with the problem of testing a linear hypothesis about regressionfun
tion. We propose a new testing pro
edure based on the Haar transform whi
h is adaptive tounknown smoothness properties of the underlying fun
tion. The results des
ribe optimality propertiesof this pro
edure under mild 
onditions on the model.AMS Subje
t Classi�
ation. 62H25; Se
ondary 62G10.O
tober, 8, 1999. 1. Introdu
tionSuppose we are given data (Xi; Yi); i = 1; : : : ; n , with Xi 2 R1 , Yi 2 R1 , obeying the regression equationYi = f(Xi) + �i (1.1)where f is an unknown regression fun
tion and �i are zero mean random errors. Statisti
al analysis for su
hmodels may fo
us on the qualitative features of the underlying fun
tion f . Parti
ularly, no-response model
orresponds to testing the simple zero hypothesis that f is a 
onstant fun
tion. Another typi
al example is
onne
ted to the hypothesis of linearity. More generally one may 
onsider a parametri
 type hypothesis aboutf . In this paper, we restri
t ourselves to the 
ase of the hypothesis of linearity. Using the hypothesis testingframework, we test the null hypothesis H0 : f `is linear', that is, f(x) = a+ bx for some 
onstants a; b , versusthe alternative H1 : f `is not linear'.The problem of testing a simple or parametri
ally spe
i�ed hypothesis is one of the 
lassi
al in statisti
alinferen
e, see e.g. Neyman (1937), Mann and Wald (1942), Lehmann (1957). Let � be a test i.e. a measurablefun
tion of the observations Y1; : : : ; Yn with two values 0; 1 . As usual, the event f� = 0g is treated asa

epting the hypothesis and � = 1 means that the hypothesis is reje
ted. The quality of a test � is des
ribedin terms of the 
orresponding error probabilities of the �rst and se
ond kinds. Let P f denote the distributionof the data Y1; : : : ; Yn for a �xed model fun
tion f , see (1.1). If f 
oin
ides with a linear fun
tion f0 , thenthe error probability of the �rst kind at the point f0 is the probability under f0 to reje
t the hypothesis,�f0(�) = P f0(� = 1):Similarly one de�nes the error probability �f (�) of the se
ond kind. If the fun
tion f is not linear, then�f (�) = P f (� = 0):Keywords and phrases: data-driven test, Haar basis, linear hypothesis, nonparametri
 alternative, regression model� The author is grateful to the anonymous Referee for helpful remarks and 
riti
s.1 Weierstrass-Institute for Applied Analysis and Statisti
s, Mohrenstr. 39, 10117 Berlin Germany 
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2 SPOKOINY, V.Typi
ally one aims to 
onstru
t a test ' of the pres
ribed level �0 , that is, satisfying for a given �0 > 0the 
ondition �f0(�) � �0 whi
h also has a nontrivial power 1 � �f (') > 0 against a possibly large 
lass ofalternatives f . A large number of proposals for 
onstru
ting su
h tests 
an be found in the literature. Werefer to Hart (1997) where the reader 
an �nd histori
al remarks and further referen
es. Note meanwhile, thatthe majority of results in this domain is 
on
entrated either only on verifying the 
ondition �f0(�) � �0 oron studying asymptoti
 properties of the power fun
tion 1 � �f (') for a �xed or lo
al alternative. The lo
alalternative approa
h assumes that the hypothesis is tested versus alternatives approa
hing the null hypothesisfrom a spe
i�
 dire
tion. Many tests have been shown to have nontrivial asymptoti
 power against every su
hlo
al alternative, see e.g. Bierens (1982, 1990), Eubank and Spiegelman (1990), Andrews (1997), Stute (1997)among others. However, it turns out that the �nite sample power of the proposed tests is not uniform withrespe
t to alternative dire
tions: some of dire
tional alternatives 
an be dete
ted easily, the others require a hugesample size. Moreover, Burnashev (1979) and Ingster (1982) have shown that no test 
an be uniformly powerfulagainst all the lo
al alternatives. This leads to 
onsidering the uniform power of the test over a large 
lass Fof alternatives, so that �f (') � �0 with some �0 < 1 � �0 uniformly over f 2 F . Following Ingster (1982,1993), we 
onsider the 
lass F(�) 
onsisting of smooth (in some sense) alternatives whi
h are also separatedfrom the set of linear fun
tions with the distan
e � , that is,infa;b kf(�)� a� b � k � �; (1.2)k � k being the usual L2 -norm. Then the quality of a test ' of the level �0 
an be measured by a minimalseparation distan
e � su
h that �f (�) � �0 for all f from F(�) . A test �� with the level �0 is optimal if itminimizes the 
orresponding value � . Under this approa
h, the goal is both to evaluate the minimal possibleseparation distan
e � and to des
ribe the 
orresponding optimal tests.It turns out that the stru
ture of optimal tests and the 
orresponding separation distan
e strongly depend onthe smoothness 
lass F we 
onsider. Ingster (1982, 1993) des
ribed the optimal rate of de
ay of the separationdistan
e � to zero as the sample size n tends to in�nity for H�older and Sobolev fun
tion 
lasses, the 
aseof Besov 
lasses is 
onsidered in Lepski and Spokoiny (1998) and Spokoiny (1998). Sharp optimal asymptoti
results 
an be found in Ermakov (1990), Lepski and Tsybakov (1996), Ingster and Suslina (1998).Unfortunately all the mentioned pro
edures hardly apply in pra
ti
e sin
e the information about smoothnessproperties of the underlying fun
tion f is typi
ally la
king. Some adaptive (data-driven) smooth tests are pro-posed in Eubank and Hart (1992), Ledwina (1994), Fan (1996), Hart (1997) where the reader 
an found furtherreferen
es. Spokoiny (1996, 1998) 
onsidered the problem of adaptive testing against a smooth alternative and
onstru
ted an adaptive test whi
h is near optimal by a log log multiple for a wide range of smoothness 
lasses.Moreover, the test is rate optimal in the 
lass of adaptive tests, that is, this log log fa
tor is an unavoidable pay-ment for the adaptive property. The in
onvenien
e for pra
ti
al appli
ations is that this pro
edure is designedfor an idealized `signal + white noise' model and only the 
ase of a simple null is 
onsidered.The aim of this paper is to develop an adaptive testing method whi
h allows for a non-regular design, non-Gaussian errors with an unknown distribution and a non-simple null, and whi
h is 
omputationally simple andstable w.r.t. the design non-regularity. The latter property is a
hieved by making use of the simplest waveletbasis, namely the Haar transform. It is worth mentioning that the Haar basis is not often used for estimatingthe regression fun
tion f from (1.1) be
ause of its non-regularity: the 
orresponding estimator is based onthe pie
ewise 
onstant approximation of the underlying fun
tion and it is only rate suboptimal. Nevertheless,Ingster (1993) has 
onstru
ted a �2 -test (also based on a pie
ewise 
onstant approximation) whi
h providesthe optimal testing rate in the `signal + white noise' framework. Here his 
onstru
tion is extended to the 
aseof testing the linear hypothesis for regression with unknown smoothness properties and with a deterministi
non-regular design.Another remark 
on
erns the assumption on the errors �i . Assuming i.i.d. errors with a known distribution,one 
an easily sele
t a 
riti
al level for any test statisti
 using the Monte-Carlo or other resampling te
hnique.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 3For pra
ti
al appli
ations, this approa
h needs to be justi�ed sin
e the underlying error distribution is typi
allyunknown. The problem be
omes even more 
ompli
ated if a data-driven test basing on the maximum of di�erenttest statisti
s is used. We establish some general results on the approximation of quadrati
 forms of independentrandom variables by similar quadrati
 forms of Gaussian random variables whi
h help to justify the followingre
ipe: if the 
riti
al level of the 
onsidered test statisti
 is 
al
ulated for Gaussian errors, then it applies, atleast asymptoti
ally, as the sample size grows, for an arbitrary errors distribution with bounded 6 moments.The paper is organized as follows. Se
tion 2 
ontains the des
ription of the proposed testing pro
edure. Theproperties of this pro
edure are dis
ussed in Se
tion 3. The proofs are postponed to Se
tion 4. In the Appendixwe 
olle
t some general results for quadrati
 forms.2. Testing pro
edureWe 
onsider the univariate regression modelYi = f(Xi) + �i; i = 1; : : : ; n; (2.1)with additive homogeneous noise, that is, the errors �i are independent identi
ally distributed with zero meanand the varian
e �2 : E�i = 0 and E�2i = �2 . The design points X1; : : : ; Xn are assumed to be res
aled tothe interval [0; 1℄ , that is, Xi 2 [0; 1℄ for all i = 1; : : : ; n .The proposed test makes use of the Haar transform. We �rst re
all some useful fa
ts about the Haarde
omposition and then explain the idea of the method.2.1. PreliminariesHereafter we denote by I the multi-index I = (j; k) with j = 0; 1; 2; : : : and k = 0; 1; : : : ; 2j � 1 , and letI be the set of all su
h multi-indi
es. We also setIj = f(j; k); k = 0; 1; : : : ; 2j � 1gfor the index set 
orresponding to j -th level. Let now the fun
tion  (t) be de�ned by (t) =8>>><>>>:0 t < 0;1 0 � t < 1=2;�1 1=2 � t < 1;0 t > 1: (2.2)For every I = (j; k) , de�ne the Haar basis fun
tion hI byhI(t) = 2j=2 (2jt� k): (2.3)Clearly the fun
tion hI is supported on the interval AI = [2�jk; 2�j(k + 1)℄ . It is well known that ea
hmeasurable fun
tion f on [0; 1℄ 
an be de
omposed in the following wayf(t) = 
0 +XI2I 
IhI(t) = 
0 + 1Xj=0 XI2Ij 
IhI(t): (2.4)This means that the problem of re
overing the fun
tion f 
an be transformed into the problem of estimatingthe 
oeÆ
ients 
I by given data. Sin
e we have only n observations, it makes no sense to estimate more (in



4 SPOKOINY, V.order) than n 
oeÆ
ients. We restri
t therefore the total number of 
onsidered levels j . Let some j be �xedsu
h that 2j+1 < n . We also introdu
e the res
aled basis fun
tions  I to provide Pi j I(Xi)j2 = 1 , that is, I(Xi) = ��1I hI(Xi);with �2I =Pni=1 h2I(Xi) . Next we repla
e the in�nite de
omposition (2.4) by the �nite approximation PI2I(j) 
I I(t)where the index set I(j) 
ontains all level sets I` with ` � j . Taking into a

ount the stru
ture of the nullhypothesis, we 
omplement the set of fun
tions ( I ; I 2 I`); ` � j , with two fun
tions  0 � 1 and  1(t) = t ,that is, we 
onsider the set of indi
es I(j) = f0; 1g+ j[̀=0 I`: (2.5)The idea of the proposed pro
edure is to estimate all the 
oeÆ
ients (
I ; I 2 I(j)) from the data Y1; : : : ; Ynand then to test that all the 
oeÆ
ients 
I for I 6= 0; 1 are zero.For a fun
tion g , de�ne kgkn by kgk2n = 1n nXi=1 g2(Xi):De�ne also the 
olumn-ve
tor ��(j) = (��I ; I 2 I(j)) as a minimizer of the error of approximating f by alinear 
ombination of  I , I 2 I(j) :��(j) = arginf�(j) kf � XI2I(j) �I Ik2n: (2.6)This is a quadrati
 optimization problem with respe
t to the 
oeÆ
ients f�I ; I 2 I(j)g . Therefore, the solution�� always exists but it is probably non unique. To get an expli
it representation for �� we introdu
e matrixnotation.First of all, we make an agreement to identify every fun
tion g with the ve
tor (g(Xi); i = 1; : : : ; n)> inRn where the symbol > means transposition. Parti
ularly, the model fun
tion f is identi�ed with the ve
tor(f(Xi); i = 1; : : : ; n)> .Denote by Nj the number of elements at ea
h level j ,Nj = #(Ij) = 2j ; j = 0; 1; : : : ; jand let N(j) be the total number of elements in the set I(j) ,N(j) = 2 + jX̀=0N` = 1+ 2j+1: (2.7)Introdu
e n�N(j) -matrix 	(j) = ( i;I ; i = 1; : : : ; n; I 2 I(j)) with entries i;I =  I(Xi) =  I(Xi); I 2 I(j); i = 1; : : : ; n: (2.8)Clearly  I(Xi) = �1=pMI where MI is the number of design points in the interval AI 
orresponding to theindex I , and also  i;0 = n�1=2 and  i;1 = Xi �Pǹ=1X 2̀��1=2 . Now the approximation problem (2.6) 
an be



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 5rewritten in the form ��(j) = arginf�(j) kf �	(j)�(j)k2n:The solution to this quadrati
 problem 
an be represented as��(j) = �	(j)>	(j)��1	(j)>f: (2.9)Stri
tly speaking, this representation is valid only if the matrix 	(j)>	(j) is not degenerate. In the general
ase, one may use the similar expression for ��(j) when understanding �	(j)>	(j)��1 as a pseudo-inversematrix.If the fun
tion f is linear, that is, f(x) = �0 + �1x , we 
learly get ��0 = �0 , ��1 = �1 and ��I = 0 forall I = (`; k) with ` � 0 and k � 0 . For a non-linear fun
tion f , the sum jP̀=0 PI2I` j��I j2 
an be used to
hara
terize the deviation of f from the spa
e of linear fun
tions.Sin
e the fun
tion f is observed with a noise, we 
annot 
al
ulate dire
tly the 
oeÆ
ients ��I and we 
onsiderthe least squares estimator b�(j) of the ve
tor ��(j) whi
h is de�ned by minimization of the sum of residualssquared: b�(j) = arginf�(j) kY �	(j)�(j)k2n = arginff�I2I(j)g nXi=10�Yi � XI2I(j) �I I(Xi)1A2 : (2.10)Here Y means the 
olumn-ve
tor with elements Yi; i = 1; : : : ; n .De�ne V (j) as the pseudo-inverse of 	(j)>	(j) , V (j) = �	(j)>	(j)�� It is a symmetri
 N(j)�N(j)matrix (by vI;I0 we denote its elements, I; I 0 2 I(j) ) andb�(j) = V (j)	(j)>Y : (2.11)The proposed test is based on the 
entered and standardized sum of empiri
al 
oeÆ
ients squares: jP̀=0 PI2I` jb�I j2for some j . This idea goes ba
k to Neyman (1937) `smooth' test. Ingster (1982, 1993) suggested the spe
ial
hoi
e of j depending on the smoothness properties of the fun
tion f whi
h allows for a rate optimal testing.Spokoiny (1996) extended the method of Ingster (1993) to adaptive testing by 
onsidering all su
h tests fordi�erent j simultaneously. Here we slightly modify that approa
h by 
onsidering the family of levelwise tests,that is, for every level j , we 
onstru
t a test statisti
 based only on the empiri
al Haar 
oeÆ
ients b�I forI 2 Ij , and the resulting test is de�ned as the maximum of all levelwise ones.Let some number j(n) be �xed su
h that 2j(n)+1 < n and let, for every j � j(n) , the estimate b�(j) bede�ned by (2.10). Denote by b�j the part of the ve
tor b�(j) 
orresponding to the level j ,b�j = (b�I ; I 2 Ij):We analyze every su
h ve
tor separately for all j � j(n) . Namely, for every j � j(n) , we use the statisti
based on the sum PI2Ij jb�I j2 
orresponding to j th resolution level.To de�ne our test, we have to study the properties of su
h sums under the null hypothesis, i.e. when thefun
tion f is linear: f(x) = �0 + �1x . We have already mentioned that in this situation f = 	(j)�� where��0 = �0 , ��1 = �1 and all remaining 
oeÆ
ients ��I vanish. Therefore, using the model equation Y = f + � ,



6 SPOKOINY, V.we obtain b�(j) = V (j)	(j)>(f + �)= V (j)	(j)>	(j)�� + V (j)	(j)>�= �� + V (j)	(j)>�: (2.12)Obviously �(j) = V (j)	(j)>� is a random ve
tor in RN(j) with zero mean. Moreover, it holds for its 
ovarian
ematrix E�(j)�(j)> = V (j)	(j)>E��>	(j)V (j)= �2V (j)	(j)>	(j)V (j) = �2V (j): (2.13)Due to (2.12), the subve
tor b�j of b�(j) 
oin
ides under the null with the 
orresponding subve
tor �j of theve
tor �(j) , and it holds under the null in view of (2.13)Eb�j = E�j = 0;Eb�jb�>j = E�j�>j = �2Vjwhere Vj is the submatrix of V (j) 
orresponding to the index subset Ij : Vj = (vI;I0 I; I 0 2 Ij) . Thisparti
ularly implies E XI2Ij jb�I j2 = E XI2Ij j�I j2 = �2 trVjwhere trA denotes the tra
e of a matrix A . Moreover, for the 
ase of Gaussian errors �i in (1.1), the estimatesb�I are also Gaussian random variables, and it holdsVar0�XI2Ij jb�I j21A = E0�XI2Ij jb�I j2 � �2 trVj1A2
= E0�XI2Ij j�I j2 � �2 trVj1A2 = 2�4 trV 2j ; (2.14)see (2.13). This leads to the obvious idea to use the 
entered and standardized sumTj = 1q2�4 trV 2j 0�XI2Ij jb�I j2 � �2 trVj1Aas a test statisti
. To de�ne our testing pro
edure, we simply take the maximum of all su
h statisti
s over theset of all 
onsidered Haar levels j .2.2. Testing pro
edureFirst we de�ne the �nest 
onsidered resolution level j(n) whi
h has to satisfy 2j(n)+1 < n and n2�j(n) !1 ,e.g. j(n) = [log2 n� log2 log2 n℄ : (2.15)



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 7where [a℄ denotes the integer part of a . For ea
h j � j(n) , let b�(j) be de�ned by (2.11). Denote by b�j thepart of the ve
tor b�(j) 
orresponding to the level j ,b�j = (b�I ; I 2 Ij)and let Vj be the submatrix of the matrix V (j) = �	(j)>	(j)�� 
orresponding to the level j , i.e. Vj =(vI;I0 ; I; I 0 2 Ij) . We 
onsider �2 -type statisti
sSj = kb�jk2 = XI2Ij b�2I : (2.16)and de�ne test statisti
s Tj by 
entering and Studentization of Sj :Tj = 1q2b�4 trV 2j 0�XI2Ij jb�I j2 � b�2 trVj1A (2.17)where b� is the estimate of the error standard deviation de�ned in the next subse
tion. The proposed testreje
ts the null hypothesis, if at least one su
h statisti
 is signi�
antly large, that is,�� = 1 (T � > �) with T � = maxj=0;::: ;j(n) jTj j (2.18)where � is a 
riti
al value. The 
hoi
e of � is dis
ussed in Se
tion 2.4.2.3. Estimation of �2Re
all that we assume a homogeneous additive noise in the model (1.1), that is, the errors �i are independentidenti
ally distributed random variables ful�lling E�i = 0 and E�2i = �2 . The varian
e �2 is typi
ally unknownin pra
ti
al appli
ations but this value is important for the de�nition of our test pro
edure. Below we dis
usshow it 
an be estimated from the data Y1; : : : ; Yn . We suppose for simpli
ity that the design points are orderedin a way that X1 � : : : � Xn . There are several proposals for varian
e estimation. One possibility is toestimate �2 by the expression of the form 12(n�1)Pn�1i=1 (Yi+1 � Yi)2 , see Ri
e (1984). We follow the proposalfrom Gasser et al. (1986) see also Hart (1997, Se
tion 5.3) whi
h provides an unbiased estimate of the varian
eunder the linear null hypothesis.De�ne for i = 2; : : : ; n� 1 pseudo-residualsbei = (Xi+1 �Xi)(Xi+1 �Xi�1)Yi�1 + (Xi �Xi�1)(Xi+1 �Xi�1)Yi+1 � Yi = aiYi�1 + biYi+1 � Yiwhi
h are the result of joining Yi+1 and Yi�1 by a straight line and taking the di�eren
e between this line andYi . A varian
e estimate based on these pseudo-residuals isb�2 = 1n� 2 n�1Xi=2 be2ia2i + b2i + 1 : (2.19)It is easy to 
he
k that Eb�2 = �2 if f is a linear fun
tion. Some other properties of this estimates are listedin Lemmas 4.1, 4.2 and 4.9 below.



8 SPOKOINY, V.2.4. Criti
al value �Here we dis
uss how to sele
t the 
riti
al value � to provide, at least asymptoti
ally for large n , the 
ondition�f0(��) � �0 for all linear fun
tions f0 . We apply a Monte-Carlo pro
edure by resampling from the no-responsemodel (whi
h is a parti
ular 
ase of a linear model) with standard normal errorsY �i;m = ��i;m; i = 1; : : : ; n;for m = 1; : : : ;M , where the design points X1; : : : ; Xn are the same as for the original model (1.1), ��1 ; : : : ; ��nare i.i.d. standard normal random variables and M is the 
onsidered number of Monte-Carlo samples.For every Monte-Carlo sample Y �1;m; : : : ; Y �n;m , we re
al
ulate the test statisti
 T �m from this sample usingthe previous pro
edure (in
luding the step of varian
e estimation). Finally we de�ne the 
riti
al value � as the�0 -level for the set fT �m; m = 1; : : : ;Mg :� = min(t :M�1 MXm=11(T �m > t) � �0) :3. Main resultsIn this se
tion we present the results des
ribing asymptoti
 properties of the proposed testing pro
edure. We�rst dis
uss the properties of the test under the null and then we 
onsider the power of the test.3.1. Behavior under the nullLet �� be the test introdu
ed above. Our �rst result 
on
erns the 
ase of Gaussian errors �i in the model( 1.1). In this situation, independently of the design, the nominal level of the test �� is 
lose to �0 providedthat the number M of Monte-Carlo samples is suÆ
iently large.Theorem 3.1. Let observations Yi; Xi , i = 1; : : : ; n; obey the regression model (1.1) with a deterministi
design X1; : : : ; Xn and with i.i.d Gaussian errors �i � N (0; �2) . If the fun
tion f is linear, f(x) = �0+ �1x ,then the value �f (��) = P f (�� = 1) does not depend on the 
oeÆ
ients �0 and �1 and�f (��)! �0 M !1:Our next result deals with a more general situation when the errors �i are i.i.d. with 6 �nite moments. Inthis 
ase we need some mild regularity 
onditions on the design.Re
all the notation AI = [2�jk; 2�j(k + 1)℄ and let MI stand for the number of design points in AI :MI = #fi : Xi 2 AIg . Design regularity parti
ularly means that ea
h interval AI 
ontains enough designpoints Xi .(D) (i) It holds for some positive 
onstants C� and C� and all j � j(n)infI2Ij 2jMI=n � C�;supI2Ij 2jMI=n � C�; (3.1)(ii) For some �xed 
onstant CD and all j � j(n)trV 2j � CD2j ;



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 9(iii) For some �xed 
onstant CV and all j � j(n)kV (j)k � CVHere the norm kAk of a symmetri
 matrix A is understood as the maximal eigenvalue of this matrix;(iv) For some D > 0 and all i , it holds Xi+1 �Xi � Dn�1 .Condition (D) is trivially ful�lled with C� = C� = CD = CV = D = 1 for the 
ase of the deterministi
equidistant design when V (j) is the unit matrix.Theorem 3.2. Let observations Yi; Xi , i = 1; : : : ; n; obey the regression model (1.1) with a deterministi
design X1; : : : ; Xn satisfying (D) and with i.i.d. errors �i satisfying E�i = 0 , E�2i = �2 and Ej�2i � �2j3 ��6C6 where C6 is a �xed 
onstant. If the fun
tion f is linear, f(x) = �0 + �1x , then�f (��) � P f (�� = 1) � �0 + Æ1(n);where Æ1(n) depends on n , C6 and the 
onstants C�; C�; CD ; CV from 
ondition (D) only and Æ1(n)! 0 asn!1 .3.2. Sensitivity of the testNow we state the results 
on
erning the sensitivity of the proposed test �� . The �rst assertion presentssuÆ
ient 
onditions for dete
ting an alternative with a high probability. Next we demonstrate how these
onditions 
an be transferred into a more usual form about the rate of testing against a smooth alternative.Proposition 3.1. Let the design X1; : : : ; Xn obey (D) and the errors �1; : : : ; �n ful�ll the 
onditions of The-orem 3.2. Let then the regression fun
tion f be two times 
ontinuously di�erentiable and the se
ond derivativef 00 ful�ll the 
ondition: Z 10 jf 00(x)j2 � L2 (3.2)with some 
onstant L satisfying 8D3L2 � �2n3 . Let also ��j = (��I ; I 2 Ij) be the subve
tor of the ve
tor��(j) from (2.9) 
orresponding to j th resolution level and let Vj be the 
orresponding 
ovarian
e submatrix,j = 1; : : : ; j(n) . If, for some j � j(n) , it holdsT �j � k��jk2�2q2 trV 2j � 3(�1=2n + 1)2; (3.3)with �n = maxf�; 2plog j(n)g , thenP (�� = 0) � Æ(n)! 0; n!1;where Æ(n) depends on n and the 
onstants C6; C�; C�; CD ; CV only.We shall show, see Lemma 4.2 that, at least for suÆ
iently large n , it holds � � 2plog j(n) (1 + on(1)) .Hen
e, the result of Proposition 3.1 means that the test �� dete
ts with a probability 
lose to one any alternativefor whi
h at least one from the 
orresponding values T �j ex
eeds 6plog j(n) (1 + on(1)) . Therefore, the errorof the se
ond kind may o

ur with a signi�
ant probability only ifT �j � 6plog j(n) (1 + on(1)) ; 0 � j � j(n): (3.4)It remains to understand what follows for the fun
tion f from these inequalities.



10 SPOKOINY, V.3.3. Power against a smooth alternativeTo formulate the results on the power of the test against a smooth alternative, we have to introdu
e somesmoothness 
onditions on the fun
tion f . This 
an be done in di�erent ways. We 
hoose one based onthe a

ura
y of approximating this fun
tion by pie
ewise polynomials of 
ertain degree. Given j � j(n) ,denote by fAI ; I 2 Ijg the partition of the interval [0; 1℄ into intervals of length 2�j : if I = (j; k) , thenAI = [k2�j ; (k + 1)2�j) . Next, for a natural number s , de�ne Ps(j) as the set of pie
ewise polynomials ofdegree s� 1 on the partition fAIg i.e. every fun
tion g from Ps(j) 
oin
ides on ea
h AI with a polynomiala0 + a1x + : : : + as�1xs�1 where the 
oeÆ
ients a0; : : : ; as�1 may depend on I . Now the 
ondition that afun
tion f has regularity s 
an be understood in the sense that this fun
tion is approximated by fun
tionsfrom Ps(j) at the rate 2�js , or, more pre
isely,infg2Ps(j) �Z 10 jf(t)� g(t)j2dt�1=2 � Cs2�jswhere a positive 
onstant Cs depends on s only.In our 
onditions we 
hange the integral by summation over observation points. This helps to present theresults in a more readable form without 
hanging the sense of required 
onditions. It 
an be easily seen that ifthe design is regular, then the both forms are equivalent up to a 
onstant fa
tor.Let now a fun
tion f be �xed. Let also j0 be su
h that 2j0�1 � s . Set for j � j0rs(j) = infg2Ps(j�j0) kf � gkn = infg2Ps(j�j0)" nXi=1 jf(Xi)� g(Xi)j2#1=2 : (3.5)The quantity rs(j) 
hara
terizes the a

ura
y of approximation of f by pie
ewise polynomials. In parti
ular,the Haar approximation 
orresponds to the 
ase with s = 1 .Theorem 3.3. Let 
ondition (D) hold, the errors �1; : : : ; �n ful�ll the 
onditions of Theorem 3.2, and theregression fun
tion f obey (3.2) with a 
onstant L satisfying 8D3L2 � �2n3 . There exist a 
onstant �depending on the values CV ; CD ; C�; C� only, su
h that if, for some j � j(n) , the following inequality holdstrue: infa;b kf � a� b 1kn � ��rs(j) +p2j=2�n� (3.6)with  1(x) = x , then P f (�� = 0) � Æ(n)! 0; n!1;where Æ(n) is shown in Proposition 3.1.Remark 3.1. It is of interest to 
ompare this result with the existing results on the rate of hypothesis testing.For instan
e, it was shown in Ingster (1982, 1993) that if f belongs to a Sobolev ball Ws(1) withWs(1) = �f : Z 10 jf (s)(x)j2dx � 1� ;f (s) being s th derivative of f , then the optimal separation rate between the simple null f � 0 and a smoothalternative from Ws(1) is n�2s=(4s+1) .For our pro
edure, the following result is a straightforward 
orollary of Theorem 3.3 whi
h for the sake ofsimpli
ity is formulated for the equidistant design only.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 11Corollary 3.1. Let the design X1; : : : ; Xn be equidistant. (so that 
ondition (D) holds automati
ally), theerrors �1; : : : ; �n ful�ll the 
onditions of Theorem 3.2, and the underlying fun
tion f belong to a Sobolev ballWs(1) and f 00 ful�ll (3.2) with a 
onstant L satisfying 8L2 � �2n3 . Then there exists a 
onstant Cs > 0depending on s only and su
h that, for n large enough, the inequalityinfa;b kf � a� b 1k2n � Cs(n=�n)� 2s4s+1 (3.7)implies P (�� = 0) � Æ(n)! 0where Æ(n) depends on the distribution of the errors "i only.Indeed, under the equidistant design, it holds rs(j) � Cn1=22�js for every fun
tion f from Ws(1) with a�xed 
onstant C depending on s only. Now the right hand-side of (3.7) arises via minimization of the sumCn1=22�js +p2j=2�n with respe
t to j .By 
omparison to the mentioned result of Ingster (1982) we observe that the proposed method leads to anear optimal rate up to a log-log multiple in the 
lass of all tests. Moreover, Spokoiny (1996) has shown (for the`signal + white noise' model) that this separation rate is optimal in the 
lass of all adaptive tests. The latterresult allows for a straightforward extension to Gaussian regression using the general asymptoti
 equivalen
eresult, Brown and Low (1996). The additional smoothness 
ondition (3.2) with L2 � �2n3=8 is required forensuring a good quality of the pilot estimate of the unknown varian
e. This assumption is not restri
tive sin
ethe 
onstant L may rapidly grow with n . In parti
ular, the low bound results from Ingster (1993) and Spokoiny(1996) allow for a straightforward extension under this 
onstraint. We therefore, resume that the proposed testis rate optimal among all adaptive tests (at least for the 
ase of the equidistant design).Remark 3.2. The result of Theorem 3.3 helps to understand what happens in the 
ase when the design is notregular and, for instan
e, if there exist some intervals I with MI = 0 . It was already mentioned that thepro
edure applies in this situation as well and the error probability of the �rst kind is about �0 at least for nsuÆ
iently large and for Gaussian errors �i . Con
erning the error probability of the se
ond kind, the inspe
tionof the proof shows that design irregularity de
reases the sensitivity of our pro
edure in the following sense: thereexist smooth alternatives with probably large L2 -norm whi
h are not dete
ted. This may o

ur e.g. in thesituation when f is deviated from the best linear approximation only in the domain with very few design pointsinside. 4. ProofsIn this se
tion we �rst prove Theorems 3.1 and 3.3 for the 
ase of Gaussian errors �i and then dis
uss thegeneralization to the general 
ase.4.1. Proof of Theorem 3.1It suÆ
es to 
he
k that the distribution of the test statisti
 T � based on the Monte-Carlo sample Y �1 ; : : : ; Y �nis the same as for the original sample Y1; : : : ; Yn . The di�eren
e between these two samples is only in the lineartrend (whi
h 
an be nontrivial for the original sample but does not appear in the Monte-Carlo one) and in thenoise varian
e (we resample with the error varian
e 1 instead of �2 ). Note however that the linear trend inthe regression fun
tion makes no in
uen
e on the 
onsidered test statisti
s Tj . Indeed, the numerator of thisstatisti
 is de�ned as the 
entered sum over Ij of the the empiri
al Haar 
oeÆ
ients b�I squared, so that thelinear trend is removed automati
ally from the test statisti
s, see the proof of Theorem 3.3 for more details.Similarly, the estimate b�2 of the noise varian
e �2 is based on the pseudo-residuals bei whi
h are de�ned in away that the linear trend in the regression fun
tion 
an
els out, see Lemma 4.1.



12 SPOKOINY, V.Further, for the 
ase of zero trend, both numerator and denominator of ea
h Tj is some quadrati
 forms ofthe errors �i whi
h 
an be represented as �i = �e�i with i.i.d. standard normal variables e�i , i = 1; : : : ; n . Thisyields, see (2.19), that the distribution of ea
h test statisti
 Tj does not depend on � . The same is obviouslytrue for the maximum T � and the assertion follows.4.2. Properties of the estimate b�2Here we dis
uss the properties of the estimate b�2 of the noise varian
e �2 . We present two results. The�rst one des
ribes the properties under the null, and the se
ond one applies under a smooth alternative as well.The results are stated under the Gaussian errors �i . For the extension, see Se
tion 4.5.Lemma 4.1. Let the regression fun
tion f be linear. Then Eb�2 = �2E �b�2 � �2�2 � 7�42(n� 2) :Proof. For the 
ase of a linear fun
tion f(x) = �0+ �1x , one easily gets with the 
oeÆ
ients ai = (Xi+1�Xi)(Xi+1�Xi�1) ,bi = (Xi�Xi�1)(Xi+1�Xi�1) aif(Xi�1) + bif(Xi+1)� f(Xi) = 0:Now the model equation (1.1) implies b�2 = 1n� 2 n�1Xi=2 j�ij2with �i = ai�i�1 + bi�i+1 � �ipa2i + b2i + 1 :To estimate the di�eren
e jb�2 � �2j , we apply Proposition 5.1 from the Appendix. Let � denote the ve
tor(�2; : : : ; �n�1)> . Obviously E� = 0 . De�ne � = E��> . Observe �rst that1n� 2 tr� = 1n� 2 n�1Xi=2 �2(a2i + b2i + 1)(a2i + b2i + 1) = �2whi
h implies the equality Eb�2 = �2 by Proposition 5.1.Next, it is easy to 
he
k that 2maxfa2i ; b2i g � a2i + b2i + 1 . Now, it obviously holds:E�2i = �2;jE�i�i+1j � qE�2iE�2i+1 = �2;jE�i�1�i+1j = �2bi�1ai+1q(a2i�1 + b2i�1 + 1)(a2i+1 + b2i+1 + 1) � �2=2;E�i�i0 = 0; ji0 � ij > 2;



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 13This allows to estimate tr�2 as follows:1(n� 2)2 tr �2 = 1(n� 2)2 n�1Xi=2 n�1Xj=2(E�i�j)2= 1(n� 2)2 n�1Xi=2 �(E�i�1�i)2 + (E�2i )2 + (E�i�i+1)2 + (E�i�i�2)2 + (E�i�i+2)2�� �4(n� 2)2 n�1Xi=2 (1 + 1 + 1 + 1=4 + 1=4)= 7�42(n� 2)whi
h implies the se
ond assertion of the lemma by Proposition 5.1.Next we show that b�2 estimate the true value �2 at the rate n�1=2 under a mild assumption on theregression fun
tion f and the design X1; : : : ; Xn . We again assume that the design points are renumbered toprovide X1 � X2 � : : : � Xn .Lemma 4.2. Let the design X1; : : : ; Xn ful�ll Xi+1 � Xi � Dn�1 with some 
onstant D . Let next theregression fun
tion f from (1.1) ful�lls the 
onditionZ 10 jf 00(x)j2dx � L2for some L � 0 satisfying 8L2D3n�3 � �2 . ThenE(b�2 � �2)2 � 9�4(n� 2)�1:Proof. The de�nition of the 
oeÆ
ients ai and bi , see Se
tion 2.3, provides for any linear fun
tion `(x) theidentity ai`(Xi�1) + bi`(Xi+1)� `(Xi) = 0 . The appli
ation of `(x) = f 0(Xi)(x�Xi) yieldsjaif(Xi�1) + bif(Xi+1)� f(Xi)j� ai jf(Xi�1)� f(Xi)� f 0(Xi)(Xi�1 �Xi)j+ bi jf(Xi+1)� f(Xi)� f 0(Xi)(Xi+1 �Xi)j :Let f(Xi�1) � f(Xi) = (Xi�1 �Xi)f 0(u) for some u 2 [Xi�1 ; Xi℄ . Then, by the Cau
hy-S
hwarz inequalityand the 
ondition Xi �Xi�1 � Dn�1 ,jf(Xi�1)� f(Xi)� f 0(Xi)(Xi�1 �Xi)j � (Xi �Xi�1) �����Z Xiu f 00(s)ds������ (Xi �Xi�1) Z XiXi�1 jf 00(x)jdx � (Xi �Xi�1)3=2 Z XiXi�1 jf 00(x)j2dx!1=2 � (Dn�1)3=2Liwith L2i = RXiXi�1 jf 00(x)j2dx , and similarly for jf(Xi+1)� f(Xi)� f 0(Xi)(Xi+1 �Xi)j . These two boundsimply jaif(Xi�1) + bif(Xi+1)� f(Xi)j � (aiLi + biLi+1)(Dn�1)3=2: (4.1)



14 SPOKOINY, V.Next, de�ne �i = ai�i�1 + bi�i+1 � �ipa2i + b2i + 1 ; �i = aif(Xi�1) + bif(Xi+1)� f(Xi)pa2i + b2i + 1 :Then b�2 = 1n� 2 n�1Xi=2 j�i + �ij2 :To estimate the di�eren
e b�2 � �2 , we apply Proposition 5.2 from the Appendix. Let � = (�2; : : : ; �n�1)> .We know, see the proof of Lemma 4.1, that E� = 0 and the matrix � = E��> ful�lls1n� 2 tr� = �2; 1(n� 2)2 tr �2 � 7�42(n� 2) :The inequality 2maxfa2i ; b2i g � 1 + a2i + b2i and (4.1) providek�k2 = n�1Xi=2 �2i � D3n�3 n�1Xi=2 (aiLi + biLi+1)2a2i + b2i + 1� D3n�3 n�1Xi=2 (L2i + L2i+1) � 2D3n�3 Z 10 jf 00(x)j2dx � 2D3n�3L2The appli
ation of Proposition 5.2 from the Appendix with 
 = �pn�2 and " = �pn�2 yieldsE �b�2 � �2�2 = E �k
+ "k2 � trV �2 � k
k4 + 4k
k2ptrV 2 + 2 trV 2:where V = (n� 2)�1� . This along with the inequalities trV 2 � 7�42(n�2) and 4k
k2 � 8L2D3n�3(n � 2)�1 ��2(n� 2)�1 imply the required assertion.Lemma 4.3. Let Nj = 2j denote the number of elements in the set Ij . It holdstrVjq2 trV 2j �qNj=2:Proof. Clearly trV 2j = XI2Ij XI02Ij v2I;I0 � XI2Ij v2I;I :Next, the Cau
hy-S
hwarz inequality impliesN�1j trVj = N�1j XI2Ij vI;I � 0�N�1j XI2Ij v2I;I1A1=2and the assertion follows.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 15Lemma 4.4. Let � be the 
riti
al value of the test sele
ted by the testing pro
edure. If design X1; : : : ; Xnful�lls (D) , then, for n suÆ
iently large,� � 2plog j(n) (1 + on(1)) :Proof. Re
all that the 
riti
al value � 
orresponds to the 1 � �0 -quantile of the distribution of the teststatisti
 T � = maxj�j(n) Tj under the no-response model f(x) � 0 and under the assumption of standardnormal errors �i , i = 1; : : : ; n . In su
h a situation, the subve
tor b�j of b�(j) 
oin
ides with the Gaussianve
tor �j � N (0; Vj) , see Se
tion 2.1, and hen
e the 
orresponding statisti
 Tj 
an be represented in the formTj = k�jk2 � b�2 trVjb�2q2 trV 2j :and it suÆ
es to show that P � maxj�j(n) Tj > 2plog j(n)�1 + Æ1(n)�� � Æ2(n)with two numeri
 sequen
es Æ1(n)! 0 and Æ2(n)! 0 .Now, for every z � 1 and a 2 (0; 1) ,�Tj > z + 1a � = 8<:k�jk2 � b�2 trVj�2q2 trV 2j > (z + 1)b�2a�2 9=;� 8<:k�jk2 � �2 trVj�2q2 trV 2j > z9=; [8<: (b�2 � �2) trVj�2q2 trV 2j > 19=; [ �b�2�2 < a� :This 
learly yields in view of Lemma 4.3P � maxj�j(n) Tj > z + 1a �� P �b�2�2 < a�+ P  b�2�2 � 1 > 1pNj(n)=2!+ j(n)Xj=0 P 0�k�jk2 � �2 trVj�2q2 trV 2j > z1A :We apply this bound with z = 1 + vn and a = 1 � v�1n where vn = 2plog j(n) . Let j1 be the minimalinteger satisfying CD2j1 � 2C2V v2n . It follows from 
ondition (D) that vn � kVjk�1qtrV 2j =2 for all j � j1 .An appli
ation of Proposition 5.1 from the Appendix with 
 = vn and t = 1 for j � j1 and with 
 = 1 andt = vn allows to boundP 0�k�jk2 � �2 trVj�2q2 trV 2j > vn + 11A � (e�v2n=4�vn=2 j � j1;e�vn=2 otherwise:



16 SPOKOINY, V.Lemma 4.1 and the Chebyshev inequality provideP �b�2�2 < 1� v�1n �+P  b�2�2 � 1 > 1pNj(n)=2!� v2n��4E �b�2 � �2�2 + 2E �b�2 � �2�2�4Nj(n) � 7v2n2(n� 2) + Nj(n)2(n� 2) = Æ3(n)! 0;sin
e, by de�nition of j(n) , it holds n=Nj(n) !1 . Therefore,P �T � > 2 + vn1� v�1n � � Æ3(n) + j1�1Xj=0 e�vn=2 + j(n)Xj=j1 e�v2n=4�vn=2� Æ3(n) + log2(2C2V v2n=CD)e�vn=2 + 1+j(n)j(n) e�vn=2 ! 0; n!1:4.3. Proof of Proposition 3.1We again restri
t ourselves to the 
ase of Gaussian errors �i in (1.1). Re
all that the ve
tor b�j is de�nedas the subve
tor of b�(j) = �	(j)>	(j)��1	(j)>Y , j � j(n) . The model equation (1.1) yieldsb�(j) = �	(j)>	(j)��1	(j)>(f + �) = ��(j) + �(j)with ��(j) = V (j)	(j)>f and �(j) = V (j)	(j)>� where V (j) = �	(j)>	(j)��1 . Hen
e b�j = �j + �jwhere ��j (resp. �j ) is the subve
tor of ��(j) (resp. of �(j) ) 
orresponding to the j th resolution level.This parti
ularly implies that �j is a zero mean random ve
tor with the 
ovarian
e matrix Vj whi
h is thesubmatrix of the matrix V (j) = �	(j)>	(j)��1 . Moreover, if the errors �i in (1.1) are Gaussian, then �j isa Gaussian random ve
tor with parameters (0; Vj) for ea
h j � j(n) .Let, for some j � j(n) , it holds T �j = k��jk2�2q2 trV 2j � 3(�1=2n + 1)2 (4.2)with �n = maxf�; 2plog j(n)g . We shall show that under this 
onditionP f (Tj < �) � Æ(n)! 0; n!1; (4.3)whi
h obviously implies the assertion.Observe �rst thatP (Tj < �) = P �k��j + �jk2 � b�2 trVj < �b�2q2 trV 2j �� P �k��j + �jk2 � �2 trVj < ��2q2 trV 2j + (b�2 � �2)��q2 trV 2j + trVj��� P �k��j + �jk2 � �2 trVj � k��jk2 < (�+ �1=2n )�2q2 trV 2j � k��jk2�+P �(b�2 � �2)��q2 trV 2j + trVj� < ��2�1=2n q2 trV 2j � :



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 17By Lemma 4.3 trVj (2 trV 2j )�1=2 �pNj=2 �pNj(n)=2 for all j � j(n) . Further, by Lemma 4.2P 0�b�2 � �2 < � �2�1=2n q2 trV 2j�q2 trV 2j + trVj1A� ��q2 trV 2j + trVj�2�4�n2 trV 2j E �b�2 � �2�2 � 9(�+pNj(n)=2)2�n(n� 2) = Æ4(n); n!1sin
e n=Nj(n) = n2�j(n) !1 .Next, for every positive u , the inequality k�k � 3u implies k�k2 � 2uk�k � 3u2 � 0 . Coupled with (4.2),this ensures with u = 3�1=2(�1=2n + 1)�j and �j = �(2 trV 2j )1=4 thatk��jk2 � p4=3k��jk(�1=2n + 1)�j + (�1=2n + 1)2�2j� k��jk(�1=2n + 1)�j + (�n + 2�1=2n + 1)�2j :Now Proposition 5.2 from the Appendix with 
 = 1 and t = �1=2n impliesP (Tj < �)� P �k��j + �jk2 � �2 trVj � k��jk2 < �(�1=2n + 1)k��jk�j � (�1=2n + 1)�2j �+ Æ4(n)� 2e��1=2n =2 + Æ4(n)! 0; n!1as required.4.4. Proof of Theorem 3.3For the proof, we use the result of Proposition 3.1. Namely we show that the 
ondition (3.6) of the theoremwith � large enough 
ontradi
t to the 
onstraintsT �j � tn; j � j(n); (4.4)with tn = 3�1 + �1=2n �2 and �n = maxf�; 2plog j(n)g .We begin by redu
tion of the problem of testing a linear hypothesis to the problem with a simple nullhypothesis. De�ne 
oeÆ
ients �0; �1 by(�0; �1) = arginf(a;b) kf � a� b 1kn = arginf(a;b) nXi=1(f(Xi)� a� bXi)2:and set f0 = f � �0 � �1 1:Note that for all j � 0 , the ve
tors ��(j) = V (j)	(j)f and �(j) = V (j)	(j)f0 have the same 
omponentsex
ept the �rst two. Obviously the smoothness properties of f and f0 also 
oin
ide andinfa;b kf � a� b 1kn = infa;b kf0 � a� b 1kn
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all also, that the linear trend in the regression fun
tion has no in
uen
e on our varian
e estimator b�2 .Hen
e, repla
ing f by f0 
hanges nothing in the test behaviour and we may suppose from the beginning thatthe 
oeÆ
ients ��0 and ��1 of the ve
tor ��(j) vanish.About this new fun
tion f we know thatkfkn = infa;b kf � a� b 1kn � %(n);infg2Ps(j) kf � gkn = rs(j); (4.5)for all j from zero to j(n) .Next we rewrite the 
onstraints from (4.4) in term of the ve
tors k��jk , j � j(n) . Re
all that ��j is thesubve
tor of ��(j) 
orresponding to j th level, and Vj is the 
orresponding submatrix of V (j) .Let L(j) stand for the linear spa
e generated by fun
tions  I , I 2 I(j) . We denote also by �(j)f theproje
tion of f onto the spa
e L(j) with respe
t to the norm k � kn ,�(j)f = arginfh2L(j) kf � hkn:Parti
ularly, �(0)f denotes the proje
tion of f onto the spa
e of linear fun
tions (and hen
e, �(0)f = 0 )and, by de�nition of �(j) , �(j)f = XI2I(j) ��I I (4.6)where �I 's are the 
oeÆ
ients of the ve
tor ��(j) .Lemma 4.5. For ea
h 1 � j � j(n) ,k�(j)fkn � k�(j � 1)fkn + k��jk:Proof. Sin
e L(j � 1) � L(j) , then �(j � 1)f = �(j � 1)�(j)f:When denoting f(j) = �(j)f , one has �(j � 1)f = �(j � 1)f(j) and we have to show thatk�(j � 1)f(j)kn � kf(j)kn � k��jk:In view of (4.6) f(j) = XI2I(j) ��I I :Denote by fj the part of this sum 
orresponding to the last level Ij in I(j) ,fj = XI2Ij ��I I :By 
onstru
tion, the fun
tions  I , I 2 Ij , are ortonormal w.r.t. to the inner produ
t k � kn and parti
ularlykfjk2n = XI2Ij j��I j2 = k��jk2:



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 19Next, obviously f(j)� fj 2 L(j � 1) , and by de�nition of �(j) ,kf(j)��(j � 1)f(j)kn � kf(j)� (f(j)� fj)kn = kfjkn = k��jkand the assertion follows by the triangle inequality.Lemma 4.6. Given j � j(n) , let (4.4) hold true for all ` � j . Thenk�(j)fk2n � �1�CV 2j=2tn (4.7)with �1 = 21=2(21=4 � 1)�2 .Proof. Re
ursive appli
ation of Lemma 4.5 givesk�(j)fkn � j�1X̀=0 k��̀k:Here we have used that �(0)f = 0 . Now (4.4) and (D:iii) yieldk��̀k2 � �2tnq2 trV 2̀ � �2tnqC2V 2`+1and thus, k�(j)fkn � jX̀=1 � �2`=2tnCV �1=2 = �(CV tn)1=2 jX̀=1 2`=4and the assertion follows by simple algebra.Let now j0 ful�ll 2j0 > s and Ps(j � j0) denote the spa
e of pie
ewise polynomials with pie
e length2�(j�j0) . Let now some j � j(n) be �xed and let g 2 Ps(j � j0) be su
h thatkf � gkn � rs(j):Lemma 4.7. There is a 
onstant �2 > 0 depending on C�; C� and s only and su
h that for ea
h j withj0 � j � j(n) kfkn � �2 fk�(j)fkn + rs(j)g :Proof. Let g 2 Ps(j � j0) be su
h that kf � gkn � rs(j) . Thenkfkn � kgkn + rs(j)and, sin
e �(j) is a proje
tor,k�(j)fkn = k�(j)g +�(j)(f � g)kn � k�(j)gkn � k�(j)(f � g)kn� k�(j)gkn � rs(j)and the assertion follows from kgk2n � �3k�(j)gk2n:
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all that g is a pie
ewise polynomial fun
tion on the partition AI , I 2 Ij�j0 and the proje
tion �(j)gmeans the approximation of ea
h polynomial on interval AI of length 2�(j�j0) by pie
ewise 
onstant fun
tionswith pie
e length 2�j . Therefore, it suÆ
es to prove that for ea
h pie
e AI and every polynomial P (x) =a0 + a1x+ : : :+ as�1xs�1 , it holds XAI [�(j)P (Xi)℄2 � �3XAI P 2(Xi)where the 
onstant �3 depends on C�; C� and s only. The similar fa
t with integration instead of summationover the design points in AI has been stated in Ingster (1993) and we present here only a sket
h of the prooffor our situation.The key idea of the proof 
an be formulated as a separate statement.Lemma 4.8. Let P (x) be a polynomial of degree s � 1 and let m be an integer with m > s . De�ne Ak =[(k � 1)=m; k=m) for k = 1; : : : ;m . Then for every measure � on [0; 1℄ with 0 < C� � �(Ak) � C� > 0 forall k � m , mXk=1 �ZAk P (x)�(dx)�2 � �3 Z 10 P 2(x)�(dx):with a positive number �3 depending on C�; C� and s only.Proof. Let a = (a0; : : : ; as�1) be the ve
tor of 
oeÆ
ients of P . Without loss of generality, we may assumethat kak1 = maxj=0;::: ;s�1fjaj jg � 1 . Obviously, bothkak2�;1 = mXk=1�ZAk P (x)�(dx)�2 ;kak2�;2 = Z 10 P 2(x)�(dx)are some Eu
lidean norms in the spa
e Rs . Next, kak�;2 = 0 only if a = 0 i.e. P (x) � 0 and the same appliesfor kak�;1 , sin
e P (x) has at most s � 1 roots and � is supported on m > s disjoint intervals. Note alsothat kak�;1 and kak�;2 are 
ontinuous fun
tionals of a and � and the spa
e Mm(C�; C�) of measures � on[0; 1℄ satisfying the 
ondition of the lemma is 
ompa
t in the weak topology. Hen
e,supa : kak1�1 sup�2Mm(C�;C�) kak�;2kak�;1 = �3 <1as required.Appli
ation of this result to ea
h interval AI , I 2 Ij�j0 yields the desirable assertion.The results of Lemma 4.5 through 4.7 yield the inequalitykfkn � �2 �rs(j) +p�1CV 2j=2�n�whi
h 
ontradi
ts to the 
onstraints kfkn � ��rs(j) +p2j=2�n� if � > �2 , and the theorem is proved.



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 214.5. Proof of Theorem 3.2Now we disregard the assumption that the errors �i in (1.1) are normally distributed and assume only thatthey have 6 �nite moments. We outline the proof of Theorem 3.2 only. Proposition 3.1 
an be 
onsideredsimilarly.Lemma 4.9. Let the errors �i in (1.1) be i.i.d. and satisfy E�i = 0 , �2i = �2 and E ���2i � �2��3 � C6�6 .De�ne s24 = 2��4E(�21 � �2)2 . If the regression fun
tion f is linear thenE(b�2 � �2)2 � (s4 + 1=2)�4n� 2 :Proof. Similarly to the Gaussian 
ase dis
ussed in Se
tion 4.2, it suÆ
es to 
onsider the 
ase of the no-responsemodel with the vanishing regression fun
tion. In this 
ase, the varian
e estimate b�2 is a quadrati
 form of theerrors �i whi
h allows for the following representation:b�2 = 1n� 2 n�1Xi=2 (ai�i�1 + bi�i+1 � �i)2a2i + b2i + 1where ai = (Xi+1�Xi)(Xi+1�Xi�1) , bi = (Xi�Xi�1)(Xi+1�Xi�1) , i = 1; : : : ; n . Simple algebra yields(n� 2)(b�2 � �2)= nXi=1 a2i (�2i�1 � �2) + b2i (�2i+1 � �2) + (�2i � �2)a2i + b2i + 1 + n�1Xi=2 aibi�i�1�i+1 � ai�i�1�i � bi�i�i+1a2i + b2i + 1= 1n� 2 n�1Xi=2 � a2i+1a2i+1 + b2i+1 + 1 + 1a2i + b2i + 1 + b2i�1a2i�1 + b2i�1 + 1� (�2i � �2)+ 2n� 2 n�1Xi=2 aibia2i + b2i + 1�i�1�i+1 � 2n� 2 n�1Xi=2 � aia2i + b2i + 1 + bi�1a2i�1 + b2i�1 + 1� �i�1�i= nXi=1 �ii(�2i � �2) +Xi6=j �ij�i�jwhere aj = bj = 0 for j = 0; 1; n; n+ 1 and �ij are some 
oeÆ
ients. This 
learly implies Eb�2 = �2 . It isalso easy to see that (n� 2)2E(b�2 � �2)2 = �4 nXi=1 nXj=1 �2ij + �4(s4 � 3) nXi=1 �2iiwhere s4 = ��4E(�2i � �2)2 .One 
an easily 
he
k that the matrix A with the entries �ij ful�lls�4 trA>A = �4 nXi=1 nXj=1 �2ij = tr�2



22 SPOKOINY, V.with the matrix � de�ned in Lemma 4.1 and hen
e, �4 trA>A � 72�4(n � 2) . Sin
e nPi=1�ii = n � 2 and�ii � 2 for all i , we derive 1n� 2 nXi=1 �2ii � maxi=1;::: ;n �iin� 2 nXi=1 �ii � 2and E(b�2 � �2)2 � 7�42(n� 2) + (s4 � 3)�4 2n� 2 � (s4 + 1=2)�4n� 2 :In the same way one 
an extend the result of Lemma 4.2 to the non-Gaussian 
ase: b�2 estimates the truevarian
e �2 at the rate n�1=2 provided that f is suÆ
iently smooth.Now we turn to Theorem 3.2. It obviously suÆ
es to show that the distribution of the test statisti
 T � 
anbe approximated by a similar distribution 
orresponding to the 
ase of Gaussian errors. Then the result followsfrom Theorem 3.1.As in the proof of Theorem 3.1, the general 
ase 
an be redu
ed to the no-response model with the vanishingregression fun
tion. Further, sin
e the di�eren
e b�2��2 is of order n�1=2 , it suÆ
es to 
onsider the expressionsT 0j , j � j(n) , de�ned byT 0j = 1q2�4 trV 2j 0�XI2Ij jb�I j2 � �2 trVj1A = Sj � �2 trVjq2�4 trV 2jwhere b�I are elements of the ve
tor b�(j) , 
f. the proof of Lemma 4.4. Under the no-response hypothesis, thisve
tor admits the representation: b�(j) =W (j)� with W (j) = �	(j)>	(j)��1	(j)> , see (2.12). If Ej denotesthe proje
tor from I(j) onto Ij keeping the 
oordinates xI with I 2 Ij , then b�j = Ejb�(j) = EjW (j)� andSj = kb�jk2 = �>W (j)>E>j EjW (j)� = �>Aj�with Aj = W (j)>E>j EjW (j) , so that Sj is a quadrati
 form of the errors �i . We also know that Vj =EjW (j)W (j)>E>j , and ESj = �2 trAj = �2 trVj . This form in its turn 
an be represented as a sum of adiagonal form T (1)j and a quadrati
 form T (2)j with vanishing diagonal terms. We �rst show that the impa
tof diagonal terms is negligible and then apply Corollary 5.2 to T (2)j 's.Let oi denote the i -th basis ve
tor in Rn . Then the i -th diagonal element aii of Aj is equal to o>i Ajoi :aii = o>i Ajoi= o>i 	(j)> �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1	(j)oi:Clearly 


�	(j)>	(j)��1E>j Ej �	(j)>	(j)��1


 � 


�	(j)>	(j)��2


 = 

V (j)2

 � C2V :Next, for every Haar level ` � j , there exists only one index I 2 I` su
h that  I(Xi) 6= 0 . More pre
isely,for this index I , it holds  I(Xi) = �1=pMI where MI is the number of design points in the interval AI
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orresponding to the index I . Condition (D:i) implies MI � C�n2�` for every I 2 I` . Also  0(Xi) = n�1=2and  1(Xi) = Xi �Pni0=1X2i0��1=2 . Hen
e, the de�nition of the matrix 	(j) and 
ondition (D:i) providej	(j)oij � n�1=2 + nXi0=1X2i0!�1=2 + jX̀=0s 2`nC� < 3C�1=2� 2j=2n�1=2: (4.8)Therefore, aii � j	(j)oij2 


�	(j)>	(j)��1E>j Ej �	(j)>	(j)��1


 � 9C�1� 2jn�1C2V :De�ne G2j = 2�4 trA2j . NotetrA2j = trW (j)>E>j EjW (j)W (j)>E>j EjW (j)= trEjW (j)W (j)>E>j EjW (j)W (j)>E>j = trV 2jso that T (1)j = G�1j Pni=1 aii(�2i � �2) . In view of 
ondition (D:ii) it holds trA2j � CD2j . Now, for everyÆ > 0 , P � maxj=0;::: ;j(n) T (1)j > Æ� � j(n)Xj=0 P �T (1)j > Æ�� Æ�2 j(n)Xj=0E ���T (1)j ���2� Æ�2 j(n)Xj=0G�2j �4s4 nXi=1 a2ii� Æ�2 j(n)Xj=0 2�1C�1D 2�js4n �9C�1� 2jn�1C2V �2� CÆ�2n�12j(n)+1 ! 0; n!1:Next we 
onsider T (2)j whi
h is obtained from T 0j by removing the diagonal terms. This quadrati
 form 
anbe approximated (in distribution) by a similar one with Gaussian errors e�i at a reasonable rate provided thatthe 
orresponding value CA , de�ned as n times the ratio of the maximal diagonal element of the matrix �4A2jto G2j = �4 trA2j , see (5.2) and Remark 5.1 in the Appendix, remains bounded.The i -th diagonal element di of A2j is equal to o>i A2joi :di = o>i A2joi= o>i n	(j) �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1	(j)>o2 oi= o>i 	(j)> �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1	(j)oi:
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�	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1


� 


�	(j)>	(j)��3


 = 

V (j)3

 � C3V :The use of (4.8) providesdi � j	(j)oij2 


�	(j)>	(j)��1E>j Ej �	(j)>	(j)��1E>j Ej �	(j)>	(j)��1


� 9C�1� 2jn�1C3Vand CA � 9C�1� C3V 2jCD2j = 9C�1� C3VCDthat is, the value CA is bounded by a �xed 
onstant depending on design regularity only.By Corollary 5.2, the joint distribution of T (2)j , j � j(n) , and the distribution of their maximum, 
anbe approximated by the distribution of similar quadrati
 forms of Gaussian r.v.'s whi
h implies the requiredassertion. 5. AppendixHere we brie
y dis
uss some general properties of quadrati
 forms of random variables. We �rst 
onsider the
ase when the underlying random variables are Gaussian and establish an exponential bound for deviations ofsu
h forms over 
ertain level. Next we show how an arbitrary quadrati
 form of independent random variables
an be approximated (in distribution) by a similar quadrati
 form of Gaussian random variables.5.1. Deviation probabilities for quadrati
 forms of Gaussian random variablesLet "1; : : : ; "N be Gaussian random variables with zero mean and the 
ovarian
e N�N matrix V , i.e.V = E""> where " denotes the ve
tor " = ("1; : : : ; "N )> .We �rst present the following general results about quadrati
 forms of Gaussian random variables.Proposition 5.1. Let "1; : : : ; "N be Gaussian random variables with zero mean and the 
ovarian
e matrixV := E""> . Then Ek"k2 := E �"21 + : : :+E"2N� = trV;E �k"k2 � trV �2 = 2 trV 2:Moreover, for 
 � kV k�1ptrV 2=2 and ea
h t � 0 ,P ��(k"k2 � trV ) > (
 + t)p2 trV 2� � e�
t=2�
2=4:Proof. Let V = U>�U be a diagonal representation of V with a diagonal matrix � = diagf�1; : : : ; �Ng andan ortonormal matrix U . It is well known that � = ��1=2U" is a standard Gaussian ve
tor and k"k2 = �>�� .Also it holds trV = �1 + : : : + �N , trV 2 = �21 + : : : + �2N and kV k = maxf�1; : : : ; �Ng . To bound the



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 25expression k"k2 � trV , we apply the exponential Chebyshev inequality: with ea
h � � 0 satisfying 2��i < 1and every zP �k"k2 � trV > z� � e��zE exp��(k"k2 � trV )	 = e��zE exp(� NXi=1 �i(�2i � 1))= e��z NYi=1E exp���i(�2i � 1)	 = exp(��z � � NXi=1 �i � NXi=1 12 log(1� 2��i)) :We now set � = 
2p2 trV 2 so that 2��i = 
�ip2 tr V 2 < 1=2 and use that � log(1� u) � u+ u2 for 0 � u � 1=2 .This yields P �k"k2 � trV > (
 + t)p2 trV 2� � exp �
(
 + t)2 + 
24 trV 2 NXi=1 �2i!= exp ��
t=2� 
2=4�as required. The bound for �(k"k2 � trV ) is proved in the same line.Further, for a deterministi
 ve
tor 
 = (
1; : : : ; 
N )> from RN , we 
onsider quadrati
 forms of typek
+ "k2 = NXj=1 j
j + "j j2:Proposition 5.2. Let "1; : : : ; "N be Gaussian random variables with zero mean and the 
ovarian
e matrix V .Then it holds for any ve
tor 
 = (
1; : : : ; 
N )> in RNEk
+ "k2 = k
k2 + trV;Var k
+ "k2 := E �k
+ "k2 � k
k2 � trV �2 = 4
>V 
+ 2 trV 2;E �k
+ "k2 � trV �2 = k
k4 + 4
>V 
+ 2 trV 2 � k
k4 + 4k
k2ptrV 2
+ 2 trV 2:Moreover, for every positive 
 with 
 � kV k�1ptrV 2=2 and every t � 0P ��(k
+ "k2 � k
k2 � trV ) > 
k
k(2 trV 2)1=4 + (
 + t)p2 trV 2� � 2e�
2=4�
t=2:Proof. With ve
tor notation, the studied quadrati
 form 
an be rewritten as k
+ "k2 = (
+ ")>(
+ ") . Now,sin
e E"i = 0 , it holdsEk
+ "k2 = E �k
k2 + 2
>"+ k"k2� = k
k2 +Ek"k2 = k
k2 + trV:Next, Var k
+ "k2 = E �k
+ "k2 �Ek
+ "k2�2= E �2
>"+ k"k2 � trV �2= 4Ej
>"j2 + 4E
>" �k"k2 � trV �+E �k"k2 � trV �2 :



26 SPOKOINY, V.The Gaussian ve
tor " � N (0; V ) ful�llsE " �k"k2 � trV � = 0;Ej
>"j2 = 
>(E"">)
 = 
>V 
so that in view of Proposition 5.1 Var k
+ "k2 = 4
>V 
+ 2 trV 2 as required. Similarly one obtainsE �k
+ "k2 � trV �2 = k
k4 + 4
>V 
+ 2 trV 2and by the Cau
hy-S
hwarz inequality 
>V 
 � k
k2ptrV 2 .Let now 
 � 1 be �xed su
h that 
 � kV k�1ptrV 2=2 . This parti
ularly means that kV k � ptrV 2=2 .Note that the s
alar produ
t 
>" is a linear 
ombination of the Gaussian zero mean random variables and itis therefore Gaussian as well with E
>" = 0 and Ej
>"j2 = 
>V 
 . This yields for every 
 � 1P �
>" > 
p
>V 
� � e�
2=2:The 
ondition kV k �ptrV 2=2 provides 
>V 
 � k
k2kV k � k
k2ptrV 2=2 . Combining this inequality withthe previous one implies P �2
>" > (
 + t)k
k(2 trV 2)1=4� � e�(
+t)2=4:Next, by Proposition 5.1 P �k"k2 � trV > (
 + t)p2 trV 2� � e�
2=4�
t=2:Summing up the previous estimates, we obtainP 0� NXj=1 j
j + "j j2 � trV > k
k2 + (
 + t)k
k(2 trV 2)1=4 + (
 + t)p2 trV 21A= P �2
>"+ k"k2 � trV > (
 + t)k
k(2 trV 2)1=4 + (
 + t)p2 trV 2�� P �2
>" > (
 + t)k
k(2 trV 2)1=4�+P �k"k2 � trV > (
 + t)p2 trV 2�� 2e�
2=4�
t=2as required.5.2. Gaussian approximation for quadrati
 formsIn what follows we 
onsider quadrati
 forms Pni=1Pǹ=1 ai`�i�` of independent but not ne
essarily normalrandom variables �1; : : : �n with vanishing diagonal 
oeÆ
ients, i.e. aii = 0 . We aim to show that, undermoment 
onditions on �i 's and mild assumptions on the 
oeÆ
ients of the quadrati
 form, the asymptoti
distribution of this quadrati
 form only weakly depends on the parti
ular distribution of �i 's and, as a 
onse-quen
e, it 
an be approximated by a distribution of a similar quadrati
 form of Gaussian r.v.'s with the same�rst and se
ond moments.Let A = (ai` ; i; j = 1; : : : ; n) be a n�n symmetri
 matrix with aii = 0 for all i , and let �1; : : : ; �n beindependent zero mean r.v.'s with E�4i < 1 for all i . De�ne �2i = E�2i . We study some properties of thequadrati
 form Pni=1Pnj=1 ai`�i�` .



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 27Lemma 5.1. It holds E nXi=1 nX̀=1 ai`�i�` = nXi=1 aii�2i = 0;E( nXi=1 nX̀=1 ai`�i�`)2 = 2 nXi=1 X̀6=i a2i`�2i �2̀: (5.1)Proof. Obvious. Here it is only important that the diagonal elements aii vanish.By A(�1; : : : ; �n) we denote the 
orresponding quadrati
 form, that isA(�1; : : : ; �n) = nXi=1 nX̀6=i ai`�i�`:Let also e�1; : : : ; e�n be a sequen
e of independent Gaussian r.v.'s with Ee�i = 0 and Ee�2i = �2i , i = 1; : : : ; n .De�ne another quadrati
 form A(e�1; : : : ; e�n) = nXi=1 X̀6=i ai`e�ie�`Clearly EA(e�1; : : : ; e�n) = 0 and EjA(e�1; : : : ; e�n)j2 = EjA(�1; : : : ; �n)j2 .Proposition 5.3. Let E�4i � C4�4i for some �xed 
onstant C4 � 3 . Let, for a symmetri
 matrix A withaii = 0 for i = 1; : : : ; n , and for a normalizing 
onstant G , the numbers CA be de�ned byCA = maxi=1;::: ;nnG�2 nX̀=1 a2i`�2i �2̀: (5.2)Then, for every three times 
ontinuously di�erentiable fun
tion f , it holds���Ef �G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)���� � 83f3(C4CA)3=2n�1=2where f3 means the maximum of the absolute value of the third derivative of f , that is, f3 = supx jf 000(x)j .Remark 5.1. The value CA 
an be easily evaluated for the 
ase of an homogeneous noise when all �2i 
oin
idewith some �2 . Clearly ea
h sum di = nP̀=1a2i` is i -th diagonal element of A2 and CA � G�2 maxi=1;::: ;nfndig .Remark 5.2. The 
onditions of Proposition 5.3 do not guarantee that the distribution of G�1A(�1; : : : ; �n)is 
lose to some normal distribution. A typi
al example whi
h just meets in hypothesis testing framework
orresponds to the quadrati
 form A(�1; : : : ; �n) = (�1 + : : : + �n)2 , whi
h, even with normal �i 's, is �21 -distributed.Proof. The 
hange �i for �i=�i and ai` for ai`�i�` allows to redu
e the general 
ase to the situation with�i = 1 for all i . Hen
e, for the sake of notation simpli
ity, we suppose that �2i = 1 , i = 1; : : : ; n .We use the following obvious inequality���Ef�G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)����� nXi=1 ���Ef �G�1A(�1; : : : ; �i; e�i+1; : : : ; e�n)��Ef �G�1A(�1; : : : ; �i�1; e�i; : : : ; e�n)����



28 SPOKOINY, V.where we assume �0 = e�n+1 = 0 . We evaluate the last summand here, the other 
an be bounded in the sameway. Denote un�1 = G�1 n�1Xi=1 n�1X̀6=i ai`�i�`;�n = G�1A(�1; : : : ; �n)� un�1 = 2G�1�n n�1Xi=1 ain�i ;e�n = G�1A(�1; : : : ; �n�1; e�n)� un�1 = 2G�1e�n n�1Xi=1 ain�i :The Taylor expansion yields���Ef �G�1A(�1; : : : ; �n��Ef �G�1A(�1; : : : ; �n�1; e�n)����� ���Ef 0(un�1)(�n � e�n)���+ 12 ���Ef 00(un�1)(�2n � e�2n)���+ f36 (E j�nj3 +Eje�nj3): (5.3)Sin
e �n and e�n are independent of �1; : : : ; �n�1 and sin
e E�n = Ee�n = 0 , E�2n = Ee�2n = 1 , taking the
onditional expe
tation given �1; : : : ; �n�1 , we obtainE ��n � e�n j �1; : : : ; �n�1� = 0; E ��2n � e�2n j �1; : : : ; �n�1� = 0: (5.4)Further we evaluate Ej�nj3 and Eje�nj3 . Note �rst that, sin
e E�4n � C4 with C4 � 3 ,E n�1Xi=1 ain�i!4 = n�1Xi=1 a4inE�4i + 3 n�1X̀6=i a2ina2̀n� n�1Xi=1 a4in(C4 � 3) + 3 n�1Xi=1 a2in!2 � C4 n�1Xi=1 a2in!2 :Now the H�older inequality yields in view of Ej�nj3 � C3=44G3Ej�nj3 = Ej�nj3E �����2 n�1Xi=1 ain�i�����3� 8C3=44 8<:E n�1Xi=1 ain�i!49=;3=4 � 8C3=24  nXi=1 a2in!3=2and the 
ondition G�2Pni=1 a2in � n�1CA providesEj�nj3 � 8(C4CA)3=2n�3=2: (5.5)For the Gaussian r.v. sne�n , the similar bound applies:Eje�nj3 � 8(C4CA)3=2n�3=2: (5.6)



DATA-DRIVEN TESTING THE FIT OF LINEAR MODELS 29Substituting these estimates as well as (5.4) in (5.3) implies�����Ef �A(�1; : : : ; �n)G ��Ef  A(�1; : : : ; �n�1; e�n)G !����� � 166 f3(C4CA)3=2n�3=2:Similar bounds hold for the other summands in (5.3). Summing them out, we obtain���Ef �G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)���� � 83f3(C4CA)3=2n�1=2as required.Corollary 5.1. Under the 
onditions of Proposition 5.3, for ea
h Æ > 0 and every xP �G�1A(�1; : : : ; �n) > x� � P �G�1A(e�1; : : : ; e�n) > x� Æ�+ Const:C3=2A n�1=2Æ�3with a 
onstant Const: depending on C4 only. If, in addition, G2 � EjA(�1; : : : ; �n)j2 , thenP �G�1A(�1; : : : ; �n) > x� � P �G�1A(e�1; : : : ; e�n) > x�+ Const:C3=2A n�1=2Æ�3 + Æ:Proof. Let a smooth fun
tion f ful�ll f(u) = 0 for u � �1 and f(u) = 1 for u � 0 . De�ne Cf =supu jf 000(u)j . Now, given x and Æ > 0 , set fx;Æ(u) = f(Æ�1(u � x)) . Obviously fx;Æ(u) = 0 for u � x � Æand fx;Æ(u) = 1 for u � x and also jf 000x;Æ(u)j � CfÆ�3 .Next, by Proposition 5.3P �G�1A(�1; : : : ; �n) > x� � Efx;Æ �G�1A(�1; : : : ; �n)�� Efx;Æ �G�1A(e�1; : : : ; e�n)�+ 83(CAC4)3=2CfÆ�3n�1=2:It remains to note thatEfx;Æ �G�1A(e�1; : : : ; e�n)� � P �G�1A(e�1; : : : ; e�n) > x� Æ�The last statement of the 
orollary follows from the obvious fa
t that the density of G�1A(e�1; : : : ; e�n) isbounded by 1 for every G with G2 � EjA(e�1; : : : ; e�n)j2 .5.3. A family of quadrati
 formsHere we brie
y dis
uss the situation arising in adaptive testing problem when the maximum of a family ofquadrati
 forms of �i 's is 
onsidered. We again aim to show that the joint distribution of this family (and thusthe distribution of the maximum) 
an be well approximated by the similar distribution for quadrati
 forms ofGaussian random variables.Let A1; : : : ; AM be a 
olle
tion of symmetri
 n�n -matri
es with vanishing diagonal elements. We ana-lyze the joint distribution of the standardized quadrati
 forms G�1m Am(�1; : : : ; �n) with independent randomvariables �i satisfying E�i = 0 , E�2i = �2i and E�4i < 1 , and some 
onstants Gm , m = 1; : : : ;M .More pre
isely, we intend to show that the distribution of this family is 
lose to the distribution of the familyfG�1m Am(e�1; : : : ; e�n); m = 1; : : : ;Mg with Gaussian variables e�i � N (0; �2i ) .



30 SPOKOINY, V.Proposition 5.4. Let the variables �i ful�ll E�4i � CE�4i and let every matrix Am satisfy the 
onditionsof Proposition 5.3 with the same 
onstant CA , m = 1; : : : ;M . Then, for every three times 
ontinuouslydi�erentiable fun
tion f in the spa
e RM , it holds���Ef �G�1A(�1; : : : ; �n)��Ef �G�1A(e�1; : : : ; e�n)���� � 83f3M3(C4CA)3=2n�1=2where G�1A denotes the ve
tor with elements G�1m Am and f3 means the maximum of the absolute value ofthe third derivative of f , that is, f3 = supx2RM maxi;j;k=1;::: ;M ���� �3f(x)�xi�xj�xk ���� :Proof. The proof follows the same line as in the 
ase of one quadrati
 forms when understanding G�1A , un�1 ,f 0(un�1) and �n as ve
tors in RM and f 00(un�1) as the M�M -matrix of the se
ond derivatives of f atun�1 . The only di�eren
e is that we apply the bound Ej�nj3 � M38(C4CA)3=2n�3=2 for the norm of �nwhi
h is M3 times larger than in the 
ase of M = 1 , 
f. (5.5). The details are left to the reader.A straightforward 
orollary of this results 
on
erns the maximum of G�1m Am 's.Corollary 5.2. Let the 
onditions of Proposition 5.4 be ful�lled. ThenP �maxm�M G�1m Am(�1; : : : ; �n) � x��P �maxm�M G�1m Am(e�1; : : : ; e�n) � x� Æ�� Const:M3C3=2A n�1=2Æ�3with a 
onstant Const: depending on C4 only. If, in addition, G2m � EjAm(�1; : : : ; �n)j2 for all m � M ,then P �maxm�M G�1m Am(�1; : : : ; �n) � x��P �maxm�M G�1m Am(e�1; : : : ; e�n) � x�� Const:M3C3=2A n�1=2Æ�3 +MÆ:Proof. The �rst statement 
an be 
he
ked exa
tly as for the 
ase of M = 1 , see the proof of Corollary 5.1. Asregard to the se
ond statement, it suÆ
es to mention that the density of ea
h G�1m Am(e�1; : : : ; e�n) is boundedby 1 and hen
e the density of the maximum of G�1m Am(e�1; : : : ; e�n) 's is bounded by M .Remark 5.3. If M is not too large in the sense that M3n�1=2 is small, then, sele
ting a proper Æ , we 
anderive from this statement that the distribution of the maximum of G�1m Am(�1; : : : ; �n) 's is approximated bythe similar distributions for G�1m Am(e�1; : : : ; e�n) 's.Referen
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