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Variane estimation for high-dimensional regression models *Vladimir SpokoinyyWeierstrass Institute for Applied Analysis and Stohastis,Mohrenstr. 39, 10117 Berlin, GermanyE-mail: spokoiny�wias-berlin.deReeived ???; revised ???; aepted ???The paper is onerned with the problem of variane estimation for a high-dimensional regression model. The results show that the auray n�1=2 ofvariane estimation an be ahieved only under some restritions on smooth-ness properties of the regression funtion and on the dimensionality of themodel. In partiular, for a two times di�erentiable regression funtion, therate n�1=2 is ahievable only for dimensionality smaller or equal to 8. Forhigher dimensional model, the optimal auray is n�4=d whih is worse thann�1=2 . The rate optimal estimating proedure is presented.Key Words: variane estimation,regression,high dimension1. INTRODUCTIONIn this paper, we onsider the problem of estimating the error varianefor the regression model Yi = f(Xi) + "i (1)where X1; : : : ; Xn are design points in the Eulidean spae Rd , f : Rd !R is an unknown regression funtion and "1; : : : ; "n are individual randomerrors whih are supposed independent and satisfying the onditions E"i =0 , E"2i = �2 and E"6i � C6 <1 for all i � n . The design X1; : : : ; Xnis assumed deterministi. Note however that the ase of a random designan be onsidered as well, supposing X1; : : : ; Xn i.i.d. random points inRd with a design density p(x) . Then all the result should be understoodonditionally on the design.* 1995 Mathematis Subjet Classi�ation: 62G05; Seondary 62G20y The researh was partially supported by the DFG-RFFI Grant ???1



2 SPOKOINYThe aim is to estimate the unknown error variane �2 .Wahba (1983) and Silverman (1985) proposed to use for estimating �2usual nonparametri residuals obtained by removing the estimated smoothregression urve from the observations. Di�erene-based proedures werethoroughly disussed in Gasser et al. (1986), Siefert et al. (1993) amongother. Hall et al (1990) found asymptotially optimal di�erenes. Choosingthe urve estimation with respet to extrating residual variane has beenstudied by Bukley et al (1988) and Hall and Marron (1990). We referto Seifert et al (1993) for more detailed desriptions and omparison ofdi�erent proedures for variane estimation. Neumann (1994) disussedfully data-driven estimate. Hall and Carroll (1989), H�ardle and Tsybakov(1997), Ruppert et al (1997), Fan and Yao (1988) studied the problem ofestimating the heterosedasti onditional variane.The majority of the mentioned results fous on the mean squared errorof the variane estimation in the univariate regression model and laimthe possibility to estimate �2 at the rate n�1=2 . Some extensions to thetwo-dimensional ase are disussed in Hall et al. (1991) and Seifert et al.(1993). The main message of the present paper is that variane estimationwith root-n rate is possible in the multivariate ase as well, but only if thedimension d is not too high, more preisely, if d � 8 .It is worth noting that the variane estimation is relatively rarely thetarget of statistial analysis. Typially it is used as a building blok forfurther proedure like adaptive estimation (Rie, 1984; Gasser et al, 1991)of hypothesis testing (Hart, 1997), Spokoiny (1999), where some pilot vari-ane estimation is required. This enfores to study not only the risk ofestimation but also some deviation probabilities whih are presented in ourresults. 2. THE ESTIMATEOur approah is a multidimensional analog of the proposal from Hart(1997, p.123) whih gives an unbiased estimate of the variane for a linearregression funtion. The idea is to onstrut for every design point Xi aloal linear �t bf(Xi) of the unknown regression funtion f and then touse the pseudo-residuals bei = Yi � bf(Xi) for variane estimation.The main problem omes from design sparseness and non regularity inthe multidimensional situation. This makes diÆult the hoie of the loalneighborhood for onstruting the loal linear �t. We propose below twoapproahes how this hoie an be done. One utilizes a uniform bandwidthand another one allows the bandwidth to vary from point to point.2.1. The loal linear �tFirst we desribe the loal linear �t we apply. Let Uh(x) denote the ballwith the enter x and the radius h and Nh(x) stand for the number ofdi�erent design points in Uh(x) : Nh(x) = #fXi 2 Uh(x)g .Let K be the uniform kernel funtion K(u) = 1(juj � 1) . Introduelinear funtions  0(x) � 1 ,  `(x) = x` , ` = 1; : : : ; d and de�ne for everyi the vetor b�h(Xi) 2 Rd+1 via the loal linear �tb�h(Xi) = arginf�2Rd+1 nXj=1 Yj � dX̀=0 �` `(Xj)!2K �Xj �Xih �see Katkovnik (1985), Tsybakov (1986), Fan and Gijbels (1996). This isa quadrati optimization problem with respet to the vetor of oeÆients



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 3� = (�`)`=0;::: ;d whih an be solved expliitly. If the (d + 1)� (d + 1)matrix 	i;h of the form	i;h = 0� nXj=1  `(Xj) k(Xj)K �Xj �Xih � ; `; k = 0; : : : ; d1A :is non singular, then the solution exists and is unique and it is a linearombination of the observations Yj with the deterministi oeÆients de-pending on the design X1; : : : ; Xn only. In partiular, the �rst oeÆientan be represented in the form b�0;h(Xi) =Pnj=1 aij;hYj with some oeÆ-ients aij;h , j = 1; : : : ; n . It is well known (and it is easy to hek) thatthe suh de�ned oeÆients aij;h obey the following onditions.Lemma 2.1. Let the matrix 	i;h be non singular. Then the above de-�ned oeÆients aij;h ful�ll aij;h = 0 if jXj �Xij � h andnXj=1 aij;hK �Xj �Xih � = 1;nXj=1 aij;h  `(Xj �Xi)K �Xj �Xih � = 0; ` = 1; : : : ; d:A neessary and usually suÆient ondition for non singularity of thematrix 	i;h is that the ball Uh(Xi) ontains at least d+1 design points.2.2. Proedure with a variable bandwidthFor every i , de�ne the bandwidth hi by the onditionhi = inf fh : 	i;h is non singulargwhere 	i;h is the (d+ 1)�(d+ 1) matrix introdued before Lemma 2.1.Next de�ne the loal linear estimatebf(Xi) = bfhi(Xi) = nXj=1 aij;hiYjand pseudo residuals beibei = bf(Xi)� Yi = nXj=1 ijYjwith ij = aij;hi for j 6= i and ii = aii;hi � 1 . Finally we sets2i = nXj=1 2ij ; i = 1; : : : ; n;b�2 = 1n nXi=1 jbeij2s2i : (2)2.3. Proedure with a global bandwidthDe�ne the subset Xh of the set X1; : : : ; Xn byXh = fXi : 	i;h is non singularg



4 SPOKOINYand let Mh stand for the number of design points in Xh : Mh = #Xh .Then, with a given � � 1=2 , we de�ne the bandwidth h as the minimalvalue whih satis�es the onditionMh � n�;that is, there are at least n� points Xi , for whih 	i;h is non singular.Next we de�ne the loal linear estimate bf(Xi) by bf(Xi) =Pnj=1 aij;hYjand the pseudo residuals bei bybei = bf(Xi)� Yi = nXj=1 ijYjwith ij = aij;h for j 6= i and ii = aii;h � 1 . Finally the varianeestimate b�2 is de�ned by s2i = nXj=1 2ij ;b�2v = 1Mh Xi:Xi2Xh be2is2i :3. PROPERTIESIn this setion we state some useful properties of the estimate b�2 from(2). The estimate b�2v an be studied similarly. First we present the resultfor the ase of Gaussian errors "i and then we disuss the general ase.The estimate b�2 assumes some smoothness of the regression funtion fin a small neighborhood of eah design point Xi . When formulating theresult, this loal smoothness will be haraterized by the valueLi = 0:5 supu2Rd supx2Uhi (Xi) u>f 00(x)ujuj2where f 00 denotes the d�d Hessian matrix of seond derivatives of f .Theorem 3.1. Let the observations Y1; : : : ; Yn follow the regressionmodel (1) with i.i.d. Gaussian errors "i � N (0; �2) and a two timesdi�erentiable regression funtion f . Introdue n�n -matrix B with en-tries �ij = 1n nXk=1 s�2k kikj ; i; j = 1; : : : ; n:De�ne the values � , S2 and CB by�2 = 1n nXi=1 L2ih4i s�2i 0�Xj 6=i jij j1A2 ;S2 = 2 trB2 = 2 nXi=1 nXj=1 �2ij ;C2B = nkBk212 trB2



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 5where kBk1 = supu2Rn jBuj=juj . Then for every nonnegative  , thevariane estimate b�2 ful�llsP ��(b�2 � �2) > �2 + ��p2kBk1 + �2S�� 2e�2=4 + epn=(6CB): (3)Remark 3. 1. The norm of the matrix B an be very roughly estimatedas follows: kBk21 � trB2 , whih partiularly implies CB �pn=2 .3.1. The rate of estimationHere we disuss some orollaries of Theorem 3.1 onerning the rateof estimation. To this end we have to bound the quantities � and S .This an be easily done under some additional assumptions on the designX1; : : : ; Xn and the underlying regression funtion f . Conerning thedesign, we onsider here two di�erent model assumptions widely used inappliations.RD (Random design) The design points X1; : : : ; Xn are i.i.d. randomvariables from a distribution with a density p(x) whih is supported on aompat set X and it is ontinuous and positive on X .ED (Equispaed design) The design points X1; : : : ; Xn form the reg-ular grid in the unit ube [0; 1℄d with the step Æn suh that Æ�1n is aninteger number and Æ�dn = n .The quantity S2 is de�ned through the design only and in what followswe present some bound on S under ED or RD. The value � also dependson the smoothness properties of the underlying regression funtion f . Forexposition simpliity we restrit ourselves to the lass F(2; L) of funtionswith the bounded seond derivative:F(2; L) = ff : 0:5kfk1 � Lg :For every f 2 F(2; L) , the values Li de�ned before Theorem 3.1 arebounded by L , i.e. Li � L .Lemma 3.1. Let f 2 F(2; L) . Under ED, it holds�2 � 2dL2n�4=d;S2 � 2N�n�1;where N� depends on d only.Next we onsider the situation with a random design. In that ase, theboth quantities � and S whih are de�ned via the design X1; : : : ; Xn ,are random and the result of Theorem 3.1 is stated onditionally on thedesign. The bounds we formulate below should be also understood in theonditional sense: they hold for a majority of design realizations (i.e. on aset of a high probability w.r.t. the design distribution).Lemma 3.2. Let f 2 F(2; L) and let RD hold. For every � > 0 , thereare two onstants � and N� depending on d and the design density p



6 SPOKOINYonly suh that it holds for n large enough on the set of probability at least1� � �2 � �2L2n�4=d;S2 � 2N�n�1:The inequalities � � L�n�2=d and S2 � 2N�n�1 yield in view of (3)and Remark 3.1 the following auray of estimation: with a probabilityat least 1� e�2=4 � e�p2=6 , it holds� �b�2 � �2� � �2 + ��(2S2)1=4 + S�2� �2L2n�4=d + �L(4N�)1=4�n�2=d�1=4 + �2p2N�n�1=2:We observe that for d < 8 , the �rst two summands in this bound aresmaller in rate than the last one whih is O(n�1=2) . If d = 8 , then allthree summands are of order n�1=2 and for d > 8 , the �rst term (whihis of order n�4=d ) starts to dominate. Given a loss funtion w , de�ne therisk of estimationR(b�2) = (Ew �n1=2��2(b�2 � �2)� ; d � 8;Ew �n4=d��2(b�2 � �2)� ; otherwise:The above onsiderations lead to the followingTheorem 3.2. Let b�2 be the variane estimate from (2). Let the quan-tities � , kBk1 and S de�ned in Theorem 3.1 and depending on n ,the design X1; : : : ; Xn and on the smoothness properties of the regressionfuntion f , satisfy the onditions� � D�2n�2=d;S2 � 2N�n�1with some �xed onstants B;N� . Then for every ontinuously di�er-entiable loss funtion w whih obeys the onditions w(0) = 0 , w(x) =w(�x) , w0(x) � 0 for x > 0 and R w0(x)e��x dx <1 for every � > 0 ,the orresponding risk R(b�2) remains bounded by some onstant C =C(B;N�; w) depending on D;N� and the funtion w only:R(b�2) � C(D;N�; w):3.2. Non-Gaussian aseHere we disard the assumption that the errors "i are normally dis-tributed. Instead we assume that that they are independent identiallydistributed with 6 �nite moments.Theorem 3.3. Let the errors "i from (1) be i.i.d. random variableswith E"i = 0 , E"2i = �2 , E("2i � �2)2 � C24�4 and Ej"2i � �2j3 � C6�6for all i . Let also value CA be suh thatn maxi=1;::: ;n nPj=1�2ijnPi=1 nPj=1 �2ij � CA; n maxi=1;::: ;n�2iinPi=1�2ii � CA



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 7where the oeÆients �ij are de�ned in Theorem 3.1. Then there exists anabsolute onstant C suh that for every  � 0 and every Æ with 0 < Æ � 1P ��(b�2 � �2) > �2 + 2�S1=2� + ( + Æ)S�2 + S00�2�� 2e�2=4 + e�pn=(6CA) + Cn�1=2Æ�3where � and S are de�ned in Theorem 3.1, jS00j2 = nPi=1�2ii and theonstant C depends on C4; C6 and CA only.This result learly implies an analog of Theorem 3.2 for non-Gaussianerrors under the onditions of Theorem 3.3.3.3. Rate optimalityHere we show that the ritial dimension d = 8 appears not only for ourpartiular estimator. Atually, no estimator ahieves the rate n�1=2 ford > 8 uniformly over any lass of smooth funtions with the smoothnessdegree 2.To simplify the onstrution, we suppose hereafter that n1=d is an integernumber, and X1; : : : ; Xn form the regular grid in the unit ube [0; 1℄d .De�ne the following Sobolev type lass Fn(2; L) :Fn(2; L) = (f : 1n nXi=1 supx:jx�Xij�n�1=d kf 00(x)k2 � L2) :Let P f;�2 denote the measure on the observation spae whih orrespondsto a regression funtion f and the variane �2 and let Ef;�2 denote theexpetation w.r.t. P f;�2 .Theorem 3.4. Let X1; : : : ; Xn be the equispaed design in the unit ube[0; 1℄d and the the observations Y1; : : : ; Yn be generated from the regres-sion model (1) with i.i.d. Gaussian errors "i � N (0; �2) . For d � 8 ,suÆiently large L and for every ontinuous bounded loss funtion w ,limn!1 infe�2n supf2Fn(2;L) sup�22�nEf;�2 w �n4=d(e�2n � �2)� = r > 0where the in�mum is taken over the set of all possible estimates of theparameter �2 and �n is the three points set of the form �n = f1; 1 +n�4=d; 1 + 2n�4=dg .Due to this result, even if the unknown variane is valued in a three-point set �n , a onsistent variane estimation is impossible and the riskof estimation is of order n�1=d .4. PROOFSIn this setion we present the proofs of Theorem 3.1 through 3.4.4.1. Proof of Theorem 3.1De�ne fhi(Xi) = nXj=1 aij;hif(Xj)



8 SPOKOINYso thatnXj=1 ijf(Xj) = nXj=1 aij;hif(Xj)� f(Xi) = fhi(Xi)� f(Xi):The model equation (1) implies for every i � nbei = nXj=1 ijYj = nXj=1 ijf(Xj) + nXj=1 ij"jwhih leads to the following representation for the estimate b�2 :b�2 = 1n nXi=1 jbeij2s2i = nXi=1(bi + �i)2 = jb+ �j2where bi = n�1=2s�1i ffhi(Xi)� f(Xi)g;�i = n�1=2s�1i nXj=1 ij"j = nXj=1 �ij"jwith �ij = n�1=2s�1i ij .The smoothness assumption on the funtion f implies for every j withjXj �Xij � hijf(Xj)� f(Xi)� f 0(Xi)(Xj �Xi)j � Lih2i :The properties Pnj=1 ij = 0 and Pnj=1 ij(Xj �Xi) = 0 providejfhi(Xi)� f(Xi)j= ������ nXj=1 ijf(Xj)� f(Xi) nXj=1 ij � f 0(Xi) nXj=1 ij(Xj �Xi)������= ������ nXj=1 ijff(Xj)� f(Xi)� f 0(Xi)(Xj �Xi)g������� Li h2i Xj 6=i jij j:Therefore jbj2 = nXi=1 b2i � 1n nXi=1 L2ih4i s�2i 0�Xj 6=i jij j1A2 = �2: (4)We now apply the following general statement, see Lemma 4.3 below.Let A be a n � n -matrix with entries �ij , �A = kA>Ak1 and S2 =2 tr(A>A)2 . Then for every positive  > 0P �� �jb+ �j2 � jbj2 � �2 tr(A>A)� > �jbj(2�A)1=2 + �2S�� 2e�2=4 + e�S=(6�A):



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 9Sine Pnj=1 �2ij = 1=n , then learlytr(A>A) = nXi=1 �ii = nXi=1 nXj=1 �2ij = 1:This implies the required assertion in view of (4).4.2. Proof of Lemmas 3.1 and 3.2Reall that eah bandwidth hi is de�ned as the smallest radius h pro-viding a non degenerated linear �t in the ball Uh(Xi) . This implies thatthe number Nh(Xi) of design points in the ball Uh(Xi) is at least d+ 1 .De�ne N = maxiNhi(Xi)� 1 . It is straightforward to see that under RD,P �N = d� = 1 , and under ED, it holds N = 2d .Further, let h = �n�1 nPi=1h4i�1=4 . Under ED, one learly has hi =n�1=d for all i , so that h = n�1=d . Under RD, the following result an beproved:Lemma 4.1. Under RD, for every small positive number �1 , there existsa positive onstant � � 1 depending on d and the design density p(x) onlysuh that P �h > �n�1=d� � �1:The idea of the proof is that a ball Uh(Xi) ontains under RD in meanabout Cdhdp(Xi) design points with a �xed onstant Cd . Therefore, ifh > �n�1=d with �dCdp(Xi) > 2d for all or almost all i � n , then themajority of the balls Uh(Xi) ontain at least d+1 design points. We omitthe details.Now we bound � under ED or RD. Sine s2i = Pj 2ij , the Cauhy-Shwarz inequality implies0�Xj 6=i jij j1A2 � (Nhi(Xi)� 1)Xj 6=i 2ij � (Nhi(Xi)� 1) s2iand hene, if f 2 F(2; L) , then Li � L for all i and�2 � 1n nXi=1 L2ih4i (Nhi(Xi)� 1) � L2Nn nXi=1 h4i = L2h4N � �2L2n�4=d:Under ED, this inequality applies with � = 1 . Under RD � fromLemma 4.1 should be used and the bound holds with a probability atleast 1� �1 .Next we onsider S . De�neNi = #fXj : jXj �Xij < hi + hjg; i = 1; : : : ; n;N� = 1n nXi=1 Ni :One an easily show that under ED the value N� is bounded by a onstantdepending on d only. Under RD, a similar bound an be obtained outside



10 SPOKOINYa random set of a small probability �2 and the onstant N� would alsodepend on the design density, f. Lemma 4.1.We now intend to show that S2 � 2N�n�1 . Obviously kBk1 =kA>Ak1 = kAA>k1 and S2 = tr(A>A)2 = tr(AA>)2 .The entries rij =Pnk=1 �ik�jk of the matrix AA> satisfy the onditionsrii =Pnk=1 �2ik = n�1 and rij � n�1 . Moreover, if jXi �Xj j > hi + hj ,then two loal linear �ts in Xi and in Xj are de�ned over non overlappingneighborhoods and therefore rij = 0 . This implies for every i � nnXj=1 r2ij � Nin�2and hene, S2 = 2 nXi=1 nXj=1 �2ij � 2n�2 nXi=1Ni = 2N�n :4.3. Proof of Theorem 3.2This result is an easy orollary of Theorem 3.1. Indeed, appliation ofthis result and Remark 3.1 with d � 8 and varying  yieldsP �n1=2��2(b�2 � �2) > �2��2n1=2 + K� � 2e�2=4 + e�:where K = pn���1p2�A +pnS and  = S=(6�A) . The onditions ofthe theorem yield for d � 8 in view of Remark 3.1�2��2n1=2 � D; K � (2D)1=2(4N�)1=4 + (2N�)1=2;  � p2=6:ThereforeR(b�2) = Ew �pn��2(b�2 � �2)�� � Z 10 w(x) dP �pn��2jb�2 � �2j > x�� 2w(D) +K Z 10 w0(D +K)P �pn��2jb�2 � �2j > D +K� d� 2w(D) + 2K Z 10 w0(D +K)�e�2=4 + e�� dand the assertion follows. The ase of d > 8 an be treated similarly.4.4. Proof of Theorem 3.3Let the matrix A with the entries �ij be de�ned in the proof of Theo-rem 3.1 and B = A>A . The di�erene b�2 � �2 an be represented in theform (see again the proof of Theorem 3.1)b�2 � �2 = jbj2 + 2b>A"+ ">B"� �2 trB= jbj2 + 2b>A"+Xi=1 �ii("2i � �2) + nXi=1 nXj 6=i �ij"i"j= jbj2 +Q2 +Q3 +Q4:We now estimate separately eah term in this expression. Note �rst thatjbj2 � �2 , see the proof of Theorem 3.1.



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 11Let e"1; : : : ; e"n be a sequene of i.i.d. random variables from the normallaw N (0; �2) . De�ne the sums eQ2; eQ3; eQ4 similarly to Q2; Q3; Q4 withe"i 's in plae of "i 's. The idea is to show that the distribution of every Qkonly weakly depends on the partiular distribution of "i 's and therefore,the bounds for eQk are valid for Qk as well (in some asymptoti sense ifn is large enough), k = 2; 3; 4 .First we estimate the sum Q2 = 2b>A" . Note that EQ2 = 0 andEQ22 = �2jAT bj2 = �2b>AA>b � kAA>k1 jbj2 � kBk1�2:By the Cauhy-Shwarz inequalityP �jb>A"j > �S1=2�� � EQ22�2S�2 � kBk1Sand by the onditions of the theorem, nkBk2=S2 � C2A , so thatP �jQ2j > 2�S1=2�� � 4CAn�1=2:Next, it holds for Q3EQ23 = E nXi=1 �ii("2i � �2)!2 = C24�4 nXi=1 �2iiand the Berry-Essen inequality, see Petrov (1975), applied to Q3 yieldswith S00 = ��2pEQ23P �Q3 > xS00�2� � P � eQ3 > xS00�2�+ �Æ�3 1S003�6 nXi=1 E ���ii("2i � �2)��3� P � eQ3 > (x� Æ)S00�2�+ C6�Æ�3(S00)�3 nXi=1 j�iij3:The onditions of the theorem providenXi=1 j�iij3 � maxi=1;::: ;n�ii nXi=1 j�iij2 � C2AS003n�1=2and heneP �Q3 > xS00�2� � P � eQ3 > xS00�2�+ C6�Æ�3C2An�1=2:In addition, the use of Lemma 4.3 yields for every P � eQ3 > S00�2� � e�2=4 + e�pn=(6CA):For estimating Q4 , we apply the following general result from Spokoiny(1999, Corollary 6.2). Let U = (uij ; i; j = 1; : : : ; n) be a n�n sym-metri matrix with uii = 0 for all i . By U("1; : : : ; "n) we denote theorresponding quadrati form of i.i.d. random variables "1; : : : "n , that is,U("1; : : : ; "n) = nXi=1 nXj 6=i uij"i"j :



12 SPOKOINYLet also e"1; : : : ; e"n be a sequene of independent Gaussian r.v.'s withEe"i = 0 and Ee"2i = �2 , i = 1; : : : ; n . De�ne another quadrati formU(e"1; : : : ; e"n) = nXi=1Xj 6=i uije"ie"j :Clearly EU(e"1; : : : ; e"n) = 0 and EjU(e"1; : : : ; e"n)j2 = EjU("1; : : : ; "n)j2 .Proposition 4.1. Let E"4i � C4�4 for some �xed onstant C4 � 3 .Let, for a symmetri matrix U with uii = 0 for i = 1; : : : ; n , and for anormalizing onstant G , the value CU be de�ned byCU = maxi=1;::: ;nnG�2�4 nXj=1 u2ij :Then, for eah Æ > 0 and every xP �G�1U("1; : : : ; "n) > x� � P �G�1U(e"1; : : : ; e"n) > x� Æ�+�(C4CU )3=2n�1=2Æ�3with an absolute onstant � .We now apply this result to Q4 with uij = �ij , i 6= j andG = �20� nXi=1 nXj=1 �2ij1A1=2 :Sine nXi=1 nXj=1 �2ij = tr(AA>)2 = trB2 = S2we deriveP �Q4 > ( + Æ)�2S� � P � eQ4 > �2S�+ �(C4CA)3=2n�1=2Æ�3:The bound from Lemma 4.3 applied to eQ4 provides for every P � eQ4 > �2S� � e�2=4 + e�pn=(6CA):Summing up everything, what we have got so far, leads to the boundP ��(b�2 � �2) > �2 + 2�S1=2� + ( + Æ)S�2 + S00�2�� P �jQ2j > 2�S1=2��+P ��Q3 > S00�2�+P ��Q4 > ( + Æ)S�2�� 2e�2=4 + e�pn=(6CA) + Cn�1=2Æ�3where C depends on C4; C6 and CA only.4.5. Proof of Theorem 3.4The idea of the proof is as follows. We �rst hange the minimax state-ment for a Bayes one. For a prior measure � on the set F , de�ne the



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 13orresponding marginal measure P �;�2 byP �;�2(A) = Z P f;�2(A)�( df):We intend to show that there exists a sequene of random funtions fnwith prior distributions �n satisfying �n (Fn(2; L))! 1 and suh thatE�n;�2w �n4=d(e�2n � �2)� = r > 0for n large enough. For the latter, it suÆes to show that the measuresP �n;�20 with �20 = 1 and P �n;�2n with �2n = �20 + n�4=d are not asymp-totially separable.The priors �n are seleted on the base of the following onsideration.We de�ne the values of random funtions fn either identially zero ori.i.d. normally distributed at eah design point Xi . If d is suÆientlylarge and if the variane of this distribution is small enough, then thisrandom funtion will be with a large probability in the lass Fn(2; L) .Then learly this random funtion fn introdue some additional noise inthe observations Yi and we annot distinguish whether this noise omesfrom the errors "i only (this would be the ase when fn � 0 ) or there issome ontribution from the random regression funtion fn . More preisely,let �1; : : : ; �n be i.i.d. standard Gaussian r.v.'s and Æn = n�2=d . We willshow that there exist random funtions gn with gn(Xi) = Æn�i and withP (gn 2 Fn(2; L)) ! 1 as n ! 1 for d � 8 . The random funtionsfn are onstruted as follows. With probability 1=2 , we set fn = 0and with probability 1=2 , the funtion fn oinides with gn . Then, for� = �0 the marginal distribution of the observations Yi = f(Xi) + �"i iswith probability 1/2 i.i.d. from N (0; �20) and with probability 1/2 i.i.d.from N (0; �2n) . Similarly, for � = �n , the marginal distribution of theobservations Yi orresponds with probability 1/2 an i.i.d. sample fromN (0; �2n) and with probability 1/2 an i.i.d. sample from N (0; �2n+n�4=d) .Hene, with a positive probability, these two marginal distributions oinideand therefore any estimate has a non-vanishing risk.Now we present a formal desription. Let h = n�1=d . De�ne for everygrid point Xi a funtion �i of the form�i(x) = dỲ=1Q�x` �Xi;`h �where Q is a smooth symmetri nonnegative funtion supported on [�1; 1℄ .Clearly all funtions �i have non-overlapping supports and for every ij�i(x)j � 1;������i(x)�x` ���� � kQ0kh ;�����2�i(x)�x` �xk ���� � maxfkQ0k2; kQ00kgh2so that k�00i (x)k � CQh2 (5)with CQ = pdmaxfkQ0k2; kQ00kg .



14 SPOKOINYLet also f�i; i = 1; : : : ; ng be a olletion of independent standard Gaus-sian random variables. De�ne the random funtion gn of the formgn(x) = Æn nXi=1 �i�i(x):Finally, for an independent of gn Bernoulli random variable �n withP (�n = 0) = P (�n = 1) = 1=2 , de�nefn = �ngn:The property (5) provides for every i � nsupx:jx�Xij�n�1=d kg00n(x)k2 � CQh�4Æ2n maxj:Xj2Uh(Xi) �2j � CQ Xj:Xj2Uh(Xi) �2jand hene, using Nh(Xi) � 2d+ 11n nXi=1 supx:jx�Xij�n�1=d kg00n(x)k2 � CQn (2d+ 1) nXi=1 �2iso that, for L2 > (2d+ 1)CQ , by the law of large numbers,P  1n nXi=1 supx:jx�Xij�n�1=d kg00n(x)k2 > L2!! 0; n!1:This means that the random funtions gn belong to Fn(2; L) with aprobability lose to 1 if L2 > (2d + 1)CQ and learly the same holds forthe fn 's.Let now P (n)� denote the produt measure in Rn orresponding to themodel Yi = �"i with i.i.d. standard normal errors "i . Then learlyP fn;�20 = �P (n)�0 +P (n)�n � =2;P fn;�2n = �P (n)�n +P (n)sn � =2with s2n = �2n + n�4=d = �20 + 2n�4=d . Next we show that all threesequenes of measures (P (n)�0 ) , (P (n)�n ) and (P (n)sn ) are pairwise asymptot-ially singular, if d > 8 . Then the required assertion follows from the nextgeneral result.Lemma 4.2. Let three sequenes P (n)j , j = 0; 1; 2; , of probability mea-sures be pairwise asymptotially singular, that is,Z(n)k;j = dP (n)kdP (n)j P (n)j��! 0; n!1; k 6= j:Then for any ontinuous bounded funtion u(x) , it holdsHn = 12 Z u dP (n)0 + dP (n)1dP (n)1 + dP (n)2 ! d�P (n)1 + P (n)2 �! u(0) + u(1)2 ; (6)that is, the likelihood dP (n)0 +dP (n)1dP (n)1 +dP (n)2 onverges weakly to the Bernoulli dis-tribution with parameter 1/2.



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 15Proof. One obviously has2Hn = Z u Z(n)0;1 + 1Z(n)2;1 + 1! dP (n)1 + Z u Z(n)0;2 + Z(n)1;2Z(n)1;2 + 1 ! dP (n)2! u(1) + u(0)as required.It remains to hek (6) for the sequenes P (n)� with � 2 f�0; �n; sng .We onsider the derivative Z(n)0;1 = dP (n)�0 = dP (n)�n , the other ases an betreated similarly.The de�nition �2n = �20 + Æ2n = 1 + Æ2n learly yieldsL(n)0;1 := log dP (n)�0dP (n)�n= n log(�n=�0)� nXi=1 Y 2i2�20 + nXi=1 Y 2i2�2n= n2 log �20 + Æ2n�20 � nXi=1 Y 2i Æ2n2�20�2n :Under the measure P (n)�n , it holds Yi = �n�i with i.i.d. standard normalr.v.'s �i . ThereforeL(n)0;1 = n2 log �1 + Æ2n�� Æ2n2 nXi=1 �2i= n2 log �1 + Æ2n�� nÆ2n2 � pnÆ2n2 1pn nXi=1(�2i � 1)= n2 log �1 + Æ2n�� nÆ2n2 � pnÆ2n2 �n= pnÆ2n2 (rn � �n)where the random variables �n = 1pnPni=1(�2i � 1) are asymptotiallystandard normal andrn = pnÆ2n log �1 + Æ2n��pn � �pn�Æ2n2 � Æ4n3 �= �pn�n�4=d2 � n�8=d3 �! �1if d > 8 . Sine also pnÆ2n = n1=2�4=d ! 1 , this implies L(n)0;1 ! �1and hene Z(n)0;1 = expL(n)0;1 ! 0 as required.4.6. Large deviation probability for Gaussian quadrati formsLemma 4.3. Let A = (aij ; i; j = 1; : : : ; n) be a n�n -matrix. De�nethe values SA and �A by:S2A = 2 tr(A>A)2 = 2 tr(AA>)2;�A = kA>Ak1 = kAA>k1:



16 SPOKOINYIf "1; : : : ; �n are i.i.d. normal N (0; �2) r.v.'s, and b = (b1; : : : ; bn)> isa deterministi vetor in Rd then the quadrati formQ = nXi=10�bi + nXj=1 aij"j1A2ful�lls for every z � 0 the onditionP �� �Q� jbj2 � �2 tr(A>A)� > z�jbj(2�A)1=2 + z�2SA�� 2e�z2=4 + e�zSA=(6�A):Proof. The standardization by �2 allows to redue the general ase tothe situation with �2 = 1 , whih is supposed in what follows. With vetornotation the studied expression an be represented asQ� jbj2 � tr(A>A) = (b+A")>(b+A")� tr(A>A)� jbj2= 2b>A"+ ">A>A"� tr(A>A)where " denotes the vetor ("1; : : : ; "n)> . The latter expression an bedeomposed into linear and quadrati parts:Q� tr(A>A)� jbj2 = 2b>A"+ ">A>A"� tr(A>A) = Q1 +Q2 (7)with Q1 = 2b>A";Q2 = ">A>A"� tr(A>A):The term Q1 is a linear ombination of the r.v.'s "i and hene it is aGaussian r.v. with zero mean and the varianeEQ21 = 4Eb>A"">A>b = 4b>AA>b � 4�Ajbj2:(Here we have used that E""> = 1n .) Therefore,P ��Q1 > z(2�A)1=2jbj� � exp��z22�Ajbj22EQ21 � � e�z2=4: (8)Next we intend to show thatP (�Q2 > zSA) � e�z2=4 + e�zSA=(6�A):The symmetri matrix A>A an be deomposed asA>A = U>�U;with an orthonormal matrix U (i.e. U>U = 1n ), and a diagonal matrix� , � = diagf�1; : : : ; �ng . It holdstrA>A = tr� = nXi=1 �i;S2A = 2 tr(A>A)2 = 2 tr�2 = 2 nXi=1 �2i ;�A = maxfj�1j; : : : ; j�njg:



VARIANCE ESTIMATION FOR HIGH-DIMENSIONAL REGRESSION 17Therefore Q2 = e">�e"� tr � = nXi=1 �i(e"2i � 1);where e" = U" is also a standard Gaussian vetor in Rn . We apply theexponential Tshebyshe�-inequality: for every � � 0P (Q2 > a) � e��aEe�Q2 :This yieldsP (z) := P  nXi=1 �i(e"2i � 1) > zSA!� exp f�� z SAgE exp(� nXi=1 �i(e"2i � 1))= exp(�� z SA � � nXi=1 �i)E nYi=1 exp���i e"2i	 :Sine e" are independent standard normal, we obtainP (z) � exp(�� z SA � � nXi=1 �i) nYi=1E exp���i e"2i	= exp(�� zSA � nXi=1 ���i + 12 log(1� 2��i)�) (9)provided that 2��i < 1 for all i .Now we apply the following simple inequality:� log(1� u) � u+ u2; 8u � 2=3:This yields with any � � 1=(3�A) and all i :���i � 12 log(1� 2��i) � 2�2�2iand ��zSA � nXi=1 ���i + 12 log(1� 2��i)� � ��zSA � nXi=1 2�2�2i= ��zSA + �2S2A: (10)If z � 2SA3�A , then we selet � = z2SA . With this hoie the ondition� � 1=(3�A) is ful�lled and��zSA + �2S2A = �z2=4:For z > 2SA3�A we set � = 1=(3�A) , so that��zSA + �2S2A = �zSA3�A + S2A(3�A)2 = �zSA3�A �z � SA3�A� � �zSA6�A :
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