Structural tests in additive regression
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We consider the component analysis problem for a regression model with an additive structure. The problem is to test if some of

the additive components are of polynomial structure, e.g. linear, without specifying the structure of the remaining components.

A particular case is the problem of selecting the significant covariates. The presented method is based on the wavelet transform

using the Haar basis, which allows for applications under mild conditions on the design and smoothness of the regression

function. The results demonstrate that each component of the model can be tested with the rate corresponding to the case if

all the remaining components were known. The proposed procedure is also computationally straightforward. Simulation results

and a real data example about female labor supply demonstrate the good performance of the test.
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1. INTRODUCTION

In multivariate regression problems we study the structural
relationship between the response variable Y and the vec-
tor of covariates X = (X1,...,Xy)" via the regression
curve

F(z) = E(Y|X =1)

with z = (21,...,24)" . Purely nonparametric models do
not make any assumption about the form of the d-variate
function F'(z).The problem is then to fit a d-dimensional
surface to the observed data {(X;,Y;):i=1,...,n}.The
obvious approach is to generalize the univariate smoothing
techniques based on local ‘averaging’ to this multivariate
situation. A serious problem arising here is that we need
much more data material in higher dimensions in order
to have enough data points in a local neighborhood of
each point. Several approaches for dimensionality reduc-
tion have been proposed to deal with this so-called curse
of dimensionality. A promising one is additive modeling as
in economic theory it is a favorite structure anyway, see
e.g. Deaton and Muellbauer (1980).

Such a nonparametric additive regression model has the
form

F)+6  w=(on....00) € R, (1)
filwy) + ...+ fa(za), (2)
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where y is a scalar variable, {f,,}%,_, is a set of unknown
component functions and ¢ is a random error.

This class of models has been shown to be useful in sta-
tistical practice: it generalizes linear regression in a natural
way and allows interpretation of marginal changes i.e. the
effect of one variable on the mean function F holding
all else constant. Additive models were considered first by
Leontief (1947) for input-output analysis speaking of sepa-
rable models. In the statistical literature the nonparamet-
ric additive regression has been introduced in the eighties,
see Buja, Hastie and Tibshirani (1989) for a survey. An
advantage of additive models is that they combine flexi-
ble modelling of many variables with statistical precision
that is typical for just one explanatory variable, see Stone
(1985, 1986). Algorithmic aspects of additive modelling by
backfitting are discussed in Hastie and Tibshirani (1990)
or Venables and Ripley (1994). Tjgstheim, Auestad (1994)
and Linton, Nielsen (1995) proposed a method of analysis
based on marginal integration.

An essential advantage in additive models is that they
allow component-wise inferences. Important problems of
component analysis in economics are the question of sig-
nificance as well as of linearity, since nonlinearities often
raise serious problems, e.g. of identification in equation or
economic equilibrium systems. In nonparametrics, among
others, Hastie and Tibshirani (1990) or Hérdle and Ko-
rostelev (1996) considered also the problem of selection of
significant covariates. In this paper we focus on the much
more general problem of testing for component f,, the null
hypothesis of it being of polynomial form, e.g., being con-
stant or linear.

Theory for nonparametric hypothesis testing is well de-
veloped. So the problem of testing a simple null hypothesis
versus a univariate nonparametric alternative is studied in
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detail, see e.g. Ingster (1993), Hirdle and Mammen (1993),
Hart (1997), Stute (1997) for historical background and
further references. Many tests have been shown to be sensi-
tive against every directional local alternative, e.g. Bierens
(1982), Eubank and Hart (1992), Stute (1997) and refer-
ences therein. Unfortunately, the power of every particular
test cannot be uniform w.r.t. the “direction” in the func-
tion space as shown in Burnashev (1979) or Ingster (1982).
This particularly means that the finite sample power of
every test could be better for some local alternatives and
worse for the others. The same arguments apply to the
so called “intermediate” efficiency approach of Inglot and
Ledwina (1996).

Ingster (1982, 1993) has shown that a test could be uni-
formly consistent against a smooth alternative only if this
alternative deviates from the null with the distance of or-
der n=28/(4s+1) with s being the degree of smoothness.
The structure of the proposed rate-optimal tests also es-
sentially relies on the smoothness properties of the un-
derlying function though such kind of prior information
about the underlying function is typically lacking in practi-
cal applications. Spokoiny (1996) offered an adaptive data-
driven testing procedure which does not require knowledge
of smoothness properties of the tested function and allow
for a near optimal testing rate up to a loglogn factor. The
latter can be viewed as the price for adaptation. Horowitz
and Spokoiny (1999) proposed a similar test based on ker-
nel smoothers with different bandwidths and showed that
it is simultaneously consistent against any local “direc-
tional” alternative which approaches the null hypothesis
at the rate (n/loglogn)='/2.

It is worth noting that the adaptive testing procedure
from Spokoiny (1996) is essentially a theoretical device
rather than a practically applicable method since it is de-
veloped for the idealized “signal + white noise” model,
simple null, known noise variance etc. Practically rele-
vant procedures should address numerous issues arising
in particular applications. In the context of multidimen-
sional additive modeling, an additional challenge comes
from the fact that the considered component f; , even be-
ing completely specified, does not specify the whole model
since nothing is assumed about the other components,
fo,..., fa which can be viewed as an infinite-dimensional
nuisance parameter. This particularly creates a serious
problem with evaluating the critical value of the proposed
test statistics which provides the prescribed type I level.

Therefore, the task is to develop a procedure which, in-
dependent of the functional form of the ‘nuisance’ compo-
nents fa,..., fq, leads to the given type I error a if f; is
linear, and is sensitive against a smooth alternative with
unknown degree of smoothness. In view of practical ap-
plications (see Section 4) we proceed with a deterministic
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non-regular design allowing discrete components and with
unknown noise variance.

In this paper we apply a Haar decomposition which is a
particular and non-regular case of the wavelet transform.
Nevertheless, for the hypothesis testing framework the ap-
plication of the Haar basis leads not only to the desired
optimal testing rate but also provides a test which is more
stable w.r.t. the design non regularity. This is important
for practical applications, allowing relaxation and simpli-
fication of the conditions on the design, reduction of com-
putational burden and more.

Our approach is based on the simultaneous approxima-
tion of all components fi,...,f; by Haar sums: we first
estimate the Haar coefficients for all components and then
analyze the coefficients corresponding to the first one. The
testing problem is formulated in the next section, the pro-
cedure is described in Section 2. The asymptotic prop-
erties are discussed in Section 3. The results demonstrate
asymptotic optimality of the proposed procedure and they
are stated under mild conditions on the design. Section 4
illustrates the finite sample performance of the test. In
particular we present a comparative study of our test with
the Eubank and Hart (1992) test in the one-dimensional
case and with the ideal one designed for the case as if
the other components and all smoothness properties were
known. An application of the test to real data (study of the
female labor supply in East Germany) is thoroughly dis-
cussed in Section 4.2. Extensions to more general problems
including model check of additivity and multiple testing of
several components simultaneously are shortly discussed in
Section 3.3 and the proofs are postponed to Section 5.

1.1 Model and testing problem

We are given data (X;,Y;),i =1,...,n,with X; € R?,
Y; € IR', obeying the regression equation

Yi=F(X:) +& (3)

where F' is an unknown regression function with the ad-
ditive structure

F(QZ) :f1($1)+...+fd($d), (4)

and &; are normal random errors with zero mean and
known variance o2 . We allow for deterministic non-regular
design Xi,...,X, with possible replications. It is only
supposed that the design is rescaled to the unit cube
[0,1]%, that is, X;, € [0,1] forall i <n and £<d.

Our aim is to analyze each component f,,, m =
1,...,d. For simplicity we present the procedure focusing
on the first component f;, and on the problem of testing
linearity, i.e. the hypothesis Hy : f1(t) = a1 + b1t for some
constants ap, by .

Let ¢ be a test, a measurable function of observations
with values 0 (accept) and 1 (reject). Denote by Pp
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the distribution of the data Y;,...,Y, for a fixed model
function F', see (3) and (4). Let now Fy be a function with
a linear first component. The type I error probability is the
probability under Fy to reject the hypothesis: ap,(¢) =
Ppr,(¢ = 1). Similarly one defines the error probability
Br(#) of the second type. If the first component f; is not
linear, then B8 (¢) = Pr(¢ =0). Given «a > 0, we wish to
construct such a test ¢ that ap,(¢) < « for all Fy with
a linear first component and, in addition, it is sensitive
against a large class of alternatives F'.

2. TESTING PROCEDURE

In order to illustrate the main ideas, we begin with the
univariate case i.e. d =1.

21 Thecaseof d =1

Consider the univariate regression model
Vi = f(Xi) + &,

which corresponds to (3) with d = 1. We write here f
instead of f; to minimize the notation. The problem con-
sists in testing the hypothesis that the function f is linear.

Eubank and Hart (1992) nicely pointed out a common
feature of many procedures for model checking. Let Fy be
the set of regression functions considered under the null
hypothesis (here the linear functions). Then f is written
as f(z,00) +>_,0;4;(z) with f(z,60) a member of Fo
and {¢;} an orthonormal system. The testing problem
reduces now to testing 6; = 0 for all j, cf. also Stute
(1997).

The procedure proposed here follows this idea and relies
on a special piecewise constant approximation (the Haar
decomposition) of the function f.

Denote by I the multi-index I = (j,k) with j =
1,2,...and k=0,1,...,27 — 1, and by T, the set of all
such multi-indices. Let now the function t(¢) (the mother
wavelet) be defined by

i1=1,...,n, (5)

0, t<0,t>1,
P(t) =41, 0<t<1/2,
—1, 1/2<t<1.

For every I = (j,k) with j > 0and k=0,...
hr(t) = (27t — k).

Clearly the function ¢y with I = (j,k) is supported on
the interval A; = [277k,2 7 (k+1)] . Denote also by Z; the
index subset corresponding to the j-th resolution level:

j—l}

The idea of the test is to estimate from the data the coeffi-
cients ¢y of the approximation of the unknown regression

, 27 — 1 set

function f by the sum

J
co+cir+ Z Z crhy(z)

{=01€Z,

and then to check whether some of estimated coefficients
¢y differ significantly from zero.
For a formal description, define with I = (j, k) € Z

ppo= Y hi(X;)
i=1
br(Xi) = prthi(Xi).
Clearly p? is the number of design points in Ay, that is,
=#{i: X; € A;}, [ eT.
We also define two functions 9o = py ' and )y (t) =

pi't with p2 =n and p? = 31, X? and introduce the
index set

() = {0, 1} + | Ze. (6)
£=0

By N(j) we denote the number of indices in Z(j). Ob-
viously N(j) = 2/+! + 1. Let 6(j) denote a vector in
RNG) with entries 6;, I € Z(j). Define the vector 6(j)
as solution to the quadratic problem

et z =S Gn(x

I€Z(j)

2

0(j) =

To get an explicit expression for @(]) we introduce vec-
tor notation. Let g be a function observed at point
Xq,..., X, . We identify every such function with the
column-vector g in IR™ with the entries ¢(X;) and define
llglln by llgllz = >, ¢*(X;). Let also Y stand for the
column vector (Y1,...,Y,)". Introduce a nxN (j) -matrix
U(j) with entries v7(X7):

Then
~ . inf . .
0G) = , 28I - v ()00

= V{iHe@)'y =w@)'y

where V(j) is the pseudo-inverse of U(j)T¥(j), that is,
V() = {¥()"e(G)} and W(j) = RV (j) isa nx
N(j)-matrix.

Since the errors & are normal N(0,02), we obtain

by (5) that 5(]) is a Gaussian vector with the mean
0 (j)) =W(H)TF =V(5)¥(4) " f and the covariance ma-
trix o2V (j5),

0(j) ~ N {6"(5),0°V(j)} .



The entries of the matrix V(j) (resp. W(j)) will be de-
noted by wvrp (resp. w;r) where I,I' € 7 and i =
1,...,n. All these values depend on j, but do not in-
dicate this dependence explicitly to simplify the notation.
By 9 we denote the part of the vector 0( j) corre-
spondlng to j-th resolution level: 9 = (01, Iez)"
that 9 € R? . Obviously 0] =W,;'Y where Wj is the
n x 27 -submatrix of W (j) corresponding to the index set
i W= (wir,i=1,...,n, I €Z;). Similarly we define
the 2/ -vector @} and 27 x 27 -submatrix V; of V(j):

0;:(0;,]61]‘), ‘/}::(’l}]’p,l,l’ezj).

Clearly 8; ~ N'(8%,0°V;) and V; = W, W;.

2.2 Level test statistic for d = 1

The proposed testing procedure is based on the fact that
for f linear, all the empmcal coefficients 01, I#0,1,are
zero mean Gaussian r.v.’s. We build for every j one test
statistic corresponding to the hypothesis 0;7 =0.

By definiton 8; = W, Y which yields 8; ~
N(6},0%V;) with V; = W, W;. This naturally leads to

~T ~
the likelihood-based statistic S; = 6; V,;”6; where V;~
means the pseudo-inverse of V. Under the null hypothe-
sis (that is, for a linear function f), it clearly holds 87 = 0

and ﬁj = W;'¢, and hence,

S; =W,V WiE=¢"R;E (7)
where R; = W; V7 W," = W; (W W;)~ W is a projec-
tor in the space R™ (that is, R} = R;). By N; we denote
the rank of R;. By definition N; < 27. The definition (7)
particularly yields that ¢2S; follows the x?-distribution
with INV; degrees of freedom.

The level test statistic T} is defined via centering and
standardization of S; . The following simple properties are
useful here:

ES; = B¢ R;€ = 0® ttR; = 0> N;,
E (S; - 0°N;)* = 20" N;.

Since the noise variance ¢ is usually unknown, we replace
it by a pilot estimate 52, see Section 2.5 below. This leads

to the test statistic T} of the form:

0 V-0, — 52N,
T — Jj g ) J
! 52,/2N;

An important feature of this statistic is that under the null
hypothesis, it has a nondegenerate distribution. (Which
approaches the standard normal law as N; grows.) More-
over, this distribution is known (see Section 2.6 for a closed
form expression) which allows precise evaluation of the cor-

(8)
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responding (1 — a)-quantile ¢;, defined by
Py (T; > tja) = a, (9)

where Pg denotes the distribution of 7} under the null
hypothesis.

2.3 A multiscale test for d = 1

The proposed test analyzes all statistics 7} for different
j simultaneously. Similar ideas are discussed extensively
in the literature. Eubank and Hart (1992) proposed the
so called “order selection” test using a modified Mallows’
criterion (Mallows, 1973) for selecting the number of con-
sidered terms of an orthogonal series expansion for the
deviation of the underlying function f from the null hy-
pothesis; see also Aerts, Claeskens and Hart (1999). This
method leads to the maximum of 0725; — (1 + C,)N;
where (1+ C,)N; is the penalty term for going to a more
complicated model. A similar test, called the data-driven
Neyman’s smooth test is proposed in Ledwina (1994) and
Kallenberg and Ledwina (1995). Fan (1996), Spokoiny
(1996) and Fan and Huang (1998) considered the tests
based on the maximum of centered and standardized sums
like T . Such a test has a strong appeal: the results from
Ingster (1982, 1993) show that the test T; with a special
choice of the index j is rate optimal against a smooth
alternative with a smoothness degree s. The test based
on the maximum of 7} is adaptive in the sense that it is
near optimal against a smooth alternative with unknown
degree of smoothness.

Here we apply the method based on the multiscaling
idea (see Section 2.4 for further discussion) which is close
to the proposal from Fan (1996) and Spokoiny (1996): the
test statistic 7 is defined as the maximum of T —t; o
over all considered levels j with t;, from (9). Namely,
we consider all j from j = 0 until the finest resolution
level j, defined as

Jn = [logy(n/3)]
where [a] means the integer part of a. We now set

T* = max (Tj

—tia).
0<j<jn i)

A choice of the critical value for this test is discussed in
Section 2.6.
2.4 A multiscale test for d > 1

The basic idea of testing is similar to the univariate case
and it is based on the approximation of each component
fm from (3) by the sum

in
AmTm + Y Y crmhr(Tm),

j=01T€Z;

m=1,...,d.
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(We skip here the constant term to provide identifiabil-
ity of each component.) Let us fix a level j for the first
component and a level j, for the remaining ones, and
let Z(j) = {0,1} + Up<<;jZe. We also define Z'(j) =
{1} + Up<i<; Ze - To define the level test, we approximate

F(z) by

Z crihi(zy) +Z Z crmhr(zm).

IeZ(j) m=2J€Z'(jn)

Here N = 2i»t! coefficients are used for each component
fm, m > 2, and, assuming that j < j, , the total number
of coefficients is at most Nd + 1. We modify now the
definition of j, from the one-dimensional case to provide
Nd+1 < 2n/3 that leads to the choice

in= (3]

To define the test, we first standardize each basis function:

Z h% (Xi,m)
i=1

,X;a) is the coordinate representation of

(10)

Grm(t) = py ,hi(t) with pf =

Here (XZ'71, N
X;.

Now let some j < j, be fixed. Denote by Z(d,j) the
index set

d
2(d.5) = {10, TeZ(G) } x [[{T.m). 1€ TG}
and let

N(d,j) = N(j) + (d = 1)N = 20T 4 (d — 1)29» 1 41

be the number of elements in Z(d,j).

Set W(d,j) for the n x N(d,j) matrix with entries
¢I7m(Xz) - u[mhl( zm)a i = la"' )1, (Iam) € I(da]) 3
and define the vector 8(d,j) in RN(49) as a solution to
the quadratic problem:

arginf
6(d,j)e RN (*9)

0(d.j) = Y —¥(d,)6(d, )|

Z Orahra(Xin)

IEI
2
1m>> |

V(d,j)¥(d,j)'Y =W(d,j)'Y

arginf
o(d.j)eRN (")
i=1

_Z Z elmwlm

m=2J€eT'(j
As in the univariate case, we derive
6(d,j) = (11)

where the matrix V(d,j) is the pseudo-inverse of
U(d,j)"¥(d,j), ie. V(d.j) = {¥(d,j)"¥(dj)} and
W(d,j) = ¥(d,j)V(d,j). The entries of the matrix

V(d,j) (resp. W(d,j)) will be denoted by v(r m) (1 m)
(resp. wj (1,m))-

Similarly to the univariate case, we define the level test
making use of the subvector 8; = (Ar1, I € Z;) and the
submatrix V; = (v(11),r,1), I, I' € ;) of the covariance
matrix V(d,j). Let W, again denote the submatrix of
W(d,j) corresponding to the level j of the first compo-
nent: W; = (w;(r,1),i = 1,...,n, I € Z;). Then clearly

0; = WY and V; = WTW The test statistic 7} is
defined as follows, cf (8):

AT~ N N
- GVi0i &N, Y'RY -3N;

! 52,/2N; 62,/2N; '
where R; = W;V, W, and Nj is the rank of R; (or
equivalently of V;), N; < 2/. With t;, fulfilling (9), the
final test statistic is again of the form:

= tja)-

T* = max (Tj

0<j<jn (12)

Remark 2.1. In some practical applications, see e.g.
our example in Section 4, one or more explanatory vari-
ables X,, can be discrete with only a few possible values,
say two or three. In that case the corresponding compo-
nent function f,, is completely determined by its values
at these points and it can be precisely expanded by a finite
Haar sum with very few Haar levels. Of course, for such
situations it is not reasonable to consider all j,, Haar lev-
els for those components and the required number of levels
for every particular component f,,, should be determined
by the identifiability reasons, see Section 4 for an example.

2.5 Estimation of the noise variance

Here we indicate how the noise variance 2 can be esti-

mated from the data. One may apply two different ap-
proaches for variance estimation. One way is based on
residuals from locally polynomial fitting, see e.g. Rice
(1984) or Gasser et al (1986) for the univariate case or Hall
et al (1991) and Spokoiny (1999b) and references therein
for a detailed discussion of the multivariate case. Another
approach is to retrieve the residuals from the same orthog-
onal series expansion which is used for model checking.
Here we follow the latter proposal.

Let j, be defined in (10). Due to this definition we have
n/3 < d2/=*t! < 2n/3.

Let a(d, Jjn) be the least squares estimator from (11)
with j = j,, that is, the maximal number of Haar coeffi-
cients are used for all components f,, . This vector is Gaus-
sian with the mean 6*(d,j,) = W(d, j,)F and the co-
variance matrix o2V (d, j,) . Moreover, ¥(d, jn)a(d, Jn) =
II,,Y where

L, = ¥ (d, jn) (. ja) " ¥(d: ) 97(d, i)



is the projector in IR™ on the subspace generated by ad-
ditive functions of the form

004—2 Z 91m¢1m wm)

m=171€T'(j,)
One can easily check that

= |F - IL.F|;, + E|l¢ - L3
=||F -0, F| + o? tr(I, — 10,,)
= |F T, F|}, + 0®(n —rn)
where I,, denotes the identity nxn-matrix and r, is the
rank of II,, . By definition r, < 2n/3.
Under regularity conditions on the function F', see e.g.
Lemma 1 in the next section, the accuracy of approximat-

ing F by such an expansion tends to zero as n tends to
infinity in the sense that

n Y F-T1,F|% - 0, n — oc.

This consideration prompts one to use the value
~ 1 N
5% = 1Y —®(d, jn)0(d jn) 7,

n—ry

for estimating o?. It is important to mention that if
F =0, then (n —r,)0” = || — I1,£|2 follows the X2 -
distribution with n —r, degrees of freedom and 5% and
0(d. jn) are independent.

2.6 Critical level of the test

First we again discuss the univariate situation with
d = 1. In that case the function F coincides with the
first component f; and its structure is known under the
null hypothesis. Moreover, in view of the method of ap-
proximation, the linear trend in f; has no influence on
the remaining coefficients and we may assume that the
function f; is exactly zero. The same applies to the vari-
ance estimate 2. This reduces the linear hypothesis to
the case of a simple null hypothesis f; = 0, that is, the
observations Y; coincide with the noise &;. In this situa-
tion one has S; = £€"R;&, 6% = (n—r,) " ||(I-T1,)€|2 =
(n—rp) " E(1-T,)€, where R; = W;V, W, and T de-
notes the unit operator in IR™ and the test statistics 7}
can be represented in the form

¢TR;€ — 52N,
A2 /2N.
¢"R;€E(n

Ing\/WVj

Therefore, each T} is the ratio of two quadratic forms of
&;’s and as a consequence, it does not depend on the noise
variance and its distribution can be precisely described via

T, =

(13)

Journal of the American Statistical Association, 777 777

the Fisher distribution Fi; —», with N; and n—r, de-
grees of freedom. The values ¢;, defined in (9) can there-
fore be calculated using the proper quantile of this Fisher
distribution and they depend only on N;, n—r, and a.
Since all the T ’s are constructed on the base of the same
data, they are dependent in a rather complicated way and
hence, the closed form expression for the distribution of the
maximum T* = max;<;, (Tj —t;,«) is difficult to obtain.
Therefore, some Monte-Carlo experiments can be used for
finding a proper quantile A satisfying Py (T* > \) = a,
where Py means that each T; follows (13) with a stan-
dard Gaussian vector &. Having done this, we define the
test ¢* as

" =1(T* > \). (14)
For the general multivariate case one can show that un-
der some regularity conditions (see Condition (D) in the
next section) the influence of the remaining components
fo,- .., fm on the test statistic T is asymptotically neg-
ligible and we therefore determine the critical value A\ in
the same way using simulated data from the d-variate
model with the same regression design and with the van-
ishing regression function and standard Gaussian errors.
For further discussion and details concerning this Monte-
Carlo method, see Section 4 or Spokoiny (1999a).

Remark 2.2.  Note that the adjustment of Tj by t; o is
more of theoretical nature allowing for the unified exposi-
tion. Indeed, all the test statistics 7} have non-degenerate
distribution with the variance 1 and moreover, for large j,
this distribution is close to the standard normal CDF. This
means that all the ¢; , ’s are of the same order and the ef-
fect of this adjustment is negligible. This issue is confirmed
by our simulation results, see Section 4.

3. MAIN RESULTS

In this section we present asymptotic properties of the
proposed testing procedure. We state the results on the
type one and type two error probabilities separately since
we evaluate them under different assumptions on the de-
sign variables. The result on the type I error probabili-
ties ap,(¢*) is valid under mild assumptions on the de-
sign. But for high sensitivity of the test, we need slightly
stronger regularity conditions on the design variables.
We begin by describing the required assumptions on the
model.

31

When testing the first component of the function F from
(4), the remaining components fs,...,fy can be viewed
as nonparametrically specified nuisance parameters which
are to be estimated by a pilot estimator. In order to en-
sure the required accuracy of estimation, we need some

Assumptions
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conditions on the rate of approximation of each function
fm with 2 < m < d by the Haar series. We formulate
these conditions exactly in the required form. Later we
show that these conditions are met, for instance, under
mild conditions on smoothness of f,, and on the design
D CTND. ¢

Recall that we identify every function g on IR? with the
vector g = (9(X;),i=1,...,n)" in IR". In particular,
each component f,, is identified with the vector f, =

(fm(Xim),i = 1,...,n)" and %, is understood as
the vector with the elements 5 (X;m) = A;jnhl(Xi,m) .

Recall also the notation [|g||2 = Y7, ¢°(X;).
Denote by £,,(j) the linear subspace in IR" generated
by the functions (vectors) {;,,}, I € Z;, 0 <L <,

J
Lm(j) = {eom Ot DD emzm,m} :

(=0 1€,

Clearly all the functions (or vectors) from L,,(j) depend
only on m-th coordinates X;, of design points X;, ¢ =
1,...,n. By I, ,f,, we denote the projection of f,,

onto Ly, (jn) w.r.t. the distance || - ||,
— arginf
Moot = 280 )7, gl
= ggzglnf Z|fm zm - (Xz,m)|2

In our results we impose the following condition:

Condition (D) For some fized constant C and n large
d
> If
m=1

The following lemma shows that condition (D) is satisfied
under mild smoothness conditions on each component f,, .

0 fonlln < Con™'/?

Lemma 1. Let pu,,,, be the m-th marginal of the em-
pirical design measure py ,

B Z
Let further C; be a constant such that for every 0 < a <
b<1 with b—a > 1/n, it holds

Hnmla,b] < Ci(b—a).
-2

Xim € A), m=1,...,d

Nmm =

If each f,,, m

|fm($) - fm

then condition (D) is fulfilled with C' depending on o,
C1 and Cs only.

Another situation in which the difference ||f,,
O nfonlln can be easily controlled, is the case of a dis-
crete m-th component (i.e. when all X;,, belong to some

,d, is a Lipschitz function i.e.

(ajl)‘ S 02|$ - xl|= V:E,:E’ € [071]7

finite set). In that case, the value || f,,
provided that n is large enough.

O foplln 1s zero

3.2 Asymptotic properties of the test
Let ¢* be the test introduced above in (14).

Theorem 1. Suppose that the observations (X;,Y;),
i=1,...,n, obey the regression model (3) and (4), and
let condition (D) hold. If the first component fi of the
function F' is linear, then

Pp(¢* =1) <a+di(n),

where §;(n) tends to 0 as n — oo and depends only on n
and constant C' arising in condition (D).

The proof of the theorem is given in Section 5.

We now turn to the results concerning the sensitivity of
test ¢*.

The first assertion shows under which conditions we re-
ject an alternative with a high probability.

Theorem 2. Let the function F in model (3) be of the
form (4). Let also 8} = (67 ,, I € Z;) be the subvector of
the vector 0*(d,j) corresponding to j-th resolution level
of the first component and let V; = (v(r 1),(1,1), I, I' € Z;)
be the covariance submatrix corresponding this mdex set.
If, for some j < j,, 8>0 and ¢ > 0, we have

* — —2pn% | v, — n* -
T; = (2N;) 7207201 'V 0) > tio + A+t 5 + cy/10g jin,

. !
with th 5
then

defined by the equality P(T} < —t) ) = f3,

Pr (4" =0) <+ 61(n)

where 61(n) depends on a,f and c¢ only and §;(n) — 0,
for n — oo.

Remark 3.1.  This result claims that the test ¢* re-
jects with a probability close to 1 any alternative for which
at least one of T exceeds c'v/logj, with some fixed con-
stant ¢’ . Therefore, we may suppose that the error of the
second type may occur only if

Tj* S cl V lOgjna

Now we discuss how this statement can be transformed
into the result about the uniform rate of testing. Following
Ingster (1982, 1993) we consider the class of alternatives
with the first component f; separated from the null (the
set of the linear functions) with distance at least o,

0<J<Jjn- (15)

inf [If1() —a—b-]| > 0

where || - || means the usual Ly -norm, and in addition we
assume that f; is smooth in the sense that f; belongs to



some class of functions F . Ingster (1982) established his
results assuming that the underlying function belongs to a
Holder or Ly -Sobolev ball F, Spokoiny (1998) studied the
case of a more general L,-Sobolev ball with any p > 1.

We are interested in a minimal separation distance p
which still allows for a uniform testing. To state the re-
sult we need some regularity conditions on the design and
smoothness conditions on the first component f;. The rea-
son why stronger conditions on the design are required can
be explained by the fact that a degenerate design leads to
an identification problem: the components cannot be sep-
arated and therefore it is impossible to make any inference
about them. Set

us(j) = Iiélzf.QjMI/n’
u*(j) = Isg%t).QjMI/n,

where, given I = (¢, k), the value M; stands for the
number of design points X; whose first component be-
longs to the interval A; = [k27¢ (k + 1)27¢), that is,
Mr = #{i: X;1 € Ar}. Design regularity means in par-
ticular that w,(j) is bounded away from zero i.e. each
interval A; contains enough design points X;;, cf. the
condition in Lemma 1.

Recall the notation V; = (v(z.1),r1), [,I' €Z;) and
N; denotes its rank, N; < 27. Set

v*(3) = [IVjll-

Here, the norm ||A|| of a matrix A is understood as the
maximal eigenvalue of this matrix. We understand design
regularity in the sense that V; is non-degenerate and all
the v*(j)’s are bounded.

Finally, given an integer s, suppose that the function
fi1 is s times differentiable and the value

1
" = / £ (@) de
0

is finite, where fl(s) means the s-th derivative of f; .

Theorem 3.  Let condition (D) hold. Suppose there ex-
ists an integer s and for some j < j, , the first component
f1 of the model function F' satisfies the following inequal-

ity
inf || fi —a — bpr |5 >
a,b

Cyrin277% 4 CQ—Z 8; v*(4) 2j/202m

with ¢y 1(x) = z; and constants C; and C> depending
on s only, then

Pp(¢™ =0) <éi(n) =0,
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with 6;(n) as in Theorem 2.
The proof of this assertion is based only on (15) and can
be found in Hérdle et al. (1997) or Spokoiny (1999a).

Remark 3.2. By minimizing the sum of the form
B1n2775 4+ By21/?52/loglog n with fixed B; and By with
respect to j we find that a smooth alternative will be re-
jected with a high probability if

n 4s+1
infn lfi —a—b 2> By | ————
nf -ty —a = ol 2 B )
for a constant Bz depending on B; and By only.
Spokoiny (1996) has shown that this rate is optimal in
the problem of testing against a smooth alternative with
an unknown degree of smoothness s.

3.3 Extensions

Here we briefly discuss possible extensions of the test
which we introduced previously.

3.8.1 Testing additivity

Though our test was constructed for testing functional
forms of the additive components, it can also be useful
when the presence of interaction is at question. Often, the
additive structure is given or wanted by the economic the-
ory the particular model is based on, see e.g. Deaton and
Muellbauer (1980) or also our application in Section 4.
However, not only from a statistical point of view it is in-
teresting to scrutinize this assumption in some cases. Sev-
eral approaches of testing additivity are discussed in Hart
(1997), but nonparametric theory for this problem is quite
recent, see e.g. Sperlich, Tjgstheim and Yang (1999), also
for more references.

As was pointed out at the beginning, our procedure can
test for presence of a component. Thus, for testing of no
interaction one can proceed as follows. Introduce artificial
covariates X, m = X;n Xy for m # m'. No interaction
between X,, and X,, means that the covariate X,,
has no effect, which is a particular case of the problem we
considered before.

3.3.2  Non-Gaussian errors

In our results we suppose Gaussian homoskedastic noise
with unknown dispersion o2 . This assumption allows sim-
plification of the calculations and highlights the main
ideas, skipping a lot of technical details which appear when
considering non-Gaussian noise. However, the results from
Section 3 apply to i.i.d. errors with unknown distribu-
tion under some moment conditions. We refer to Spokoiny
(1999a) for the analysis of non-Gaussian noise in the uni-
variate case. An extension to the multivariate situation is
straightforward.

3.8.8  Multiple testing
The above test was developed for testing one compo-
nent of an additive model. In practice one could also be
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interested in testing all the components of the model simul-
taneously. This leads to a multiple testing problem which
requires a more careful evaluation of the corresponding
critical values. Following the rule proposed in Section 2 one
can construct for every component f,, the corresponding
test statistic 7, and calculate the corresponding criti-
cal level \,,. Now we apply the same idea of multiscale
testing as one used for construction of every component
test. Namely, to provide a prescribed nominal level a of
the multiple test, which checks all components f,, simul-
taneously, all these critical values A, should be slightly
increased, e.g. by the same value A\ such that

P, ( max d(T,’fl —Am) > A/\> <a

where P means the distribution on the space of observa-
tions under the model with F' =0 and with the standard
Gaussian errors (that is, Y; are i.i.d. standard Gaussian).

3.8.4 Local test

In parallel to the test T™ based on the maximum_ of
some quadratic forms of the empirical Haar coefficients 6y,
one may consider another test which is called the “local”
test in Hérdle, Sperlich and Spokoiny (1997). This test
is based on the maximum of the standardized empirical
coefficients 67 over all I € Z;. More precisely, for every
j < jn, we define

02
Tj,loc = max 6—1 —Tj

I€Z; E%

where 07 =6%v(1,1),1,1) and 7; are such that

Py (Tonc > Tj) = Qloc

with P, being again the distribution under the no-
response model with standard normal errors. The multi-
level “local” test ¢ . is defined by

¢roc =1 (Héax Tj,loc > T*)

JSIn

where 7* fulfills

Py ( ax Tjioc > T*> = Quoc-

J<in
For applications one can use an approximation 7; =
2log N;j —2loglog N;j+2log al_oi . Such defined “local” test
has been shown to be sensitive against a “non-smooth” al-
ternative (e.g. an alternative with jumps), see Hérdle et
al. (1997). In practical applications one would be willing
to apply both tests T* and 77}, simultaneously which re-
quires some additional adjustment of the critical levels for
both tests. Taking into account the specific structure of the
test ¢y, our recommendation is to perform this “local”

test at a very small significance level, e.g. ajo. = 0.005 or
even smaller which does not require an additional adjust-
ment of the test ¢*.

Also the theoretical properties of such defined test are
presented and discussed in Hérdle et al. (1997).

4. SIMULATION STUDIES AND AN APPLICATION

The performance of the suggested test procedure for fi-
nite samples was examined in a simulation study. Then we
apply the procedure to the analysis of female labor supply
data. The goal of the simulation study was to illustrate the
performance of the test for different smoothness properties
of the investigated function, impact of non-normally dis-
tributed error terms, and to observe the (relative) power
of the test against smooth alternatives.

4.1 Some simulated examples

We considered 3-dimensional regression problems

Y =m(z)+¢ (16)

x = (z1,29,23)T, with a function m having additive com-
ponents taken from the following set of functions with dif-
ferent smoothness properties:

fi(z) = 2sin(nz)
fa(z) = 2sin(37z)

fo(z) = 2sin(27x),
and  fy(z) = 2* .

Y

Note that the indices v = 1,2, 3,4 of the f, in this sec-
tion refer to the functional form and not to their ordering.
For investigating the level and the power of the test, we
consider the following three specific models:

mi(z;v) = (1—v)zr +vfa(zr) + fi(z2) + fa(zs),
ma(z;v) = (1—v)zr +vfs(zr) + fi(z2) + fa(zs),
mz(z;v) = (1=v)vr +vfa(z1) + fi(z2) + fa(w3),

each time testing the linearity of the first component
(1 —v)zy +vfy(x1) with v running from zero to one. This
parameter v has the same meaning as the separation dis-
tance between the null and the alternative.

The explanatory variables were always uniformly dis-
tributed on the cube [—2,2]?. Unless stated otherwise, the
sample size was set to n = 150 and the error term stan-
dard normal. We did not assume to know the standard
deviation but estimated o as suggested in Section 2.5 and
got, as expected, only slightly overestimated ¢ (5 to 15%).
For getting the critical values we applied 249 Monte-Carlo
replications to economize on the computational time. How-
ever, some examples were conducted with a larger number
of replicates and the results are very similar. For practical
applications, more precise critical values can be expected
when resampling 499 or even 999 times.

Further, as discussed in Remark 2.6, we have to decide
how to choose t; .. We present all results for the two most
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natural choices. First, we set ¢; o equal to the Fix, » ., (a)-
quantile with a = .01, .05, .1 being the significance level (in
tables indicated by F(«)); second, we tried our procedure
with simply ¢, = 0 (in tables indicated by '0’).

All calculations are done in GAUSS, graphics in XploRe.
The results after 500 runs can be found in Table 1, to-
gether with the average over the resolution levels at which
our null is rejected. The latter delivers some qualitative
information to the practitioner about the frequency where
the violation from the linear null occurs.

The tested (first) component of the mean regression
function has different smoothness in these three examples.

The results demonstrate a lower power of the test for less
smooth first component which confirms the theoretical is-
sues. Smoothness of the o and z3 functions has no strong
influence on the results. One also can see that the resolu-
tion level at which the procedure rejects the null, clearly
depends on the smoothness of the first component as well
as on the distance between null and alternative. It can be
seen, that only looking at one special level would reduce a
lot the power of our procedure. All the numerical results
are completely in agreement with the theoretical investi-
gations from Section 3.

Table 1. Percentage of rejections and average of active resolution level ji (underlined) for functions (1 — v)x1 +
vfy(z1), v = 2,3,4 in model my(z;v), k = 1,2,3. In left column v running from 0 to 0.8. Re-
sults given for test with t; o = F(a) and for test with '0’.
f2, m1 f3, ma fa, m3

a = .01 .05 .10 .01 .05 .10 .01 .05 .10
tia=|'0 F(a) '0' F(a) 0" F(a) |'0" F(a) '0" F(a) ‘0" F(a) |'0" F(a) '0' F(a) '0" F(a)
0.0 .012 .010 040 .044 .082 .080 .004 .010 .048 .050 .106 .102 .008 .010 .050 .062 108 .094
01 .016 .01/ .072 .050 .126 .106 .004 .006  .058 .060 110 .10/ .022 .020 .078 .062 182 .128
0.2 .060 .028 212 160 .338 .278 .028 .02} .128 .128 224 .232 058 .044 .170 .140 288 244
0.3 208 .130 474 .394 .596 .550 .066 .060 246 .290 372 .396 188 .108 426 .352 556 .510
0.83 1.20 0.97 1.14  0.99 1.13 | 2.18 2.77  2.35 2.72 242 2.73 | 1.04 1.13  1.14 1.20  1.43 1.23
0.4 476 .362 148 104 .82/ 7186 210 .236  .464 .502 .620 .642 .376 .284 .634 .582 728 .70/
0.5 L7156 .638 .926 .898 .972 .960 .398 454 712 738 .820 .838 628 542 .860 .81} .918 .896
0.6 .932 .86 .984 .984 .998 .996 .596 .692 .878 .912 .950 .958 864 .810 .970 .956 .982 .980
07 .970 .962 .998 .994 1.00 1.00 .832 .878  .970 .97) .988 .986 .964 .936 .990 .98/ 1.00 .998
0.91 0.97 0.92 0.95 0.92 0.93 | 2.79 2.97  2.77 2.89  2.77 2.85 | 1.02 1.03 ~ 1.02 1.02  1.02 1.02
0.8 .994 .992 1.00 1.00 1.00 1.00 912 .946 .990 .990 .996 .998 .998 .988 1.00 1.00 1.00 1.00

The presented results in Table 1 for two different tests
are very similar giving a slight advantage to the choice
tjo = 0. We therefore consider only this choice in the
sequel.

So far all simulations were done generating the data with
standard normal errors. As we use also the normal dis-
tribution in the Monte-Carlo method for estimating the
critical value of the test, it is of interest to check for
a notable loss of power if the underlying error distribu-
tion is non-normal. We therefore examined the test per-
formance when the errors are from the centered and stan-
dardized Xif-distribution with df = 5,10(and for compar-
ison o0). The simulations were done for the model (16)
with m(z) = (1 —v)z; + vfi(x1) + f3(z2) + fa(zs). The

results are given in Table 2 and show an astonishing stable

performance of the test w.r.t the different error distribu-

tions.
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Table 2. Percentage of rejections for the function (1 —v)z1 +

vfi(z1) + fa(z2) + fa(xs) (v in left column) when the

errors are X2, respectively normal distributed.

11

Next we compared the performance of our procedure
with the ideal (“oracle”) parametric t-test (or Neymann-
Pearson NP), see below, for the sample sizes 150 and 300.
This gives us an idea about the relative efficiency of the

£~ x2 X3 X2 test. Here, t-test means testing the hypothesis Hy : §2 =0
a=| .01 .05 .10 | .01 .05 .10 | .01 .05 .10 in the model
0.0 | .008 .058 .100|.006 .042 .102|.011 .057 .104
0.1 |.028 .102 .152|.016 .082 .144|.019 .093 .150 Y =fo+ fiz1 + Bafi(x1) + B3fs(x2) + Bafa(zs) + &
0.2 | .102 .210 .312|.104 .222 .314|.108 .263 .356
0.3 |.290 534 .640|.302 .530 .648|.282 506 .620  p. ity known functions fi, fs, f.
0.4 | .546 .806 .874|.530 .774 .830|.580 .800 .855 Fi 1 is wivi b functi ¢ 1
0.5 | 808 918 .958| .802 .93, .97 | .798 930 .962 igure 1 i1s giving the power functions of our wavelet
ol ' ' ' ' ' ' ' ’ test and the ideal t-test for the 5% significance level. They
0.6 | .944 984 .994 | .930 .95 .992|.925 985 .992 . trate how fast th ¢ dJure i
0.7 | .980 .99 1.00|.980 .996 .998|.985 1.00 1.00 egli’}r:s rate (t)'w a;, . epol;’viro Ouélprocﬁ ur;;ﬁcref:ses
0.8 | .996 1.00 1.00|.998 1.00 1.00|.998 1.00 1.00 ~ 21C D Separation distance between the null and the alter-
native decreases for an increasing number of observations.
Power Function (.05,150), F1 Power Function (.05,150), F2
§_ L L L 1 L §_ L L — L L - .
& L X L
p 2 i 5 i
g ] I g N I
OTB
g . .
8. L L
gz I I
g
g. L L
l:) DTZ 0t4 OTG OTS (’J OTZ Ot4 076 DTB
v

Figure 1. The power functions for n = 150 (upper) and n = 300 (lower), testing linearity of the first component of my(z;v), for k =1

on the left, k = 2 on the right with 5% significance level. Solid line is for the wavelet test, dotted line if using t-test with all information

about functional forms.

For one dimensional models there exists a huge variety
of nonparametric methods to test functional forms such
as linearity, see Section 2.3. Although our procedure has
been developed for component analysis in additive mod-
els, it could be of interest to know how well it does in the
one dimensional case compared to existing methods. We
chose the linearity test of Eubank and Hart (1992), see
their Example 2 (p.1416) for exactly the problem of test-
ing linearity. Along their recommendation we applied the
variance estimator of Hall, Kay and Titterington (1990)

and used a polynomial basis to compute the residuals. We
considered the model m(x) = (1—v)z+v fi (z). The results,
given in Table 3 indicate that our method is competitive
even in the special one dimensional case. Note, however,
that our test is using Monte-Carlo-Methods whereas the
Eubank/Hart test is based on asymptotic results. Conse-
quently, the latter has strong computational advantages

but can underperform in such small samples as n = 150.
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Table 3. Percentage of rejections for the function m(z) = (1 —
v)x + vfi(z) (v in left column) for our wavelet test with
tj .o« = F(a) and Eubank/Hart test with n = 150.

Wavelet test Eubank/Hart test
o= .01 .05 10 .01 .05 10
0.0 | .005 .0383 .086 | .024 .064 .120
0.1 | .030 .167 .237 | .016 .078 .190
0.2 | .235 449 .564 | .068 .344 .530
0.3 | .656 .876 .938 | .402 .802 .908
0.4 | .945 .991 .998 | .822 .982 .994
0.5 | .993 1.00 1.00 | .986 1.00 1.00
06 | 1.00 1.00 1.00 | 1.00 1.00 1.00

4.2 Applications

We now turn to an application to illustrate the method
with real data. The data set is a subsample of the So-
cio Economic Panel of Germany from 1992. To study the
female labor supply in East Germany, 607 women with
job and living together with a partner in East Germany
have been asked for their weekly number of working hours,
Y;. The following values have been chosen as explana-
tory variables: the age of the woman X, her earnings per
hour X5, the prestige index of her kind of profession X3
(called “Treimann Prestige Index” , see Treimann, 1978),
the monthly rent or redemption X, for their apartment or
house, the monthly net income of her partner (in most
cases her husband) Xjs, her education Xg measured in
years, the unemployment rate X7 of the particular country
of the Federal Republic of Germany where the woman is
living in and the number of children younger than 16 years,
Xg. These data have already been analyzed nonparamet-
rically, see e.g. Sperlich (1998) for functional forms and
further discussion.

The study of female labor supply is quite common in
economic empirical research and usually done with (log-)
linear additive models using indicators for which the above
mentioned set of variables is typical, see e.g. Mroz (1987),
Blundell, Duncan, Meghir (1998), Strom and Wagenhals
(1991) or any Handbook of Labor Economics. Among
them, especially Mroz (1987) investigated the sensitiv-
ity against model specification in this context and found
tremendous differences in results depending on the partic-
ular specification. A first natural generalization would be
to allow the additive components to be non-(log-)linear.
Exactly this we now want to investigate. Later, we will
additionally have a look at the additivity assumption.

Since some of these explanatory variables are not only
discrete but have even less then 10 different values ob-
served (e.g. for children and unemployment rate of coun-
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try - there are only five countries in East Germany), we
have to choose respectively low ji(n) (the highest con-
sidered wavelet level for k-th component) to avoid over-
parametrization in this component, see Remark 3. There-
fore we chose jg(n) = 2 for Xg, jr(n) = 2 for Xz,
and for Xg (number of children) only js(n) = 1. For
X4, Xs, X3, X4 and X5 we chose j, = 4. These are also
the functions of interest we want to analyze.

An analysis of the residuals from our nonparametric fit
indicates that the variance of the residual does not really
differ over the range of every explanatory variables which
justifies the assumption of a homogeneous noise for this
particular application.

In Figure 2 we have displayed the wavelet coefficient es-
timates used for the test statistics. They are standardized,
i.e. divided by v;o, but not corrected for the correlation
inside the levels j; = 0,1, 2,3,4. The length is indicating
their absolute value.

Often, the earnings per hour (X5) are modeled log-linear
rather than linear by some reasoning from economic the-
ory. So in a second run we also want to test the influence
of In(X5) instead of using X, against linearity and gave
the coefficients in the lower right.

Taking into account the construction of test statistics
T;,T*, Figure 2 gives some ideas where we would expect
the test to reject the null: e.g. for “earnings per hour” at
J1 = 0, “prestige” at j; = 4, and “log(earnings per hour)”
at j; = 2, whereas it is not that clear for “age”, “income of
partner” or “rent/redemption”. For the latter one we even
would guess that there is no significance in the coefficients.

The wavelet test delivers the following results: the lin-
earity hypothesis was rejected for X; (“age”) at only 10%
(at j1 = 2), X5 (“earnings per hour”) at 1% (at j; = 0),
for X3 (“prestige”) at (almost) 5% (p-valuex 0.052, at
j1 = 4), and for In(X,) also at the 1% significance level
(at j1 =2).

Though the additivity assumption is not of prime inter-
est for us, we finally also looked for possible second order
interactions between the regressors. We applied the pro-
cedure described in Section 3.1 to all combinations X; X,
k+#3j,7,k=1,...8. As before, we chose js(n) = j7z(n) =
2, js(n) = 1. It turned out, that the null hypothesis no in-
teraction between “age” and “prestige” is rejected at 1%,
“prestige” and “years of education” exactly at 5%, and be-
tween “age” and “u-rate” and “earnings of husband” and
“u-rate” at the 10% level. Hence, our testing procedure
enabled us to detect that the underlying data are incon-
sistent with the classic female labor supply model assump-
tions concerning the function form. Including now the two
interactions “age” / “prestige” and “prestige” / “years of ed-
ucation” repeated testing all one dimensional components
on linearity, we now got the following p-values: for “age”
0.68, “hourly earnings” 0.004, “In(hourly earnings)” 0.008,
and “prestige” 0.208.
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Certainly, the same study could be done for any higher
order interaction, or it could be applied to constructing a
general test of additivity. This, however, lies beyond the
scope of our illustration.
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Figure 2. The estimated wavelet coefficients for some additive component functions. The coefficients 01 are first standardized by v;o; the

length indicates size. Coefficients with no length are zero. Resolution levels j1 are given at vertical axes. The range of the regressors is

normed to [0,1] in which the coefficients are positioned in the center of the support of its corresponding mother wavelet ¢, e.g. for j =0

on 0.5. Not given are the coefficients for the constant nor for the linear term since they do not enter to the test statistic.

5. PROOFS

In this section we collect the proofs of Theorems 1 through
2 and of the other statements presented in Section 3.

5.1 Proof of Lemma 1

By definition of j, it holds 3dn=!/2 < 27/»=1 < 3dn~!.
Next, define II,, , as the projector on the space of
piecewise constant functions of the m-th component z,,
with the piece length 279»~1. Since II,,, projects on
a larger space generated by piecewise constant functions
and the linear function ¢y ,(z) = Z,, it clearly holds
||fm - Hmn.men < ||fm - Hlmn-men .

Let A be an interval of the form A = [k279» "1 (k +
1)277»=1) and let N4,, denote the number of design

points X; with X, € A. The condition of the lemma on
the marginals fiy, ,, of the empirical measure implies that
N4 < C1279»7In. Denote also by fm 4 the arithmetic
mean of the values f,(X;) over all X; with X, ,,, € A.
Then I, ,, fm(X;) = fm,a and the Lipschitz condition on
the component functions f,, yields | Fn(Xim) = fm,al <

Cy27»=1 for X;,, € A and hence
2
S (X)) = fnal? € Nam|Co279n 1]
it X; m€EA

< C03n2 33
We have 2/»*1 guch intervals and therefore
1f = Tmnf ol < C1C3N272 7% < C1C5dPn ™

and the assertion follows.
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5.2 Some properties of the variance estimate

It is well known that under mild regularity conditions, the
unknown variance o2 can be estimated at the rate n=1/2,
We now show that the proposed estimate 2 is also root-n
consistent under the condition (D).

The estimate 2 can be represented in the form

62 = n—r,) 'YT(I-1,)Y
= (n—r,) €+ F)T(1-1L,) (& + F).

where r,, was the rank of II,,. Condition (D) provides
(I =T11,,)F||, < Con~'/? see the proof of Lemma 1.

Lemma 2. Under the condition (D) it holds

P (‘0_282 - 1‘ >/ (n—rp)t logn) = 0,(1)

where o, (1) denotes a numerical sequence tending to zero
as n — oo . Moreover,

P( _2|0' —U§‘>TL ") = o0,(1)

where

(Afg =(n—ry,)

T (I-TL)E

Proof. By definition
o *(n—ry) (6% —53)
=0 ?FT(I-11,)F + 20 2¢"(1-11,)F.
Condition (D) provides

FT(I-I,)F =||(1-11,)F|? < C?n %

Next, since o 2¢" (I —1II,)F is the linear combination of
Gaussian errors &;, it is also a Gaussian random variable
with zero mean and the variance

2
o {E|¢T(1-11,)F

=0 'EFT(1-1,)6¢" (1 -11,)F
=0 F'(1-1,)F
< C*nl

This implies for every t > 1
2 —-1/2
P <0_2 (82 . 0(2)) C + Cn t> S 67t2/2

n(n —ry)
and the second assertion of the lemma follows in view of
n—r,<n/3.

For the first one, it remains to estimate 07267 — 1 =
o 2(n—r,) ¢ (I-11,)&. Since o 2¢" (I-1I,,)¢ follows
the 2 -distribution with n—r,, degrees of freedom, the ex-
pression \/(n —r,)/2 (07263 — 1) is asymptotically stan-
dard normal and the requ1red assertion follows. [ ]

n—rTrp

-2
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5.3  Proof of Theorem 1
Let j, be due to (10), then with condition (D),

d
S lfm
m=2

and each II,, » f,,

Hm,nmen S Can71/2

can be represented in the form

mnfm: Z elm'd’lma

I1€T'(§n)

m=2,...,d,

with some coefficients 67, , I € Z € I'(jy) .
Under the null hypothesis, f; = 60,1 + 61,19, ; . Define

F =F—f, —-hnfs—...—Uanfy
Then the above bound yields
1[I IF—f1 —onfy—...—Hanfalln
< Con '/2. (17)

Now we show that the original regression function F' can
be replaced by F'.

Lemma 3. The change F for F' does not affect the
test statistics T = max;<;, T} .

Proof. Let some j < j, be fixed. Denote by 0(d,j) =
(Orm, (I,m) € I(d,j)) the vector with 671 = 0 for
I'eZ;, 0<j<jn, and with the above defined 6;,, for
m >2.Then F' = F—¥(d,;)0(d,j) and the inequality in
(17) can be rewritten in the form ||[F —¥(d,j)0(d,j)||n <
on~'/*. Define also 6*(d,j) = W(d,j)"F and let 6 be
the subvector of 8*(d, j) corresponding to the j th resolu-
tion level of the first component. This vector can be written
in the form 6} = 8]-9*( j) with &; being the projector
from RN(49) onto IR* keeping the entries 6 |, I € Z;,
of the vector 8*(d,j) corresponding to the j th resolution
level of the first component. Then it holds

0; =EW(d,j)"F=W/F
§ince the test statistic T is calculated via the estimates
0; = W]TY for j < jn, and since W]TY = W]T£+W]TF,
it only remains to check that W7 ¥(d, j)0(d, j) = 0 for all

J < jn . The definition of 6(d,j) provides &;0(d,j) =0,
and hence,

0(d, §)0(d. j)
= gJW(dv.])T

=& (V(d,
=0

¥(d,j)0(d,j)
T, 5) ¥(d, ) ¥(d,5)0(d, )

as required. [ |
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This lemma. allows to reduce the statement of the theo-
rem to the case with ||F||,, < Con /2.

Recall that the critical value of the test is evaluated
under the condition F' = 0. Now we intend to show that
Pr(¢* =1) = a+ o0,(1) for every regression function F
satisfying ||F||, < Con~'/?. The test ¢* is based on the

test statistic T = max;<;, (T} — tj,o) with
Y W,V WY YTR.Y
R B Y RjY _ /N, /2.

T; = —\/N;/2 =
! 52,/2N; il 52,/2N;

Here W; is the submatrix of the matrix W(d,j) cor-
responding to the jth resolution level of the first com-
ponent, W; = &;W(d,j), and V; = W]TWJ-, so that
R; = W;V7 W, is a projector in IR" on the Nj-
dimensional subspace. The model Y = F + £ implies

7 T
. £ R§ 2¢ R F+FT R; F
fi = A2,/2N —VN2 V2N;
Define
T
R;€ /N
T = N;/ (18)

7T 52N,
We intend to bound the difference T — T7 .

Lemma 4. Let condition (D) be fulfilled and the com-
ponent fi; be a linear functions. Then it holds

Jn
S P(IT; =T > ¢;) = on(1). (19)
j=0

where €; = 3C longT]]"

Proof. Clearly we have
oy 28R, F+FTR F
— 0o ) AN,
Similarly to the proof of Lemma 2 one can show that
£TRj£ (6_2
/2N
and for every ¢t > 1,
P 2R, F S 2R Fllnt) _ —22
0’2\/2Nj 02\/2Nj -

Since |R;F|, < ||F|l.» < Cn~'/? this inequality applied
with ¢t = +/3logyj, yields
3log jn
21’LNJ'

(2572 F+F R,F
ZP
< (1+ jn)ed/?losin = o, (1).

—5y°) =o(n™")

(20)

>Cn~t42C

V2N;
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Now the required assertion follows in view of the first state-
ment of Lemma 2. |

By construction, it holds
P TO — ¢, A
(0211%"( ja) > )

The idea is to show that this equality remains valid in the

. . 0 ) .
asymptotic sense if we replace here 157 by Tj. Assertion
(19) yields

—tja —€5) > /\> —o,p(1)

- tj7a) > /\>

<P T9 — 1).
< P (jmax (17 i+ 6) > 0) +0,(1)

P( max (T]Q
0<j<jn

<P < max (T}
0<j<jn

Now it suffices to check that
Jn
S P -
7j=0

The distribution of T]0 is precisely known and for suffi-
ciently large n it is very close to the centered and stan-
dardized x?-distribution with N; degrees of freedom.
This particularly yields that the density of this distribu-
tion with respect to the Lebesgue measure is bounded by
1 and therefore,

- Al < e]) = o0,(1).

in ,
log jn
P(|T?—t;n—A<3C
£or (-t )
In log j
<Y 60, [ 25 — o, (1)

TLN]'
and the theorem is proved.

5.4 Proof of Theorem 2

The proof utilizes the following technical

Lemma 5. For sufficiently large n , it holds

max tj o+ A < 2v/log jn.

0<5<jn

Proof. The statement obviously follows from the fact that
Jn
P (T].O > 2\/logjn) = on(1)
7=0

where every TJO is defined by centering and standard-
ization of a x?-sum with N; degrees of freedom, see
Spokoiny (1999a) for more details. [ |
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Let, for some j < j,, it holds

_ —a kT = s
(2N;) 2072057V, 6;
(tja + A+ 1) 5) + cy/log jn

with some ¢ > 0. This inequality can be represented in
the form

F'R,;F
02\/2Nj

We will show that under the above assumption,

T

v

> 2tja + A+t 5+ ay/10g jn. (21)

Pr(T; <tjo+A) < B+ o0,(1),

which obviously implies the assertion.
Similarly to the proof of Theorem 1 we derive

T T T
770 _ 5Ra‘5<;_;> 26" R,F + F'R;F
s V2N; \o? o3 52,/2N;

26" R;F + F R;F
+
52,/2N;
26"R;F + F R;F
0'2\/2Nj

with T} from (18). The definition of #} ; provides

= o(n ")

= o(n ')+

P (-T) < —t 5) = f.
Now (20) implies
Pp(Tj <tja+X) < P(T] < ~t)4)
+P (= >T —tja— A=t g) +on(1)

26 TR; F
a24/2N;
Eﬁ = 4Tj*(2Nj)’1/2 . It remains to check that condition
(21) and Lemma 5 imply

where v; = is a Gaussian r.v. with zero mean and

AT} (2N;)~1/2

T} ~tia =20

5 = on(1).
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