
Structural tests in additive regressionWolfgang H�ARDLE, Stefan SPERLICH, and Vladimir SPOKOINYWe consider the component analysis problem for a regression model with an additive structure. The problem is to test if some ofthe additive components are of polynomial structure, e.g. linear, without specifying the structure of the remaining components.A particular case is the problem of selecting the signi�cant covariates. The presented method is based on the wavelet transformusing the Haar basis, which allows for applications under mild conditions on the design and smoothness of the regressionfunction. The results demonstrate that each component of the model can be tested with the rate corresponding to the case ifall the remaining components were known. The proposed procedure is also computationally straightforward. Simulation resultsand a real data example about female labor supply demonstrate the good performance of the test.KEY WORDS: Additive models; Component analysis, Haar basis; Hypothesis testing; Nonparametric alternative; Regression1. INTRODUCTIONInmultivariate regression problems we study the structuralrelationship between the response variable Y and the vec-tor of covariates X = (X1; : : : ; Xd)> via the regressioncurve F (x) = E(Y jX = x)with x = (x1; : : : ; xd)> . Purely nonparametric models donot make any assumption about the form of the d -variatefunction F (x) . The problem is then to �t a d -dimensionalsurface to the observed data f(Xi; Yi) : i = 1; : : : ; ng . Theobvious approach is to generalize the univariate smoothingtechniques based on local `averaging' to this multivariatesituation. A serious problem arising here is that we needmuch more data material in higher dimensions in orderto have enough data points in a local neighborhood ofeach point. Several approaches for dimensionality reduc-tion have been proposed to deal with this so-called curseof dimensionality. A promising one is additive modeling asin economic theory it is a favorite structure anyway, seee.g. Deaton and Muellbauer (1980).Such a nonparametric additive regression model has theform y = F (x) + �; x = (x1; : : : ; xd) 2 IRd; (1)F (x) = f1(x1) + : : :+ fd(xd); (2)Wolfgang H�ardle is Professor, Humboldt-Universit�at zu Berlin,Institut f�ur Statistik und �Okonometrie, Spandauer Str. 1, D - 10178Berlin. Stefan Sperlich is Assistent Professor, Universidad Carlos IIIde Madrid, Departamento de Estad��stica y Econometr��a, c/ Madrid126, E - 28903 Getafe - Madrid. Vladimir Spokoiny is Professor,Weierstrass-Institute, Mohrenstr. 39, 10117, Berlin, Germany. Theauthors thank an anonymous referee and the associate editor forcomments and discussion that improved and extended a lot thiswork. This project was supported by the Deutsche Forschungsge-meinschaft, SFB 373, Berlin, Germany and the Spanish \Direcci�onGeneral de Ense~nanza Superior" (DGES), reference number PB98-0025.

where y is a scalar variable, ffmgdm=1 is a set of unknowncomponent functions and � is a random error.This class of models has been shown to be useful in sta-tistical practice: it generalizes linear regression in a naturalway and allows interpretation of marginal changes i.e. thee�ect of one variable on the mean function F holdingall else constant. Additive models were considered �rst byLeontief (1947) for input-output analysis speaking of sepa-rable models. In the statistical literature the nonparamet-ric additive regression has been introduced in the eighties,see Buja, Hastie and Tibshirani (1989) for a survey. Anadvantage of additive models is that they combine exi-ble modelling of many variables with statistical precisionthat is typical for just one explanatory variable, see Stone(1985, 1986). Algorithmic aspects of additive modelling byback�tting are discussed in Hastie and Tibshirani (1990)or Venables and Ripley (1994). Tj�stheim, Auestad (1994)and Linton, Nielsen (1995) proposed a method of analysisbased on marginal integration.An essential advantage in additive models is that theyallow component-wise inferences. Important problems ofcomponent analysis in economics are the question of sig-ni�cance as well as of linearity, since nonlinearities oftenraise serious problems, e.g. of identi�cation in equation oreconomic equilibrium systems. In nonparametrics, amongothers, Hastie and Tibshirani (1990) or H�ardle and Ko-rostelev (1996) considered also the problem of selection ofsigni�cant covariates. In this paper we focus on the muchmore general problem of testing for component fm the nullhypothesis of it being of polynomial form, e.g., being con-stant or linear.Theory for nonparametric hypothesis testing is well de-veloped. So the problem of testing a simple null hypothesisversus a univariate nonparametric alternative is studied inc ??? American Statistical AssociationJournal of the American Statistical Association???1



2 Journal of the American Statistical Association, ??? ???detail, see e.g. Ingster (1993), H�ardle and Mammen (1993),Hart (1997), Stute (1997) for historical background andfurther references. Many tests have been shown to be sensi-tive against every directional local alternative, e.g. Bierens(1982), Eubank and Hart (1992), Stute (1997) and refer-ences therein. Unfortunately, the power of every particulartest cannot be uniform w.r.t. the \direction" in the func-tion space as shown in Burnashev (1979) or Ingster (1982).This particularly means that the �nite sample power ofevery test could be better for some local alternatives andworse for the others. The same arguments apply to theso called \intermediate" e�ciency approach of Inglot andLedwina (1996).Ingster (1982, 1993) has shown that a test could be uni-formly consistent against a smooth alternative only if thisalternative deviates from the null with the distance of or-der n�2s=(4s+1) with s being the degree of smoothness.The structure of the proposed rate-optimal tests also es-sentially relies on the smoothness properties of the un-derlying function though such kind of prior informationabout the underlying function is typically lacking in practi-cal applications. Spokoiny (1996) o�ered an adaptive data-driven testing procedure which does not require knowledgeof smoothness properties of the tested function and allowfor a near optimal testing rate up to a log logn factor. Thelatter can be viewed as the price for adaptation. Horowitzand Spokoiny (1999) proposed a similar test based on ker-nel smoothers with di�erent bandwidths and showed thatit is simultaneously consistent against any local \direc-tional" alternative which approaches the null hypothesisat the rate (n= log logn)�1=2 .It is worth noting that the adaptive testing procedurefrom Spokoiny (1996) is essentially a theoretical devicerather than a practically applicable method since it is de-veloped for the idealized \signal + white noise" model,simple null, known noise variance etc. Practically rele-vant procedures should address numerous issues arisingin particular applications. In the context of multidimen-sional additive modeling, an additional challenge comesfrom the fact that the considered component f1 , even be-ing completely speci�ed, does not specify the whole modelsince nothing is assumed about the other components,f2; : : : ; fd which can be viewed as an in�nite-dimensionalnuisance parameter. This particularly creates a seriousproblem with evaluating the critical value of the proposedtest statistics which provides the prescribed type I level.Therefore, the task is to develop a procedure which, in-dependent of the functional form of the `nuisance' compo-nents f2; : : : ; fd , leads to the given type I error � if f1 islinear, and is sensitive against a smooth alternative withunknown degree of smoothness. In view of practical ap-plications (see Section 4) we proceed with a deterministic

non-regular design allowing discrete components and withunknown noise variance.In this paper we apply a Haar decomposition which is aparticular and non-regular case of the wavelet transform.Nevertheless, for the hypothesis testing framework the ap-plication of the Haar basis leads not only to the desiredoptimal testing rate but also provides a test which is morestable w.r.t. the design non regularity. This is importantfor practical applications, allowing relaxation and simpli-�cation of the conditions on the design, reduction of com-putational burden and more.Our approach is based on the simultaneous approxima-tion of all components f1; : : : ; fd by Haar sums: we �rstestimate the Haar coe�cients for all components and thenanalyze the coe�cients corresponding to the �rst one. Thetesting problem is formulated in the next section, the pro-cedure is described in Section 2. The asymptotic prop-erties are discussed in Section 3. The results demonstrateasymptotic optimality of the proposed procedure and theyare stated under mild conditions on the design. Section 4illustrates the �nite sample performance of the test. Inparticular we present a comparative study of our test withthe Eubank and Hart (1992) test in the one-dimensionalcase and with the ideal one designed for the case as ifthe other components and all smoothness properties wereknown. An application of the test to real data (study of thefemale labor supply in East Germany) is thoroughly dis-cussed in Section 4.2. Extensions to more general problemsincluding model check of additivity and multiple testing ofseveral components simultaneously are shortly discussed inSection 3.3 and the proofs are postponed to Section 5.1.1 Model and testing problemWe are given data (Xi; Yi); i = 1; : : : ; n , with Xi 2 IRd ,Yi 2 IR1 , obeying the regression equationYi = F (Xi) + �i (3)where F is an unknown regression function with the ad-ditive structureF (x) = f1(x1) + : : :+ fd(xd); (4)and �i are normal random errors with zero mean andknown variance �2 . We allow for deterministic non-regulardesign X1; : : : ; Xn with possible replications. It is onlysupposed that the design is rescaled to the unit cube[0; 1]d , that is, Xi;` 2 [0; 1] for all i � n and ` � d .Our aim is to analyze each component fm , m =1; : : : ; d . For simplicity we present the procedure focusingon the �rst component f1, and on the problem of testinglinearity, i.e. the hypothesis H0 : f1(t) = a1+ b1t for someconstants a1; b1 .Let � be a test, a measurable function of observationswith values 0 (accept) and 1 (reject). Denote by P F



H�ardle, Sperlich, and Spokoiny: Structural test in additive regression 3the distribution of the data Y1; : : : ; Yn for a �xed modelfunction F , see (3) and (4). Let now F0 be a function witha linear �rst component. The type I error probability is theprobability under F0 to reject the hypothesis: �F0(�) =P F0(� = 1): Similarly one de�nes the error probability�F (�) of the second type. If the �rst component f1 is notlinear, then �F (�) = P F (� = 0): Given � > 0 , we wish toconstruct such a test � that �F0(�) � � for all F0 witha linear �rst component and, in addition, it is sensitiveagainst a large class of alternatives F .2. TESTING PROCEDUREIn order to illustrate the main ideas, we begin with theunivariate case i.e. d = 1 .2.1 The case of d = 1Consider the univariate regression modelYi = f(Xi) + �i; i = 1; : : : ; n; (5)which corresponds to (3) with d = 1 . We write here finstead of f1 to minimize the notation. The problem con-sists in testing the hypothesis that the function f is linear.Eubank and Hart (1992) nicely pointed out a commonfeature of many procedures for model checking. Let F0 bethe set of regression functions considered under the nullhypothesis (here the linear functions). Then f is writtenas f(x; �0) +Pj �j j(x) with f(x; �0) a member of F0and f jg an orthonormal system. The testing problemreduces now to testing �j = 0 for all j , cf. also Stute(1997).The procedure proposed here follows this idea and relieson a special piecewise constant approximation (the Haardecomposition) of the function f .Denote by I the multi-index I = (j; k) with j =1; 2; : : : and k = 0; 1; : : : ; 2j � 1 , and by I , the set of allsuch multi-indices. Let now the function  (t) (the motherwavelet) be de�ned by (t) = 8><>: 0; t < 0; t � 1;1; 0 � t < 1=2;�1; 1=2 � t < 1:For every I = (j; k) with j � 0 and k = 0; : : : ; 2j � 1 sethI(t) =  (2jt� k):Clearly the function  I with I = (j; k) is supported onthe interval AI = [2�jk; 2�j(k+1)] . Denote also by Ij theindex subset corresponding to the j -th resolution level:Ij = fI = (j; k); k = 0; 1; : : : ; 2j � 1g j � 0:The idea of the test is to estimate from the data the coe�-cients cI of the approximation of the unknown regression

function f by the sumc0 + c1x+ jX̀=0 XI2I` cIhI(x)and then to check whether some of estimated coe�cientscI di�er signi�cantly from zero.For a formal description, de�ne with I = (j; k) 2 I�2I = nXi=1 h2I(Xi); I(Xi) = ��1I hI(Xi):Clearly �2I is the number of design points in AI , that is,�2I = #fi : Xi 2 AIg , I 2 I .We also de�ne two functions  0 � ��10 and  1(t) =��11 t with �20 = n and �21 =Pni=1X2i and introduce theindex set I(j) = f0; 1g+ j[̀=0I`: (6)By N(j) we denote the number of indices in I(j) . Ob-viously N(j) = 2j+1 + 1 . Let �(j) denote a vector inIRN(j) with entries �I , I 2 I(j) . De�ne the vector b�(j)as solution to the quadratic problemb�(j) = arginff�(j)2IRN(j)g nXi=10@Yi � XI2I(j) �I I(Xi)1A2 :To get an explicit expression for b�(j) we introduce vec-tor notation. Let g be a function observed at pointX1; : : : ; Xn . We identify every such function with thecolumn-vector g in IRn with the entries g(Xi) and de�nekgkn by kgk2n =Pni=1 g2(Xi) . Let also Y stand for thecolumn vector (Y1; : : : ; Yn)>. Introduce a n�N(j) -matrix	(j) with entries  I(XI ) :	(j) = � I(Xi); i = 1; : : : ; n; I 2 I(j)�:Then b�(j) = arginf�(j)2IRN(j)kY �	(j)�(j)k2n= V (j)	(j)>Y =W (j)>Y ;where V (j) is the pseudo-inverse of 	(j)>	(j) , that is,V (j) = �	(j)>	(j)	� and W (j) = 	(j)V (j) is a n�N(j) -matrix.Since the errors �i are normal N (0; �2) , we obtainby (5) that b�(j) is a Gaussian vector with the mean��(j) = W (j)>f = V (j)	(j)>f and the covariance ma-trix �2V (j) , b�(j) � N ���(j); �2V (j)	 :



4 Journal of the American Statistical Association, ??? ???The entries of the matrix V (j) (resp. W (j) ) will be de-noted by vI;I0 (resp. wi;I ) where I; I 0 2 I and i =1; : : : ; n . All these values depend on j , but do not in-dicate this dependence explicitly to simplify the notation.By b�j we denote the part of the vector b�(j) corre-sponding to j -th resolution level: b�j = (b�I ; I 2 Ij)> , sothat b�j 2 R2j . Obviously b�j = W>j Y where Wj is then�2j -submatrix of W (j) corresponding to the index setIj : Wj = (wi;I ; i = 1; : : : ; n; I 2 Ij) . Similarly we de�nethe 2j -vector ��j and 2j�2j -submatrix Vj of V (j) :��j = (��I ; I 2 Ij); Vj = (vI;I0 ; I; I 0 2 Ij):Clearly b�j � N (��j ; �2Vj) and Vj =W>j Wj .2.2 Level test statistic for d = 1The proposed testing procedure is based on the fact thatfor f linear, all the empirical coe�cients b�I , I 6= 0; 1 , arezero mean Gaussian r.v.'s. We build for every j one teststatistic corresponding to the hypothesis ��j = 0 .By de�nition b�j = W>j Y which yields b�j �N (��j ; �2Vj) with Vj = W>j Wj . This naturally leads tothe likelihood-based statistic Sj = b�>j V �j b�j where V �jmeans the pseudo-inverse of Vj . Under the null hypothe-sis (that is, for a linear function f ), it clearly holds ��j = 0and b�j =W>j � , and hence,Sj = �>WjV �j W>j � = �>Rj� (7)where Rj =WjV �j W>j =Wj �W>j Wj��W>j is a projec-tor in the space IRn (that is, R2j = Rj ). By Nj we denotethe rank of Rj . By de�nition Nj � 2j . The de�nition (7)particularly yields that ��2Sj follows the �2 -distributionwith Nj degrees of freedom.The level test statistic Tj is de�ned via centering andstandardization of Sj . The following simple properties areuseful here: ESj = E�>Rj� = �2 trRj = �2Nj ;E �Sj � �2Nj�2 = 2�4Nj :Since the noise variance �2 is usually unknown, we replaceit by a pilot estimate b�2 , see Section 2.5 below. This leadsto the test statistic Tj of the form:Tj = b�>j V �j b�j � b�2Njb�2p2Nj (8)An important feature of this statistic is that under the nullhypothesis, it has a nondegenerate distribution. (Whichapproaches the standard normal law as Nj grows.) More-over, this distribution is known (see Section 2.6 for a closedform expression) which allows precise evaluation of the cor-

responding (1� �) -quantile tj;� de�ned byP 0 (Tj > tj;�) = �; (9)where P 0 denotes the distribution of Tj under the nullhypothesis.2.3 A multiscale test for d = 1The proposed test analyzes all statistics Tj for di�erentj simultaneously. Similar ideas are discussed extensivelyin the literature. Eubank and Hart (1992) proposed theso called \order selection" test using a modi�ed Mallows'criterion (Mallows, 1973) for selecting the number of con-sidered terms of an orthogonal series expansion for thedeviation of the underlying function f from the null hy-pothesis; see also Aerts, Claeskens and Hart (1999). Thismethod leads to the maximum of ��2Sj � (1 + Cn)Njwhere (1+Cn)Nj is the penalty term for going to a morecomplicated model. A similar test, called the data-drivenNeyman's smooth test is proposed in Ledwina (1994) andKallenberg and Ledwina (1995). Fan (1996), Spokoiny(1996) and Fan and Huang (1998) considered the testsbased on the maximum of centered and standardized sumslike Tj . Such a test has a strong appeal: the results fromIngster (1982, 1993) show that the test Tj with a specialchoice of the index j is rate optimal against a smoothalternative with a smoothness degree s . The test basedon the maximum of Tj is adaptive in the sense that it isnear optimal against a smooth alternative with unknowndegree of smoothness.Here we apply the method based on the multiscalingidea (see Section 2.4 for further discussion) which is closeto the proposal from Fan (1996) and Spokoiny (1996): thetest statistic T � is de�ned as the maximum of Tj � tj;�over all considered levels j with tj;� from (9). Namely,we consider all j from j = 0 until the �nest resolutionlevel jn de�ned as jn = [log2(n=3)]where [a] means the integer part of a . We now setT � = max0�j�jn(Tj � tj;�):A choice of the critical value for this test is discussed inSection 2.6.2.4 A multiscale test for d > 1The basic idea of testing is similar to the univariate caseand it is based on the approximation of each componentfm from (3) by the sumc1;mxm + jnXj=0 XI2Ij cI;mhI(xm); m = 1; : : : ; d:



H�ardle, Sperlich, and Spokoiny: Structural test in additive regression 5(We skip here the constant term to provide identi�abil-ity of each component.) Let us �x a level j for the �rstcomponent and a level jn for the remaining ones, andlet I(j) = f0; 1g + S0�`�j I` . We also de�ne I 0(j) =f1g+S0�`�j I` . To de�ne the level test, we approximateF (x) byXI2I(j) cI;1hI(x1) + dXm=2 XI2I0(jn) cI;mhI(xm):Here N = 2jn+1 coe�cients are used for each componentfm , m � 2 , and, assuming that j � jn , the total numberof coe�cients is at most Nd + 1 . We modify now thede�nition of jn from the one-dimensional case to provideNd+ 1 � 2n=3 that leads to the choicejn = hlog2� n3d�i: (10)To de�ne the test, we �rst standardize each basis function: I;m(t) = ��1I;mhI(t) with �2I;m = nXi=1 h2I(Xi;m)Here (Xi;1; : : : ; Xi;d) is the coordinate representation ofXi .Now let some j � jn be �xed. Denote by I(d; j) theindex setI(d; j) = n(I; 1); I 2 I(j)o � dYm=2n(I;m); I 2 I 0(jn)oand letN(d; j) = N(j) + (d� 1)N = 2j+1 + (d� 1)2jn+1 + 1be the number of elements in I(d; j) .Set 	(d; j) for the n�N(d; j) matrix with entries I;m(Xi) = ��1I;mhI(Xi;m) , i = 1; : : : ; n; (I;m) 2 I(d; j) ,and de�ne the vector b�(d; j) in IRN(d;j) as a solution tothe quadratic problem:b�(d; j) = arginf�(d;j)2IRN(d;j)kY �	(d; j)�(d; j)k2n= arginf�(d;j)2IRN(d;j) nXi=1�Yi � XI2I(j) �I;1 I;1(Xi;1)� dXm=2 XI2I0(jn) �I;m I;m(Xi;m)�2:As in the univariate case, we deriveb�(d; j) = V (d; j)	(d; j)>Y =W (d; j)>Y (11)where the matrix V (d; j) is the pseudo-inverse of	(d; j)>	(d; j) , i.e. V (d; j) = �	(d; j)>	(d; j)	� andW (d; j) = 	(d; j)V (d; j) . The entries of the matrix

V (d; j) (resp. W (d; j) ) will be denoted by v(I;m);(I0;m0)(resp. wi;(I;m) ).Similarly to the univariate case, we de�ne the level testmaking use of the subvector b�j = (b�I;1; I 2 Ij) and thesubmatrix Vj = (v(I;1);(I0;1); I; I 0 2 Ij) of the covariancematrix V (d; j) . Let Wj again denote the submatrix ofW (d; j) corresponding to the level j of the �rst compo-nent: Wj = (wi;(I;1) ; i = 1; : : : ; n; I 2 Ij) . Then clearlyb�j = W>j Y and Vj = W>j Wj . The test statistic Tj isde�ned as follows, cf. (8):Tj = b�>j V �j b�j � b�2Njb�2p2Nj = Y >RjY � b�2Njb�2p2Nj ;where Rj = WjV �j W>j and Nj is the rank of Rj (orequivalently of Vj ), Nj � 2j . With tj;� ful�lling (9), the�nal test statistic is again of the form:T � = max0�j�jn(Tj � tj;�): (12)Remark 2.1. In some practical applications, see e.g.our example in Section 4, one or more explanatory vari-ables Xm can be discrete with only a few possible values,say two or three. In that case the corresponding compo-nent function fm is completely determined by its valuesat these points and it can be precisely expanded by a �niteHaar sum with very few Haar levels. Of course, for suchsituations it is not reasonable to consider all jn Haar lev-els for those components and the required number of levelsfor every particular component fm should be determinedby the identi�ability reasons, see Section 4 for an example.2.5 Estimation of the noise varianceHere we indicate how the noise variance �2 can be esti-mated from the data. One may apply two di�erent ap-proaches for variance estimation. One way is based onresiduals from locally polynomial �tting, see e.g. Rice(1984) or Gasser et al (1986) for the univariate case or Hallet al (1991) and Spokoiny (1999b) and references thereinfor a detailed discussion of the multivariate case. Anotherapproach is to retrieve the residuals from the same orthog-onal series expansion which is used for model checking.Here we follow the latter proposal.Let jn be de�ned in (10). Due to this de�nition we haven=3 � d2jn+1 � 2n=3 .Let b�(d; jn) be the least squares estimator from (11)with j = jn , that is, the maximal number of Haar coe�-cients are used for all components fm . This vector is Gaus-sian with the mean ��(d; jn) = W (d; jn)F and the co-variance matrix �2V (d; jn) . Moreover, 	(d; jn)b�(d; jn) =�nY where�n = 	(d; jn)�	(d; jn)>	(d; jn)��	T (d; jn)



6 Journal of the American Statistical Association, ??? ???is the projector in IRn on the subspace generated by ad-ditive functions of the form�0 + dXm=1 XI2I0(jn) �I;m I;m(xm):One can easily check thatEkY �	(d; jn)b�(d; jn)k2n= kF ��nF k2n +Ek� ��n�k22= kF ��nF k2n + �2 tr(In ��n)= kF ��nF k2n + �2(n� rn)where In denotes the identity n�n -matrix and rn is therank of �n . By de�nition rn � 2n=3 .Under regularity conditions on the function F , see e.g.Lemma 1 in the next section, the accuracy of approximat-ing F by such an expansion tends to zero as n tends toin�nity in the sense thatn�1kF ��nF k2n ! 0; n!1:This consideration prompts one to use the valueb�2 = 1n� rn kY �	(d; jn)b�(d; jn)k2nfor estimating �2 . It is important to mention that ifF � 0 , then (n � rn)b�2 = k� � �n�k2n follows the �2 -distribution with n � rn degrees of freedom and b�2 andb�(d; jn) are independent.2.6 Critical level of the testFirst we again discuss the univariate situation withd = 1 . In that case the function F coincides with the�rst component f1 and its structure is known under thenull hypothesis. Moreover, in view of the method of ap-proximation, the linear trend in f1 has no inuence onthe remaining coe�cients and we may assume that thefunction f1 is exactly zero. The same applies to the vari-ance estimate b�2 . This reduces the linear hypothesis tothe case of a simple null hypothesis f1 � 0 , that is, theobservations Yi coincide with the noise �i . In this situa-tion one has Sj = �>Rj� , b�2 = (n�rn)�1k(1I��n)�k2n =(n� rn)�1�(1I��n)� , where Rj =WjV �j W>j and 1I de-notes the unit operator in IRn and the test statistics Tjcan be represented in the formTj = �>Rj� � b�2Njb�2p2Nj= �>Rj�(n� rn)�(1I��n)�p2Nj �qNj=2 : (13)Therefore, each Tj is the ratio of two quadratic forms of�i 's and as a consequence, it does not depend on the noisevariance and its distribution can be precisely described via

the Fisher distribution FNj ;n�rn with Nj and n�rn de-grees of freedom. The values tj;� de�ned in (9) can there-fore be calculated using the proper quantile of this Fisherdistribution and they depend only on Nj , n� rn and � .Since all the Tj 's are constructed on the base of the samedata, they are dependent in a rather complicated way andhence, the closed form expression for the distribution of themaximum T � = maxj�jn(Tj � tj;�) is di�cult to obtain.Therefore, some Monte-Carlo experiments can be used for�nding a proper quantile � satisfying P 0 (T � > �) = � ,where P 0 means that each Tj follows (13) with a stan-dard Gaussian vector � . Having done this, we de�ne thetest �� as �� = 1(T � > �): (14)For the general multivariate case one can show that un-der some regularity conditions (see Condition (D) in thenext section) the inuence of the remaining componentsf2; : : : ; fm on the test statistic T � is asymptotically neg-ligible and we therefore determine the critical value � inthe same way using simulated data from the d -variatemodel with the same regression design and with the van-ishing regression function and standard Gaussian errors.For further discussion and details concerning this Monte-Carlo method, see Section 4 or Spokoiny (1999a).Remark 2.2. Note that the adjustment of Tj by tj;� ismore of theoretical nature allowing for the uni�ed exposi-tion. Indeed, all the test statistics Tj have non-degeneratedistribution with the variance 1 and moreover, for large j ,this distribution is close to the standard normal CDF. Thismeans that all the tj;� 's are of the same order and the ef-fect of this adjustment is negligible. This issue is con�rmedby our simulation results, see Section 4.3. MAIN RESULTSIn this section we present asymptotic properties of theproposed testing procedure. We state the results on thetype one and type two error probabilities separately sincewe evaluate them under di�erent assumptions on the de-sign variables. The result on the type I error probabili-ties �F0(��) is valid under mild assumptions on the de-sign. But for high sensitivity of the test, we need slightlystronger regularity conditions on the design variables.We begin by describing the required assumptions on themodel.3.1 AssumptionsWhen testing the �rst component of the function F from(4), the remaining components f2; : : : ; fd can be viewedas nonparametrically speci�ed nuisance parameters whichare to be estimated by a pilot estimator. In order to en-sure the required accuracy of estimation, we need some



H�ardle, Sperlich, and Spokoiny: Structural test in additive regression 7conditions on the rate of approximation of each functionfm with 2 � m � d by the Haar series. We formulatethese conditions exactly in the required form. Later weshow that these conditions are met, for instance, undermild conditions on smoothness of fm and on the designX1; : : : ; Xn .Recall that we identify every function g on IRd with thevector g = (g(Xi); i = 1; : : : ; n)> in IRn . In particular,each component fm is identi�ed with the vector fm =(fm(Xi;m); i = 1; : : : ; n)> and  I;m is understood asthe vector with the elements  I;m(Xi;m) = ��1I;mhI(Xi;m) .Recall also the notation kgk2n =Pni=1 g2(Xi) .Denote by Lm(j) the linear subspace in IRn generatedby the functions (vectors) f I;mg , I 2 I`; 0 � ` � j ,Lm(j) = (�0;m + �1;m 1;m + jX̀=0 XI2I` �I;m I;m) :Clearly all the functions (or vectors) from Lm(j) dependonly on m -th coordinates Xi;m of design points Xi , i =1; : : : ; n . By �m;nfm we denote the projection of fmonto Lm(jn) w.r.t. the distance k � kn ,�m;nfm = arginfg2Lm(jn)kfm � gkn= arginfg2Lm(jn) nXi=1 jfm(Xi;m)� g(Xi;m)j2:In our results we impose the following condition:Condition (D) For some �xed constant C and n largedXm=1 kfm ��m;nfmkn � C�n�1=2:The following lemma shows that condition (D) is satis�edunder mild smoothness conditions on each component fm .Lemma 1. Let �n;m be the m -th marginal of the em-pirical design measure �n ,�n;m(A) = n�1 nXi=1 1(Xi;m 2 A); m = 1; : : : ; d:Let further C1 be a constant such that for every 0 � a <b � 1 with b� a > 1=n , it holds�n;m[a; b] � C1(b� a):If each fm , m = 2; : : : ; d , is a Lipschitz function i.e.jfm(x)� fm(x0)j � C2jx� x0j; 8x; x0 2 [0; 1];then condition (D) is ful�lled with C depending on � ,C1 and C2 only.Another situation in which the di�erence kfm ��m;nfmkn can be easily controlled, is the case of a dis-crete m -th component (i.e. when all Xi;m belong to some

�nite set). In that case, the value kfm��m;nfmkn is zeroprovided that n is large enough.3.2 Asymptotic properties of the testLet �� be the test introduced above in (14).Theorem 1. Suppose that the observations (Xi; Yi) ,i = 1; : : : ; n; obey the regression model (3) and (4), andlet condition (D) hold. If the �rst component f1 of thefunction F is linear, thenP F (�� = 1) � �+ �1(n);where �1(n) tends to 0 as n!1 and depends only on nand constant C arising in condition (D).The proof of the theorem is given in Section 5.We now turn to the results concerning the sensitivity oftest �� .The �rst assertion shows under which conditions we re-ject an alternative with a high probability.Theorem 2. Let the function F in model (3) be of theform (4). Let also ��j = (��I;1; I 2 Ij) be the subvector ofthe vector ��(d; j) corresponding to j -th resolution levelof the �rst component and let Vj = (v(I;1);(I0;1); I; I 0 2 Ij)be the covariance submatrix corresponding this index set.If, for some j � jn , � > 0 and c > 0 , we haveT �j � (2Nj)�1=2��2��j>V �j ��j > tj;� + �+ t0j;� + cplog jn;with t0j;� de�ned by the equality P (T 0j < �t0j;�) = � ,then P F (�� = 0) � � + �1(n)where �1(n) depends on �; � and c only and �1(n)! 0;for n!1.Remark 3.1. This result claims that the test �� re-jects with a probability close to 1 any alternative for whichat least one of T �j exceeds c0plog jn with some �xed con-stant c0 . Therefore, we may suppose that the error of thesecond type may occur only ifT �j � c0plog jn; 0 � j � jn : (15)Now we discuss how this statement can be transformedinto the result about the uniform rate of testing. FollowingIngster (1982, 1993) we consider the class of alternativeswith the �rst component f1 separated from the null (theset of the linear functions) with distance at least % ,infa;b kf1(�)� a� b � k � %where k � k means the usual L2 -norm, and in addition weassume that f1 is smooth in the sense that f1 belongs to



8 Journal of the American Statistical Association, ??? ???some class of functions F . Ingster (1982) established hisresults assuming that the underlying function belongs to aH�older or L2 -Sobolev ball F , Spokoiny (1998) studied thecase of a more general Lp -Sobolev ball with any p � 1 .We are interested in a minimal separation distance �which still allows for a uniform testing. To state the re-sult we need some regularity conditions on the design andsmoothness conditions on the �rst component f1. The rea-son why stronger conditions on the design are required canbe explained by the fact that a degenerate design leads toan identi�cation problem: the components cannot be sep-arated and therefore it is impossible to make any inferenceabout them. Set u�(j) = infI2Ij 2jMI=n;u�(j) = supI2Ij 2jMI=n;where, given I = (`; k) , the value MI stands for thenumber of design points Xi whose �rst component be-longs to the interval AI = [k2�`; (k + 1)2�`) , that is,MI = #fi : Xi;1 2 AIg . Design regularity means in par-ticular that u�(j) is bounded away from zero i.e. eachinterval AI contains enough design points Xi;1 , cf. thecondition in Lemma 1.Recall the notation Vj = �v(I;1);(I0;1) ; I; I 0 2 Ij� andNj denotes its rank, Nj � 2j . Setv�(j) = kVjk:Here, the norm kAk of a matrix A is understood as themaximal eigenvalue of this matrix. We understand designregularity in the sense that Vj is non-degenerate and allthe v�(j) 's are bounded.Finally, given an integer s , suppose that the functionf1 is s times di�erentiable and the valuer2s = Z 10 jf (s)1 (x)j2dxis �nite, where f (s)1 means the s -th derivative of f1 .Theorem 3. Let condition (D) hold. Suppose there ex-ists an integer s and for some j � jn , the �rst componentf1 of the model function F satis�es the following inequal-ity infa;b kf1 � a� b 1;1k2n �C1 r2s n 2�js + C2 u�(j)u�(j) v�(j) 2j=2�2plog jnwith  1;1(x) = x1 and constants C1 and C2 dependingon s only, thenP F (�� = 0) � �1(n)! 0; n!1;

with �1(n) as in Theorem 2.The proof of this assertion is based only on (15) and canbe found in H�ardle et al. (1997) or Spokoiny (1999a).Remark 3.2. By minimizing the sum of the formB1n2�js+B22j=2�2plog logn with �xed B1 and B2 withrespect to j we �nd that a smooth alternative will be re-jected with a high probability ifinfa;b n�1kf1 � a� b 1;1k2n � B3� n�2plog logn�� 2s4s+1for a constant B3 depending on B1 and B2 only.Spokoiny (1996) has shown that this rate is optimal inthe problem of testing against a smooth alternative withan unknown degree of smoothness s .3.3 ExtensionsHere we briey discuss possible extensions of the testwhich we introduced previously.3.3.1 Testing additivityThough our test was constructed for testing functionalforms of the additive components, it can also be usefulwhen the presence of interaction is at question. Often, theadditive structure is given or wanted by the economic the-ory the particular model is based on, see e.g. Deaton andMuellbauer (1980) or also our application in Section 4.However, not only from a statistical point of view it is in-teresting to scrutinize this assumption in some cases. Sev-eral approaches of testing additivity are discussed in Hart(1997), but nonparametric theory for this problem is quiterecent, see e.g. Sperlich, Tj�stheim and Yang (1999), alsofor more references.As was pointed out at the beginning, our procedure cantest for presence of a component. Thus, for testing of nointeraction one can proceed as follows. Introduce arti�cialcovariates Xm;m0 = XmXm0 for m 6= m0 . No interactionbetween Xm and Xm0 means that the covariate Xm;m0has no e�ect, which is a particular case of the problem weconsidered before.3.3.2 Non-Gaussian errorsIn our results we suppose Gaussian homoskedastic noisewith unknown dispersion �2 . This assumption allows sim-pli�cation of the calculations and highlights the mainideas, skipping a lot of technical details which appear whenconsidering non-Gaussian noise. However, the results fromSection 3 apply to i.i.d. errors with unknown distribu-tion under some moment conditions. We refer to Spokoiny(1999a) for the analysis of non-Gaussian noise in the uni-variate case. An extension to the multivariate situation isstraightforward.3.3.3 Multiple testingThe above test was developed for testing one compo-nent of an additive model. In practice one could also be



H�ardle, Sperlich, and Spokoiny: Structural test in additive regression 9interested in testing all the components of the model simul-taneously. This leads to a multiple testing problem whichrequires a more careful evaluation of the correspondingcritical values. Following the rule proposed in Section 2 onecan construct for every component fm the correspondingtest statistic T �m and calculate the corresponding criti-cal level �m . Now we apply the same idea of multiscaletesting as one used for construction of every componenttest. Namely, to provide a prescribed nominal level � ofthe multiple test, which checks all components fm simul-taneously, all these critical values �m should be slightlyincreased, e.g. by the same value �� such thatP 0 � maxm=1;::: ;d(T �m � �m) > ��� � �where P 0 means the distribution on the space of observa-tions under the model with F � 0 and with the standardGaussian errors (that is, Yi are i.i.d. standard Gaussian).3.3.4 Local testIn parallel to the test T � based on the maximum ofsome quadratic forms of the empirical Haar coe�cients b�I ,one may consider another test which is called the \local"test in H�ardle, Sperlich and Spokoiny (1997). This testis based on the maximum of the standardized empiricalcoe�cients b�I over all I 2 Ij . More precisely, for everyj � jn , we de�neTj;loc = maxI2Ij b�2Ib�2I � �jwhere b�2I = b�2v(I;1);(I;1) and �j are such thatP 0 (Tj;loc > �j) = �locwith P 0 being again the distribution under the no-response model with standard normal errors. The multi-level \local" test ��loc is de�ned by��loc = 1�maxj�jn Tj;loc > ���where �� ful�llsP 0�maxj�jn Tj;loc > ��� = �loc:For applications one can use an approximation �j �2 logNj�2 log logNj+2 log��1loc . Such de�ned \local" testhas been shown to be sensitive against a \non-smooth" al-ternative (e.g. an alternative with jumps), see H�ardle etal. (1997). In practical applications one would be willingto apply both tests T � and T �loc simultaneously which re-quires some additional adjustment of the critical levels forboth tests. Taking into account the speci�c structure of thetest ��loc , our recommendation is to perform this \local"

test at a very small signi�cance level, e.g. �loc = 0:005 oreven smaller which does not require an additional adjust-ment of the test �� .Also the theoretical properties of such de�ned test arepresented and discussed in H�ardle et al. (1997).4. SIMULATION STUDIES AND AN APPLICATIONThe performance of the suggested test procedure for �-nite samples was examined in a simulation study. Then weapply the procedure to the analysis of female labor supplydata. The goal of the simulation study was to illustrate theperformance of the test for di�erent smoothness propertiesof the investigated function, impact of non-normally dis-tributed error terms, and to observe the (relative) powerof the test against smooth alternatives.4.1 Some simulated examplesWe considered 3-dimensional regression problemsY = m(x) + � (16)x = (x1; x2; x3)T , with a function m having additive com-ponents taken from the following set of functions with dif-ferent smoothness properties:f1(x) = 2 sin(�x) ; f2(x) = 2 sin(2�x);f3(x) = 2 sin(3�x); and f4(x) = x2 :Note that the indices  = 1; 2; 3; 4 of the f in this sec-tion refer to the functional form and not to their ordering.For investigating the level and the power of the test, weconsider the following three speci�c models:m1(x; v) = (1� v)x1 + vf2(x1) + f1(x2) + f4(x3);m2(x; v) = (1� v)x1 + vf3(x1) + f1(x2) + f4(x3);m3(x; v) = (1� v)x1 + vf4(x1) + f1(x2) + f3(x3);each time testing the linearity of the �rst component(1� v)x1 + vf(x1) with v running from zero to one. Thisparameter v has the same meaning as the separation dis-tance between the null and the alternative.The explanatory variables were always uniformly dis-tributed on the cube [�2; 2]3. Unless stated otherwise, thesample size was set to n = 150 and the error term stan-dard normal. We did not assume to know the standarddeviation but estimated � as suggested in Section 2.5 andgot, as expected, only slightly overestimated b�� (5 to 15%).For getting the critical values we applied 249 Monte-Carloreplications to economize on the computational time. How-ever, some examples were conducted with a larger numberof replicates and the results are very similar. For practicalapplications, more precise critical values can be expectedwhen resampling 499 or even 999 times.Further, as discussed in Remark 2.6, we have to decidehow to choose tj;�. We present all results for the two most



10 Journal of the American Statistical Association, ??? ???natural choices. First, we set tj;� equal to the FNj ;n�rn(�)-quantile with � = :01, :05, :1 being the signi�cance level (intables indicated by F (�)); second, we tried our procedurewith simply tj;� � 0 (in tables indicated by 000).All calculations are done in GAUSS, graphics in XploRe.The results after 500 runs can be found in Table 1, to-gether with the average over the resolution levels at whichour null is rejected. The latter delivers some qualitativeinformation to the practitioner about the frequency wherethe violation from the linear null occurs.The tested (�rst) component of the mean regressionfunction has di�erent smoothness in these three examples.
The results demonstrate a lower power of the test for lesssmooth �rst component which con�rms the theoretical is-sues. Smoothness of the x2 and x3 functions has no stronginuence on the results. One also can see that the resolu-tion level at which the procedure rejects the null, clearlydepends on the smoothness of the �rst component as wellas on the distance between null and alternative. It can beseen, that only looking at one special level would reduce alot the power of our procedure. All the numerical resultsare completely in agreement with the theoretical investi-gations from Section 3.Table 1. Percentage of rejections and average of active resolution level j1 (underlined) for functions (1 � v)x1 +vf (x1),  = 2; 3; 4 in model mk(x; v), k = 1; 2; 3 . In left column v running from 0 to 0:8. Re-sults given for test with tj;� = F (�) and for test with 000.f2; m1 f3; m2 f4; m3� = .01 .05 .10 .01 .05 .10 .01 .05 .10tj;� = 000 F (�) 000 F (�) 000 F (�) 000 F (�) 000 F (�) 000 F (�) 000 F (�) 000 F (�) 000 F (�)0:0 .0121.00 .0102.60 .0402.25 .0442.59 .0821.88 .0802.55 .0042.00 .0103.40 .0481.88 .0503.08 .1062.11 .1022.49 .0081.50 .0103.60 .0502.48 .0623.06 .1082.13 .0942.720:1 .0161.38 .0142.71 .0721.06 .0502.00 .1261.38 .1061.83 .0042.00 .0062.00 .0582.14 .0602.67 .1102.04 .1042.44 .0221.73 .0203.20 .0781.49 .0621.94 .1321.53 .1281.940:2 .0601.00 .0281.79 .2121.11 .1601.49 .3381.10 .2781.47 .0282.07 .0242.83 .1281.72 .1282.58 .2241.97 .2322.36 .0581.28 .0442.05 .1701.31 .1401.69 .2881.31 .2441.520:3 .2080.83 .1301.20 .4740.97 .3941.14 .5960.99 .5501.13 .0662.18 .0602.77 .2462.35 .2902.72 .3722.42 .3962.73 .1881.04 .1081.13 .4261.14 .3521.20 .5561.43 .5101.230:4 .4760.92 .3621.05 .7480.96 .7041.07 .8240.99 .7861.06 .2102.26 .2362.80 .4642.33 .5022.69 .6202.41 .6422.63 .3761.04 .2841.16 .6341.08 .5821.15 .7281.11 .7041.140:5 .7560.90 .6381.03 .9260.92 .8980.97 .9720.93 .9600.97 .3982.34 .4542.89 .7122.40 .7382.75 .8202.42 .8382.63 .6281.04 .5421.09 .8601.08 .8141.10 .9181.11 .8961.080:6 .9320.88 .8640.95 .9840.89 .9840.93 .9980.89 .9960.92 .5962.64 .6922.94 .8782.67 .9122.82 .9502.68 .9582.77 .8641.02 .8101.05 .9701.02 .9561.04 .9821.02 .9801.040:7 .9700.91 .9620.97 .9980.92 .9940.95 1.000.92 1.000.93 .8322.79 .8782.97 .9702.77 .9742.89 .9882.77 .9862.85 .9641.02 .9361.03 .9901.02 .9841.02 1.001.02 .9981.020:8 .9940.92 .9920.95 1.000.92 1.000.94 1.000.92 1.000.93 .9122.72 .9462.94 .9902.68 .9902.85 .9962.68 .9982.78 .9981.01 .9881.02 1.001.01 1.001.01 1.001.01 1.001.01The presented results in Table 1 for two di�erent testsare very similar giving a slight advantage to the choicetj;� � 0 . We therefore consider only this choice in thesequel.So far all simulations were done generating the data withstandard normal errors. As we use also the normal dis-tribution in the Monte-Carlo method for estimating thecritical value of the test, it is of interest to check fora notable loss of power if the underlying error distribu-tion is non-normal. We therefore examined the test per-formance when the errors are from the centered and stan-dardized �2df -distribution with df = 5; 10(and for compar-ison 1). The simulations were done for the model (16)with m(x) = (1 � v)x1 + vf1(x1) + f3(x2) + f4(x3) . The

results are given in Table 2 and show an astonishing stable
performance of the test w.r.t the di�erent error distribu-
tions.



H�ardle, Sperlich, and Spokoiny: Structural test in additive regression 11Table 2. Percentage of rejections for the function (1� v)x1 +vf1(x1) + f3(x2) + f4(x3) (v in left column) when theerrors are �2, respectively normal distributed.� � �25 �210 �21� = .01 .05 .10 .01 .05 .10 .01 .05 .100.0 .008 .058 .100 .006 .042 .102 .011 .057 .1040.1 .028 .102 .152 .016 .082 .144 .019 .093 .1500.2 .102 .210 .312 .104 .222 .314 .108 .263 .3560.3 .290 .534 .640 .302 .530 .648 .282 .506 .6200.4 .546 .806 .874 .530 .774 .830 .580 .800 .8550.5 .808 .918 .958 .802 .934 .976 .798 .930 .9620.6 .944 .984 .994 .930 .984 .992 .925 .985 .9920.7 .980 .994 1.00 .980 .996 .998 .985 1.00 1.000.8 .996 1.00 1.00 .998 1.00 1.00 .998 1.00 1.00

Next we compared the performance of our procedurewith the ideal (\oracle") parametric t-test (or Neymann-Pearson NP), see below, for the sample sizes 150 and 300.This gives us an idea about the relative e�ciency of thetest. Here, t-test means testing the hypothesis H0 : �2 = 0in the modelY = �0 + �1x1 + �2f1(x1) + �3f3(x2) + �4f4(x3) + �but with known functions f1, f3, f4.Figure 1 is giving the power functions of our wavelettest and the ideal t-test for the 5% signi�cance level. Theydemonstrate how fast the power of our procedure increasesand the separation distance between the null and the alter-native decreases for an increasing number of observations.
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Figure 1. The power functions for n = 150 (upper) and n = 300 (lower), testing linearity of the �rst component of mk(x; v), for k = 1on the left, k = 2 on the right with 5% signi�cance level. Solid line is for the wavelet test, dotted line if using t-test with all informationabout functional forms.For one dimensional models there exists a huge varietyof nonparametric methods to test functional forms suchas linearity, see Section 2.3. Although our procedure hasbeen developed for component analysis in additive mod-els, it could be of interest to know how well it does in theone dimensional case compared to existing methods. Wechose the linearity test of Eubank and Hart (1992), seetheir Example 2 (p.1416) for exactly the problem of test-ing linearity. Along their recommendation we applied thevariance estimator of Hall, Kay and Titterington (1990)
and used a polynomial basis to compute the residuals. Weconsidered the modelm(x) = (1�v)x+vf1(x). The results,given in Table 3 indicate that our method is competitiveeven in the special one dimensional case. Note, however,that our test is using Monte-Carlo-Methods whereas theEubank/Hart test is based on asymptotic results. Conse-quently, the latter has strong computational advantagesbut can underperform in such small samples as n = 150.



12 Journal of the American Statistical Association, ??? ???Table 3. Percentage of rejections for the function m(x) = (1 �v)x + vf1(x) (v in left column) for our wavelet test withtj;� = F (�) and Eubank/Hart test with n = 150.Wavelet test Eubank/Hart test� = .01 .05 .10 .01 .05 .100:0 .005 .033 .086 .024 .064 .1200:1 .030 .167 .237 .016 .078 .1900:2 .235 .449 .564 .068 .344 .5300:3 .656 .876 .938 .402 .802 .9080:4 .945 .991 .998 .822 .982 .9940:5 .993 1.00 1.00 .986 1.00 1.000:6 1.00 1.00 1.00 1.00 1.00 1.00
4.2 ApplicationsWe now turn to an application to illustrate the methodwith real data. The data set is a subsample of the So-cio Economic Panel of Germany from 1992. To study thefemale labor supply in East Germany, 607 women withjob and living together with a partner in East Germanyhave been asked for their weekly number of working hours,Yi . The following values have been chosen as explana-tory variables: the age of the woman X1, her earnings perhour X2, the prestige index of her kind of profession X3(called \Treimann Prestige Index" , see Treimann, 1978),the monthly rent or redemption X4 for their apartment orhouse, the monthly net income of her partner (in mostcases her husband) X5, her education X6 measured inyears, the unemployment rateX7 of the particular countryof the Federal Republic of Germany where the woman isliving in and the number of children younger than 16 years,X8. These data have already been analyzed nonparamet-rically, see e.g. Sperlich (1998) for functional forms andfurther discussion.The study of female labor supply is quite common ineconomic empirical research and usually done with (log-)linear additive models using indicators for which the abovementioned set of variables is typical, see e.g. Mroz (1987),Blundell, Duncan, Meghir (1998), Str�m and Wagenhals(1991) or any Handbook of Labor Economics. Amongthem, especially Mroz (1987) investigated the sensitiv-ity against model speci�cation in this context and foundtremendous di�erences in results depending on the partic-ular speci�cation. A �rst natural generalization would beto allow the additive components to be non-(log-)linear.Exactly this we now want to investigate. Later, we willadditionally have a look at the additivity assumption.Since some of these explanatory variables are not onlydiscrete but have even less then 10 di�erent values ob-served (e.g. for children and unemployment rate of coun-

try - there are only �ve countries in East Germany), wehave to choose respectively low jk(n) (the highest con-sidered wavelet level for k -th component) to avoid over-parametrization in this component, see Remark 3. There-fore we chose j6(n) = 2 for X6, j7(n) = 2 for X7,and for X8 (number of children) only j8(n) = 1. ForX1; X2; X3; X4 and X5 we chose jn = 4. These are alsothe functions of interest we want to analyze.An analysis of the residuals from our nonparametric �tindicates that the variance of the residual does not reallydi�er over the range of every explanatory variables whichjusti�es the assumption of a homogeneous noise for thisparticular application.In Figure 2 we have displayed the wavelet coe�cient es-timates used for the test statistics. They are standardized,i.e. divided by vIb�, but not corrected for the correlationinside the levels j1 = 0; 1; 2; 3; 4. The length is indicatingtheir absolute value.Often, the earnings per hour (X2) are modeled log-linearrather than linear by some reasoning from economic the-ory. So in a second run we also want to test the inuenceof ln(X2) instead of using X2 against linearity and gavethe coe�cients in the lower right.Taking into account the construction of test statisticsTj ; T �, Figure 2 gives some ideas where we would expectthe test to reject the null: e.g. for \earnings per hour" atj1 = 0, \prestige" at j1 = 4, and \log(earnings per hour)"at j1 = 2, whereas it is not that clear for \age", \income ofpartner" or \rent/redemption". For the latter one we evenwould guess that there is no signi�cance in the coe�cients.The wavelet test delivers the following results: the lin-earity hypothesis was rejected for X1 (\age") at only 10%(at j1 = 2), X2 (\earnings per hour") at 1% (at j1 = 0),for X3 (\prestige") at (almost) 5% (p-value� 0:052, atj1 = 4), and for ln(X2) also at the 1% signi�cance level(at j1 = 2).Though the additivity assumption is not of prime inter-est for us, we �nally also looked for possible second orderinteractions between the regressors. We applied the pro-cedure described in Section 3.1 to all combinations XjXk,k 6= j, j; k = 1; : : : 8. As before, we chose j6(n) = j7(n) =2, j8(n) = 1. It turned out, that the null hypothesis no in-teraction between \age" and \prestige" is rejected at 1%,\prestige" and \years of education" exactly at 5%, and be-tween \age" and \u-rate" and \earnings of husband" and\u-rate" at the 10% level. Hence, our testing procedureenabled us to detect that the underlying data are incon-sistent with the classic female labor supply model assump-tions concerning the function form. Including now the twointeractions \age"/\prestige" and \prestige"/\years of ed-ucation" repeated testing all one dimensional componentson linearity, we now got the following p-values: for \age"0:68, \hourly earnings" 0:004, \ln(hourly earnings)" 0:008,and \prestige" 0:208.



H�ardle, Sperlich, and Spokoiny: Structural test in additive regression 13Certainly, the same study could be done for any higherorder interaction, or it could be applied to constructing ageneral test of additivity. This, however, lies beyond thescope of our illustration.
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Figure 2. The estimated wavelet coe�cients for some additive component functions. The coe�cients �I are �rst standardized by vIb�; thelength indicates size. Coe�cients with no length are zero. Resolution levels j1 are given at vertical axes. The range of the regressors isnormed to [0; 1] in which the coe�cients are positioned in the center of the support of its corresponding mother wavelet  , e.g. for j = 0on 0:5. Not given are the coe�cients for the constant nor for the linear term since they do not enter to the test statistic.5. PROOFSIn this section we collect the proofs of Theorems 1 through2 and of the other statements presented in Section 3.5.1 Proof of Lemma 1By de�nition of jn it holds 3dn�1=2 � 2�jn�1 � 3dn�1 .Next, de�ne �0m;n as the projector on the space ofpiecewise constant functions of the m -th component xmwith the piece length 2�jn�1 . Since �m;n projects ona larger space generated by piecewise constant functionsand the linear function  1;m(x) = xm , it clearly holdskfm ��m;nfmkn � kfm ��0m;nfmkn .Let A be an interval of the form A = [k2�jn�1; (k +1)2�jn�1) and let NA;m denote the number of design

points Xi with Xi;m 2 A . The condition of the lemma onthe marginals �m;n of the empirical measure implies thatNA;m � C12�jn�1n . Denote also by fm;A the arithmeticmean of the values fm(Xi) over all Xi with Xi;m 2 A .Then �0m;nfm(Xi) = fm;A and the Lipschitz condition onthe component functions fm yields jfm(Xi;m)� fm;Aj �C22�jn�1 for Xi;m 2 A and henceXi :Xi;m2A jfm(Xi)� fm;Aj2 � NA;m ��C22�jn�1��2� C1C22n2�3jn�3:We have 2jn+1 such intervals and thereforekfm ��m;nfmk2n � C1C22n2�2jn�2 � C1C22d2n�1and the assertion follows.



14 Journal of the American Statistical Association, ??? ???5.2 Some properties of the variance estimateIt is well known that under mild regularity conditions, theunknown variance �2 can be estimated at the rate n�1=2 .We now show that the proposed estimate b�2 is also root-nconsistent under the condition (D) .The estimate b�2 can be represented in the formb�2 = (n� rn)�1Y >(1I��n)Y= (n� rn)�1(� + F )>(1I��n)(� + F ):where rn was the rank of �n. Condition (D) providesk(1I��n)F kn � C�n�1=2 , see the proof of Lemma 1.Lemma 2. Under the condition (D) it holdsP �����2b�2 � 1�� >p(n� rn)�1 logn� = on(1)where on(1) denotes a numerical sequence tending to zeroas n!1 . Moreover,P ���2 ��b�2 � b�20�� > n�1� = on(1)where b�20 = (n� rn)�1�>(1I��n)�:Proof. By de�nition��2(n� rn) �b�2 � b�20�= ��2F>(1I��n)F + 2��2�>(1I��n)F :Condition (D) providesF>(1I��n)F = k(1I��n)F k2n � C2n�1:Next, since ��2�>(1I��n)F is the linear combination ofGaussian errors �i , it is also a Gaussian random variablewith zero mean and the variance��4E ����>(1I��n)F ���2= ��4EF>(1I��n)��>(1I��n)F= ��2F>(1I��n)F� C2n�1:This implies for every t � 1P ���2 �b�2 � b�20� C2n(n� rn) + Cn�1=2tn� rn � � e�t2=2and the second assertion of the lemma follows in view ofn� rn � n=3 .For the �rst one, it remains to estimate ��2b�20 � 1 =��2(n�rn)�1�>(1I��n)� . Since ��2�>(1I��n)� followsthe �2 -distribution with n�rn degrees of freedom, the ex-pression p(n� rn)=2 ���2b�20 � 1� is asymptotically stan-dard normal and the required assertion follows.

5.3 Proof of Theorem 1Let jn be due to (10), then with condition (D) ,dXm=2 kfm ��m;nfmkn � C�n�1=2and each �m;nfm can be represented in the form�m;nfm = XI2I0(jn) �I;m I;m; m = 2; : : : ; d;with some coe�cients �I;m , I 2 I 2 I 0(jn) .Under the null hypothesis, f 1 = �0;1 + �1;1 1;1 . De�neF 0 = F � f1 ��2;nf2 � : : :��d;nfd:Then the above bound yieldskF 0kn = kF � f 1 ��2;nf2 � : : :��d;nfdkn� C�n�1=2: (17)Now we show that the original regression function F canbe replaced by F 0.Lemma 3. The change F for F 0 does not a�ect thetest statistics T � = maxj�jn Tj .Proof. Let some j � jn be �xed. Denote by �(d; j) =(�I;m; (I;m) 2 I(d; j)) the vector with �I;1 = 0 forI 2 Ij , 0 � j � jn , and with the above de�ned �I;m form � 2 . Then F 0 = F�	(d; j)�(d; j) and the inequality in(17) can be rewritten in the form kF �	(d; j)�(d; j)kn ��n�1=4 . De�ne also ��(d; j) =W (d; j)>F and let ��j bethe subvector of ��(d; j) corresponding to the j th resolu-tion level of the �rst component. This vector can be writtenin the form ��j = Ej��(d; j) with Ej being the projectorfrom IRN(d;j) onto IR2j keeping the entries ��I;1 , I 2 Ij ,of the vector ��(d; j) corresponding to the j th resolutionlevel of the �rst component. Then it holds��j = EjW (d; j)>F =W>j F :Since the test statistic T � is calculated via the estimatesb�j =W>j Y for j � jn , and since W>j Y =W>j �+W>j F ,it only remains to check that W>j 	(d; j)�(d; j) = 0 for allj � jn . The de�nition of �(d; j) provides Ej�(d; j) = 0 ,and hence,W>j 	(d; j)�(d; j)= EjW (d; j)>	(d; j)�(d; j)= Ej �	(d; j)>	(d; j)��	(d; j)>	(d; j)�(d; j)= 0as required.



H�ardle, Sperlich, and Spokoiny: Structural test in additive regression 15This lemma allows to reduce the statement of the theo-rem to the case with kF kn � C�n�1=2 .Recall that the critical value of the test is evaluatedunder the condition F � 0 . Now we intend to show thatP F (�� = 1) = �+ on(1) for every regression function Fsatisfying kF kn � C�n�1=2 . The test �� is based on thetest statistic T � = maxj�jn(Tj � tj;�) withTj = Y >WjV �j W>j Yb�2p2Nj �qNj=2 = Y >RjYb�2p2Nj �qNj=2:Here Wj is the submatrix of the matrix W (d; j) cor-responding to the j th resolution level of the �rst com-ponent, Wj = EjW (d; j) , and Vj = W>j Wj , so thatRj = WjV �j W>j is a projector in IRn on the Nj -dimensional subspace. The model Y = F + � impliesTj = �>Rj�b�2p2Nj �qNj=2 + 2�>RjF + F>RjFb�2p2Nj :De�ne T 0j = �>Rj�b�20p2Nj �qNj=2: (18)We intend to bound the di�erence Tj � T 0j .Lemma 4. Let condition (D) be ful�lled and the com-ponent f1 be a linear functions. Then it holdsjnXj=0P �jTj � T 0j j > �j� = on(1): (19)where �j = 3Cq log jnnNj .Proof. Clearly we haveTj � T 0j = �>Rj�p2Nj �b��2 � b��20 �+ 2�>RjF + F>RjFb�2p2Nj :Similarly to the proof of Lemma 2 one can show that�>Rj�p2Nj �b��2 � b��20 � = o(n�1)and for every t � 1 ,P  2�>RjF�2p2Nj > 2kRjF knt�2p2Nj ! � e�t2=2: (20)Since kRjF kn � kF kn � Cn�1=2 , this inequality appliedwith t = p3 log jn yieldsjnXj=0P  2�>RjF + F>RjF�2p2Nj > Cn�1 + 2Cs3 log jn2nNj !� (1 + jn)e3=2 log jn = on(1):

Now the required assertion follows in view of the �rst state-ment of Lemma 2.By construction, it holdsP � max0�j�jn(T 0j � tj;�) > �� = �:The idea is to show that this equality remains valid in theasymptotic sense if we replace here T 0j by Tj . Assertion(19) yieldsP � max0�j�jn(T 0j � tj;� � �j) > ��� on(1)� P � max0�j�jn(Tj � tj;�) > ��� P � max0�j�jn(T 0j � tj;� + �j) > ��+ on(1):Now it su�ces to check thatjnXj=0P �jT 0j � tj;� � �j � �j� = on(1):The distribution of T 0j is precisely known and for su�-ciently large n it is very close to the centered and stan-dardized �2 -distribution with Nj degrees of freedom.This particularly yields that the density of this distribu-tion with respect to the Lebesgue measure is bounded by1 and therefore,jnXj=0P  jT 0j � tj;� � �j � 3Cs log jnnNj !� jnXj=0 6Cs log jnnNj = on(1)and the theorem is proved.5.4 Proof of Theorem 2The proof utilizes the following technicalLemma 5. For su�ciently large n , it holdsmax0�j�jn tj;� + � � 2plog jn:Proof. The statement obviously follows from the fact thatjnXj=0P �T 0j > 2plog jn� = on(1)where every T 0j is de�ned by centering and standard-ization of a �2 -sum with Nj degrees of freedom, seeSpokoiny (1999a) for more details.



16 Journal of the American Statistical Association, ??? ???Let, for some j � jn , it holdsT �j = (2Nj)�1=2��2��j TV �j ��j� (tj;� + �+ t0j;�) + cplog jnwith some c > 0 . This inequality can be represented inthe formF>RjF�2p2Nj > 2tj;� + �+ t0j;� + aplog jn: (21)We will show that under the above assumption,P F (Tj < tj;� + �) � � + on(1);which obviously implies the assertion.Similarly to the proof of Theorem 1 we deriveTj � T 0j = �>Rj�p2Nj � 1b�2 � 1b�20�+ 2�>RjF + F>RjFb�2p2Nj= o(n�1) + 2�>RjF + F>RjFb�2p2Nj= o(n�1) + 2�>RjF + F>RjF�2p2Njwith T 0j from (18). The de�nition of t0j;� providesP ��T 0j < �t0j;�� = �:Now (20) impliesP F (Tj < tj;� + �) � P �T 0j < �t0j;��+P ��j > T �j � tj;� � �� t0j;��+ on(1)where j = 2�>RjF�2p2Nj is a Gaussian r.v. with zero mean andE2j = 4T �j (2Nj)�1=2 . It remains to check that condition(21) and Lemma 5 imply4T �j (2Nj)�1=2(T �j � tj;� � �� t0j;�)2 = on(1):REFERENCESAerts, M., Claesken, G. and Hart, J.D., (1999), \Testing the �t of aparametric function," J. of Amer. Stat. Ass., 94, 869{879.Bierens, H.J., (1982), \Consistent model speci�cation tests," J. ofEconometrics, 20, 105{134.Blundell, R., A.Duncan and C.Meghir (1998), \Estimating LaborSupply Responses using Tax Reforms," Econometrica, 4, 827{861.Buja, A., Hastie, T.J., and Tibshirani, R.J., (1989), \Linearsmoothers and additive models," Ann. Statist., 17, 453{555.Burnashev, M.V., (1979), \On the minimax detection of an inaccu-rately known signal in a white Gaussian noise background," TheoryProbab. Appl., 24, 107{119.Deaton, A. and Muellbauer, J. (1980), Economics and ConsumerBehavior, Cambridge University Press, New York.
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