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On LD Effiieny in Statistial Inferene 31 IntrodutionThe approah to statistial problems that bases its onlusions on the study of prob-abilities of large deviations has been in use in statistial inferene sine the papers byCherno�, 1952 and Bahadur, 1960.Cherno�, 1952 onsidering the problem of disriminating between two simple hypothe-ses showed that, if the hypotheses are �xed, the error probabilities derease exponentiallyfast as the sample size tends to in�nity; the orresponding optimal exponent is spei�edby what is now known as Cherno�'s funtion.Basu, 1956 and Bahadur, 1960 proposed a riterion for omparing statistial estima-tors based on the view that the quality of an estimator is haraterised by the probabilitythat the true value of the parameter is overed by the on�dene interval of a given width2 with entre at the estimate. If the width 2 is held �xed as the sample size growsthen the probabilities that the true value of the parameter is not overed are typiallyexponentially small. The estimator giving the fastest deay is alled now Bahadur eÆ-ient. Later, Bahadur et al., 1980, for the model of independent identially distributedobservations showed that in the lass of onsistent estimators the optimal rate instead ofCherno�'s funtion is spei�ed by the Kullbak{Leibler information.The ideas of Cherno� and Bahadur have been developed in various diretions. Ibrag-imov and Radavihius, 1981, Kallenberg, 1981, Ibragimov and Khasminskii, 1981, Ra-davihius, 1983 and Radavihius, 1991 studied the properties of maximum likelihoodestimators from the point of view of Bahadur's riterion. Fu, 1982, Borovkov and Mogul-skii, 1992b and Borovkov and Mogulskii, 1992a analysed the terms of the seond andhigher order of asymptoti expansions of Bahadur risks. Kallenberg, 1983, Rao, 1963,Wieand, 1976, and Ermakov, 1993 onsidered intermediate riteria for statistial estima-tors when the width of the on�dene interval goes to zero at ertain rate. Sievers, 1978and Rubin and Rukhin, 1983 evaluated Bahadur risks for partiular statistial models.Lately this diretion in mathematial statistis has reeived a new impetus, mostlyin papers by Korostelev, 1993, Korostelev, 1995, see also Korostelev and Spokoiny, 1995,Korostelev and Leonov, 1995, where the lassial large deviation set-up is onsidered inthe minimax nonparametri framework.Our aim here is to give a uni�ed treatment of the statistial problems that use largedeviation onsiderations. The idea is to apitalise on analogies between large deviationtheory and weak onvergene theory (see Lynh and Sethuraman, 1987; Vervaat, 1988;Puhalskii, 1991) and develop a large deviation analogue of asymptoti deision theory,Strasser, 1985. The approah of invoking the methods of weak onvergene theory toobtain results about large deviations has proved its worth in various set-ups, Puhalskii,



4 A.Puhalskii and V.Spokoiny1991, 1993, 1994a, 1994b, 1995a, 1995b, 1996. We show that it an suessfully be appliedto statistial problems too.We begin by de�ning in Setion 2 the onept of the large deviation priniple (LDP)for a sequene of statistial experiments. Analogously to the onept of weak onvergeneof statistial experiments, it is a short ut for saying that the distributions of suitably de-�ned likelihood proesses satisfy the large deviation priniple, Varadhan, 1966; Varadhan,1984. We illustrate the general de�nition by onsidering a number of standard statisti-al models (the Gaussian shift model, the model of independent identially distributedobservations, the \signal + white noise" model, the regression model with Gaussianand non{Gaussian errors, with deterministi and random design, and the hange{pointmodel). We next study properties of the LDP for statistial experiments and give asuÆient ondition for it whih is analogous to the loal asymptoti normality onditionby LeCam, 1960.The lassial minimax theorem by Le Cam states that if statistial experiments weaklyonverge then the minimax risks are asymptotially bounded from below by the orre-sponding risk for the limit model, see LeCam, 1972, LeCam, 1986, Strasser, 1985. InSetion 3, we show that, similarly, if a sequene of statistial experiments obeys the LDP,then there is an asymptoti lower bound for appropriately de�ned minimax risks. Theproblem of evaluating the bound is a minimax optimization problem. Further in Setion3, we study the question of sharpness of the lower bound. We show that it is sharp undera strengthened version of the LDP. This allows us to de�ne large deviation (LD) eÆientdeisions as the ones that attain the lower bound. We give a method of obtaining nearlyLD eÆient deisions, i.e., those whose LD asymptoti risk is arbitrarily lose to thelower bound.Setions 4 and 5 deal with appliations. Setion 4 adapts the results of Setion 3 to theases of hypothesis testing and estimation problems and presents expliit onstrutionsof nearly LD eÆient deisions. In Setion 5, we apply the mahinery to the modelsintrodued in Setion 2: we hek the LDP, give onditions when the lower bounds areattained, alulate them for hypothesis testing and estimation problems, and indiatenearly LD eÆient deisions. An appendix ontains extensions and auxiliary results.The results of the �rst four setions are new. The results that we obtain for themodels are partly new and partly over or extend earlier results.



On LD Effiieny in Statistial Inferene 52 The Large Deviation Priniple for Statistial Experi-mentsLet fEn ; n � 1g be a sequene of statistial experiments En = (
n;Fn;Pn;�; � 2 �) witha parameter set �, Strasser, 1985. In this setion, we give the de�nition of the largedeviation priniple for fEn ; n � 1g and study its properties. We start with the ase ofdominated experiments.2.1 The Dominated CaseLet us assume that eah experiment En = (
n;Fn;Pn;�; � 2 �) is dominated by aprobability measure Pn, i.e., Pn;� � Pn for all � 2 �. We abbreviate this by writingfEn; Pn ; n � 1g . Denote Zn;� = �dPn;�dPn �1=n ; � 2 �; (2.1)and let Zn;� = (Zn;� ; � 2 �) . We endow R�+ with the Tihonov (produt) topologyand Borel �{�eld so that Zn;� is a random element of R�+ ; L(Zn;�jPn) denotes thedistribution of Zn;� on R�+ under Pn. Roughly speaking, the large deviation priniplefor fEn; Pn ; n � 1g means that the sequene fL (Zn;�jPn) ; n � 1g of distributions onR�+ obeys the large deviation priniple, so we reall some basi notions of large deviationtheory.We use Varadhan's original de�nitions of the rate funtion and the large deviationpriniple (Varadhan, 1966; Varadhan, 1984). Let S be a Hausdor� topologial spae.We say that a funtion I : S ! [0;1℄ is a rate funtion on S if the sets I�1([0; a℄) areompat in S for all a � 0. A sequene fQn; n � 1g of probability measures on the Borel�{�eld of S is said to obey the large deviation priniple (LDP) with the rate funtion Iif limn!1 1n lnQn(G) � � infx2G I(x)for all open G � S and limn!1 1n lnQn(F ) � � infx2F I(x)for all losed F � S.We also say that I is a probability rate funtion if infx2S I(x) = 0. Obviously, if Iappears in the LDP, it is a probability rate funtion.Reall that the ontration priniple states that ontinuous mappings preserve theLDP, Varadhan, 1966; Varadhan, 1984.Next, we say that the sequene fEn; Pn ; n � 1g satis�es ondition (U) if



6 A.Puhalskii and V.Spokoiny(U) limH!1 limn!1 E1=nn Znn;�1(Zn;� > H) = 0; � 2 � :Here and below En denotes an expetation with respet to Pn and, by de�nition,E1=nn � = (En�)1=n; P 1=nn (A) = (Pn(A))1=n:De�nition 2.1 We say that a sequene fEn; Pn ; n � 1g of dominated statistial exper-iments obeys the dominated large deviation priniple (LDP) if1. the sequene fL (Zn;�jPn) ; n � 1g obeys the LDP with some (probability) ratefuntion I,2. ondition (U) holds.A ritial part of the de�nition is ondition 1. Condition (U) plays a subordinate thoughessential role. If we disregard ondition (U), the de�nition is analogous to the de�nition ofweak onvergene of dominated statistial experiments (Strasser, 1985) whih states thatthe likelihood ratios weakly onverge. The role of ondition (U) will beome lear shortly:it ensures the ompatibility of this de�nition with a more general one whih does notdepend on a hoie of dominating measures and inorporates the nondominated ase too.In partiular, ondition (U) implies that the lower bound that we obtain in Setion 3 forthe sequene of so alled large deviation risks does not depend on dominating measureseither (see Remark 3.2 below). Note that an analogue of ondition (U) in the theory ofweak onvergene of statistial experiments is a onsequene of weak onvergene of thelikelihood ratios and does not have to be singled out.In appliations, rather than onsidering Zn;�, it is more onvenient to deal with log-likelihood ratios �n;� de�ned as �n;� = 1n ln dPn;�dPn . Let us introdue �n;� = (�n;�; � 2 �)and denote by L(�n;�jPn) the distribution of �n;� on R� under Pn, where R� is suppliedwith the Tihonov topology and Borel �{�eld. If the �n;� are well de�ned then, by theontration priniple, the LDP for the sequene fL(�n;�jPn); n � 1g implies the LDPfor the sequene fL(Zn;�jPn); n � 1g.Now we onsider a number of statistial models whih, on the one hand, show that theLDP for the log-likelihood ratios arises quite naturally and, on the other hand, motivateand illustrate theoretial developments below. We stop short of giving rigourous proofsof the LDP for the models deferring this until Setion 5.Example 2.1 Gaussian ObservationsLet us observe a sample of n independent real-valued random variables Xn =(X1;n; : : : ;Xn;n) normally distributed withN (�; 1); � 2 � � R. For this model, 
n = Rn



On LD Effiieny in Statistial Inferene 7and Pn;� = (N (�; 1))n; � 2 �. We take Pn;0 as a dominating measure Pn. Then theorresponding log-likelihood ratios are of the form�n;� = 1n ln dPn;�dPn (Xn) = 1n nXk=1(�Xk;n � 12�2) = �Yn � 12 �2;where Yn = 1n nXk=1Xk;n; n � 1:The sequene fL (YnjPn) ; n � 1g obeys the LDP in R with rate funtion IN (y) =y2=2; y 2 R (see, e.g., Freidlin and Wentzell, 1979). This yields by the ontrationpriniple the LDP for the log-likelihood ratios �n;�.Example 2.2 An Independent-Identially-Distributed SampleLet Xn = (X1;n; : : : ;Xn;n) be an independent{identially{distributed sample from adistribution P�; � 2 �; on the real line. We do not speify the nature of the parameterset �. For example, it an be a subset of a �nite{dimensional spae, a set of distributionson R (or their probability density funtions), et. We assume that the family P isdominated by a probability measure P , i.e., P� � P; � 2 �. This model is desribedby dominated experiments En = (
n;Fn;Pn;�; � 2 �) with 
n = Rn , Fn = B(Rn) ,Pn;� = P n� ; � 2 � and Pn = P n .We have�n;� = 1n ln dPn;�dPn (Xn) = nXk=1 1n ln dP�dP (Xk;n) = ZR ln dP�dP (x)Fn(dx);where Fn(x) = 1n nXk=1 1(Xk;n � x); x 2 R;is an empirial distribution funtion.Let Y be the spae of umulative distribution funtions on R with the topology ofweak onvergene of assoiated probability measures. By Sanov's theorem (Sanov, 1957,Deushel and Strook, 1989, 3.2.17), the sequene fL (FnjPn) ; n � 1g obeys the LDP inY with rate funtion IS(F ) = K(F; P ) , F 2 Y, where K(F; P ) denotes the Kullbak{Leibler information:K(F; P ) = 8><>: ZR dFdP (x) ln dFdP (x)P (dx); if F � P;1; otherwise:



8 A.Puhalskii and V.SpokoinyLet us also denote, for � 2 � and F 2 Y,��(F ) = ZR ln dP�dP (x)F (dx):If the density funtions dP�dP (x) are bounded from above, bounded away from zero andontinuous in x for all � 2 �, then the ��(F ) are ontinuous funtions on Y and, sine�n;� = ��(Fn), the ontration priniple yields the LDP for the sequene f�n;�; n � 1g.Example 2.3 \Signal + White Noise"We observe a real-valued stohasti proessXn = (Xn(t); t 2 [0; 1℄) obeying the stohastidi�erential equation dXn(t) = �(t)dt+ 1pn dW (t); 0 � t � 1;where W = (W (t); t 2 [0; 1℄) is a standard Wiener proess and �(�) is an unknownfuntion assumed to belong to some set � of real-valued ontinuous funtions on [0; 1℄.This model is desribed by statistial experiments En = (
n;Fn;Pn;�; � 2 �) , where
n is C[0; 1℄, the spae of ontinuous funtions on [0; 1℄ with the uniform metri andBorel � {�eld, and Pn;� is the distribution of Xn on C[0; 1℄ for �. We take Pn = Pn;0,where Pn;0 orresponds to the zero funtion �(�) � 0 . Then Pn;� � Pn and, moreover,by Girsanov's formula, Pn{almost surely,�n;� = 1n ln dPn;�dPn (Xn) = Z 10 �(t)dXn(t)� 12 Z 10 �2(t)dt: (2.2)Let C0[0; 1℄ be the subset of C[0; 1℄ of the funtions x(�) that are absolutely ontinuouswith respet to Lebesgue measure and equal 0 at 0. Then the sequene fL (XnjPn) ; n �1g obeys the LDP in C[0; 1℄ with rate funtionIW (x(�)) = 8><>: 12 Z 10 ( _x(t))2 dt; if x(�) 2 C0[0; 1℄;1; otherwise,_x(t) denoting the derivative of x(�) at t (see, e.g., Freidlin and Wentzell, 1979).Let us denote, for funtions �(�) 2 � and x(�) 2 C0[0; 1℄,��(x) = Z 10 �(t)dx(t)� 12 Z 10 �2(t)dt;where the integral is understood as a Lebesgue{Stiltjes integral.Again the log-likelihood ratio �n;� an formally be represented as �n;� = ��(Xn) .Note however that the �rst integral in (2.2) is an Ito integral, so the latter equality aswell as the ontinuity property for �� atually hold for funtions �(�) of speial sort (e.g.,pieewise onstant or di�erentiable). For these funtions, the ontration priniple againimplies the LDP for f�n;�; n � 1g. A general ase is studied in Setion 5.



On LD Effiieny in Statistial Inferene 9Example 2.4 Gaussian RegressionWe onsider the regression modelXk;n = �(tk;n) + �k;n; tk;n = kn; k = 1; : : : ; n; (2.3)where errors �k;n are independent standard normal and �(�) is an unknown real{valuedontinuous funtion.In this model, 
n = Rn, � � C[0; 1℄ and Pn;� is the distribution of Xn =(X1;n; : : : ;Xn;n) for �(�). As above, we take Pn = Pn;0. Then�n;� = 1n ln dPn;�dPn (Xn)= 1n nXk=1 �(tk;n)Xk;n � 12n nXk=1 �2(tk;n)= Z 10 �(t) dXn(t)� 12n nXk=1 �2 (tk;n) ;where Xn(t) = 1n [nt℄Xk=1Xk;n; 0 � t � 1:Let Y be the spae of right-ontinuous with left-hand limits funtions on [0; 1℄ with theuniform metri (for measurability of Xn, see Billingsley, 1968, x8).Sine the Xk;n are N (0; 1){distributed under Pn, the sequene fL (XnjPn) ; n � 1gobeys the LDP in Y with rate funtion IW (Mogulskii, 1976, Theorem 2).Sine the funtion �(�) is ontinuous, we have, for large n, the approximate equality1n nXk=1 �2 (tk;n) � Z 10 �2(t) dtand hene �n;� � ��(Xn) with the same funtion �� as in the preeding example. If the� are di�erentiable, integration by parts shows that the �n;� are ontinuous funtions ofthe Xn, and the LDP for f�n;�; n � 1g follows by the ontration priniple. Again, ageneral ase is deferred until Setion 5.Example 2.5 Non{Gaussian RegressionWe onsider the same regression model (2.3) but now assume that independent identiallydistributed errors �k;n have a distribution P with a positive probability density funtionp(x) with respet to Lebesgue measure on the real line. An unknown regression funtion�(�) is assumed to be ontinuous, so � � C[0; 1℄.



10 A.Puhalskii and V.SpokoinyAs above, for a regression funtion �(�) , we denote by Pn;� the distribution of Xn =(X1;n; : : : ;Xn;n) . We have, with Pn = Pn;0 ,�n;� = 1n ln dPn;�dPn (Xn) = 1n nXk=1 ln p(Xk;n � �(tk;n))p(Xk;n) :Introduing an empirial proess Fn = Fn(x; t) , x 2 R , t 2 [0; 1℄ , byFn(x; t) = 1n [nt℄Xk=1 1(Xk;n � x);we have that �n;� = Z 10 ZR ln p(x� �(t))p(x) Fn(dx; dt): (2.4)Let us de�ne Y as the spae of umulative distribution funtions F = F (x; t); x 2 R; t 2[0; 1℄ , on R � [0; 1℄ with the weak topology. Let Y0 be the subset of Y of absolutelyontinuous with respet to Lebesgue measure on R�[0; 1℄ funtions F (x; t) with densitiespt(x) suh that RR pt(x) dx = 1 for t 2 [0; 1℄ .It is shown in Dembo and Zaji, 1995 (see also Theorem 1 in Puhalskii, 1996) thatthe sequene fL(FnjPn); n � 1g obeys the LDP in Y with rate funtion ISK(F ) givenby ISK(F ) = 8><>: Z 10 ZR ln pt(x)p(x) pt(x) dx dt; if F 2 Y0;1; otherwise:Denote, for F 2 Y0 and � 2 �,��(F ) = Z 10 ZR ln p(x� �(t))p(x) F (dx; dt):Then by (2.4), �n;� = ��(Fn) and if the log's in the integrals in the de�nition of the ��are bounded and ontinuous, we have the LDP for f�n;�; n � 1g.Example 2.6 The Change{Point ModelLet us observe a sample Xn = (X1;n; : : : ;Xn;n) of real{valued random variables, where,for some kn � 1, the observations X1;n; : : : ;Xkn;n are independent identially distributedwith a distribution P0 and the observations Xkn+1;n; : : : ;Xn;n are independent identiallydistributed with a distribution P1. We assume that P0 and P1 are known and kn isunknown. Let us also assume that kn = [n�℄, where � 2 � = [0; 1℄. For this model,
n = Rn and Pn;� stands for the distribution of Xn for �.Let a probability measure P dominate P0 and P1 andf0(x) = dP0dP (x); f1(x) = dP1dP (x); x 2 R;



On LD Effiieny in Statistial Inferene 11be respetive densities. Assume that f0(x) and f1(x) are positive and ontinuous. De-noting Pn = P n, we have�n;� = 1n ln dPn;�dPn (Xn) = 1n [n�℄Xi=1 ln f0(Xi;n) + 1n nXi=[n�℄+1 lnf1(Xi;n)so that de�ning an empirial proess again byFn(x; t) = 1n [nt℄Xi=1 1(Xi;n � x); x 2 R; t 2 [0; 1℄;we obtain the representation�n;� = Z �0 ZR ln f0(x) Fn(dx; dt) + Z 1� ZR ln f1(x) Fn(dx; dt):Let a spae Y be de�ned as for the preeding model and YP be the set of those F 2 Ythat are absolutely ontinuous with respet to the measure P (dx)�dt and admit densitiespt(x) suh that RR pt(x)P (dx) = 1 ; t 2 [0; 1℄ . As above, the Fn obey the LDP with ratefuntion ISKP of the formISKP (F ) = 8><>: Z 10 ZR pt(x) ln pt(x)P (dx) dt; if F 2 YP ;1; otherwise:De�ne next for F 2 YP��(F ) = Z �0 ZR ln f0(x) F (dx; dt) + Z 1� ZR log f1(x) F (dx; dt) :Then again �n;� = ��(Fn), and the LDP for f�n;�; n � 1g holds, e.g., when log f0(x) andlog f1(x) are bounded and ontinuous.Example 2.7 Regression with Random DesignWe onsider the model Xk;n = �(tk;n) + �k;n; k = 1; : : : ; n;where real-valued errors �k;n and design points tk;n are independent with respetivedistributions P and � dominated by Lebesgue measure. We denote the respetivedensities by p(x) and �(t). We also assume that the prior measure � has a ompatsupportD, �(t) is ontinuous and positive on the support, p(x) is ontinuous and positiveon R , and an unknown regression funtion �(�) is ontinuous.



12 A.Puhalskii and V.SpokoinyIn this model, Pn;� is the joint distribution of Xn = (X1;n; : : : ;Xn;n) and tn =(t1;n; : : : ; tn;n) for � . Let Fn be the joint empirial distribution funtion of Xn and tn :Fn(A;B) = 1n nXk=1 1(Xk;n 2 A; tk;n 2 B)for Borel sets A � R; B � D, and let Y be the spae of distributions on R�D with theweak topology. Set also Pn = Pn;0 = (P ��)n .With these de�nitions,�n;� = 1n ln dPn;�dPn (Xn; tn)= 1n nXk=1 ln p(Xk;n � �(tk;n))p(Xk;n)= ZD ZR ln p(x� �(t))p(x) Fn(dx; dt):Let Y1 be the set of the umulative distribution funtions on R2 that are absolutelyontinuous with respet to Lebesgue measure on R2 and have support in R�D. UnderPn , the random pairs (Xk;n; tk;n) are independent identially distributed with the dis-tribution P � � , and hene, by Sanov's theorem, the LDP holds for the Fn with ratefuntion ISS(F ) given byISS(F ) = 8<: ZD ZR ln p(x; t)p(x)�(t) p(x; t) dx dt; if F 2 Y1;1; otherwise:Here F (dx; dt) = p(x; t) dx dt . The LDP for this model follows now in a manner similarto the ase of an independent-identially-distributed sample.We end the subsetion with a simple but useful remark. It is notieable that thede�nition of the LDP given above uses the same letter n both to subsript probabilitymeasures and assoiated random elements, and denote a saling parameter. One mightwonder whether this is not a loss of generality and how n should be hosen when onsid-ering partiular models. The answer to the �rst question is in the negative and makingn play the two roles is a matter of onveniene for eonomy of notation. Indeed, if wehave a sequene of probability measures fQn; n � 1g with logQn having the right ratebn !1 as n!1 , we an always redue this ase to the above \standard" set{up by\relabeling" the measures, i.e., by introduing measures Q0n suh that Q0bn = Qn ; takingbn as a new n then gives logQ0n the rate n as required. This argument originating fromVaradhan, 1984 also answers the seond question: n in our formalism has the meaningof the right sale rather than \the natural parameter of the model". Of ourse, the twoan oinide as in most of the examples we onsidered where n is a sample size, but not



On LD Effiieny in Statistial Inferene 13always as Example 2.3 shows. On the other hand, it is lear from the above that if wewant n to be \the natural parameter", we an do this by introduing some bn !1 asa sale.2.2 SuÆient Conditions for the Dominated LDPWe now study properties of the LDP for statistial experiments and begin with a suÆientondition for the LDP. The ondition serves two purposes further: �rst, in partiularstatistial models it an easier be heked than the de�nition of the LDP, seond, thisondition omes in handy when onstruting asymptotially optimal deisions, see Setion4. The idea behind the ondition is similar to the one used in the ondition of loalasymptoti normality by LeCam, 1960 for studying weak onvergene of experiments, or,more generally, in the ondition of � {onvergene by Shiryaev and Spokoiny, 1995.Given a sequene of dominated statistial experiments fEn; Pn; n � 1g , assume thatthere exist statistis Yn on (
n;Fn) with values in a Hausdor� spae Y suh that thesequene fL(YnjPn); n � 1g obeys the LDP and the Yn are asymptotially suÆientin the sense that Zn;� � z�(Yn) for some nonrandom funtions z� on Y . In the aboveexamples the statisti Yn is easily identi�ed: it is the empirial mean (X1;n+: : :+Xn;n)=nin the ase of a sample from normal distribution in Example 2.1, the empirial distributionfuntion Fn in the ase of an independent-identially-distributed sample in Example 2.2,the observation proess Xn for the \signal + white noise" model, the empirial proessFn for the regression model with non-Gaussian errors and the hange-point model, et.If the funtions z� are ontinuous then, by the ontration priniple, the LDP for thesequene fL(YnjPn); n � 1g implies the LDP for the sequene fL(z�(Yn)jPn); n � 1gand hene for fL (Zn;�jPn) ; n � 1g . Unfortunately, by ontrast with the theory of weakonvergene of experiments, in appliations the funtions z� typially are not ontinuous.For instane, the funtions ��(y) = ln z�(y) generally are not ontinuous in the aboveexamples for an independent-identially-distributed sample, the \signal + white noise"model, the regression models and the hange-point model. To overome this diÆulty, weneed to introdue \regularisations" z�;Æ(y) of z�(y) that, on the one hand, are ontinuousfuntions and, on the other hand, onverge to z�(y) as Æ ! 0 .Before stating the ondition, let us review some more fats about large deviationsused in the sequel. Reall (Varadhan, 1966; Varadhan, 1984; Deushel and Strook,1989; Bry, 1990) that if a sequene of probability measures fQn; n � 1g on the Borel �{�eld of a Hausdor� spae S obeys the LDP with rate funtion I then, for all non-negative



14 A.Puhalskii and V.Spokoinybounded ontinuous funtions f on S,limn!1 �ZS(f(x))nQn(dx)�1=n = supx2S f(x)V (x); (2.5)where V (x) = exp(�I(x)). If S is a metri, or, more generally, a Tihonov (i.e., ompletelyregular) spae (Engelking, 1977; Kelley, 1957) then (2.5) also is suÆient for the LDP(Puhalskii, 1993).Moreover, the LDP implies (2.5) for unbounded ontinuous non-negative funtions ftoo under \the uniform exponential integrability ondition" (Varadhan, 1984; Deusheland Strook, 1989)limH!1 limn!1 �ZS (f(x))n 1(f(x) > H)Qn(dx)�1=n = 0: (2.6)Also, if f is a lower semiontinuous non-negative funtion thenlimn!1 �ZS(f(x))nQn(dx)�1=n � supx2S f(x)V (x): (2.7)The funtion V (x) is further referred to as a deviability. Equivalently, a deviability isde�ned as a funtion V : S ! [0; 1℄ suh that supx2S V (x) = 1 and the inverse imagesV �1([a; 1℄) are ompat sets for all a > 0. Obviously, there is one-to-one orrespondenebetween probability rate funtions and deviabilities. We say that fQn; n � 1g largedeviation (LD) onverges to V and write Qn l:d:! V (n!1) if (2.5) holds for all boundedontinuous non-negative funtions f (Puhalskii, 1994a). Below we use the fat that, ifS is metri, then one an only require that the funtions f be uniformly ontinuous(analogously to weak onvergene theory, Billingsley, 1968, Theorem 2.1). By the above,if S is a Tihonov spae thenQn l:d:! V (n!1) if and only if fQng obeys the LDP with I =� lnV . All the spaes we onsider below are Tihonov and we mostly use the formulationof the LDP as LD onvergene as more onvenient in theoretial onsiderations.Next, let S and S0 be Hausdor� spaes and V a deviability on S. Denote�V (a) = fx 2 S : V (x) � ag; a > 0: (2.8)As in Puhalskii, 1995b (f. Shwartz, 1973), we say that a map ' : S ! S0 is V {Luzinmeasurable if it is ontinuous in restrition to eah set �V (a); a > 0. 2 Deviabilities2The name is motivated by the following analogy with Luzin's theorem in measure theory. Let usextend V to a set funtion on S by de�ning V (�) = supx2� V (x); � � S. Then V as a set funtion is ananalogue of probability (see Puhalskii, 1991, 1994, 1995a for a disussion), and, equivalently, a funtion' is V {Luzin measurable if, for every " > 0, there exists a set A � S with V (SnA) < " suh that ' isontinuous in restrition to A . It is also interesting to note that one an prove an analogue of Egorov'stheorem for sequenes of Luzin measurable funtions Puhalskii, 1991, 1995b.



On LD Effiieny in Statistial Inferene 15are preserved under Luzin measurable maps: for any V {Luzin measurable map ', thefuntion V Æ'�1 on S0 de�ned by V Æ'�1(x0) = supx2'�1(x0) V (x); x0 2 S0; is a deviabilityon S0 (see Deushel and Strook, 1989, 2.1.4, also the argument of Puhalskii, 1991,Lemma 2.1 applies).Also, we say that a funtion ' : S ! S0 is V {almost everywhere (V {a.e.) ontinuousif it is ontinuous at every x 2 S with V (x) > 0. Obviously, eah V {a.e. ontinuousfuntion is V {Luzin measurable.Some more notational onventions are in order. We denote by A(�) the family of all�nite subsets of �. Elements of R�+ are denoted by z� = (z�; � 2 �), and elements of R�+,where � 2 A(�), by z� = (z�; � 2 �). Maps �� and ��0�, where � 2 A(�), �0 2 A(�)and � � �0, are the natural projetions of R�+ onto R�+ and of R�0+ onto R�+, respetively:��(z�; � 2 �) = (z�; � 2 �) and ��0�(z�; � 2 �0) = (z�; � 2 �). Sine R�+ and R�+,� 2 A(�), are supplied with the Tihonov topology, the projetions are ontinuous.We now state and prove the suÆient ondition for the LDP. We assume in it thatthe statistis Yn take values in a metri spae whih is enough for appliations thoughthis restrition an be relaxed.Lemma 2.1 Let fEn; Pn ; n � 1g be a sequene of dominated experiments and Zn;�; � 2�, be de�ned by (2.1).Assume that the following ondition holds:(Y ) there exist statistis Yn : 
n ! Y with values in a metri spae Y with the Borel�{�eld, funtions z� : Y ! R+ ; � 2 � , and z�;Æ : Y ! R+ , � 2 � ; Æ > 0 ; suh that(Y:1) the sequene fL (YnjPn) ; n � 1g of distributions on Y LD onverges to a deviabilityV (y); y 2 Y;(Y:2) for all Æ > 0 , the funtions z�;Æ : Y ! R+ , � 2 � , are Borel measurable andV {a.e. ontinuous;(Y:3) limÆ!0 limn!1 P 1=nn (jZn;� � z�;Æ(Yn)j > ") = 0 for all " > 0 and � 2 �;(Y:4) limÆ!0 supy2�V (a) jz�;Æ(y)� z�(y)j = 0 for all a > 0 and � 2 �.Then L (Zn;�jPn) l:d:! V� (n!1), where V� = V Æz�1� ; z� = (z�; � 2 �).Proof.Conditions (Y:2) and (Y:4) obviously imply that z� : Y ! R�+ is V {Luzin mea-surable, hene V� is a deviability on R�+.Let � 2 A(�). We �rst prove thatL(Zn;�jPn) l:d:! V� (n!1); (2.9)



16 A.Puhalskii and V.Spokoinywhere Zn;� = (Zn;�; � 2 �), V� = V Æ z�1� and z� = (z�; � 2 �). Let f :R�+ ! R+ be bounded and uniformly ontinuous. Sine, by the de�nition of V�,supz�2R�+ f(z�)V�(z�) = supy2Y f(z�(y))V (y) , we need to prove thatlimn!1 E1=nn fn(Zn;�) = supy2Y f(z�(y))V (y): (2.10)Let z�;Æ = (z�;Æ; � 2 �). Condition (Y:3) implies in view of the boundedness and uniformontinuity of f thatlimÆ!0 limn!1 jE1=nn fn(Zn;�)�E1=nn fn(z�;Æ(Yn))j = 0; (2.11)Sine the sequene fL(YnjPn); n � 1g LD onverges to V and the map z�;Æ : Y ! R�+is V {a.e. ontinuous, the sequene fL(z�;Æ(Yn)jPn); n � 1g LD onverges to V Æ(z�;Æ)�1,Puhalskii, 1991, Theorem 2.2. Thus, sine f is non-negative, bounded and ontinuous,limn!1 E1=nn fn(z�;Æ(Yn)) = supy2Y f(z�;Æ(y))V (y): (2.12)By (2.11) and (2.12), for (2.10) it remains to show thatlimÆ!0 supy2Y f(z�;Æ(y))V (y) = supy2Y f(z�(y))V (y) (2.13)whih is an easy onsequene of ondition (Y:4). Convergene (2.9) is proved. Theassertion of the lemma now follows by the Dawson{G�artner theorem on the projetivelimits of large deviation systems (Dawson and G�artner, 1987, Theorem 3.3) if we note thatL(Zn;�jPn) is the projetive limit of fL(Zn;�jPn) ;� 2 A(�)g and V� = V� Æ ��1� ; � 2A(�). 2Remark 2.1 Sine R�+ is a Tihonov spae, the lemma implies that, under onditions(Y ) and (U), the sequene fEn; Pn ; n � 1g obeys the dominated LDP.Remark 2.2 As we have seen, in appliations it is more onvenient to manipulate ratefuntions and log-likelihood ratios given by�n;� = lnZn;� = 1n ln dPn;�dPn ; � 2 �:Aordingly, it is useful to state ondition (Y ) in these terms. Assume that the �n;� arewell de�ned. It is easy to see that ondition (Y ) is implied by the following ondition(Y 0) there exist statistis Yn : 
n ! Y with values in a metri spae Y with the Borel�{�eld, funtions �� : Y ! R; � 2 �; and ��;Æ : Y ! R; � 2 �; Æ > 0 ; suh that(Y 0:1) the sequene fL(YnjPn); n � 1g of distributions on Y obeys the LDP with ratefuntion I(y); y 2 Y;



On LD Effiieny in Statistial Inferene 17(Y 0:2) for all Æ > 0 , the funtions ��;Æ : Y ! R , � 2 � , are Borel measurable andontinuous at eah point y suh that I(y) <1;(Y 0:3) limÆ!0 limn!1 P 1=nn (j�n;� � ��;Æ(Yn)j > ") = 0 for all " > 0 and � 2 �;(Y 0:4) limÆ!0 supy2�0I (a) j��;Æ(y)� ��(y)j = 0 for all a � 0 and � 2 �,where �0I(a) = fy 2 Y : I(y) � ag.Condition (U) takes the form(U 0) limH!1 limn!1 E1=nn exp(n�n;�)1(�n;� > H) = 0; � 2 � :By Lemma 2.1, onditions (Y 0) and (U 0) imply the dominated LDP.2.3 The General CaseThe above de�nition of the large deviation priniple for statistial experiments overs onlythe dominated ase and depends on a hoie of dominating measures. We present nowanother de�nition whih is free of these defets. It is motivated by Le Cam's de�nitionof weak onvergene of experiments, see, e.g., Strasser, 1985.Let j�j denote the number of elements in � 2 A(�) . For z� = (z�; � 2 �) 2 R�+and z� = (z�; � 2 �) 2 R�+ , we set kz�k� = max�2� z� and kz�k� = max�2� z� , respetively,and de�ne S� = fz� 2 R�+ : kz�k� = 1g and S� = fz� 2 R�+ : kz�k� = 1g . Not tooverburden notation, we sometimes omit the subsript � in k � k� if there is no risk ofonfusion.Next, given a sequene of statistial experiments fEn ; n � 1g , where En =(
n;Fn; Pn;�; � 2 �) , set, for � 2 A(�) ,Pn;� = 1j�jX�2�Pn;�;Zn;�;� = � dPn;�dPn;��1=n ; � 2 �; (2.14)Zn;� = (Zn;�;�; � 2 �):The de�nitions immediately imply that, Pn;�{almost surely,X�2� Znn;�;� = j�j (2.15)and 1 � kZn;�k � j�j1=n: (2.16)



18 A.Puhalskii and V.SpokoinyDe�nition 2.2 A sequene fEn ; n � 1g of statistial experiments obeys the large de-viation priniple (LDP) if, for eah � 2 A(�) , the sequene fL(Zn;�jPn;�); n � 1g ofdistributions on R�+ obeys the LDP with some rate funtion.Remark 2.3 Equivalently, fEn ; n � 1g obeys the LDP if L(Zn;�jPn;�) l:d:! V�, � 2A(�) , where V� is a deviability on R�+ .We next study onsequenes of the de�nition and, partiularly, prove that the def-initions of the LDP for the dominated and general ases are onsistent. We start bygiving another haraterisation of the LDP. Let H� denote the set of all non-negative,ontinuous and positively homogeneous funtions on R�+ : h 2 H� if h(z�) � 0 , h isontinuous and h(�z�) = �h(z�) for all z� 2 R�+ and � � 0 . We say that a deviabilityV� has support in S� if V�(z�) = 0 for z� =2 S� .Lemma 2.2 Let � 2 A(�) . Then L (Zn;�jPn;�) l:d:! V� if and only if V� has supportin S� and limn!1 E1=nn;�hn(Zn;�) = supz�2R�+ h(z�)V�(z�) for every h 2 H� :In partiular, if L (Zn;�jPn;�) l:d:! V� then, for all � 2 � ,(R) supz�2R�+ ��z�V�(z�) = 1 .Proof.Let L (Zn;�jPn;�) l:d:! V� . We have, using the equivalene of LD onvergene andthe LDP on R�+, that, for " > 0,limn!1 P 1=nn;� (jkZn;�k � 1j > ") � supz�: jkz�k�1j>"V�(z�):Inequalities (2.16) imply that the left-hand side equals zero. Sine " is arbitrary, V� hassupport in S�. The laimed limit follows by the de�nition of LD onvergene sine, by(2.16), h(Zn;�) = bh(Zn;�) Pn;�{almost surely, where bh(z�) = h(z�)[(2�kz�k=�)^1_0℄,and the latter funtion is non-negative, bounded and ontinuous.For the onverse, pik a non-negative ontinuous bounded funtion f on R�+ . Weneed to prove that limn!1E1=nn;�fn(Zn;�) = supz�2R�+ f(z�)V�(z�): (2.17)We de�ne a funtion ef byef(z�) = 8><>: kz�kf � z�kz�k� ; if jjz�jj > 0 ;0 ; if jjz�jj = 0 :



On LD Effiieny in Statistial Inferene 19Note that f and ef oinide on S� and, sine V� is supported by S�, we an hangef to ef on the right-hand side of (2.17). The ontinuity of f and the inequalities (2.16)easily imply that the random variables f(Zn;�) and ef(Zn;�) are uniformly bounded andlimn!1 ���E1=nn;�fn(Zn;�)�E1=nn;� efn(Zn;�)��� = 0:Sine ef 2 H� , taking h = ef in the onditions of the lemma, we getlimn!1 E1=nn;� efn(Zn;�) = supz�2R�+ ef(z�)V�(z�);onluding the proof of (2.17).Property (R) follows by taking h(z�) = ��z� . 2We now show that if � � �0 2 A(�) then the deviability V� is a sort of projetionof the deviability V�0 , the property being inherited from orresponding probabilities.Reall notations ��0� and �� for the projetions from R�0+ onto R�+ and R�+ onto R�+ ,respetively, and let ��0� and �� stand for normalised projetions:��0�z�0 = ��0�z�0=k��0�z�0k�; z�0 2 R�0+ ; k��0�z�0k� > 0 ;��z� = ��z�=k��z�k�; z� 2 R�+ ; k��z�k� > 0 :Also we adhere to the onvention that sup; = 0 .Lemma 2.3 Let � � �0 2 A(�) . If L (Zn;�jPn;�) l:d:! V� and L �Zn;�0 jPn;�0� l:d:! V�0then the following onditions hold:(C) supz�2R�+ h(z�)V�(z�) = supz�02R�0+ h(��0�z�0)V�0(z�0) ; h 2 H� ;(S) V�(z�) = supz�02��1�0�z� k��0�z�0k�V�0(z�0); z� 2 R�+ ;where ��1�0�z� = fz�0 2 R�0+ : ��0�z�0 = z�g .Proof.De�ne Zn;�;�0 = � dPn;�dPn;�0�1=n :By (2.14), ��0�Zn;�0 = Zn;�Zn;�;�0 Pn;�0{almost surely;and, sine h 2 H� , we have thatE1=nn;�hn(Zn;�) = E1=nn;�0 �h(Zn;�0)Zn;�;�0�n = E1=nn;�0hn(��0;�Zn;�0):Applying Lemma 2.2 to the leftmost and rightmost sides we obtain (C).



20 A.Puhalskii and V.SpokoinyNow, (S), for a given bz� 2 S� , an formally be obtained by substituting bh(z�) =1(z� = kz�kbz�)kz�k into (C) and using the fat that V� has support in S�. However,the funtion bh is not ontinuous, so we approximate it with a sequene of ontinuousfuntions hk 2 H� ; k � 1 ; as follows. Lethk(z�) = (kz�k � kkz� � bz�kz�k k)+:Sine the hk are from H� , they satisfy (C). Also hk(z�) # bh(z�) as k ! 1 . >Fromthe fat that the hk(z�) are ontinuous and V� and V�0 are deviabilities, it is notdiÆult to hek by using Dini's theorem (for a proof see, e.g., Lemmas A.1 and A.4 inPuhalskii, 1995b ) that one an take limit as k !1 in (C) for the hk, as required. 2Remark 2.4 Property (S) implies that (C) holds for non-ontinuous positively homo-geneous non-negative funtions too.In analogy with statistial deision theory, Strasser, 1985, we further all a family ofdeviabilities fV�;� 2 A(�)g , where V� is de�ned on R�+, onial if it satis�es (C). If,in addition, V�(z�) = 0 for all z� =2 S� , the family is alled standard. The proof ofLemma 2.3 shows that a family is standard if it meets (S).The next result is of partiular importane for the minimax theorem below. It statesthat every standard family of deviabilities admits an extension to a funtion on R�+whih preserves the onial property.Lemma 2.4 For every standard family of deviabilities fV�;� 2 A(�)g , there exists afuntion V� on R�+ suh that the following onditions hold:(i) the funtion V� is upper semiontinuous, assumes values in [0; 1℄,supz�2R�+ V�(z�) = 1 and V�(z�) = 0 if z� =2 S� ;(ii) for all � 2 A(�) and h 2 H� ,supz�2R�+ h(z�)V�(z�) = supz�2R�+ h(��z�)V�(z�);(iii) for all z� 2 R�+ , V�(z�) = supz�2��1� z� k��z�k�V�(z�) ;where ��1� z� = fz� 2 R�+ : ��z� = z�g .We relegate the proof to the appendix.We onlude the setion by showing onsisteny of the above de�nitions of the LDPfor statistial experiments.



On LD Effiieny in Statistial Inferene 21Lemma 2.5 Let fEn; Pn ; n � 1g be a sequene of dominated statistial experiments.If it obeys the dominated LDP, then it obeys the LDP. More spei�ally, denoting byV� the deviability on R�+ that is the LD limit of L (Zn;�jPn) as n ! 1, we have thatL (Zn;�jPn;�) l:d:! V� ;� 2 A(�) ; whereV�(z�) = 8<: supz�2��1� z� k��z�kV�(z�); if z� 2 S� ;0; otherwise :Also, denoting by V� the extension of the standard family fV�; � 2 A(�)g de�ned inLemma 2.4, we have that, for every � 2 A(�) and h 2 H(�) ,supz�2R�+ h(��z�)V�(z�) = supz�2R�+ h(��z�)V�(z�):Proof.We �rst prove that, for all � 2 A(�) and h 2 H� ,limn!1 E1=nn;�hn(Zn;�) = supz�2R�+ h(��z�)V�(z�): (2.18)Sine by (2.1) and (2.14),Zn;� = Zn;�;��dPn;�dPn �1=n Pn{almost surely ; � 2 �;and h is positively homogeneous, we have thatE1=nn;�hn(Zn;�) = E1=nn hn(Zn;�)dPn;�dPn = E1=nn hn(��Zn;�): (2.19)Now using the assumed LD onvergene L(Zn;�jPn) l:d:! V� we want to prove thatlimn!1 E1=nn hn(��Zn;�) = supz�2R�+ h(��z�)V�(z�); (2.20)whih by (2.19) would yield (2.18). The funtion h being non-negative and ontinuousbut not bounded, (2.20) would follow if the uniform exponential integrability onditionintrodued in (2.6) holds:limH!1 limn!1 E1=nn hn(��Zn;�)1(h(��Zn;�) > H) = 0: (2.21)It is here that we need ondition (U). Let h� = supz�2S� h(z�) whih is �nite by theontinuity of h . Sine h 2 H� , it follows that h(Zn;�) � h�kZn;�k , so, in view ofondition (U) ,limn!1 E1=nn hn(��Zn;�)1(h(��Zn;�) > H) � limn!1 X�2�E1=nn h�nZnn;�1(h�Zn;� > H)� limn!1 h�X�2�P 1=nn;� (h�Zn;� > H)! 0 as H !1;



22 A.Puhalskii and V.Spokoinywhere the last onvergene follows by Chebyshev's inequality. So, (2.20) and hene (2.18)have been proved.Sine by the de�nition of V�,supz�2R�+ h(z�)V�(z�) = supz�2R�+ h(��z�)V�(z�); (2.22)Lemma 2.2 implies that the proof of the �rst laim of the lemma is ompleted by hekingthat V� is a deviability on R�+ .Limit (2.21), in view of the LD onvergene of L(Zn;�jPn) to V� , implies that (useproperty (2.7)) limH!1 supz�2R�+ k��z�k� 1(k��z�k� > H)V�(z�) = 0:Therefore, for every " > 0 there exists H" suh thatfz� 2 R�+ : k��z�k�V�(z�) � "g � fz� 2 R�+ : V�(z�) � "H"gso that the set on the left is ompat. Sine also k��z�k� � " when k��z�k�V�(z�) �" , and �� is ontinuous on fz� 2 R�+ : k��z�k� � "g , it follows that the set ��fz� 2R�+ : k��z�k�V�(z�) � "g is ompat. Sine, for a > 0 ,fz� 2 R�+ : V�(z�) � ag = 1\n=1���z� 2 R�+ : k��z�k�V�(z�) � a�1� 1n+ 1�� ;we onlude that the sets fz� 2 R�+ : V�(z�) � ag are ompat. Thus, we are left tohek that supz�2R�+V�(z�) = 1: (2.23)By (2.18) with h(z�) = ��z�; � 2 � ,supz�2R�+ ��z�V�(z�) = 1;hene, supz�2R�+ k��z�k�V�(z�) = sup�2� supz�2R�+ ��z�V�(z�) = 1;and (2.23) follows by the de�nition of V� .The seond laim of the lemma follows by (2.22) and Lemma 2.4. The lemma isproved. 2Remark 2.5 Equality (2.22) implies that projetions V� ;� 2 A(�); of V� de�ned byV�(z�) = supz�2��1� z� V�(z�)onstitute a family of deviabilites with properties (C) and (R) .



On LD Effiieny in Statistial Inferene 233 A Minimax TheoremWe start the setion by showing that, in analogy with the lassial asymptoti theoryof statistial experiments (Strasser, 1985), the LDP for statistial experiments allowsus to obtain an asymptoti lower bound for appropriately de�ned risks whih, in fat,has been the purpose of introduing the onept of the LDP for sequenes of statistialexperiments. We next prove that under additional onditions the bound is tight andstudy the problem of onstruting deisions attaining it.We onsider a sequene of statistial experiments fEn ; n � 1g, where En =(
n;Fn;Pn;�; � 2 �), and assume that it obeys the LDP. The assoiated deviabilitiesare denoted by V� ;� 2 A(�) , and V� denotes the extension de�ned in Lemma 2.4.We introdue some more notation ommon for statistial deision theory, see, e.g.,Strasser, 1985. We denote by D a Hausdor� topologial spae with the Borel �{�eldwhih we take as a deision spae; W� = (W�(r); r 2 D); � 2 �; are, for eah �, non-negative and lower semiontinuous funtions on D whih play the role of loss funtions;Rn denotes the set of all measurable mappings �n : 
n ! D, i.e., Rn is the set of alldeision funtions with values in D. We de�ne the large deviation (LD) risk of a deision�n 2 Rn in the experiment En byRn(�n) = sup�2�E1=nn;� W n� (�n): (3.1)Obviously, this is an analogue of the risk in minimax deision theory, f. Strasser, 1985.Reall that a funtion f : U ! R on a topologial spae U is level-ompat if it isbounded from below and the sets fu 2 U : f(u) � �g are ompat for all � < supu2U f(u),Strasser, 1985, De�nition 6.3. Obviously, if U is Hausdor�, a level-ompat funtion islower semiontinuous and the supremum of a family of level-ompat funtions is level-ompat. For the sequel, it is also worth mentioning that level-ompat funtions attainin�mums on losed sets.Theorem 3.1 Let the sequene fEn ; n � 1g obey the LDP. Assume that the funtionsW�; � 2 �; are level-ompat. Thenlimn!1 inf�n2RnRn(�n) � R�;where R� = supz�2R�+ infr2D sup�2�W�(r)z�V�(z�):In partiular, if fEn; Pn; n � 1g obeys the dominated LDP and V� is the assoiateddeviability then the lower bound an be rewritten asR� = supz�2R�+ infr2D sup�2�W�(r)z�V�(z�): (3.2)



24 A.Puhalskii and V.SpokoinyIf, moreover, onditions (Y ) and (U) hold thenR� = supy2Y infr2D sup�2�W�(r) z�(y)V (y):Proof Let � 2 A(�). We �rst prove thatlimn!1 inf�n sup�2�E1=nn;� W n� (�n) � supz�2R�+ infr2D sup�2�W�(r)z�V�(z�): (3.3)Let f�n; n � 1g be an arbitrary sequene of deisions. We have, by the de�nition of Zn;�(see (2.14)),limn!1 sup�2�E1=nn;� W n� (�n) = limn!1 sup�2�E1=nn;�W n� (�n)Znn;�;�� limn!1 " 1j�jEn;�X�2�W n� (�n)Znn;�;�#1=n� limn!1 E1=nn;� sup�2�W n� (�n)Znn;�;�� limn!1 E1=nn;�wn(Zn;�);where w(z�) = infr2D sup�2�W�(r)z�; z� = (z�; � 2 �) 2 R�+:Sine the set � is �nite and the funtions W� are level-ompat, it is not diÆult to seethat the funtion w(�) is lower semiontinuous (f. Aubin, 1984, Proposition 1.7). So bythe LD onvergene of L(Zn;�jPn;�) to V�,limn!1 E1=nn;�wn(Zn;�) � supz�2R�+ w(z�)V�(z�)implying (3.3).Sine the funtion w(�) belongs to H�, an appliation of Lemma 2.4(ii) yieldssupz�2R�+ infr2D sup�2�W�(r)z�V�(z�) = supz�2R�+ infr2D sup�2�W�(r)z�V�(z�);so by (3.3) limn!1 inf�n sup�2�E1=nn;� W n� (�n) � supz�2R�+ infr2D sup�2�W�(r)z�V�(z�):Now the proof of the lower bound is ompleted by observing that, for every z� = (z�; � 2�) 2 R�+, sup�2A(�) infr2D sup�2�W�(r)z� = infr2D sup�2�W�(r)z� (3.4)



On LD Effiieny in Statistial Inferene 25(for a proof see Lemma A.3 in the appendix or Aubin and Ekeland, 1984, Theorem 6,Setion 2, Chapter 6).If fEn; Pn; n � 1g obeys the dominated LDP, then by Lemma 2.5supz�2R�+ infr2D sup�2�W�(r)z�V�(z�) = supz�2R�+ infr2D sup�2�W�(r)z�V�(z�);and representation (3.2) follows by (3.4). The last representaion for R� in the statementof the theorem follows sine by Lemma 2.1 V� = V Æ z�1� .2Remark 3.1 Note that the proof only uses what is known as a lower bound in the LDP.Remark 3.2 Now we are in a position to explain why we onsider ondition (U) inthe de�nition of the dominated LDP to be important. Assume that fEn ; n � 1g is adominated family with dominating measures Pn suh that, for a deviability V� on R�+, wehave the LD onvergene L(Zn;�jPn) l:d:! V�. The proof of Theorem 3.1 with V� replaedby V� and V� replaed by V�Æ��1� (whih would not use ondition (U)) would still givethe right-hand side of (3.2) as a lower bound. However these lower bounds an generallybe di�erent for di�erent sequenes of dominating measures. The role of ondition (U)is to eliminate this possibility by making sure that equality (3.2) holds so that the lowerbounds do not depend on a hoie of dominating measures.In appliations, as we will see, the assumption that the loss funtions are level-ompatis normally met. However, in the appendix we give a variant of Theorem 3.1 for moregeneral loss funtions. As in the lassial theory, takling this ase requires onsideringgeneralised deisions, f. Strasser, 1985.We now turn to the question of tightness of the above lower bound and start withde�ning the onept of large deviation eÆieny. Say that a sequene of deisionsf��n; n � 1g is large deviation (LD) eÆient if, for any other sequene of deisionsf�ng , limn!1 (Rn(��n)�Rn(�n)) � 0:Theorem 3.1 implies that to onstrut LD eÆient deisions one an apply an approahsimilar to the one used in the lassial asymptoti deision theory. Indeed, by Theorem3.1, if the W� ; � 2 �; are level-ompat, then, for any sequene of deisions f�n; n � 1g ,limn!1 Rn(�n) � R�:Now if a sequene f��n; n � 1g is suh that Rn(��n) ! R� as n ! 1 , it is obviouslyLD eÆient.



26 A.Puhalskii and V.SpokoinyFurther, motivated by appliations, we assume that the sequene fEn ; n � 1g isdominated and onditions (Y ) and (U) hold. Then, by Theorem 3.1, the asymptotiminimax risk an be written asR� = supy2Y infr2D sup�2�W�(r)z�(y)V (y): (3.5)Representation (3.5) prompts onsidering for eah y 2 Y the subproblem(Q) Q�(y) = infr2D sup�2�W�(r)z�(y) :Sine the funtions W� are level-ompat for eah � 2 �, it follows that, given y 2 Y,we an �nd r�(y) 2 D that delivers the in�mum in (Q) . The value r�(y) an beviewed as \the best deision if the value of Yn is y". Hene, provided the funtionr�(y) : Y ! D is Borel measurable, the deisions r�(Yn) are natural andidates for theLD eÆient deisions. Unfortunately, we annot prove this without requiring that Q�(y)be ontinuous (or upper semiontinuous) whih usually is not ful�lled in appliations.The reason for the latter, as in ondition (Y ) above, is that the z�(y) typially are notontinuous as maps from Y into R+. Therefore, as in ondition (Y ) , we invoke the ideaof regularisation. We require that there exist funtions z�;Æ(y) suh that funtions QÆ(y)de�ned by(QÆ) QÆ(y) = infr2D sup�2�W�(r)z�;Æ(y) ; y 2 Y ;are ontinuous in y, on the one hand, and approximate Q�(y) for small Æ , on the otherhand. A rigourous formulation is given by ondition (supY ) whih strengthens ondition(Y ) to the e�et that the requirements of (Y ) hold uniformly in � 2 � . This wayof handling the tehnial diÆulties does not allow us, however, to get LD eÆientdeisions: as the next theorem shows, in general we are only able to obtain deisionswhose asymptoti risk is arbitrarily lose to the lower bound. Still we sueed in provingthat the lower bound of Theorem 3.1 is tight and LD eÆient deisions exist. We nextstate the ondition. Reall that Zn;� = (dPn;�=dPn)1=n.(supY ) There exist statistis Yn : 
n ! Y with values in a metri spae Y with the Borel�-�eld, funtions z� : Y ! R+; � 2 �; and z�;Æ : Y ! R+; � 2 �; Æ > 0; suh that(Y:1) the sequene fL (YnjPn) ; n � 1g LD onverges to a deviability V (y); y 2 Y;(supY:2) for the uniform topology on R�+, the funtions z�;Æ = (z�;Æ; � 2 �) : Y !R�+; Æ > 0 ; are Borel measurable and ontinuous V {a.e.;(supY:3) limÆ!0 limn!1 sup�2�P 1=nn (jZn;� � z�;Æ(Yn)j > ") = 0 for all " > 0;



On LD Effiieny in Statistial Inferene 27(supY:4) limÆ!0 sup�2� supy2�V (a) jz�;Æ(y)� z�(y)j = 0 for all a > 0.In the next theorem, ondition (supY ) is used together with ondition (supU) whihstrengthens (U):(supU) limH!1 limn!1 sup�2�E1=nn Znn;�1(Zn;� > H) = 0.Theorem 3.2 Let a sequene of dominated experiments fEn; Pn; n � 1g satisfy ondi-tions (supY ) and (supU) . Let the funtionW�(r) be bounded in (�; r) and level-ompatin r for eah � 2 �. Assume that there exist Borel funtions rÆ(y) : Y ! D suh thatthe in�mum in (QÆ) is attained at rÆ(y), and denote �n;Æ = rÆ(Yn) .Then limÆ!0 limn!1 Rn(�n;Æ) = limÆ!0 limn!1 Rn(�n;Æ) = R�so that limn!1 inf�n2RnRn(�n) = R�:In partiular, for some sequene ��n,limn!1 Rn(��n) = R�:Proof.Sine (supY ) implies (Y ), by Lemma 2.1, L (Zn;�jPn) l:d:! V� = V Æ z�1� , so byTheorem 3.1, for eah Æ, limn!1 Rn(�n;Æ) � R�:The proof of the �rst set of equalities would be over iflimÆ!0 limn!1 Rn(�n;Æ) � R�: (3.6)Let C be an upper bound for W : W�(r) � C. SineRn(�n;Æ) = sup�2�E1=nn;� W n� (�n;Æ) = sup�2�E1=nn W n� (�n;Æ)Znn;�;we have that, for any H > 0,Rn(�n;Æ) � sup�2�E1=nn W n� (�n;Æ)(Zn;� ^H)n + C sup�2�E1=nn Znn;�1(Zn;� > H):The seond term on the right tends to 0 as n ! 1 and H ! 1 by ondition (supU),so the required would follow bylimÆ!0 limn!1 sup�2�E1=nn W n� (�n;Æ)(Zn;� ^H)n � R�: (3.7)



28 A.Puhalskii and V.SpokoinySine j sup�2�E1=nn W n� (�n;Æ)(Zn;� ^H)n � sup�2�E1=nn W n� (�n;Æ)(z�;Æ(Yn) ^H)nj� C sup�2�E1=nn (jZn;� � z�;Æ(Yn)j ^H)n;ondition (supY:3) implies thatlimÆ!0 limn!1 j sup�2�E1=nn W n� (�n;Æ)(Zn;�^H)n� sup�2�E1=nn W n� (�n;Æ)(z�;Æ(Yn)^H)nj = 0: (3.8)Next, using the de�nitions of QÆ and �n;Æ and the inequality W�(r) � C, we getsup�2�E1=nn W n� (�n;Æ)(z�;Æ(Yn) ^H)n � E1=nn �sup�2�(W n� (�n;Æ(y))z�;Æ(Yn)) ^ CH�n= E1=nn (QÆ(Yn) ^ CH)n : (3.9)The last two expetations in (3.9) are well de�ned sine the assumptions of the theoremimply that QÆ(y) = sup�2�W�(rÆ(y))z�;Æ(y) is a Borel funtion.By the boundedness of W�(r) and (supY:2), the funtion QÆ(y) is V {a.e. ontinuous.Sine L (YnjPn) l:d:! V , we getlimn!1 E1=nn (QÆ(Yn) ^CH)n = supy2Y(QÆ(y) ^ CH)V (y): (3.10)By (Q), (QÆ) and the inequality W�(r) � C, we have thatj supy2Y(QÆ(y) ^ CH)V (y)� supy2Y(Q�(y) ^ CH)V (y)j� C supy2Y sup�2�(jz�;Æ(y)� z�(y)j ^H)V (y);and (supY:4) easily implies that the right-hand side tends to 0 as Æ ! 0. Thus,limÆ!0 supy2Y (QÆ(y) ^CH)V (y) = supy2Y (Q�(y) ^ CH)V (y)� supy2YQ�(y)V (y) = R�; (3.11)where the last equality follows by (3.5) and (Q). Putting together (3.8){(3.11) proves(3.7) and hene (3.6).The seond laim of the theorem follows by (3.6) and a string of inequalities the �rstof whih is Theorem 3.1:R� � limn!1 inf�n Rn(�n) � limn!1 inf�n Rn(�n) � limn!1 Rn(�n;Æ):2



On LD Effiieny in Statistial Inferene 29Remark 3.3 Obviously, rÆ(y) hosen so thatsup�2�W�(rÆ(y))z�;Æ(y) � QÆ(y)� �Æ;where �Æ ! 0 as Æ ! 0, would work too.Remark 3.4 If ondition (supY ) holds with z�;Æ(y) = z�(y), then the rÆ(y) in the theo-rem do not depend on Æ and the deisions ��n := �n;Æ are LD eÆient.Kelley, 1957) so thatRemark 3.5 As with ondition (Y ), in appliations it is more onvenient to deal with alogarithmi form of ondition (supY ). Spei�ally, de�ning �n;� and �0I(a) as in Remark2.2, let us introdue ondition (supY 0):(supY 0) there exist statistis Yn : 
n ! Y with values in a metri spae Y with the Borel�{�eld, funtions �� : Y ! R; � 2 �; and ��;Æ : Y ! R; � 2 �; Æ > 0; suh that(Y 0:1) the sequene fL (YnjPn) ; n � 1g obeys the LDP with rate funtion I(y); y 2 Y;(supY 0:2) for the uniform topology on R�, the funtions ��;Æ = (��;Æ; � 2 �) : Y !R�; Æ > 0; are Borel measurable and ontinuous at eah point y suh that I(y) <1;(supY 0:3) limÆ!0 limn!1 sup�2�P 1=nn (j�n;� � ��;Æ(Yn)j > ") = 0 for all " > 0;(supY 0:4) limÆ!0 sup�2� supy2�0I (a) j��;Æ(y)� ��(y)j = 0 for all a � 0:Then ondition (supY ) is implied by ondition (supY 0). Similarly, ondition (supU)follows from the ondition(supU 0) limH!1 limn!1 sup�2�E1=nn exp(n�n;�)1(�n;� > H) = 0:We further refer to the deisions �n;Æ as nearly LD eÆient.4 Asymptoti LD Risks and EÆient Deisions for Hypoth-esis Testing and Estimation ProblemsThis setion spei�es the asymptoti minimax bound of Theorem 3.1 and (nearly) LDeÆient deisions for some typial statistial set-ups by onsidering hypothesis testingand estimation with Bahadur{type riteria. We onsider indiator loss funtions, i.e.,W�(r) = 1(r 62 A�); r 2 D; � 2 �;



30 A.Puhalskii and V.Spokoinywhere A� are losed subsets of D. Then the LD risk of a deision �n in the nth experimentis Rn(�n) = sup�2�P 1=nn;� (�n 62 A�):For appliations, it is onvenient to introdue the logarithmi riskR0n(�n) = sup�2� 1n lnPn;�(�n 62 A�): (4.1)Aordingly, we onsider the logarithm of the lower bound R�:R0� = sup��2R� infr2D sup�2�:A� 63r (�� � I�(��));where I�(��) = � logV�(z�) for z� = (exp(��); � 2 �), �� = (��; � 2 �).Theorem 3.1 then yields the following result.Theorem 4.1 Assume that the A�; � 2 �; are ompat. If the sequene fEn; n � 1gobeys the LDP then limn!1 inf�n2RnR0n(�n) � R0�:Let us assume now that the sequene fEn; n � 1g is dominated and onditions (Y 0) and(U 0) hold. Aording to Remark 2.2 and Theorem 3.1, we then have thatR0� = supy2Y infr2D sup�2� :A� 63r(��(y)� I(y)): (4.2)Similarly, subproblems (Q) and (QÆ) of Setion 3 take the form(Q0) Q0�(y) = infr2D sup�2� :A� 63r ��(y) , y 2 Y ,and(Q0Æ) Q0Æ(y) = infr2D sup�2� :A� 63r ��;Æ(y) , y 2 Y .Obviously, R0� = supy2Y(Q0�(y)� I(y)):Let the in�mum in (Q0Æ) be attained at some point r0Æ(y) whih is the ase, e.g., if theA� ; � 2 � ; are ompat. We denote �0n;Æ = r0Æ(Yn) .Combining Theorem 4.1 and Theorem 3.2, and taking into aount Remarks 2.2 and3.5, we obtain the following theorem.Theorem 4.2 Assume that fEn; Pn; n � 1g is a dominated sequene of statistial exper-iments and the A�; � 2 �; are ompat.



On LD Effiieny in Statistial Inferene 311. If onditions (Y 0) and (U 0) hold thenlimn!1 inf�n2RnR0n(�n) � R0�:2. Let the funtions r0Æ; Æ > 0 , whih map Y into D , be Borel measurable. If ondi-tions (supY 0) and (supU 0) hold thenlimÆ!0 limn!1 R0n(�0n;Æ) = limÆ!0 limn!1 R0n(�0n;Æ) = R0�so that limn!1 inf�n2RnR0n(�n) = R0�:4.1 Hypothesis TestingLet �0 and �1 be non-interseting subsets of the parameter set �: �0 � �;�1 ��;�0 \ �1 = ; . We want to test the hypothesis H0 : � 2 �0 versus the alternativeH1 : � 2 �1 .The deision spae D onsists of two points: D = f0; 1g . We endow it with thedisrete topology and, for any deision (test) � , we treat the event f� = 0g (respetively,f� = 1g ) as aepting (respetively, rejeting) the null hypothesis.An assoiated loss funtion W�(r) is the indiator of the wrong hoie:W�(r) = 1(� =2 �r); r = 0; 1; (4.3)and the logarithmi risk R0(�n) of a deision �n in (4.1) takes the formRTn (�n) = max� sup�2�0 1n lnPn;�(�n = 1); sup�2�1 1n lnPn;�(�n = 0)� : (4.4)Denoting the orresponding asymptoti minimax risk R0� by T �, we have by (4.2) thatT � = supy2Y min� sup�2�0(��(y)� I(y)); sup�2�1(��(y)� I(y))� : (4.5)For the sequel, it is more onvenient to use another representation for T � whih isT � = sup�2�0; �02�1 S(�; �0); (4.6)where S(�; �0) = supy2Y minf��(y)� I(y); ��0(y)� I(y)g : (4.7)Next, subproblem (Q0Æ) for this ase isT 0Æ(y) = minr=0;1 sup�2�1�r ��;Æ(y) ; y 2 Y :



32 A.Puhalskii and V.SpokoinyIt has the solution rTÆ (y) = 1� sup�2�0 ��;Æ(y) < sup�2�1 ��;Æ(y)� ;whih leads us to tests of the form�Tn;Æ = 1� sup�2�0 ��;Æ(Yn) < sup�2�1 ��;Æ(Yn)� : (4.8)In the ase of two simple hypotheses �0 and �1 , the tests redue to a regularisation ofthe Neyman{Pearson test: �Tn;Æ = 1 (��0;Æ(Yn) < ��1;Æ(Yn)) :Applying Theorem 4.2, we get the following theorem.Theorem 4.3 Let �0 and �1 be non-interseting subsets of �. If a sequene of dom-inated experiments fEn; Pn; n � 1g satis�es onditions (Y 0) and (U 0) thenlimn!1 inf�n2RnRTn (�n) � T �:If onditions (supY 0) and (supU 0) hold thenlimn!1 inf�n2RnRTn (�n) = T �;and the tests �Tn;Æ are nearly LD eÆient:limÆ!0 limn!1 RTn (�Tn;Æ) = limÆ!0 limn!1 RTn (�Tn;Æ) = T �:4.2 Parameter EstimationLet � be a subset of a normed spae B with norm k �k . We are interested in estimatinga parameter � under the Bahadur{type loss funtionW�(r) = 1(kr � �k > ) (4.9)for a given positive  . The logarithmi risk of an estimator �n isREn (�n) = sup�2� 1n lnPn;�(k�n � �k > ): (4.10)We assume that the deision spae D is either a ompat subset of B with the induedtopology or a losed onvex subset of B with the weak topology; in the latter ase, B isassumed to be a reexive Banah spae. For both ases, the funtions W�; � 2 �; arelevel-ompat on D.In this set-up, we denote the asymptoti minimax risk R0� from (4.2) by E�:E� = supy2Y infr2D sup�2� : kr��k>(��(y)� I(y)); (4.11)and the orresponding subproblem (Q0Æ) is



On LD Effiieny in Statistial Inferene 33(EÆ) EÆ(y) = infr2D sup�2� : kr��k> ��;Æ(y); y 2 Y .We next desribe solutions to (EÆ) . Consider a real{valued funtion f(�); � 2 �; and letA(h) = f� 2 � : f(�) > hg ; h 2 R; (4.12)r(h) = infr2D sup�2A(h) jjr � �jj ; h 2 R; (4.13)h = inf(h : r(h) � ):We assume that h < 1 (e.g., f(�) is bounded). Note that, for both de�nitions of D,the in�mum in (4.13) is attained sine the funtions r ! kr � �k from D to R+ arelevel-ompat for all � 2 � .Lemma 4.1 The set D = fr 2 D : sup�2A(h) kr � �k � g is nonempty and onsistsof all r 2 D at whih infr2D sup�2�:jjr��jj> f(�) is attained. Also the latter in�mumequals h .Proof.Sine the funtion (r; h)! sup�2A(h) jjr��jj is dereasing in h and level-ompatin r 2 D , the funtion r(h) is dereasing and right-ontinuous. Hene, r(h) � and, sine infr2D sup�2A(h) jjr � �jj = r(h) and the in�mum is attained, the set Dis nonempty.Now let r 2 D. By de�nition, kr��k �  for all � 2 � suh that f(�) > h. Hene,sup�2�: kr��k> f(�) � h: (4.14)On the other hand, if h < h, then r(h) >  whih implies that, for every r 2 D,sup�2A(h) kr � �k >  or, equivalently, there exists � suh that f(�) > h and kr � �k > so that infr2D sup�2�:jjr��jj> f(�) � h: Sine h is arbitrarily lose to h, we onludethat infr2D sup�2�:jjr��jj>f(�) � hwhih by (4.14) proves that infr2D sup�2�:jjr��jj> f(�) = h and r delivers the in�mum.Finally, if r =2 D then sup�2A(h) kr� �k > , i.e., there exists � suh that kr� �k > and f(�) > h whih yields the inequality sup�2�:kr��k> f(�) > h. 2Remark 4.1 Informally, r(h) is the smallest radius of the balls that ontain all the �with f(�) > h, and h is the lowest level h for whih there exists a ball of radius  withthis property. The lemma, partiularly, states that h is the in�mum over all the balls ofradius  of the largest values of f(�) outside the balls. For a one{dimensional parameter� , the onstrution in the lemma hooses the largest level set of the funtion f ontainedin an interval of length 2 , and the r are the entres of the intervals.



34 A.Puhalskii and V.SpokoinyLet r(f) denote an element of the set D in the lemma and, taking f(�) = ��;Æ(y) ,let rEÆ;(y) = r(��;Æ(y)). We assume that the funtions rEÆ;(y) : Y ! D are Borelmeasurable. We an then de�ne the estimators�En;Æ = rEÆ;(Yn): (4.15)Motivated by Remark 4.1, we all these estimators interval-median.A version of Theorem 4.2 for this ase is the next theorem.Theorem 4.4 Assume that either B is a normed spae and D is its ompat subset withthe indued topology, or B is a reexive Banah spae and D is its losed onvex subsetwith the weak topology. Let � � B.If a sequene of dominated experiments fEn; Pn; n � 1g satis�es onditions (Y 0) and(U 0) then limn!1 inf�n2RnREn (�n) � E�:If onditions (supY 0) and (supU 0) hold thenlimn!1 inf�n2RnREn (�n) = E�;and the interval{median estimators �En;Æ = rEÆ;(Yn) are nearly LD eÆient:limÆ!0 limn!1 REn (�En;Æ) = limÆ!0 limn!1 REn (�En;Æ) = E�:Remark 4.2 If B is a separable reexive Banah spae then the Borel �{�elds for thestrong and weak topologies oinide, hene the ondition of measurability of rEÆ; does notdepend on whih topology on B has been hosen.4.3 Estimation of Linear FuntionalsLet � be a subset of a vetor spae and L(�) a linear funtional on the vetor spae.Consider the problem of estimating L(�). We take D = R, the real line. As above, weonsider Bahadur{type riteria: the loss funtion isW�(r) = 1(jr � L(�)j > ); � 2 �; r 2 R;where  > 0 is �xed, and the risk of an estimator �n is given byRFn (�n) = sup�2� 1n lnPn;� (j�n � L(�)j > ) : (4.16)The asymptoti minimax lower bound R0� assumes the formF � = supy2Y infr2D sup�2� : jr�L(�)j>(��(y)� I(y)); (4.17)and subproblem (Q0Æ) beomes



On LD Effiieny in Statistial Inferene 35(FÆ) FÆ(y) = infr2D sup�2� : jr�L(�)j> ��;Æ(y); y 2 Y .Assoiated solutions r0Æ(y) an be onstruted along the same lines as for the parameter-estimation problem. Spei�ally, �xing y and Æ, let us denote f(�) = ��;Æ(y) and let, forh 2 R and A(h) from (4.12), denote by LÆA(h) the image of A(h) on the real line forthe mapping L: LÆA(h) = fL(�) : � 2 A(h)g :Let B(h) be the smallest losed interval in R ontaining LÆA(h). Set further, denotingby d(B(h)) the length of B(h),h;L = inf fh : d(B(h)) � 2g :Finally, onsider the intervals B;L of the length 2 that ontain B(h;L) (note thatd(B(h;L)) � 2), and let D;L be the set of the entres of all suh intervals. Theargument of the proof of Lemma 4.1 yields the following lemma.Lemma 4.2 The set D;L is nonempty and onsists of all r;L 2 D at whihinfr2D sup�2�:jr�L(�)j> f(�) is attained. Also the latter in�mum equals h;l .To emphasise dependene on f , let us denote the elements of D;L by r;L(f). By thelemma, rFÆ;(y) = r;L(��;Æ(y)) solves (FÆ) . Assuming that the rFÆ;(y) are Borel funtionsfrom Y into R, we introdue estimators �Fn;Æ of L(�) by�Fn;Æ = r;L(��;Æ(Yn)); (4.18)and all them also interval{median. Applying Theorem 4.2 we get the following result.Theorem 4.5 If a sequene of dominated experiments fEn; Pn; n � 1g satis�es ondi-tions (Y 0) and (U 0) then limn!1 inf�n2RnRFn (�n) � F �:If onditions (supY 0) and (supU 0) hold thenlimn!1 inf�n2RnRFn (�n) = F �;and the interval{median estimators �Fn;Æ = r;L(��;Æ(Yn)) are nearly LD eÆient:limÆ!0 limn!1 RFn (�Fn;Æ) = limÆ!0 limn!1 RFn (�Fn;Æ) = F �:We onlude the setion by giving a more expliit representation for F �.



36 A.Puhalskii and V.SpokoinyLemma 4.3 Under the above notation and onditions,F � = sup�;�0 : jL(���0)j>2S(�; �0);where S(�; �0) is de�ned by (4.7):S(�; �0) = supy2Y min f��(y)� I(y); ��0(y)� I(y)g :Proof.We �x y 2 Y with I(y) <1, set f(�) = ��(y) and de�ne h;L as above. We showthat h;L = sup�;�0 : jL(���0)j>2min�f(�); f(�0)	 :By (4.17) and Lemma 4.2, this implies the laim.Sine d(B(h)) � 2 for h > h;L, we have that if �; �0 2 � are suh that jL(���0)j > 2then min(f(�); f(�0)) � h;L. Conversely, if h < h;L then d(B(h)) > 2, hene there exist�; �0 2 � suh that L(� � �0) > 2 and f(�) > h; f(�0) > h whih, by the arbitrariness ofh < h;L, ends the proof. 2Remark 4.3 The latter ase of funtional estimation inludes the ase of the estimationof a one{dimensional parameter � if we take L(�) = �, so the result of Lemma 4.3 anbe used for evaluating E� from (4.11) too.



On LD Effiieny in Statistial Inferene 375 Statistial AppliationsIn this setion, we go bak to the statistial models introdued in Setion 2 and apply tothem the general results of Setions 3 and 4. We �rst verify the LDP for the models byheking onditions (Y 0) and (U 0). This is done under weaker assumptions than in Setion2. After that we give onditions that imply (supY 0) and (supU 0). Next, onsideringertain hypothesis testing and estimation problems for the models, we alulate theasymptoti minimax risks and indiate (nearly) LD eÆient deisions.Eah of the subsetions below uses its own notation. We mention it if di�erentsubsetions reuse ertain symbols for the same objets. For the reader's onveniene, werepeat the main points of the analysis of the models in Setion 2 and reall the modelsthemselves. Also we impliitly assume that the funtions we hoose as estimators areproperly measurable.5.1 Gaussian ObservationsWe observe a sample of n independent real-valued random variables Xn =(X1;n; : : : ;Xn;n) normally distributed withN (�; 1); � 2 � � R. For this model, 
n = Rnand Pn;� = (N (�; 1))n; � 2 �. We take Pn;0 as a dominating measure Pn. Then1n ln dPn;�dPn (X) = 1n nXk=1(�Xk � 12�2); X = (X1; : : : ;Xn) 2 Rn:Thus, it is natural to take Yn = 1n nXk=1Xk;n; n � 1;so that �n;� = 1n ln dPn;�dPn (Xn) = �Yn � 12 �2:Then fL (YnjPn) ; n � 1g obeys the LDP in R with rate funtion IN (y) = y2=2; y 2 R(see, e.g., Freidlin and Wentzell, 1979). This heks ondition (Y 0:1).We next take ��(y) = ��;Æ(y) = �y � 12 �2: (5.1)Conditions (Y 0:2){(Y 0:4) are then obvious. Condition (U 0) follows by Chebyshev's in-equality sineE1=nn exp(n�n;�)1(�n;� > H) � e�HE1=nn exp(2n�n;�)! e�He�2 :By Remark 2.2, the sequene fEn ; n � 1g obeys the LDP. Moreover, ondition (supY )trivially holds. If, in addition, � is bounded, it readily follows that ondition (supU 0) ismet as well.



38 A.Puhalskii and V.SpokoinyWe now turn to hypothesis testing and estimation problems and begin with alulat-ing, for �; �0 2 � , the value of the funtion S(�; �0) from (4.7).Lemma 5.1 For all �; �0 2 � ,S(�; �0) := supy2R min���(y)� IN (y); ��0(y)� IN (y)	 = �(� � �0)28 :Proof.By (5.1) and the de�nition of IN , ��(y)� I(y) = �(y � �)2=2 , soS(�; �0) = supy2Rmin��(y � �)22 ;�(y � �0)22 � = �(� � �0)28 :25.1.1 Testing � = 0 versus j�j � 2Assume that � ontains 0 as an internal point. We test the simple hypothesis H0 : � = 0versus the two-sided alternative H1 : j�j � 2 with some  > 0 suh that the interval[�2; 2℄ is ontained in � . The logarithmi risk of a test �n is given by (see (4.4))RTn (�n) = max( 1n lnPn;0(�n = 1); 1n supj�j�2 lnPn;�(�n = 0)) :Now, using (4.6) with �0 = f0g and �1 = f� 2 � : j�j � 2g and Lemma 5.1, we readilyget T � = supj�0j�2S(0; �0) = �22 :Next, by Theorem 4.3 and Remark 3.4, LD eÆient tests �Tn an be taken in the form�Tn = 1 supj�j�2 ��(Yn) > �0(Yn)! = 1 supj�j�2(�Yn � �22 ) > 0! = 1(jYnj > ):Applying Theorem 4.3 and Remark 3.4, we arrive at the following result.Proposition 5.1 Let [�2; 2℄ � �. Thenlimn!1 inf�n RTn (�n) � �22 :If � is bounded then limn!1 inf�n RTn (�n) = �22 ;and the tests �Tn are LD eÆient:limn!1 RTn (�Tn ) = �22 :



On LD Effiieny in Statistial Inferene 395.1.2 Parameter EstimationNow we onsider the problem of estimating the parameter � . We take the real line as adeision spae D . Reall (see (4.10)) that, for a given  > 0 , the risk of an estimator�n is de�ned by REn (�n) = sup�2� 1n lnPn;�(j�n � �j > ):In view of Remark 4.3, the asymptoti minimax risk E� is given by Lemma 4.3:E� = sup�;�02� : j���0j>2S(�; �0):Lemma 5.1 implies that if � ontains an interval of the length greater than 2 , thenE� = �2=2 . An appliation of Theorem 4.4 and Remark 3.4 yields the following result.Proposition 5.2 Let � ontain an interval of the length greater than 2 . Thenlimn!1 inf�n REn (�n) � �22 :If � is bounded then limn!1 inf�n REn (�n) = �22 ;and the interval{median estimators �En = r(��(Yn)) (see Setion 4.2) are LD eÆient:limn!1 REn (�En ) = �22 :Remark 5.1 It is easy to see that the estimator �En = r(�n(Yn)) oinides with Yn ifYn �  2 � and Yn +  2 �. Diret alulations show that the estimators b�n = Yn arealso LD eÆient, i.e., limnREn (b�n) = �2=2. The latter estimator is of simpler strutureand does not depend on either  or � . However, the �En seem to perform better at pointsoutside or lose to the boundary of �. In partiular, if Yn =2 � then b�n =2 � whereas, for� onvex, �En always belongs to �.5.2 An Independent-Identially-Distributed SampleWe observe an independent-identially-distributed sample Xn = (X1;n; : : : ;Xn;n) from adistribution P�; � 2 �, on the real line. We assume that the family P = fP�; � 2 �g isdominated by a probability measure P , i.e., P� � P; � 2 �. This model is desribedby dominated experiments En = (
n;Fn;Pn;�; � 2 �) with 
n = Rn , Fn = B(Rn) ,Pn;� = P n� , � 2 � , and Pn = P n .Assume that the family P satis�es the following regularity onditions:(R:1) the densities dP�=dP (x) ; � 2 � ; are ontinuous and positive funtions of x 2 R ;



40 A.Puhalskii and V.Spokoiny(R:2) ZR�dP�dP (x)� P (dx) <1 ; � 2 � ; for all  2 R:We have that�n;� = 1n ln dPn;�dPn (Xn) = nXk=1 1n ln dP�dP (Xk;n) = ZR ln dP�dP (x)Fn(dx);where Fn(x) = 1n nXk=1 1(Xk;n � x); x 2 R; (5.2)are empirial distribution funtions.We take the latter as statistis Yn in ondition (Y ) . The underlying spae Y is thespae of umulative distribution funtions on R whih we denote by F and endow with thetopology of weak onvergene of assoiated probability measures. By Sanov's theorem(Sanov, 1957, Deushel and Strook, 1989, 3.2.17), the sequene fL (YnjPn) ; n � 1gobeys the LDP with rate funtion IS(F ) = K(F; P ) , F 2 F , where K(F; P ) is theKullbak{Leibler information:K(F; P ) = 8><>: ZR dFdP (x) ln dFdP (x)P (dx); if F � P;1; otherwise: (5.3)This heks ondition (Y 0:1). The veri�ation of the rest of ondition (Y 0) is moreintriate than in the previous example.Denote for � 2 �, x 2 R and Æ > 0,L�(x) = ln dP�dP (x);L�;Æ(x) = L�(x) ^ Æ�1 _ (�Æ�1)and let ��;Æ(F ) = ZR L�;Æ(x)F (dx); F 2 F :By (R:1), the funtions ��;Æ are ontinuous on F , so (Y 0:2) holds.We hek (Y 0:3). Condition (R:2) implies that, for all  > 0,limÆ!0ZR [exp ( jL�(x)� L�;Æ(x)j)� 1℄P (dx) = 0: (5.4)Then, for  > 0; " > 0, with the use of Chebyshev's inequality,P 1=nn (j�n;� � ��;Æ(Fn)j > ") � P 1=nn �ZR jL�(x)� L�;Æ(x)jFn(dx) > "�� exp(�")E1=nn exp�n ZR jL�(x)� L�;Æ(x)jFn(dx)�= exp(�")ZR exp ( jL�(x)� L�;Æ(x)j)P (dx):



On LD Effiieny in Statistial Inferene 41By (5.4), it then follows thatlimÆ!0 limn!1 P 1=nn (j�n;� � ��;Æ(Fn)j > ") � exp(�"):Sine  is arbitrary, (Y 0:3) follows.We next hek (Y 0:4) with��(F ) = 8><>: ZR L�(x)F (dx); if IS(F ) <1;0; otherwise: (5.5)To begin, we show that the �� are well de�ned. Sine the funtions x lnx � x + 1 andexpx � 1 are onvex onjugates (Rokafellar, 1970), by the Young{Fenhel inequality(Rokafellar, 1970, Krasnoselskii and Rutikii, 1961), for F � P ,ZR ����L�(x)dFdP (x)����P (dx) � ZR [exp (jL�(x)j)� 1℄P (dx)+ ZR�dFdP (x) ln dFdP (x)� dFdP (x) + 1�P (dx)� 1 + ZR�dP�dP (x)��1 P (dx) + IS(F ):In view of (R:2) , this proves that the �� are well de�ned.Now, for F with IS(F ) <1, we have, for  > 0, using the Young{Fenhel inequalityagain, j��;Æ(F )� ��(F )j � ZR  jL�;Æ(x)� L�(x)jF (dx)� ZR [exp ( jL�;Æ(x)� L�(x)j)� 1℄P (dx)+ ZR�dFdP (x) ln dFdP (x)� dFdP (x) + 1�P (dx)= ZR [exp ( jL�;Æ(x)� L�(x)j)� 1℄P (dx) + IS(F ):Hene, by (5.4) limÆ!0 supF2�0IS (a) j��;Æ(F )� ��(F )j � a ;and letting  !1, we arrive at (Y 0:4). Remark 2.2 then implies that the LDP holds forfL (�n;�jPn) ; n � 1g.It remains to hek (U 0) . Using one again Chebyshev's inequality, we obtain, forH > 0 , E1=nn exp(n�n;�)1(�n;� > H) � exp(�H)E1=nn exp(2n�n;�)= exp(�H)ZR�dP�dP (x)�2 P (dx);



42 A.Puhalskii and V.Spokoinyand the required follows by ondition (R:2) .Conditions (Y 0) and (U 0) have been heked, and thus the LDP holds.Remark 5.2 It is possible to do without ondition (R:1). Then the funtions L�;Æ =(L�;Æ(x); x 2 R); Æ > 0; � 2 �; should be hosen bounded, ontinuous and so that (5.4)holds. The existene of suh funtions follows from (R:2).To hek (supY 0) and (supU 0), we assume that stronger versions of onditions (R:1) and(R:2) hold:(supR:1) the funtions dP�=dP (x) ; � 2 � ; are positive and equiontinuous at eah x 2R;(supR:2) sup�2�ZR�dP�dP (x)� P (dx) <1 for all  2 R:De�ning ��, ��;Æ, L� and L�;Æ as above, we have, by (supR:2), that for all  > 0limÆ!0 sup�2�ZR [exp ( jL�(x)� L�;Æ(x)j)� 1℄P (dx) = 0:The latter equality enables us to hek onditions (supY 0:3) and (supY 0:4) in the sameway as onditions (Y 0:3) and (Y 0:4). Condition (supU 0) is also heked analogously toondition (U 0), with the use of (supR:2). Condition (Y 0:1) has already been heked.It remains to hek (supY 0:2) . We show that the funtions (��;Æ(F ); � 2 �) areontinuous in F for the uniform topology on R�+ whih obviously implies (supY 0:2).Sine the weak topology on F is metrisable, it is enough to hek sequential ontinuity.Let F (n) weakly onverge to F as n!1. Then the de�nition of the L�;Æ and (supR:1)imply that the L�;Æ(x); � 2 �, for Æ �xed, are uniformly bounded and equiontinuous ateah x 2 R so that (see, e.g., Billingsley, 1968, Problem 8, x2)sup�2� ����ZR L�;Æ(x)F (n)(dx)� ZR L�;Æ(x)F (dx)����! 0heking (supY 0:2). Conditions (supY 0) and (supU 0) have been heked.We now proeed to onsidering onrete statistial problems for the model. For thiswe need the following result by Cherno�, 1952, see also Kullbak, 1959.Lemma 5.2 Let P be the spae of probability measures on a Polish spae E with theBorel �{�eld, and let measures P;Q 2 P be dominated by a measure � and have respetivedensities p(x) and q(x). TheninfF2Pmax fK(F; P );K(F;Q)g = C(P;Q);



On LD Effiieny in Statistial Inferene 43where K(F; P ) is the Kullbak{Leibler information (5.3) and C(P;Q) is Cherno�'s fun-tion: C(P;Q) = � inf2[0;1℄ lnZE p(x) q1�(x)�(dx):We next apply Lemma 5.2 to alulating the funtion S(�; �0) from (4.7).Lemma 5.3 For �; �0 2 � ,S(�; �0) := supF2F min���(F )� IS(F ); ��0(F )� IS(F )	 = �C(P�; P�0):Proof.Let IS(F ) < 1. Then F � P and, sine the densities dP�=dP (x); � 2 �; arepositive, we also have that F � P� and P{almost surelydFdP = dFdP� dP�dP :Therefore, by the de�nitions of �� and IS,��(F )� IS(F ) = ZR ln dP�dP (x)F (dx)� ZR ln dFdP F (dx)= �ZR ln dFdP�F (dx) = �K(F; P�);and the result follows by Lemma 5.2. 2We now give an appliation to hypothesis testing problems. Consider the tests from(4.8): �Tn;Æ = 1� sup�2�0 ��;Æ(Fn) < sup�2�1 ��;Æ(Fn)� :As above, the risk RTn (�n) of a test �n is de�ned by (4.4). By (4.6) and Lemma 5.3,T � = � inf�2�0; �02�1 C(P�; P�0);so Theorem 4.3 yields the following.Proposition 5.3 Let �1 and �2 be non-interseting subsets of �.If onditions (R:1) and (R:2) hold thenlimn!1 inf�n RTn (�n) � � inf�2�0; �02�1 C(P�; P�0):If onditions (supR:1) and (supR:2) hold thenlimn!1 inf�n RTn (�n) = � inf�2�0; �02�1C(P�; P�0);and the tests �Tn;Æ are nearly LD eÆient, i.e.,limÆ!0 limn!1 RTn (�Tn;Æ) = limÆ!0 limn!1 RTn (�Tn;Æ)= � inf�2�0; �02�1C(P�; P�0):In a similar manner one an takle estimation problems for � or linear funtionals of � .



44 A.Puhalskii and V.Spokoiny5.3 \Signal + White Noise"We observe a real{valued stohasti proess Xn = (Xn(t); t 2 [0; 1℄) obeying the stohas-ti di�erential equation dXn(t) = �(t)dt+ 1pn dW (t); 0 � t � 1; (5.6)where W = (W (t); t 2 [0; 1℄) is a standard Wiener proess and �(�) is an unknownontinuous funtion.This model is desribed by statistial experiments En = (
n;Fn;Pn;�; � 2 �) , where
n = C[0; 1℄, the spae of ontinuous funtions on [0; 1℄ with the uniform metri, � �C[0; 1℄ and Pn;� is the distribution of Xn on C[0; 1℄ for �. We take Pn = Pn;0, where Pn;0orresponds to the zero funtion �(�) � 0 . Then Pn;� � Pn and, moreover, by Girsanov'sformula, Pn{almost surely,�n;� = 1n ln dPn;�dPn (Xn) = Z 10 �(t)dXn(t)� 12 Z 10 �2(t)dt: (5.7)So, to hek ondition (Y 0), we take Yn = Xn and Y = C[0; 1℄ .Let C0[0; 1℄ be the subset of C[0; 1℄ of the funtions x(�) that are absolutely on-tinuous with respet to Lebesgue measure and equal to 0 at 0 . Sine the sequenefL (XnjPn) ; n � 1g obeys the LDP in C[0; 1℄ with rate funtionIW (x(�)) = 8><>: 12 Z 10 ( _x(t))2 dt; if x(�) 2 C0[0; 1℄;1; otherwise, (5.8)where _x(t) denotes the derivative of x(�) 2 C[0; 1℄ at t (see, e.g., Freidlin and Wentzell,1979), ondition (Y 0:1) holds.We next take��;Æ(x(�)) = Z 10 �Æ(t) dx(t)� 12 Z 10 �2(t) dt; x(�) 2 C[0; 1℄; (5.9)where �Æ(t) = [1=Æ℄Xk=0 �(kÆ)1(t 2 [kÆ; (k + 1)Æ)) ; t 2 [0; 1℄; (5.10)the �rst integral on the right of (5.9) being understood as a �nite sum.By the ontinuity of �(�), limÆ!0 Z 10 (�(t)� �Æ(t))2 dt = 0: (5.11)



On LD Effiieny in Statistial Inferene 45The ��;Æ are obviously ontinuous in x(�) 2 C[0; 1℄, so (Y 0:2) holds. Next, by (5.7) and(5.9), we have, for " > 0 and  > 0, in view of Chebyshev's inequality,P 1=nn (j�n;� � ��;Æ(Xn)j > ") � P 1=nn �����Z 10 (�(t)� �Æ(t)) 1pn dW (t)���� > "�� 2e�" exp�22 Z 10 (�(t)� �Æ(t))2 dt� ;and by (5.11) limÆ!0 limn!1 P 1=nn (j�n;� � ��;Æ(Xn)j > ") � 2 exp(�")whih proves (Y 0:3) by the arbitrariness of .For ondition (Y 0:4), we take��(x(�)) = 8><>: Z 10 �(t) _x(t) dt� 12 Z 10 �2(t) dt; if IW (x(�)) <1;0; otherwise.The �� are well de�ned, sine, by the Cauhy{Shwarz inequality and (5.8), if x(�) isabsolutely ontinuous thenZ 10 j�(t) _x(t)j dt � �Z 10 �2(t) dt�1=2 (2IW (x(�)))1=2:Moreover, if IW (x(�)) <1 thenj��;Æ(x(�)) � ��(x(�))j � Z 10 j�Æ(t)� �(t)jj _x(t)j dt� �Z 10 (�Æ(t)� �(t))2 dt�1=2�Z 10 ( _x(t))2 dt�1=2 ;so supx(�)2�0IW (a) j��;Æ(x(�))� ��(x(�))j � (2a)1=2 �Z 10 (�Æ(t)� �(t))2 dt�1=2 ;and the latter goes to 0 as Æ ! 0 by (5.11). Condition (Y 0) has been veri�ed.It remains to hek (U 0) . Using the model equation (5.6), (5.7) and Chebyshev'sinequality one again, we have thatE1=nn exp(n�n;�)1(�n;� > H) � exp(�H)E1=nn exp(2n�n;�)= exp(�H) exp�Z 10 �2(t)dt�! 0 as H !1:Conditions (Y 0) and (U 0) have been heked.



46 A.Puhalskii and V.SpokoinyRemark 5.3 The ondition of ontinuity of the funtions �(�) an be weakened to theondition Z 10 �2(t) dt <1:The funtions �Æ should then be hosen as step funtions for whih (5.11) holds.For onditions (supY 0) and (supU 0), we require that the funtions �(�) belong to aompat in C[0; 1℄. More spei�ally, for �xed � 2 (0; 1℄ , M > 0 and K > 0 , weintrodue the H�older lass�(�;M) = f�(�) : j�(t)� �(s)j �M jt� sj�; for all s; t 2 [0; 1℄g; (5.12)de�ne �K(�;M) to be the subset of �(�;M) of funtions � suh that supt2[0;1℄ j�(t)j �K and assume that � � �K(�;M). By the Arzel�a{Asoli theorem, the set �K(�;M)is ompat in C[0; 1℄. Also sup�(�)2�K(�;M) Z 10 �2(t) dt <1 (5.13)and limÆ!0 sup�(�)2�K(�;M) Z 10 (�(t)� �Æ(t))2 dt = 0: (5.14)Now onditions (supY 0:3) and (supY 0:4) are heked as onditions (Y 0:3) and (Y 0:4),respetively, with the use of (5.14) in plae of (5.11). Condition (supY 0:2) followsby the uniform boundedness of funtions from �K(�;M) whih implies that x(�) !(��;Æ(x(�)); � 2 �K(�;M)) is a ontinuous map from C[0; 1℄ into R�+ with the uniformtopology.Finally, ondition (supU 0) follows in analogy with ondition (U 0) with the use of(5.13). This ompletes veri�ation of onditions (supY 0) and (supU 0).We now alulate the funtion S(�; �0) for the model.Lemma 5.4 For all �; �0 2 C[0; 1℄ ,S(�; �0) := supx(�)2C[0;1℄ minf��(x(�)) � IW (x(�)); ��0(x(�)) � IW (x(�))g= �18 Z 10 [�(t)� �0(t)℄2dt:Proof.Sine by the de�nitions of IW and ��, for x(�) with IW (x(�)) <1 ,��(x(�))� IW (x(�)) = �12 Z 10 ( _x(t)� �(t))2 dt ;



On LD Effiieny in Statistial Inferene 47we get, by the inequality max(a2; b2) � (a� b)2=4 ,S(�; �0) = � infx(�)2C[0;1℄max�12 Z 10 [ _x(t)� �(t)℄2dt; 12 Z 10 [ _x(t)� �0(t)℄2dt�� �18 Z 10 [�(t)� �0(t)℄2dt:On the other hand, for x(�) with _x(t) = [�(t) + �0(t)℄=2 , we have that12 Z 10 [ _x(t)� �(t)℄2dt = 12 Z 10 [ _x(t)� �0(t)℄2dt = 18 Z 10 [�(t)� �0(t)℄2dt;and the required follows. 2Now we apply these formulae and the general results from Setion 4 to two statistialproblems onerning the value of the funtion �(�) at an internal point t0 of [0; 1℄ .5.3.1 Testing �(t0) = 0 versus j�(t0)j � 2Given  > 0 , denote �0 = f� 2 � : �(t0) = 0g , �1 = f� 2 � : j�(t0)j � 2g and de�nethe risk RTn (�n) of a test �n by (4.4). Introduet� = (=M)1=� : (5.15)Proposition 5.4 Let ; �;M;K and t0 be suh that [t0 � t�; t0 + t�℄ � [0; 1℄ and K �2 .If � = �(�;M) thenlimn!1 inf�n RTn (�n) � � 2�22(� + 1)(2� + 1) � M �1=� :If � = �K(�;M) thenlimn!1 inf�n RTn (�n) = � 2�22(� + 1)(2� + 1) � M �1=� ;and the tests �Tn;Æ from (4.8) are nearly LD eÆient, i.e.,limÆ!0 limn!1 RTn (�Tn;Æ) = limÆ!0 limn!1 RTn (�Tn;Æ) = � 2�22(� + 1)(2� + 1) � M �1=� :Proof.By Theorem 4.3, we need only to alulate T � from (4.6). Denote��(t) = [�M jt� t0j� ℄+; (5.16)where a+ = max(a; 0). If � 2 �0 and �0 2 �1 then the inequality j�(t0) � �0(t0)j � 2and the H�older onstraints (5.12) imply that j�(t)� �0(t)j � 2[�M jt� t0j� ℄+ = 2��(t) ,and hene Z 10 (�(t)� �0(t))2dt � Z 10 4(��(t))2dt:



48 A.Puhalskii and V.SpokoinyThis yields, by Lemma 5.4,S(�; �0) � �18 4Z 10 (��(t))2 dt = �Z t�0 (�Mt�)2dt= � 2�22(� + 1)(2� + 1) � M �1=� :On the other hand, evidently,  � �� 2 �0 ,  + �� 2 �1 and S( � ��;  + ��) =�12 1R0 (��(t))2 dt so thatT � = sup�2�0;�02�1 S(�; �0) = � 2�22(� + 1)(2� + 1) � M �1=� :25.3.2 Estimating �(t0)Treating �(t0) as a linear funtional of �(�) , we de�ne the risk of an estimator �n of�(t0) by RFn (�n) = sup�2� 1n lnPn;�(j�n � �(t0)j > ):Proposition 5.5 Let ; �;M;K and t0 be suh that [t0�t�; t0+t�℄ � [0; 1℄ and K >  .If � = �(�;M) thenlimn!1 inf�n RFn (�n) � � 2�22(� + 1)(2� + 1) � M �1=� :If � = �K(�;M) thenlimn!1 inf�n RFn (�n) = � 2�22(� + 1)(2� + 1) � M �1=� ;and the interval{median estimators �Fn;Æ from (4.18) are nearly LD eÆient, i.e.,limÆ!0 limn!1 RTn (�Fn;Æ) = limÆ!0 limn!1 RTn (�Fn;Æ) = � 2�22(� + 1)(2� + 1) � M �1=� :Proof.By Theorem 4.5 and Lemma 4.3,limn!1 inf�n RFn (�n) � F � = sup�;�0 : j�(t0)��0(t0)j>2S(�; �0):Repeating the above alulation for the testing problem, we obtain with ��(t) from (5.16)F � = S(��;���) = � 2�22(� + 1)(2� + 1) � M �1=� :2



On LD Effiieny in Statistial Inferene 49Remark 5.4 The latter problem has been studied by Korostelev, 1993, who suggestsdi�erent upper estimators, namely, the kernel estimatorsb�n = Z K(t0 � t)dXn(t)with the kernel K(t) = (� + 1)=(2�) (M=)1=� [�M jt� t0j℄+. These estimators haveproved to be asymptotially eÆient in the sense that RTn (b�n)! F � as n!1.5.4 Gaussian RegressionWe onsider the regression modelXk;n = �(tk;n) + �k;n; tk;n = kn; k = 1; : : : ; n; (5.17)where errors �k;n are independent standard normal and �(�) is an unknown ontinuousfuntion.In this model, 
n = Rn, � � C[0; 1℄ and Pn;� is the distribution of Xn =(X1;n; : : : ;Xn;n) for �(�). As above, we take Pn = Pn;0. Then�n;� = 1n ln dPn;�dPn (Xn)= 1n nXk=1 �(tk;n)Xk;n � 12n nXk=1 �2(tk;n)= Z 10 �(t) dXn(t)� 12n nXk=1 �2 (tk;n) ; (5.18)where Xn(t) = 1n [nt℄Xk=1Xk;n; 0 � t � 1:This prompts taking the proess Xn = (Xn(t) , t 2 [0; 1℄) as a statisti Yn in ondition(Y 0). We de�ne Y to be the spae of right-ontinuous with left-hand limits funtions on[0; 1℄ with the uniform metri.Sine the Xk;n are N (0; 1){distributed under Pn, the sequene fL (XnjPn) ; n � 1gobeys the LDP with IW from (5.8), Mogulskii, 1976. This heks ondition (Y 0:1).Next, we de�ne ��;Æ(x(�)) as in Subsetion 5.3, i.e.,��;Æ(x(�)) = Z 10 �Æ(t)dx(t) � 12 Z 10 �2(t)dt; x(�) 2 Y; (5.19)where �Æ(t) = [1=Æ℄Xk=0 �(kÆ)1(t 2 [kÆ; (k + 1)Æ)) ; t 2 [0; 1℄:



50 A.Puhalskii and V.SpokoinyNote that the ��;Æ are measurable with respet to the Borel �{�eld on Y and ontinuousat x(�) with IW (x(�)) = 1 sine they are ontinuous at ontinuous funtions andIW (x(�)) =1 when x(�) is not absolutely ontinuous. This heks ondition (Y 0:2).Now, by (5.18) and (5.19),P 1=nn (j�n;� � ��;Æ(Xn)j > ") � 1 �����Z 10 �2(t) dt� 1n nXk=1 �2(k=n)����� > "=4!+P 1=nn �����Z 10 (�(t)� �Æ(t)) dXn(t)���� > "=2� :The �rst term on the right is zero for all n large enough by the ontinuity of �(�). Theseond is not greater thane�"=2E1=nn exp�n ����Z 10 (�(t)� �Æ(t)) dXn(t)������ 2e�"=2 exp 22n nXk=1 (�(k=n))� �Æ(k=n))2! :Sine the �(�) are ontinuous and the �Æ(�) are step funtions,limn!1 1n nXk=1 (�(k=n)� �Æ(k=n))2 = Z 10 (�(t)� �Æ(t))2 dt;and the latter goes to 0 as Æ ! 0. Sine  is arbitrary, ondition (Y 0:3) follows.Conditions (Y 0:4) and (U 0) are heked as for the \signal + white noise" model (withthe same hoie of ��).Remark 5.5 As in the \signal + white noise" model, instead of ontinuity of �(�), weould require that it be square integrable on [0; 1℄ .To get nearly LD eÆient deisions, we assume that the �(�) belong to the lass �K(�;M)de�ned above. Conditions (supY 0:2), (supY 0:3), (supY 0:4) and (supU 0) are heked asfor the \signal + white noise" model if we in addition take into aount thatlimn!1 sup�(�)2�K(�;M)Z 10 (�([nt℄ + 1=n)� �(t))2 dt = 0:Condition (supY 0:2) is obvious.Sine here we have the same funtions IW (x) and ��(x) as for the \signal + whitenoise" model, the statistial problems of Subsetion 5.3 are solved in the same way.5.5 Non-Gaussian RegressionWe onsider the regression model (5.17) but now assume that independent identiallydistributed errors �k;n have a distribution P on the real line with a probability density



On LD Effiieny in Statistial Inferene 51funtion p(x) with respet to Lebesgue measure. An unknown regression funtion �(�)is again assumed to be ontinuous, so � � C[0; 1℄.Next, we assume that the density p(x) obeys the following ondition, f. onditions(R:1) and (R:2) for the model of an independent-identially-distributed sample:(P ) the density p(x) is positive and ontinuous, and the funtionH(s) = ZR p(x)p1�(x� s) dxis bounded over s from bounded domains for all  2 R .As above, for a regression funtion �(�) , we denote by Pn;� the distribution of Xn =(X1;n; : : : ;Xn;n) . We have, with Pn = Pn;0 ,�n;� = 1n ln dPn;�dPn (Xn) = 1n nXk=1 ln p(Xk;n � �(k=n))p(Xk;n) :As in the ase of an independent-identially-distributed sample, this representation sug-gests taking for Yn an empirial proess Fn = Fn(x; t) , x 2 R , t 2 [0; 1℄ , de�ned byFn(x; 0) = 0 and Fn(x; t) = 1n [nt℄Xk=1 1(Xk;n � x); 0 < t � 1: (5.20)Then �n;� = Z 10 ZR ln p(x� �(t))p(x) Fn(dx; dt): (5.21)We de�ne Y as the spae of umulative distribution funtions F = F (x; t); x 2 R; t 2[0; 1℄ , on R � [0; 1℄ with the weak topology. Let Y0 be the subset of Y of absolutelyontinuous with respet to Lebesgue measure on R�[0; 1℄ funtions F (x; t) with densitiespt(x) satisfying the ondition RR pt(x) dx = 1; t 2 [0; 1℄. As it follows from Dembo andZaji, 1995 or Puhalskii, 1996[Theorem 1℄, the sequene fL(FnjPn); n � 1g obeys theLDP in Y with rate funtion ISK(F ) given byISK(F ) = 8><>: Z 10 ZR ln pt(x)p(x) pt(x) dx dt; if F 2 Y0;1; otherwise:This heks (Y 0:1) .To de�ne ��;Æ(F ), introdue the funtionsL�(x; t) = ln p(x� �(t))p(x) ;L�;Æ(x; t) = L�(x; t) _ (�Æ�1) ^ Æ�1 ; x 2 R; t 2 [0; 1℄:



52 A.Puhalskii and V.SpokoinyThe funtions L�;Æ are bounded, ontinuous and, in view of (P ) , satisfy the relationslimÆ!0 Z 10 ZR [exp ( jL�(x; t) � L�;Æ(x; t)j)� 1℄ p(x) dx dt = 0;  > 0; (5.22)and, for every  > 0 ,limn!1 Z 10 ZR �exp� ����L� �x; [nt℄n �� L�;Æ �x; [nt℄n ������� 1� p(x) dx dt! 0 (5.23)as Æ ! 0 . We set ��;Æ(F ) = Z 10 ZR L�;Æ(x; t) F (dx; dt): (5.24)Then ondition (Y 0:2) holds by the de�nition of the topology on Y and hoie of the L�;Æ.For ondition (Y 0:3), write, for  > 0, using Chebyshev's inequality, and (5.20), (5.21)and (5.24), 1n lnPn(j�n;� � ��;Æ(Fn)j > ")� 1n lnPn�Z 10 ZR jL�(x; t)� L�;Æ(x; t)j Fn(dx; dt) > "�� �"+ 1n nXk=1 lnZR exp ( jL�(x; k=n)� L�;Æ(x; k=n)j) p(x) dx:Limit (5.23) yields limÆ!0 limn!1 1n lnPn(j�n;� � ��;Æ(Fn)j > ") � �"whih proves (Y 0:3) sine  is arbitrary.For ondition (Y 0:4), we take��(F ) = 8><>: Z 10 ZR L�(x; t) F (dx; dt); if ISK(F ) <1;0; otherwise:The �� are well de�ned sine, by the Young{Fenhel inequality, if F (x; t) =R t0 R x�1 ps(y)dy ds thenZ 10 ZR jL�(x; t)j pt(x)p(x) p(x) dx dt � Z 10 ZR [exp (jL�(x; t)j)� 1℄ p(x) dx dt+ Z 10 ZR�pt(x)p(x) ln pt(x)p(x) � pt(x)p(x) + 1� p(x) dx dt� 1 + Z 10 ZR p2(x)(p(x� �(t)))�1 dx dt+ ISK(F )whih is �nite when ISK(F ) <1 by ondition (P ).



On LD Effiieny in Statistial Inferene 53Next, one again by the Young{Fenhel inequality, we have, for  > 0,j��;Æ(F )� ��(F )j � Z 10 ZR  jL�;Æ(x; t)� L�(x; t)jF (dx; dt)� Z 10 ZR [exp ( jL�;Æ(x; t)� L�(x; t)j)� 1℄ p(x) dx dt+ ISK(F );so by (5.22) limÆ!0 supF2�0ISK (a) j��;Æ(F )� ��(F )j � awhih proves (Y 0:4) sine  is arbitrary.Condition (U 0) is heked as in the ase of an independent-identially-distributedsample with the use of ondition (P ) .We now hek onditions (supY 0) and (supU 0). For this, we assume that the �(�)are again from the set �K(�;M) de�ned in Subsetion 5.3. Then limits (5.22) and(5.23) hold uniformly over � 2 �K(�;M) whih allows us to hek (supY 0:3), (supY 0:4)and (supU 0) analogously to (Y 0:3), (Y 0:4) and (U 0), respetively. Condition (supY 0:2)follows from the fat that the L�;Æ(x; t); � 2 �K(�;M), are equiontinuous at eah (x; t)and uniformly bounded, so the (��;Æ; � 2 �) : Y ! R�+ are ontinuous for the uniformtopology on R�+.We now alulate the funtion S(�; �0) ; �; �0 2 � . This is arried out with the use ofa generalisation of Cherno�'s result in Lemma 5.2 whih we state and prove next. Let Ebe a Polish spae with the Borel �{�eld E and P(E), the spae of probability measureson (E; E). As above, for F; P 2 P(E), we denote by K(F; P ) the Kullbak{Leiblerinformation: K(F; P ) = 8<: ZE log dFdP (x)F (dx); if F � P;1; otherwise.Reall that K(F; P ), for P �xed, is onvex and is a rate funtion in F for the weaktopology on P(E), Deushel and Strook, 1989, 3.2.17.If the role of E is taken over by E � [0; 1℄ with the produt topology, then given aprobability Borel measure � on [0; 1℄, we denote by P�(E�[0; 1℄) the subset of P(E�[0; 1℄)of measures F suh that F (E � [0; t℄) = �([0; t℄) ; t 2 [0; 1℄.Our version of Cherno�'s result is the following lemma.Lemma 5.5 Let E be a Polish spae. Let probability measures P;Q 2 P(E � [0; 1℄) bedominated by the produt measure � � �, where � and � are Borel measures on E and[0; 1℄, respetively, with �([0; 1℄) = 1 .Then infF2P�(E�[0;1℄)max fK(F; P );K(F;Q)g



54 A.Puhalskii and V.Spokoiny= � inf2[0;1℄Z 10 ln�ZE pt (x) q1�t (x)�(dx)� �(dt);where pt(x) and qt(x) are the respetive densities of P and Q relatively to �� �.Proof.Obviously,max fK(F; P );K(F;Q)g = sup2[0;1℄(K(F; P ) + (1� )K(F;Q)): (5.25)Let P(E � [0; 1℄) be endowed with the weak topology. Sine K(F; P ) is onvex andis a rate funtion in F , we dedue that the funtion K(F; P ) + (1 � )K(F;Q);  2[0; 1℄; F 2 P�(E � [0; 1℄) ; meets the onditions of a minimax theorem (see, e.g., Aubinand Ekeland, 1984, Theorem 7, Setion 2, Chapter 6). Hene,infF2P�(E�[0;1℄) sup2[0;1℄(K(F; P ) + (1� )K(F;Q))= sup2[0;1℄ infF2P�(E�[0;1℄)(K(F; P ) + (1� )K(F;Q)): (5.26)The latter in�mum an equivalently be taken over F dominated by P and Q, and heneby ���. Denote by ft(x) the density of F with respet to ���. Sine, by the de�nitionof P�(E � [0; 1℄),F (E � [0; t℄) = Z t0 ZE ft(x)�(dx) �(dt) = �([0; t℄); t 2 [0; 1℄;we have that ZE ft(x)�(dx) = 1 �{almost everywhere. (5.27)Next, by the de�nition of the Kullbak{Leibler information,K(F; P ) + (1� )K(F;Q) = Z 10 ZE log ft(x)pt (x)q1�t (x)ft(x)�(dx) �(dt); (5.28)where 0=0 = 0; 0 log 0 = 0. Sine the funtion x log x ; x � 0; is onvex, an appliation ofJensen's unequality and (5.27) gives that �{almost everywhere in t 2 [0; 1℄ZE log ft(x)pt (x)q1�t (x)ft(x)�(dx) � � log ZE pt (x)q1�t (x)�(dx) :On the other hand, takingft(x) = pt (x)q1�t (x)�ZE pt (x)q1�t (x)�(dx)��1 (5.29)we get equality above. Sine the measure F with the density de�ned by (5.29) belongsto P�(E � [0; 1℄), we obtain by (5.28) thatinfF2P�(E�[0;1℄)[K(F; P ) + (1� )K(F;Q)℄= �Z 10 log �ZE pt (x)q1�t (x)�(dx)� �(dt)whih, by (5.25) and (5.26), onludes the proof. 2



On LD Effiieny in Statistial Inferene 55Remark 5.6 Cherno�'s result follows when � is a Dira measure.Now we apply Lemma 5.5 to evaluating the funtion S(�; �0).Lemma 5.6 For all �; �0 2 � ,S(�; �0) = inf2[0;1℄Z 10 logH(�0(t)� �(t)) dt:Proof.We have, for F 2 Y0 with ISK(F ) <1 ,��(F )� ISK(F ) = �K(F; P �) ;where P �(dx; dt) = p(x� �(t)) dx dt, and the laim follows by (4.7) and Lemma 5.5 withE = R ;�(dx) = dx ; �(dt) = dt ; P = P � and Q = P �0 . 2The latter result enables us to alulate asymptoti minimax risks for various statis-tial problems. To ompare with the Gaussian ase, let us onsider the same statistialproblems as in Subsetion 5.4 dealing with the value of �(t0) for a given t0. Sets �(�;M)and �K(�;M) are de�ned as above.5.5.1 Testing �(t0) = 0 versus j�(t0)j � 2Given  > 0 , let �0 = f� 2 � : �(t0) = 0g , �1 = f� 2 � : j�(t0)j � 2g and de�ne therisk RTn (�n) of a test �n by (4.4). Reall that t� was de�ned in (5.15).Proposition 5.6 Let ; �;M;K and t0 be suh that [t0 � t�; t0 + t�℄ � [0; 1℄ and K �2 . Let the measure P satisfy ondition (P ) and the funtion H(s) monotonouslyderease in s � 0 for eah  2 [0; 1℄ .If � = �(�;M) thenlimn!1 inf�n RTn (�n) � inf2[0;1℄ 2Z t�0 logH(2( �Mt�)) dt:If � = �K(�;M) thenlimn!1 inf�n RTn (�n) = inf2[0;1℄ 2Z t�0 logH(2( �Mt�)) dt;and the tests �Tn;Æ from (4.8) are nearly LD eÆient, i.e.,limÆ!0 limn!1 RTn (�Tn;Æ) = limÆ!0 limn!1 RTn (�Tn;Æ)= inf2[0;1℄ 2Z t�0 logH(2( �Mt�)) dt:



56 A.Puhalskii and V.SpokoinyProof.By Theorem 4.3 we need only to evaluate T � from (4.6). A straightforwardalulation using Lemma 5.6 and the monotoniity of H(s) shows thatT � := sup�2�0; �02�1 S(�; �0) = inf2[0;1℄ 2Z 10 logH(2��(t)) dt;where ��(t) = [�M jt� t0j�℄+ . The laim follows. 25.5.2 Estimating �(t0)For the problem of estimating �(t0) , the risk of an estimator �n is de�ned byRFn (�n) = sup�2� 1n lnPn;�(j�n � �(t0)j > ):Proposition 5.7 Let the onditions of Proposition 5.6 hold.If � = �(�;M) thenlimn!1 inf�n RFn (�n) � inf2[0;1℄ 2Z t�0 logH(2( �Mt�)) dt:If � = �K(�;M) thenlimn!1 inf�n RFn (�n) = inf2[0;1℄ 2Z t�0 logH(2( �Mt�)) dt;and the interval{median estimators �Fn;Æ from (4.18) are nearly LD eÆient, i.e.,limÆ!0 limn!1 RFn (�Fn;Æ) = limÆ!0 limn!1 RFn (�Fn;Æ)= inf2[0;1℄ 2Z t�0 logH(2( �Mt�)) dt:Proof.By Theorem 4.5 and Remark 4.3 it suÆes to alulate the asymptoti minimaxrisk given by Lemma 4.3: F � = sup�;�02�: j�(t0)��0(t0)j>2S(�; �0)whih is done as for the \signal + white noise" model. 2Remark 5.7 The latter problem of estimating �(t0) has been onsidered by Korostelevand Spokoiny, 1995 under the assumption that ln p(x) is onave upwards, and by Ko-rostelev and Leonov, 1995 who study the double asymptotis as n!1 and then ! 0 .



On LD Effiieny in Statistial Inferene 575.6 The Change{Point ModelLet us observe a sample Xn = (X1;n; : : : ;Xn;n) of real{valued random variables, where,for some kn � 1, the observations X1;n; : : : ;Xkn;n are independent identially distributedwith a distribution P0 and the observations Xkn+1;n; : : : ;Xn;n are independent identiallydistributed with a distribution P1. We assume that P0 and P1 are known and kn isunknown. Let us also assume that kn = [n�℄, where � 2 � = [0; 1℄. For this model,
n = Rn and Pn;� denotes the distribution of Xn for �.Let a probability measure P dominate P0 and P1, andf0(x) = dP0dP (x); f1(x) = dP1dP (x); x 2 R;be respetive densities. We assume that f0(x) and f1(x) are positive and ontinuous andZR f0 (x) P (dx) <1; ZR f1 (x) P (dx) <1 for all  2 R: (5.30)Introduing Pn = P n, we have�n;� = 1n ln dPn;�dPn (Xn) = 1n [n�℄Xi=1 ln f0(Xi;n) + 1n nXi=[n�℄+1 lnf1(Xi;n)so that de�ning an empirial proess byFn(x; t) = 1n [nt℄Xi=1 1(Xi;n � x); x 2 R; t 2 [0; 1℄;we obtain the representation�n;� = Z �0 ZR ln f0(x) Fn(dx; dt) + Z 1� ZR ln f1(x) Fn(dx; dt):We de�ne statistis Yn and a spae Y as for the non-Gaussian-regression model. LetYP onsist of the funtions F 2 Y that are absolutely ontinuous with respet to themeasure P (dx) � dt with densities pt(x) suh that RR pt(x)P (dx) = 1 ; t � 0 . As for thenon-Gaussian-regression model, ondition (Y 0:1) holds withISKP (F ) = 8><>: Z 10 ZR pt(x) ln pt(x)P (dx) dt; if F 2 YP ;1; otherwise:We next take, for F (�; �) 2 Y,��;Æ(F ) = Z 10 ZR L0;Æ(x)gÆ(� � t)F (dx; dt) + Z 10 ZR L1;Æ(x)gÆ(t� �)F (dx; dt) ;



58 A.Puhalskii and V.Spokoinywhere Li;Æ(x) = ln pi(x) ^ Æ�1 _ (�Æ�1); i = 0; 1;gÆ(t) = 0 _ �1=2 + Æ�2t� ^ 1:The funtions Li;Æ and gÆ are bounded, ontinuous andlimÆ!0 ZR [exp (j ln pi(x)� Li;Æ(x)j)� 1℄P (dx) = 0; i = 0; 1;  > 0: (5.31)The ��;Æ are easily seen to be ontinuous, so (Y 0:2) holds.For (Y 0:3), write, by Chebyshev's inequality, for  > 0; " > 0 and n � Æ�2 ,P 1=nn (j�n;� � ��;Æ(Fn)j > ")� P 1=nn �Z 10 ZR j ln f0(x)� L0;Æ(x)jFn(dx; dt) + 2Æ > "2�+P 1=nn �Z 10 ZR j ln f1(x)� L1;Æ(x)jFn(dx; dt) + 2Æ > "2�� exp(�"=2) exp(2Æ) [E exp(j ln f0(X1;n)� L0;Æ(X1;n)j)+E exp(j ln f1(X1;n)� L1;Æ(X1;n)j)℄ ;so limn!1 P 1=nn (j�n;� � ��;Æ(Fn)j > ")� exp(�"=2) exp(2Æ)�ZR exp(j ln f0(x)� L0;Æ(x)j)P (dx)+ ZR exp(j ln f1(x)� L1;Æ(x)j)P (dx)� ;and, by (5.31), this goes to 2 exp(�"=2) as Æ ! 0. Sine  is arbitrary, ondition (Y 0:3)is heked.To hek (Y 0:4), we take��(F ) = 8><>: Z �0 ZRln f0(x)F (dx; dt) +Z 1� ZRln f1(x)F (dx; dt); if ISKP (F )<1;0; otherwise:The fats that the �� are well de�ned and (Y 0:4) holds are proved as for the non-Gaussian-regression model with the use of (5.30). Condition (U 0) also is easily heked.Remark 5.8 The ontinuity ondition on f0(x) and f1(x) an be omitted. One shouldthen hoose the Li;Æ bounded, ontinuous and satisfying (5.31).



On LD Effiieny in Statistial Inferene 59Next, the argument used for (Y 0) and (U 0) heks also onditions (supY 0) and (supU 0)(the veri�ation of (supY 0:2) uses the fat that the funtion gÆ(t� �) is equiontinuousfor � 2 [0; 1℄ at eah t 2 [0; 1℄ ).The next step is evaluating S(�; �0) for �; �0 2 [0; 1℄ .Lemma 5.7 For all �; �0 2 [0; 1℄ ,S(�; �0) = �j� � �0jC(P0; P1):Proof.In a manner similar to the ase of non{Gaussian regression, we have, for anyF 2 YP ; ISKP (F ) <1 with F (dx; dt) = pt(x) P (dx) dt ,��(F )� ISKP (F ) = �Z �0 ZR ln pt(x)p0(x)pt(x) P (dx) dt�Z 1� ZR ln pt(x)p1(x)pt(x) P (dx) dt = �K(F; P �);where P �(dx; dt) = (f0(x)1(t � �) + f1(x)1(t > �))P (dx) dt. The laim follows by (4.7),Lemma 5.5 with E = R ;�(dx) = P (dx) , �(dt) = dt , P = P � and Q = P �0 and thede�nition of Cherno�'s funtion in Lemma 5.2. 2We apply this result and the general theorems from Setion 4 to the problem ofestimating the parameter � . The risk of an estimator �n is de�ned in a standard way:RFn (�n) = sup�2[0;1℄ 1n lnPn;�(j�n � �j > ): (5.32)Proposition 5.8 For eah  < 1=2 ,limn!1 inf�n RFn (�n) = �2C(P0; P1):If �Fn;Æ are the interval{median estimators from (4.18) thenlimÆ!0 limn!1 RFn (�Fn;Æ) = limÆ!0 limn!1 RFn (�Fn;Æ) = �2C(P0; P1):Proof.We apply Theorem 4.5. One needs only to alulate the minimax risk F � . UsingLemmas 4.3 and 5.7, we obtainF � = sup�;�0 :j���0j>2S(�; �0) = �2C(P0; P1):2Remark 5.9 The same result has been obtained by Korostelev, 1995 who uses anotherkind of an upper estimator. The onstrution is based on onsidering the onave hull ofa sample path of the likelihood proess. By Lemma 4.2 this estimator is a partiular aseof the interval{median estimators �Fn;Æ .



60 A.Puhalskii and V.Spokoiny5.7 Regression with Random DesignWe onsider the model Xk;n = �(tk;n) + �k;n; k = 1; : : : ; n; (5.33)where real{valued errors �k;n are independent with a ommon distribution P having adensity p(x) that obeys ondition (P ) of Subsetion 5.5, and design points tk;n are real-valued independent random variables with a ommon distribution � and are independentof the �k;n. We impose a standard ondition on the design measure � .(�) The measure � is ompatly supported and has a positive density with respet toLebesgue measure on the support.We denote the support by D. An unknown regression funtion �(�) is assumed to beontinuous. In this model, Pn;� is the joint distribution of Xn = (X1;n; : : : ;Xn;n) andtn = (t1;n; : : : ; tn;n) for � .Let us take for Yn the joint empirial distribution funtion Fn of Xn and tn :Fn(A;B) = 1n nXk=1 1(Xk;n 2 A; tk;n 2 B) (5.34)for Borel sets A � R; B � D. We take Y to be the spae of distributions on R�D withthe weak topology. Let also Pn = Pn;0 = (P ��)n .With these de�nitions,�n;� = 1n ln dPn;�dPn (Xn; tn)= 1n nXk=1 ln p(Xk;n � �(tk;n))p(Xk;n)= ZD ZR ln p(x� �(t))p(x) Fn(dx; dt):Let Y1 be the subset of the set Y of the umulative distribution funtions on R2 thatare absolutely ontinuous with respet to Lebesgue measure on R2 and have support inR�D.Under Pn , the random pairs (Xk;n; tk;n) are independent identially distributed withthe distribution P �� , and hene, by Sanov's theorem, the LDP holds for the Fn withrate funtion ISS(F ) de�ned byISS(F ) = 8<: ZD ZR ln p(x; t)p(x)�(t) p(x; t) dx dt; if F 2 Y1;1; otherwise:



On LD Effiieny in Statistial Inferene 61Here F (dx; dt) = p(x; t)dxdt . This heks (Y 0:1) .Set next, for F 2 Y,��(F ) = 8<: ZD ZR ln p(x� �(t))p(x) F (dx; dt); if ISS(F ) <1;0; otherwise;��;Æ(F ) = ZD ZR �ln p(x� �(t))p(x) � ^ Æ�1 _ (�Æ�1)F (dx; dt):With this notation, the rest of ondition (Y 0) and ondition (U 0) are heked in analogywith the ase of non-Gaussian regression. This proves the LDP for the model.For onditions (supY 0) and (supU 0), we again assume that � 2 �K(�;M) , wherethe set �K(�;M) was de�ned above. The onditions are then heked as for the non-Gaussian-regression model.Now we alulate the funtion S(�; �0) from (4.7). Reall that the funtion H(s)was de�ned in ondition (P ).Lemma 5.8 Under onditions (P ) and (�) ,S(�; �0) = inf2[0;1℄ log ZDH(�0(t)� �(t))�(t) dt:Proof.Given F 2 Y1 with ISS(F ) <1, we easily get��(F )� ISS(F ) = �K(F; P �);where P �(dx; dt) = p(x� �(t))�(t) dx dt, and the laim follows by (4.7) and Lemma 5.2with E = R�D ;�(dx; dt) = dx dt; P = P � and Q = P �0 . 2Now we onsider the same two statistial problems as in Subsetion 5.5 and omparethe results for the ases of random and deterministi design.5.7.1 Testing �(t0) = 0 versus j�(t0)j � 2Given t0 2 D and  > 0 , onsider the hypothesis testing problem: �(t0) = 0 versusj�(t0)j � 2 . The risk RTn (�n) of a test �n , as well as the sets �(�;M) and �0(�;M) ,and t� are de�ned as above.Proposition 5.9 Let D = [0; 1℄. Let ; �;M;K and t0 be suh that [t0 � t�; t0 +t�℄ � [0; 1℄ and K � 2 . Let onditions (P ) and (�) hold and the funtion H(s)monotonously derease in s � 0 for eah  2 [0; 1℄ .If � = �(�;M) then limn!1 inf�n RTn (�n) � T �;



62 A.Puhalskii and V.Spokoinywhere T � = inf2[0;1℄ log 1 + Z t0+t�t0�t� hH(2(�M jt� t0j�))� 1i �(t) dt! :If � = �K(�;M) then limn!1 inf�n RTn (�n) = T �;and the tests �Tn;Æ from (4.8) are nearly LD eÆient, i.e.,limÆ!0 limn!1 RTn (�Tn;Æ) = limÆ!0 limn!1 RTn (�Tn;Æ) = T �:Proof.Theorem 4.3 redues the proof to alulating T � from (4.6). Using the result ofLemma 5.8 and proeeding in analogy with the ase of deterministi design, we onludethat T � = S(� ��; + ��)= inf2[0;1℄ log0� t0�t�Z0 �(t) dt+ t0+t�Zt0�t� H(2( �M jt� t0j�))�(t) dt + 1Zt0+t� �(t) dt1A :Now the laim follows by the equality RD �(t)dt = 1. 25.7.2 Estimating �(t0)As above, when estimating �(t0) , we de�ne the risk of an estimator �n byRFn (�n) = sup�2�K(�;M) 1n lnPn;�(j�n � �(t0)j > ):Proposition 5.10 Let the onditions of Proposition 5.9 hold.If � = �(�;M) then limn!1 inf�n RFn (�n) � F �;where F � = inf2[0;1℄ log 1 + Z t0+t�t0�t� hH(2( �M jt� t0j�))� 1i�(t) dt! :If � = �K(�;M) then limn!1 inf�n RFn (�n) = F �;and the interval{median estimators �Fn;Æ from (4.18) are nearly LD eÆient, i.e.,limÆ!0 limn!1 RFn (�Fn;Æ) = limÆ!0 limn!1 RFn (�Fn;Æ) = F �:Proof.By Theorem 4.5 it suÆes to alulate the asymptoti minimax risk F � fromLemma 4.3 whih is done in analogy with the proof of Proposition 5.9. 2



On LD Effiieny in Statistial Inferene 63Remark 5.10 If we onsider the uniform random design on [0; 1℄, i.e., take �(t) = 1,Jensen's inequality easily implies that its asymptoti minimax risks are not greater thanthe orresponding risks for regression with deterministi design (see Subsetion 5.5). Thisfat also follows from omparing Lemma 5.2 and Lemma 5.5.Remark 5.11 The problem of estimating �(t0) for the uniform random design has beenonsidered by Korostelev, 1995 who studies the double asymptotis as n ! 1 and then! 0.



64 A.Puhalskii and V.SpokoinyA AppendixA.1 Proof of Lemma 2.4Let fV�; � 2 A(�)g be a standard family of deviabilities so that for all � � �0 2 A(�)and z� 2 S� , V�(z�) = supz�02��1�0�z� k��0�z�0k�V�0(z�0) : (1.1)We de�ne V�(z�) = ( inf�2A(�) k��z�k�1� V�(��z�) ; z� 2 S� ;0 ; otherwise, (1.2)where we set V�(��z�) = 1 and k��z�k�1� V�(��z�) =1 when k��z�k� = 0.The funtions k��z�k�1� V�(��z�) ;� 2 A(�) ; are easily seen to be upper semion-tinuous on S�, so (V�(z�) ; z� 2 R�+) is upper semiontinuous as the in�mum of a familyof upper semiontinuous funtions. Moreover, sine, for every z� 2 S� and " > 0, thereexists � 2 A(�) suh that k��z�k� > 1 � ", and sine V�(��z�) � 1, we onludethat V�(z�) � 1. Sine (ii) obviously follows by (iii), we are left to prove (iii) and theequality supz�2S�V�(z�) = 1: (1.3)We begin with (iii). Let us �x � and z� assuming that z� 2 S� . De�nition (1.2) impliesthat V�(z�) � supz�2��1� z� k��z�k�V�(z�) ;so we need to prove thatV�(z�) � supz�2��1� z� k��z�k�V�(z�) : (1.4)We, �rst, note that (1.2) and (1.1) imply thatV�(z�) = inf�02A(�)�0�� k��0z�k�1�0 V�0(��0z�) ; z� 2 S� : (1.5)Indeed, by (1.1), if � � �0 2 A(�) and z� 2 S� is suh that k��z�k� > 0 thenV�(��z�) � k��0���0z�k�V�0(��0z�) ;and hene, sine ��0���0z� = ��z�=k��0z�k�0 ,k��0z�k�1�0 V�0(��0z�) � k��z�k�1� V�(��z�)



On LD Effiieny in Statistial Inferene 65whih, in view of (1.2), proves (1.5).Next, we obviously an assume that a := V�(z�) > 0. For �0 � � ;�0 2 A(�),introdue the setsA�0 = fz�0 2 S�0 : ��0�z�0 = z� and k��0�z�0k�V�0(z�0) = ag: (1.6)We show that A�0 is nonempty. Sine V�0(z�0) � 1, the supremum on the right of (1.1)an equivalently be taken over the set ��1�0�z� \ fk��0�z�0k� � a=2g. This set is losedsine the projetion ��0� is ontinuous in restrition to the set fz�0 : k��0�z�0k� � a=2g.Sine V�0 is a deviability, it attains supremums on losed sets, so the supremum on theright of (1.1) is attained whih is equivalent to A�0 being nonempty. Next, A�0 is losedand hene ompat sine V�0 is upper semiontinuous and, by (1.1) and the de�nition ofa, k��0�z�0k�V�0(z�0) = a if and only if k��0�z�0k�V�0(z�0) � a.Now we introdue for eah �0 2 A(�) , �0 � � ,A�0 = fz� 2 [0; 1℄� : ��0z� 2 A�0 and k��0z�k�0 � ag:These sets are easily seen to be nonempty (e.g., if z�0 2 A�0 then z� = (z�; � 2 �),de�ned by (z�; � 2 �0) = z�0 and z� = 0; � 62 �0, belongs to A�0) and ompat for theTihonov topology on [0; 1℄� (the latter holds beause ��0 is ontinuous in restrition tothe set fz� : k��0z�k�0 � ag and A�0 is losed).We next show that, for every elements �0 and �00 of A(�) ontaining � , the setsA�0 and A�00 have a nonempty intersetion. Indeed, let �000 = �0 [�00 and z� 2 [0; 1℄�be suh that z� 2 A�000 and k��000z�k = 1 (suh a z� obviously exists). We prove thatz� 2 A�0 and z� 2 A�00 .Denote z�000 = ��000z� , z�0 = ��0z� , the latter being well de�ned sine the de�ni-tions of A�000 and A�000 imply that k��z�k� � a . First, note that��0�z�0 = ��z� = ��000�z�000 = z�; (1.7)where the last equality follows by the fat that z�000 2 A�000 . This and (1.1) yield, in viewof the equality ��000�0z�000 = z�0 ,V�(z�) � k��0�z�0k�V�0(z�0); (1.8)V�0(z�0) � k��000�0z�000k�0V�000(z�000): (1.9)Next, by the de�nitions of z�000 and z�0 ,k��000�z�000k� = k��0�z�0k� � k��000�0z�000k�0so that, by (1.8) and (1.9),V�(z�) � k��0�z�0k� � k��000�0z�000k�0V�000(z�000) = k��000�z�000k�V�000(z�000):



66 A.Puhalskii and V.SpokoinySine z�000 2 A�000 , we atually have equality here and hene in (1.8) and (1.9). The �rstof them and (1.7) prove that z�0 2 A�0 . Equalities in (1.8) and (1.9) together imply,sine V�000(z�000) � 1 and k��0�z�0k� � 1 that k��000�0z�000k�0 � V�0(z�0) � V�(z�) = a;sine also k��000z�k�000 = 1 , we getk��0z�k�0 = k��000z�k�000 � k��000�0z�000k�0 � a:This onludes the proof of the inlusion z� 2 A�0 . The inlusion z� 2 A�00 is provedby the same argument.Thus, �nite intersetions of the ompats A�0 ;�0 � �; are nonempty, hene\�0��A�0 6= ;: Pik z� from this intersetion and let bz� = z�=kz�k� . We provethat ��bz� = z� (1.10)and V�(bz�) = k��bz�k�1� V�(z�) (1.11)whih yields (1.4) sine bz� 2 S� . Let �0 2 A(�) with � � �0 . Sine ��0bz� = ��0z� 2A�0 , it follows by the de�nition of A�0 that ��bz� = ��0���0bz� = z� heking (1.10),also V�(z�) = a = k��0���0bz�k�V�0(��0bz�) = k��bz�k�k��0bz�k�0V�0(��0bz�);so k��bz�k�1� V�(z�) = k��0bz�k�1�0 V�0(��0bz�):In view of (1.5), this implies (1.11), and (1.4) follows. Assertion (iii) has been proved.Finally, aording to (iii),1 = supz�2S�V�(z�) = supz�2S� k��z�k�V�(z�) � supz�2S�V�(z�)proving (1.3). 2Remark A.1 Equality (1.5) shows that V� an equivalently be de�ned asV�(z�) = lim�2A(�)V�(��z�) ; z� 2 S�;where the limit is with respet to the partial ordering by inlusion: � � �0 if � � �0.A.2 A Minimax Theorem for Non-Level-Compat Loss FuntionsThis subsetion ontains a minimax theorem for generalised risks and non-level-ompatloss funtions. We assume the setting desribed at the beginning of Setion 3 and startby introduing an extension of the spae of deisions, f. Strasser, 1985.Denote by C+(D) the set of all non-negative bounded ontinuous funtions on D, andlet B(D) be the set of all funtionals b : C+(D)! R+ with the following properties:



On LD Effiieny in Statistial Inferene 67(1) b(0) = 0; b(1) = 1, where 0 (respetively, 1) denotes the element of C+(D) identiallyequal to 0 (respetively, 1);(2) b(f) � b(g) if f � g, f; g 2 C+(D);(3) b(�f) = �b(f); f 2 C+(D); � 2 R+;(4) b(f + g) � b(f) + b(g); f; g 2 C+(D).Also let B1(D) be the subset of those b 2 B(D) for whih, in addition,(5) b(f _ g) = b(f) _ b(g); f; g 2 C+(D),where f _ g denotes the maximum of f and g.We endowB(D) with the weak topology whih is the topology indued by the Tihonov(produt) topology on RC+(D)+ , i.e., a net fb� ; � 2 �g of elements of B(D), where � is adireted set, onverges to b 2 B(D) if lim�2� b�(f) = b(f) for all f 2 C+(D). Obviously,B(D) is losed in RC+(D)+ .We extend the domain of the funtionals b to the set C+(D) of lower semiontinuousnon-negative funtions on D by lettingb(g) = supfb(f) : f � g; f 2 C+(D)g; g 2 C+(D): (1.12)It is easily seen that the map b ! b(g) is lower semiontinuous on B(D) for eah g 2C+(D).Next, let us denote by Bn the set of all random elements on (
n;Fn) with values inB(D):We all the elements of Bn generalised deision funtions (or generalised deisions).Given loss funtions W�; � 2 � , whih are lower semiontinuous by de�nition, and ageneralised deision �n 2 Bn , we de�ne �n(W n� ) aording to (1.12), and de�ne the LDriskBn(�n) of a generalised deision �n 2 Bn in the experiment En = (
n;Fn;Pn;�; � 2 �)by Bn(�n) = sup�2�E1=nn;� �n(W n� ): (1.13)Theorem A.1 Let fEn ; n � 1g satisfy the LDP. Thenlimn!1 inf�n2BnBn(�n) � B�;where B� = supz�2R�+ infb2B1(D) sup�2� b(W�)z�V�(z�):For a proof, we need to study properties of B(D) and B1(D).



68 A.Puhalskii and V.SpokoinyLemma A.1 Let f1; f2; : : : ; fk 2 C+(D) and fbn; n � 1g be a sequene of elements ofB(D). Then there exists b 2 B1(D) suh that b(fi) is an aumulation point of thesequene fb1=nn (fni ); n � 1g for i = 1; : : : ; k.Proof.Let jj�jj denote the uniform norm on C+(D). De�ne C1;+(D) as the subset of C+(D)of funtions f with jjf jj � 1. Introdue the funtionals bn(f) = b1=nn (fn); f 2 C1;+(D):Then the set B = fbn; n � 1g is ontained in the set [0; 1℄C1;+(D). By Tihonov's theorem,[0; 1℄C1;+(D) with the produt topology is ompat, and hene B is relatively ompat. Leteb denote some its aumulation point. We extend eb to a funtional on C+(D) by lettingeb(�f) = �eb(f); � > 0; f 2 C1;+(D). Sine bn 2 B(D), it is easy to see that eb 2 B(D).Also, sine the topology on B(D) is the restrition of the produt topology on RC+(D)+ ,it follows that eb is an aumulation point of fbn; n � 1g, where the bn are extendedto funtionals on C+(D) by letting bn(�f) = �bn(f); � > 0; f 2 C1;+(D): This implies,by the de�nition of the bn, that eb(fi) is an aumulation point of fb1=nn (fni ); n � 1g fori = 1; : : : ; k.We end the proof by showing that eb 2 B1(D). Let f; g 2 C+(D). Then, sine eb is anaumulation point of fbn; n � 1g, it follows that eb(f), eb(g) and eb(f _ g) are respetiveaumulation points of fbn(f); n � 1g, fbn(g); n � 1g and fbn(f _ g); n � 1g. Hene,by the de�nition of the bn, for a subsequene (n0), we have that b1=n0n0 (fn0) ! eb(f),b1=n0n0 (gn0)! eb(g) and b1=n0n0 ((f _ g)n0)! eb(f _ g). By properties (2) and (4) of B(D),b1=nn (fn) _ b1=nn (gn) � b1=nn ((f _ g)n) � 21=n hb1=nn (fn) _ b1=nn (gn)i ;and we onlude that eb(f _ g) = eb(f) _eb(g). 2Lemma A.2 The set B1(D) is ompat.Proof.An argument similar to the one used in Lemma A.1 shows that the set of funtion-als f(b(f); f 2 C1;+(D)); b 2 B1(D)g is losed in [0; 1℄C1;+(D) and hene ompat whihobviously is equivalent to the ompatness of B1(D). 2The next lemma is motivated by and extends Aubin, 1984, Proposition 8.2.Lemma A.3 Let T be an arbitrary set and U a topologial spae. Assume that a real{valued funtion g(t; u); t 2 T; u 2 U; has the properties:(a) g(t; u) is level-ompat in u 2 U for every t 2 T ,(b) for every t1; t2 2 T , there exists t3 2 T suh that g(t3; u) � g(t1; u) _ g(t2; u) for allu 2 U .Then supt2T infu2U g(t; u) = infu2U supt2T g(t; u):



On LD Effiieny in Statistial Inferene 69Remark A.2 Condition (a) holds when g(t; u) is lower semiontinuous in u and U is aompat topologial spae.Remark A.3 If T is a direted set, ondition (b) holds when g(t; u) is inreasing in tfor all u, i.e., g(t1; u) � g(t2; u); u 2 U; for t1 � t2 (the latter inequality is with respetto the order on T ).Proof.We proeed analogously to Aubin, 1984. Pik � > supt2T infu2U g(t; u): We needto prove that � � infu2U supt2T g(t; u): (1.14)Let T0 = ft 2 T : supu2U g(t; u) > �g: If T0 is empty, the proof is over. So we assumethat T0 6= ;. By the hoie of �, the sets At = fu 2 U : g(t; u) � �g are nonemptyfor all t 2 T , and they are, moreover, ompat for all t 2 T0, sine the g(t; u); u 2 U;are level-ompat. Condition (b) implies that, whatever t1; t2 2 T , there exists t3 2 Tsuh that At1 TAt2 � At3 6= ;, whih shows that �nite intersetions of the ompatsAt; t 2 T0; are nonempty, and hene Tt2T0 At 6= ;. The latter is equivalent to� � infu2U supt2T0 g(t; u):Sine by the de�nition of T0, � � supt2TnT0 g(t; u); u 2 U; (1.14) is proved. 2Proof of Theorem A.1We need to prove that, for an arbitrary sequene �n; n � 1;of generalised deisions, limn!1 Bn(�n) � B�: (1.15)The argument is similar to the one in the proof of Theorem 3.1. Let f�(r) ; � 2 �; be somenon-negative, bounded and ontinuous in r 2 D funtions. Fix a nonempty � 2 A(�).We have, by the de�nition of Zn;� (see (2.14)),limn!1 sup�2�E1=nn;� �n(fn� ) = limn!1 sup�2�E1=nn;��n(fn� )Znn;�;�� limn!1 " 1j�jEn;�X�2��n(fn� )Znn;�;�#1=n� limn!1 E1=nn;� sup�2� �n(fn� )Znn;�;�� limn!1 E1=nn;�unn(Zn;�); (1.16)where un(z�) = infb2B(D) sup�2� b1=n(fn� )z�; z� = (z�; � 2 �) 2 R�+: (1.17)



70 A.Puhalskii and V.SpokoinyNote that the un(z�) ; n = 1; 2; : : : ; are upper semiontinuous (reall that � is �nite)and hene measurable so that the expetations on the rightmost side of (1.16) are wellde�ned.Let us introdue u(z�) = infb2B1(D) sup�2� b(f�)z�; z� 2 R�+; (1.18)and prove that limn!1 un(z�(n)) � u(z�); z� 2 R�+; (1.19)for eah sequene z�(n)! z�.Let bn 2 B(D) be suh thatlimn!1 un(z�(n)) = limn!1 sup�2� b1=nn (fn� )z�(n): (1.20)By Lemma A.1 and sine � is �nite, there exists eb 2 B1(D) suh that eb(f�) is an au-mulation point of fb1=nn (fn� ); n � 1g for all � 2 �. Therefore, we have, for a subsequene(n0), limn0 b1=n0n0 (fn0� ) = eb(f�); � 2 �;limn0 sup�2� b1=n0n0 (fn0� )z�(n0) = limn!1 sup�2� b1=nn (fn� )z�(n):Sine � is �nite and z�(n0)! z�, we onlude thatlimn!1 sup�2� b1=nn (fn� )z�(n) = sup�2�eb(f�)z�whih, in view of (1.20) and (1.18), proves (1.19).By (1.19) and the LD onvergene of fL (Zn;�jPn;�) ; n � 1g to V�, we have (seeVaradhan, 1984; Chaganty, 1993; Puhalskii, 1995a)limn!1 E1=nn;�unn(Zn;�) � supz�2R�+ u(z�)V�(z�): (1.21)Sine by (1.18) u 2 H�, property (ii) of V� in Lemma 2.4 yieldssupz�2R�+ u(z�)V�(z�) = supz�2R�+ u(��z�)V�(z�):Relations (1.16) and (1.21) imply then thatlimn!1 sup�2�E1=nn;� �n(fn� ) � supz�2R�+ u(��z�)V�(z�);



On LD Effiieny in Statistial Inferene 71so, by the de�nition of the funtion u in (1.18),limn!1 sup�2�E1=nn;� �n(fn� ) � supz�2R�+ infb2B1(D) sup�2� b(f�)z�V�(z�):Hene, sine � 2 A(�) and �n(f) are inreasing in f from C+(D) , it follows thatlimn!1 sup�2�E1=nn;� �n(W n� ) � supz�2R�+ sup�2A(�)f�2CW infb2B1(D) sup�2� b(f�)z�V�(z�);where CW = ff� = (f�; � 2 �) 2 C+(D)� : f� � W�; � 2 �g. Thus, (1.15) and thetheorem would follow if, for every z� = (z�; � 2 �) 2 R�+,sup�2A(�)f�2CW infb2B1(D) sup�2� b(f�)z� = infb2B1(D) sup�2� b(W�)z�: (1.22)Fixing z�, introdue, for � 2 A(�); f� 2 C+(D)�; b 2 B1(D),g((�; f�); b) = sup�2� b(f�)z�:We hek that g((�; f�); b) satis�es the onditions of Lemma A.3. Supply the set A(�)�CW with the natural order: (�; f�) � (�0; f 0�) if � � �0 and f� � f 0�; � 2 �. It is easilyseen that A(�)�CW is a direted set and g((�; f�); b) is inreasing in (�; f�) for eahb. Also, sine � is �nite, the de�nition of the topology on B(D) implies that g((�; f�); b)is ontinuous in b for eah (�; f�). Therefore, sine B1(D) is ompat by Lemma A.2,g((�; f�); b) is level-ompat in b. Thus, by Lemma A.3,sup(�;f�)2A(�)�CW infb2B1(D) g((�; f�); b) = infb2B1(D) sup(�;f�)2A(�)�CW g((�; f�); b):Realling the de�nition of g and using the fat that by (1.12)b(W�) = supfb(f�) : f� �W�; f� 2 C+(D)g; � 2 �;we get (1.22). 2It is interesting to relate Theorem A.1 with Theorem 3.1. Let us assoiate with eahr 2 D an element br of B1(D) de�ned bybr(f) = f(r); f 2 C+(D): (1.23)Then b�n 2 Bn when �n 2 Bn . Therefore, in view of extension (1.12) and de�nitions(3.1) and (1.13), Bn(b�n) � Rn(�n) , solimn!1 inf�n2RnRn(�n) � limn!1 inf�n2RnBn(b�n) � limn!1 inf�n2BnBn(�n):Similarly, R� � B� so that Theorem 3.1 follows from Theorem A.1 if B� = R� . Thenext lemma establishes onditions for the latter.



72 A.Puhalskii and V.SpokoinyLemma A.4 If the loss funtions W� are suh thatW� = supff� : f� �W�; f� 2 C+(D); f� are level-ompat g; � 2 �;then R� = B�.Remark A.4 The onditions of the lemma hold when the W� are level-ompat andD is loally ompat (f. Strasser, 1985, Theorem 6.4). So, if D is loally ompat,Theorem A.1 implies Theorem 3.1.The proof is preeded by two lemmas. We �rst derive a maxitive analogue of the partitionof the unity (f. Strasser, 1985, Lemma 6.6).Lemma A.5 Let f1; : : : ; fk 2 C+(D). For every " > 0, there exist h1; : : : ; hm 2 C+(D)with the following properties:10 max1�j�m hj(r) = 1; r 2 D;20 max1�i�k jfi(r1)� fi(r2)j � " for all r1 and r2 suh that hj(r1) > 0 and hj(r2) > 0 forsome j = 1; : : : ;m.Proof.The argument is similar to that in Strasser, 1985. Assume �rst that k = 1 andsupr2D f1(r) = 1. Choose m suh that 3=m � " and de�ne, for x � 0,gj(x) = (x� (j � 2))+ ^ (j + 1� x)+ ^ 1; 1 � j � m:Let hj(r) = gj(mf1(r)); 1 � j � m; r 2 D:It is readily seen, sine gj(x) = 1 when j � 1 � x � j and 0 � f1(r) � 1 , thatmax1�j�m hj(r) = 1; r 2 D.Next, sine, given j = 1; : : : ;m, we have gj(x) = 0 when x =2 [(j�2)+; j+1℄, it followsthat if hj(r1) > 0 and hj(r2) > 0, then jmf1(r1)�mf1(r2)j � 3, i.e., jf1(r1)� f1(r2)j �3=m � " as required.Now, if supr2D f1(r) = a > 0, then the hj hosen as above for f1=a and "=a satisfy10 and 20.Finally, if k > 1, hoose, for eah i = 1; : : : ; k, funtions hi;j; 1 � j � mi; that satisfy10 and 20. Then the funtionshj1;:::;jk(r) = kYi=1 hi;ji(r); 1 � ji � mi; r 2 D;meet the required for all i with m = m1 : : : mk. 2



On LD Effiieny in Statistial Inferene 73Denote by T1 the set of non-negative (upper semiontinuous) funtions of �nite sup-port (t(r); r 2 D) suh that supr2D t(r) = 1. De�ne B2(D) as the set of those b 2 B1(D)that an be represented as b(f) = supr2D f(r)t(r); f 2 C+(D); for some (t(r); r 2 D) 2 T1.The next lemma parallels Strasser, 1985, Theorem 42.5.Lemma A.6 The set B2(D) is dense in B1(D) for the weak topology.Proof.We proeed as in the proof of Strasser, 1985, Theorem 42.5. Fix b 2 B1(D) andf1; : : : ; fk 2 C+(D). We have to hek that for any " > 0 there exists eb 2 B2(D) suhthat jb(fi)�eb(fi)j � "; 1 � i � k.Let funtions hj ; 1 � j � m; be as in Lemma A.5. Obviously we an assume thatthey are not identially equal to 0. For eah j = 1; : : : ;m, hoose rj suh that hj(rj) > 0.By the de�nition of the hj , we have that, on the one hand,jfi(r)hj(r)� fi(rj)hj(r)j � "; 1 � i � k; r 2 D;and, on the other hand,fi(r) = max1�j�m fi(r)hj(r); 1 � i � k; r 2 D:Hene, jfi(r)� max1�j�m fi(rj)hj(r)j � max1�j�m jfi(r)hj(r)� fi(rj)hj(r)j � ";1 � i � k; r 2 D:Properties (1), (3) and (4) of B(D) then yieldjb(fi)� b( max1�j�m fi(rj)hj)j � "; 1 � i � k: (1.24)Now, sine b 2 B1(D) and by property (3) again,b( max1�j�m fi(rj)hj) = max1�j�m fi(rj)b(hj); 1 � i � k: (1.25)De�ne t(r) = ( maxl:rl=rj b(hl); if r = rj for some j = 1; : : : ;m;0; otherwise;and let eb(f) = supr2D f(r)t(r); f 2 C+(D):By properties (1) and (5) of B1(D) and the hoie of the hj ,supr2D t(r) = max1�j�m b(hj) = b( max1�j�m hj) = b(1) = 1;



74 A.Puhalskii and V.Spokoinyso (t(r)) 2 T1.Also by the de�nitions of t(r) and eb, the right-hand side of (1.25) equals eb(fi), and(1.25) and (1.24) yield the required. 2Proof of Lemma A.4 Sine R� � B�, we prove the opposite inequality. Let f�; � 2�; belong to C+(D), be level-ompat and f� �W�; � 2 �. By the de�nition of B�,B� � supz�2R�+ infb2B1(D) sup�2� b(f�)z�V�(z�); � 2 A(�): (1.26)By Lemma A.6 and the de�nition of B2(D) , for z� 2 R�+;� 2 A(�),infb2B1(D) sup�2� b(f�)z� = infb2B2(D) sup�2� b(f�)z�= inf(t(r))2T1 supr2D sup�2� t(r)f�(r)z� = infr2D sup�2� f�(r)z�:Sine the f� are level-ompat, an appliation of Lemma A.3 shows, in analogy with theend of the proof of Theorem A.1, that the supremum of the latter quantity over the f�and � 2 A(�) equals infr2D sup�2�W�(r)z� whih by (1.26) proves that B� � R�. 2
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