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Abstract

In this note we consider the problem of confidence estimation of the covariance
function of a stationary or locally stationary zero mean Gaussian process. The
constructed confidence intervals are based on the usual empirical covariance estimate
and a special estimate of its variance. The results about coverage probability are
stated in a nonasymptotic way and apply for small and moderate sample size under
mild conditions on the model. The presented numerical results are in agreement with
the theoretical issues and demonstrate applicability of the method.

∗The authors thank R. Dahlhaus and R. von Sachs for very helpful remarks and discussion.
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1 Introduction

Let X0, X1, . . . be a zero mean Gaussian process. Then its distribution is completely
determined by the covariance function rs,t = EXsXt. If, in addition, the process {Xt}
is stationary, then the correlation function rs,t depends only upon the difference |s− t|,
that is, rk = EXsXs+k does not depend on s. There exists a vast literature about
estimation of the covariance function in the stationary case. A natural unbiased estimator
of rk = EXsXs+k from the sample of X0, . . . , Xn−1 is given by

r̂k =
1

n− k

n−k−1∑

s=0

XsXs+k (1.1)

An alternative estimator which is often used in time series analysis is given by

̂̂rk =
1
n

n−k−1∑

s=0

XsXs+k.

The estimator r̂k is unbiased (in the sense that Er̂k = rk) while ̂̂rk is slightly biased
but has smaller variance. Both estimators are root-n normal under weak regularity
conditions, that is,

√
n (r̂k − rk) is asymptotically as n → ∞ normal with parameters

(0, s2
k) with some constant s2

k and similarly for ̂̂rk, see e.g. Brockwell and Davis (1991).
This result allows to construct asymptotic confidence intervals for rk. Indeed, if σ̂2

k is an
estimator of Var(r̂k) such that nσ̂2

k is a consistent estimator of s2
k, then such a confidence

interval can be taken of the form (r̂k −λσ̂k, r̂k + λσ̂k) where λ is a proper quantile of the
standard normal law. The goal of the present note is to extend this nice result in two
directions. First, we aim to construct a nonasymptotic finite sample confidence interval
for rk. Second, we show that the construction continues to apply even if the assumption
of stationarity is slightly violated.

The assumption of stationarity can be too restrictive for many practical applications,
since it does not allow to model external perturbations (like shocks of the financial mar-
ket) or slowly varying structural changes. Apart from financial data, the other examples
of non-stationary time series are frequently met in weather analysis, economic data,
sound and speech recognition, where the records show important changes over time. So,
an extension of the classical stationary modelling that allows to model non-stationary
time series is required.

Different approaches for describing and modelling of locally stationary time series
have been developed in the last years. Adak (1998), Ombao et al. (2002) discussed an
approximation of the underlying process by piecewise stationary processes. The method is
based on a data-driven segmentation of the time interval into time subintervals such that
the assumption of the stationarity is not significantly violated within each subinterval.
Another approach assumes a smooth change of the model structure in time. The basic
idea originated from Priestley (1965) and developed by Dahlhaus (1997a, 1997b) is to
assume the existence of a spectral density “model” that smoothly varies in time. The
assumption allows to apply the well developed nonparametric estimation theory to the
estimation of time varying parameters, time varying spectral densities (Neumann and
von Sachs, 1997; Dahlhaus, 1996b) or time varying covariances (Dahlhaus, 1996c). An
alternative is the use of Maximum Likelihood methods, Dahlhaus (1996b, 2000). Picard
(1985), Giraitis and Leipus (1992), Rozenholc (1995), Sakiyama und Taniguchi (2000),
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and von Sachs und Neumann (2000) among others proposed some tests of stationarity
for time series in different setups.

A disadvantage of all the above described results is their asymptotic nature. That
means, that the theory applies only asymptotically, when the sample size grows to infinity.
Therefore, the applicability of the mentioned results for small or moderate sample sizes is
questionable. In this paper, we present nonasymptotic results concerning the estimator
r̂k from (1.1) for two setups. First, we consider the classical stationary situation and
show that the confidence intervals of the form (r̂k − λσ̂k, r̂k + λσ̂k) continues to apply for
moderate sample size for a proper variance estimator σ̂2

k. Second, we extend this result to
the non-stationary case, when the correlation function rs,t of the underlying process can
be approximated by a correlation function of a stationary process at the rate n−1/2 or a
smaller rate, cf. Mallat, Papanicolau and Zhang (2000). All the results continue to apply
almost in the same form for ̂̂rk. It is worth noting that in our approach, in the contrary to
the previous works, the notion of a locally stationary process is not introduced. Instead
we introduce a value δn which measures the departure of the underlying process from
stationarity. This measure is defined for any process and we show that our results can
be extended from the stationary to nonstationary case provided that δn is not too large.

The paper is organized as follows. Section 2 presents some properties of the esti-
mator r̂k in the stationary case. An extension to the non-stationary situation is given
in Section 3. In Section 4 we introduce and study an estimator σ̃2

k of Var(r̂k). The
confidence intervals and bands for rk are presented in Section 5. Some numerical results
demonstrating the performance of the proposed estimator are given in Section 6. The
proofs are collected in Section 7.

2 Some properties of r̂k in the stationary case

Denote

σ2
k = Var(r̂k) = E (r̂k − rk)

2

To get an explicit expression for the variance σ2
k, some matrix notations are useful. Denote

by V the covariance matrix of the vector X = (Xj)j=0,...,n−1, that is, V = (rst)s,t=0,...,n−1.
In the stationary case, the matrix V has a Toeplitz structure: V = (rs−t)s,t=0,...,n−1. Here
we assume r−s = rs for s negative. Let also Ak be the n × n-matrix with the entries
ast = 1

2(n−k)

(
1{s−t=k} + 1{t−s=k}

)
.

Proposition 2.1. Let (Xt)t be a zero mean stationary Gaussian process. Then

r̂k = X>AkX, rk = tr(AkV ), σ2
k = 2tr(AkV )2. (2.1)

Moreover, suppose that the correlation function rk satisfies the following regularity con-
dition:

∑

k∈Z

|rk| = K1 < ∞, 2
∑

k∈Z

|k|r2
k = K2 < ∞. (2.2)

Define

vk =
1
2

∑

u∈Z

(ru+k + ru−k)2.
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Then for every k ≤ [n/2]

σ2
k ≤ v0/(n− k).

Moreover, under the condition (2.2) σ2
k fulfills

n− 2k

(n− k)2
vk +

kv0 − 2K2

2(n− k)2
≤ σ2

k ≤
n− 2k

(n− k)2
vk +

kv0 + 2K2

2(n− k)2
. (2.3)

It is easy to see that vk is close to v0/2 for large k. By Proposition 2.1 this implies
e.g. for n big enough and k ≤ [n/3], that σ2

k ≥ v0
4(n−k) . It is therefore non restrictive to

suppose the following lower bound for the variance σ2
k:

σ2
k ≥ s2

0/(n− k), ∀k ≤ [n/3] (2.4)

for some positive s0.
The next result states an important probability bound for the deviation of r̂k from

the true value rk.

Proposition 2.2. Let conditions (2.2) and (2.4) hold. Then, for every k ≤ [n/3],

P
(±σ−1

k (r̂k −Er̂k) ≥ λ
) ≤ e−λ2/4

for all positive λ, n satisfying the condition

λ ≤ 2σk/(3‖AkV ‖∞) (2.5)

or a stronger condition λ ≤ C1

√
n− k with C1 = 2s0/(3K1).

This result is useful for constructing a non-asymptotic confidence interval for the
estimator r̂k. Unfortunately, we cannot apply it directly since the variance σ2

k is typically
unknown. In the next section we propose an estimator for the variance σ2

k and construct
non-asymptotic confidence intervals for the covariance rk.

The result of Proposition 2.2 allows to bound the standardized errors σ−1
k (r̂k − rk)

uniformly over k ≤ mn for a given mn.

Proposition 2.3. Let conditions (2.2) and (2.4) hold and, for a given mn ≤ [n/3], let
λ ≤ C1

√
n−mn with C1 = 2s0/(3K1). Then

P

(
sup

k=0,...,mn−1
σ−1

k |r̂k −Er̂k| ≥ λ

)
≤ mne−λ2/4.

Propositions 2.3 and 2.1 imply for λn satisfying λn ≤ C1
√

n−mn

P

(
sup

k=0,...,mn−1
|r̂k − rk| ≥

λn
√

v0n

n−mn

)
≤ mne−λ2

n/4. (2.6)

We see that for the choice, say, λn = 2
√

log n the probability for |r̂k − rk| being larger
than λn

√
v0n/(n−mn) is at most mn/n which is small provided that n is big enough.
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3 Some properties of r̂k in the non-stationary case

In this section we consider the situation corresponding to the analysis of a locally sta-
tionary process {Xt}. The latter can be understood in the sense that the assumption of
stationarity is approximately fulfilled within a local interval of every time instant. More
precisely, we consider the situation that the correlation function rs,t of the process Xt

within the considered interval is close to a correlation function of a stationary process.
This suggests to proceed similarly to the stationary case and consider r̂k from (1.1) as
the estimator of the correlation function of the approximating stationary process. In the
rest of this section we discuss some properties of r̂k in the locally stationary situation.

The next assertion can be proved similarly to Proposition 2.1. Let V denote the
n× n-matrix whose elements are rs,t for s, t = 0, . . . , n− 1.

Proposition 3.1. Let (Xt)t be a zero mean Gaussian time series. Then the estimator r̂k

from (1.1) fulfills r̂k = X>AkX, Er̂k = tr(AkV ) and Var(r̂k) = 2tr(AkV )2. Moreover,
if there exists a sequence of positive numbers {r∗k, k ∈ Z} such that |rs,s+k| ≤ r∗k for all
s, k and

∑

s∈Z
r∗s = K1 < ∞, 2

∑

s∈Z
|s|r∗s2 = K2 < ∞. (3.1)

then

σ2
k = Var(r̂k) ≤ v0/(n− k)

where v0 = 2
∑

s∈Z(r
∗
s)

2.

Under stationarity r̂k is an unbiased estimator of the true covariance rk and the
accuracy of estimation is of order σk, where σ2

k = Var(r̂k). The assumption of local
stationarity would mean that the departure from stationarity within the considered time
interval is statistically insignificant, that is, smaller in order than the accuracy of estima-
tion. Therefore, it is natural to measure the deviation from stationarity for the process
(Xt) by the value

δn = inf
r

max
s,k≥0,s+k<n

σ−1
k |rs,s+k − rk| (3.2)

where the infimum is taken over the class of the covariance functions rk of stationary
processes. In what follows we assume that the infimum is attained and there exists a
covariance function r such that

δn = max
s,k≥0, s+k<n

σ−1
k |rs,s+k − rk| . (3.3)

Without loss of generality we also suppose that rk ≤ r∗k where r∗k is from (3.1).
A straightforward corollary of the definition (3.2) is the following bound for the ‘bias’

|Er̂k − rk| and for the quadratic risk of r̂k.

Proposition 3.2. Let {Xt} be a Gaussian time series and let δn be defined in (3.2).
Then

|Er̂k − rk| ≤ σkδn, E (r̂k − rk)
2 ≤ σ2

k(1 + δ2
n). (3.4)
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Similarly to the stationary case, we suppose that

σ2
k = Var(r̂k) ≥ s2

0/(n− k), k ≤ [n/3]. (3.5)

Proposition 2.2 continues to hold in the non-stationary situation without any change.

Proposition 3.3. Let conditions (3.1) and (3.5) hold. Then for every k ≤ [n/3]

P
(±σ−1

k (r̂k −Er̂k) ≥ λ
) ≤ e−λ2/4,

P
(±σ−1

k (r̂k − rk) ≥ λ + δn

) ≤ e−λ2/4,

for all positive λ, n satisfying the condition

λ ≤ 2σk

3‖AkV ‖∞
or a stronger condition λ ≤ C1

√
n− k with C1 = 2s0/(3K1).

Similarly to Proposition 2.3 we can derive a uniform bound for the deviation |r̂k−rk|.
Proposition 3.4. Let mn ≤ [n/3]and let the conditions (3.1) and (3.5) be fulfilled. If
λ ≤ C1

√
n−mn, then

P

(
sup

k=0,...,mn−1
σ−1

k |r̂k −Er̂k| ≥ λ

)
≤ mne−λ2/4,

P

(
sup

k=0,...,mn−1
σ−1

k |r̂k − rk| ≥ λ + δn

)
≤ mne−λ2/4.

The latter result and Proposition 3.1 imply

Proposition 3.5. Under the conditions (3.1) and (3.5) and λn ≤ C1
√

n−mn

P

(
sup

k=0,...,mn−1
|r̂k − rk| ≥

(λn + δn)
√

nv0

n−mn

)
≤ mne−λ2

n/4.

4 Estimation of the variance σ2
k

To construct the confidence interval for the estimator r̂k we need to estimate the variance
σ2

k. We again discuss first the stationary case. Due to (2.1) it holds σ2
k = 2tr(AkV )2

where V = (rs−t, s, t = 0, . . . , n − 1). A natural estimator of σ2
k is σ̂2

k = 2tr(AkV̂ )2

where V̂ is the matrix with the entries r̂|s−t|. Note however that r̂k estimates the true
value rk with the rate n−1/2. At the same time, because of our hypothesis (2.2) there
exists a subsequence (r(kn))n∈N such that r(kn) ≤ 1/kn. Therefore, for large k it is
more reasonable to simply estimate rk by zero. We therefore fix some m′

n = [nα] for
α ∈ (0, 1/2) and apply the following estimator

σ̃2
k = 2tr(AkṼ )2 (4.1)

where Ṽ is the matrix with the entries r̃|s−t|:

r̃s =
{

r̂s, s = 0, . . . , m′
n − 1,

0, s = m′
n, . . . , n− 1.

(4.2)
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By Proposition 2.1 σ2
k is of order n−1. Below in this section we show that σ̃2

k estimates the
true variance σ2

k with the accuracy of smaller order than n−1, that is, n
(
σ̃2

k − σ2
k

)
= on(1).

Moreover, this result continues to apply in the non-stationary situation when δn from
(3.2) is small.

Due to (2.6) there exists a random set A with P (A) ≥ 1−m′
ne−λ2

n/4 such that

|r̂s − rs| ≤
λn
√

v0n

n−m′
n

(4.3)

for all s ≤ m′
n − 1. Define

ε =
λn
√

v0n

n−m′
n

.

Then |r̂s − rs| ≤ ε on A for all s ≤ m′
n−1. We now show that a good quality in estimating

the covariance function rs implies automatically a good quality of the estimator σ̃2
k.

Proposition 4.1. Let {Xt} be a zero mean stationary Gaussian time series such that
(2.2) holds. If |r̂s − rs| ≤ ε for s ≤ m′

n − 1, then for every number mn ≤ [n/3]

nσ̃2
k ≥ nσ2

k − ψn and n
∣∣σ̃2

k − σ2
k

∣∣ ≤ ψ′n for all k = 0, 1, . . . , mn − 1

where

ψn =
4n2K1τn

(n−mn)2
, ψ′n =

4n2K1τn

(n−mn)2
+

2nτ2
n

n−mn
= ψn +

2nτ2
n

n−mn
(4.4)

and

τn = m′
nε +

n−1∑

s=m′
n

|rs|.

Remark 4.1. It is easy to see that, if m′
n = [nα] for α < 1/2, then ψn, ψ′n = on(1).

Now we consider the non-stationary situation. We suppose that there exists a correla-
tion function rk corresponding to some stationary process such that |rs,s+k − rk| ≤ δnσk

for all possible pairs (s, k). The value δn measures the departure from stationarity and
local stationarity within the considered time interval can be roughly understood in the
sense that δn is small.

Let V be the matrix whose elements are r|s−t| for s, t = 0, . . . , n − 1. Then σ2
k =

2tr(AkV )2 is an approximation of the variance σ2
k = 2tr(AkV )2. The result of Proposi-

tion 4.1 can be easily extended to the locally stationary situation in the sense that σ̃2
k is

a reasonable estimator of σ2
k. Namely, define

ε =
(λn + δn)

√
v0n

n−m′
n

. (4.5)

Due to Proposition 3.5 there exists a random set A with P (A) ≥ 1−m′
ne−λ2

n/4 such that
|r̂k − rk| ≤ ε for all k ≤ m′

n − 1.
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Proposition 4.2. Let {Xt} be a zero mean Gaussian time series such that (3.1) holds.
If |r̂s − rs| ≤ ε for s < m′

n, then for every mn ≤ [n/3]

nσ̃2
k ≥ nσ2

k − ψn and n
∣∣σ̃2

k − σ2
k

∣∣ ≤ ψ′n k = 0, . . . , mn − 1

where ψn and ψ′n are defined in (4.4) with

τn = m′
nε +

n−1∑

s=m′
n

r∗s . (4.6)

For constructing the confidence intervals, we need to bound from below the difference
σ̃2

k − σ2
k.

Proposition 4.3. Under the conditions of Proposition 4.2,

nσ̃2
k ≥ nσ2

k − ψ′′n

where, for ψn defined by (4.4) and (4.6),

ψ′′n = ψn +
2n2K1δn

√
v0

(n−mn)5/2
.

Remark 4.2. If δn from (3.2) is bounded by an absolute constant or, moreover, δn =
on(1), then similarly to the stationary situation it follows that ψn, ψ′n, ψ′′n = on(1).

5 Confidence interval for the covariance function

The next two theorems can be used for constructing non-asymptotic confidence intervals
and bands for the sample autocovariance function in the stationary case. Afterwards,
these results are extended to the non-stationary situation.

In what follows we suppose that σ̃2
k is the estimator of the variance σ2

k from (4.1)
for a given m′

n ≤ [nα] for α ∈ (0, 1/2), and k varies from zero to mn with a prescribed
mn ≤ [n/3].

Theorem 5.1. Let {Xt} be a zero mean stationary Gaussian time series satisfying the
conditions (2.2) and (2.4). Moreover, let n, k, λn and λ be such that λn ≤ C1

√
n−m′

n,
(n− k)ψn < ns2

0 and λ ≤ C1

√
n− k with C1 = 2s0/(3K1) and ψn from (4.4). Then, for

every k ≤ [n/3],

P
(|r̂k − rk| ≥ λ′σ̃k

) ≤ e−λ2/4 + m′
ne−λ2

n/4 (5.1)

where λ′ = λ
(
1− (n−k)ψn

ns2
0

)−1/2
.

Similarly one can describe the confidence bands for the covariance function rk.

Theorem 5.2. Let {Xt} be a zero mean stationary Gaussian time series satisfying the
conditions (2.2) and (2.4). Moreover, let n, λn and λ be such that λn ≤ C1

√
n−m′

n,
ψn < s2

0 and λ ≤ C1
√

n−mn. Then

P

(
sup

k=0,...,mn−1

|r̂k − rk|
σ̃k

≥ λ′
)
≤ mne−λ2/4 + m′

ne−λ2
n/4 (5.2)

where λ′ = λ
(
1− ψn/s2

0

)−1/2.
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Remark 5.1. Since ψn = on(1), the condition ψn/s2
0 < 1 is fulfilled for n big enough.

Moreover, |λ′/λ− 1| = on(1).

Now we briefly discuss the non-stationary case.

Theorem 5.3. Let {Xt} be a zero mean Gaussian time series satisfying the conditions
(3.1) and (3.5). Moreover, let n, k, λn and λ fulfill λn ≤ C1

√
n−m′

n, (n − k)ψn < ns2
0

and λ ≤ C1

√
n− k with C1 = 2s0/(3K1). Then, for every k ≤ [n/3],

P
(|r̂k − rk| ≥ λ′σ̃k

) ≤ e−(λ−δn)2/4 + m′
ne−λ2

n/4. (5.3)

where λ′ is defined by λ′
√

1− (n−k)ψ′′n
ns2

0
= λ with ψ′′n from Proposition 4.3.

Finally, we state the confidence band result for the non-stationarity case.

Theorem 5.4. Let {Xt} be a zero mean Gaussian time series satisfying the conditions
(3.1) and (3.5). Moreover, let n, λn and λ be such that λn ≤ C1

√
n−m′

n, ψn < s2
0 and

λ ≤ C1
√

n−mn with C1 = 2s0/(3K1). Then

P

(
sup

k=0,...,mn−1

|r̂k − rk|
σ̃k

≥ λ′
)
≤ mne−(λ−δn)2/4 + m′

ne−λ2
n/4 (5.4)

where λ′ is defined by λ′
√

1− ψ′′n/s2
0 = λ with ψ′′n from Proposition 4.3.

6 Simulation results

In this section we present some numerical results demonstrating the finite size perfor-
mance of the proposed procedure. We present the results for two artificial models. The
first one is stationary and it is described by a classical autoregressive model. The other
one is non-stationary and obtained from the first one by allowing the coefficients to vary
with time.

The stationary process is given by the following linear difference equation:

Xt =
1
2
Xt−1 +

1
3
Xt−2 − 1

6
Xt−3 + Zt, where Zt ∼ N(0, 1), t = 1, . . . , n. (6.1)

The initial values X−2, X−1, X0 are generated randomly from the stationary distribution.
The non-stationary process is obtained from (6.1) with the coefficients “perturbed”:

Xt = {1/2 + 0.1 cos(πt/25)}Xt−1 + {1/3 + 0.08 sin(πt/15)}Xt−2

−{
1/6 + 0.05 cos2(πt/10)

}
Xt−3 + Zt, where Zt ∼ N(0, 1). (6.2)

Due to time dependent perturbations, the resulting process is nonstationary. However, all
the perturbations are rather small and we aim to illustrate that the procedure developed
for the stationary regime continues to apply to the process (6.2). The significance of
the departure from stationarity for this example is discussed below in this section, see
Figure 3. To compute the true covariances r(k) for the process defined by (6.1), we use
the Yule Walker equations:

{
RΦ = r

σ2 = r0 − Φ′r
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where R = (r(s− t)s,t=1,2,3), r = (r1, r2, r3), Φ = (1/2, 1/3,−1/6), σ2 = 1. To compute
the true variances rk for k ≥ 4, one can use the following iterative equation:

rk = φ1rk−1 + φ2rk−2 + φ3rk−3

The covariances rk for the process (6.2) are computed by Monte Carlo techniques, using
10000 realizations. Afterwards, the variances of the estimators r̂k are computed by
Proposition 2.1 or Proposition 3.1. For the non-stationary process, we consider the
approximating autocovariance value rk defined by:

rk =
1

n− k

n−k−1∑

i=0

ri,i+k

where n = 100 is the sample size, k = 0, . . . , 99.
Figure 1 shows the boxplots for the standardized autocovarince values σ̃−1

k (r̂k − rk)
for k = 0, . . . , 7 for the process given by (6.1) and the same for the process given by (6.2).
The results are based on 200 realizations with the sample size n = 100.

X1 X2 X3 X4 X5 X6 X7 X8

−
4

−
2

0
2

X1 X2 X3 X4 X5 X6 X7 X8

−
8

−
6

−
4

−
2

0
2

Figure 1: Boxplots of σ̃−1
k (r̂k − rk) for k = 0, . . . , 7 for the process (6.1), on the left, and

for the process given by (6.2), on the right, from 200 realizations, with the sample size
n = 100.

Figure 2 shows the empirical coverage probability for the confidence band (r̂k −
λσ̃k, r̂k + λσ̃k), k = 0, . . . , 7, as function of λ, for for the processes (6.1) and (6.2). The
dashed lines correspond to coverage probability 90%, 95% and 99%. Here 500 realizations
of sample size 100 were run. One can see that with λ ≈ 3.3 all the values rk for k = 0, . . . , 7
are covered by the corresponding intervals with probability 95%. For the nonstationary
process the value λ should be slightly increased.

To judge about the quality of the estimator σ̃k of the variance of r̂k, we present some
results using the mean absolute error measure: MAEk = Ê

∣∣∣ σ̃k
σk
− 1

∣∣∣, see Table 1. Here
we consider different sample sizes n varying from 50 to 300 to see the dependence of the
estimation quality on n.

To get some impression about how large is the departure of the process like (6.2) from
stationarity we computed the value δn, see (3.3), for the following family of non-stationary
processes indexed by the numerical parameter a:

Xt = {1/2 + 0.1a cos(πt/25)}Xt−1 + {1/3 + 0.08a sin(πt/15)}Xt−2

−{
1/6 + 0.05a cos2(πt/10)

}
Xt−3 + Zt, where Zt ∼ N(0, 1) (6.3)
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n MAE0 MAE1 MAE2 MAE3 MAE4

50 0.374 0.369 0.401 0.377 0.380
100 0.295 0.270 0.304 0.330 0.326
200 0.229 0.251 0.246 0.287 0.276
300 0.202 0.213 0.231 0.244 0.235

Table 1: The empirical mean absolute error for the standardized variances at different
lags, for the non-stationary process given by (6.2), from 500 realizations

The covariances r̂k have been computed by Monte Carlo techiques, using 1000 realizations
for every process and the sample size n = 100. The results for different values of a from
0.025 to 1 are shown in Figure 3.

7 Proofs

In this section we collect the proofs of the main assertions.
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Figure 2: Empirical coverage probability for the confidence band (r̂k − λσ̃k, r̂k + λσ̃k),
k = 0, . . . , 7, as function of λ for the process given by (6.1) on the left and for the
non-stationary process given by (6.2) on the right, from 500 realizations with n = 100.
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Figure 3: δn as a function of a, on a grid of length 0.025, for the process (6.3), the sample
size n = 100
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Proof of Proposition 2.1

For the proof of (2.1) see e.g. Spokoiny (2002). Next

σ2
k = 2tr(AkV )2 = 2

n−1∑

i=0

n−1∑

j=0

(AkV )ij(AkV )ji

=
1

2(n− k)2

n−1∑

i=0

n−1∑

j=0

(
ri−k−j1{i−k≥0} + ri+k−j1{i+k≤n−1}

)

(
rj−k−i1{j−k≥0} + rj+k−i1{j+k≤n−1}

)

=
1

2(n− k)2




n−1∑

i=k

n−1∑

j=k

ri−k−j rj−k−i +
n−1∑

i=k

n−k−1∑

j=0

r2
i−k−j

+
n−k−1∑

i=0

n−1∑

j=k

r2
i+k−j +

n−k−1∑

i=0

n−k−1∑

j=0

ri+k−j rj+k−i




=
1

(n− k)2




n−k−1∑

i=0

n−k−1∑

j=0

ri−k−j rj−k−i +
n−k−1∑

i=0

n−k−1∑

j=0

r2
i−j




This easily implies

σ2
k =

1
(n− k)2

∑

|u|≤n−k−1

(n− k − |u|) (
ru+k ru−k + r2

u

) ≤ v0

n− k
.

Now we bound the variance σ2
k from below and above to get (2.3). The following inequal-

ities are fulfilled:
∣∣∣∣∣(n− k)2σ2

k − (n− 2k)
∑

u∈Z

ru+k ru−k − (n− k)
∑

u∈Z

r2
u

∣∣∣∣∣

=

∣∣∣∣∣∣
∑

|u|≤n−k−1

(k − |u|)ru+kru−k −
∑

|u|≤n−k−1

|u|r2
u

−
∑

|u|≥n−k

(n− 2k)ru+kru−k +
∑

|u|≥n−k

(n− k)r2
u

∣∣∣∣∣∣

≤
∑

|u|≤n−k−1

1
2
|k − |u|| (r2

u+k + r2
u−k) +

∑

|u|≤n−k−1

|u|r2
u

+
∑

|u|≥n−k

1
2

(n− 2k) (r2
u+k + r2

u−k) +
∑

|u|≥n−k

(n− k)r2
u

≤ 2
∑

u∈Z

|u|r2
u = K2.

Finally we obtain:

n− 2k

(n− k)2
vk +

kv0 − 2K2

2(n− k)2
≤ σ2

k ≤
n− 2k

(n− k)2
vk +

kv0 + 2K2

2(n− k)2
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Proof of Proposition 2.2

It is easy to check that

‖V Ak‖∞ ≤ ‖V ‖∞‖Ak‖∞ ≤ 1
n− k

∑

k∈Z

|rk| = K1

n− k
. (7.1)

An application of the general result for Gaussian quadratic forms from Spokoiny (2002)
yields

P
(±σ−1

k (r̂k −Er̂k) ≥ λ
)

= P (± (r̂k −Er̂k) ≥ σkλ)

= P
(
±

(
X>AkX −E(X>AkX)

)
≥ σkλ

)
≤ max

{
e−λ2/4, e

− λσk
6‖V Ak‖∞

}
.

This, under the condition λ ≤ 2σk/(3‖V Ak‖∞), implies

P
(±σ−1

k (r̂k −Er̂k) ≥ λ
) ≤ e−λ2/4

It remains to note that in view of (2.4) and (7.1), the condition λ < 2s0/(3K1)
√

n− k is
sufficient for λ ≤ 2σk/(3‖V Ak‖∞).

Proof of Proposition 2.3

Since

P

(
sup

k=0,...,mn−1
σ−1

k |r̂k −Er̂k| ≥ λ

)
≤

mn−1∑

k=0

P (|r̂k −Er̂k| ≥ λσk)

follows immediately from Proposition 2.2.

Proof of Proposition 3.2

It follows directly from (3.3) that

|Er̂k − rk| =
∣∣∣∣∣∣

1
n− k

n−k−1∑

j=0

rj,j+k − rk

∣∣∣∣∣∣
≤ 1

n− k

n−k−1∑

j=0

|rj,j+k − rk| ≤ σkδn.

Now

E (r̂k − rk)
2 = Var(r̂k) + (Er̂k − rk)

2 ≤ σ2
k + σ2

kδ
2
n

as required.

Proof of Proposition 4.1

Let us fix an arbitrary fixed k < mn and consider the function f(x0, . . . , xn−1) : IRn → IR
given by:

f(x0, . . . , xn−1) = 2tr(AkV )2,
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where V =
(
x|s−t| , s, t = 0, . . . , n− 1

)
and Ak = (ast , s, t = 0, . . . , n − 1) with ast =

1
2(n−k)

(
1{s−t=k} + 1{t−s=k}

)
. It is clear that f is a quadratic form of the vector x =

(x0, . . . , xn−1)> and therefore it holds for every pair x,x0 ∈ IRn

f(x) = f(x0) + (x− x0)T∇f(x0) + 0.5(x− x0)T∇2f(x0)(x− x0)

where ∇2f denotes the Hessian of f . We now apply this formula for x = r̃ = (r̃s , s =
0, . . . , n− 1) and x0 = r = (rs , s = 0, . . . , n− 1). This yields

σ̃2
k = σ2

k + (r̃− r)T∇f(r) + 0.5(r̃− r)T∇2f(r)(r̃− r). (7.2)

First we compute the gradient and the Hessian of the function f . Denote by Ek

the matrix with the entries est = 1
2

(
1{s−t=k} + 1{t−s=k}

)
for s, t = 0, . . . , n − 1, so that

Ak = (n− k)−1Ek. In an obvious way it holds for the matrix V = V (x) with the entries
x|s−t| for s, t = 0, . . . , n− 1

∂V (x)
∂xs

= 2Es, s = 0, . . . , n− 1,

and thus

∂f(x)
∂xs

=
∂2tr (AkV )2

∂xs
=

4
(n− k)2

tr
(

EkV Ek
∂V (x)
∂xs

)
=

8
(n− k)2

tr (V EkEsEk) .

It is easy to check that all the entries of the matrix EkEsEk are nonnegative and bounded
by 1/2. Hence

tr (V EkEsEk) ≤ 1
2

n−1∑

s,t=0

|rs−t| ≤ nK1/2

and
∣∣∣∣
∂f(x)
∂xs

∣∣∣∣ ≤
4nK1

(n− k)2
.

Similarly, for every pair s, t ∈ 0, . . . , n− 1

∂2f

∂xs∂xt
(x) =

8
(n− k)2

tr (EsEkEtEk)

and tr (EsEkEtEk) ≤ (n− k)/2. Therefore
∣∣∣∣

∂2f

∂xs∂xt
(x)

∣∣∣∣ ≤
4

(n− k)
. (7.3)

Now the decomposition (7.2) implies

σ̃2
k ≥ σ2

k −
∣∣(r̃− r)T∇f(r)

∣∣ ≥ σ2
k − ‖r̃− r‖1 max

s<n

∣∣∣∣
∂f(x)
∂xs

∣∣∣∣ ≥ σ2
k −

4nK1

(n− k)2
‖r̃− r‖1

where

‖r̃− r‖1 =
n−1∑

s=0

|r̃k − rk| ≤ m′
n sup

k∈0,m′
n−1

|r̂k − rk|+
n−1∑

s=m′
n

|rk|.
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This and (4.3) imply

nσ̃2
k ≥ nσ2

k − ψn

with ψn = 4n2K1τn/(n−mn)2 and the first assertion follows.
Next, by (7.3)

∣∣(r̃− r)T∇2f(r)(r̃− r)
∣∣ ≤ 4

n− k
‖r̃− r‖2

1 ≤
4τ2

n

n− k

and

n
∣∣σ̃2

k − σ2
k

∣∣ ≤ ψ′n = ψn +
2nτ2

n

n−mn

as required.

Proof of Proposition 4.3

For the proof, it suffices to bound the value n|σ2
k − σ2

k|. The definition of δn implies for
every indices s, t that |(AkV −AkV )st| ≤ δnσk/(n− k). Therefore,

n|σ2
k − σ2

k| = 2n
∣∣tr[AkV ]2 − tr[AkV ]2

∣∣

= 2n

∣∣∣∣∣∣

n−1∑

s,t=0

{
(AkV −AkV )st

}{
(AkV + AkV )st

}
∣∣∣∣∣∣

≤ 2nδnσk

n− k

n−1∑

s,t=0

∣∣(AkV + AkV )st

∣∣

≤ 2nδnσk

(n− k)2

n−1∑

s=0

∑

t∈Z
(|rt|+ r∗t ) ≤

2n2K1δnσk

(n− k)2
.

The desired result now follows in view of the bound σ2
k ≤ v0/(n−k) from Proposition 3.1.

Proof of Theorem 5.1

Let A = {|r̂k − rk| ≤ ε} with ε from (4.3). By (2.6) P (Ac) ≤ m′
n/n where Ac is the

complement of A. By Proposition 4.1 it holds on A that nσ̃2
k ≥ nσ2

k − ψn and therefore,
in view of σ2

k ≥ s2
0/(n− k), see (2.4),

(λ′σ̃k)2 ≥ (λ′)2
(
σ2

k − ψn/n
) ≥ (λ′σk)2

(
1− ψn(n− k)/(ns2

0)
)

= (λσk)2 .

Now, by Proposition 2.2

P
(|r̂k − rk| ≥ λ′σ̃k

) ≤ P (Ac) + P (|r̂k − rk| ≥ λσk) ≤ m′
n/n + e−λ2/4

as required.

Proof of Theorems 5.2

The proof is similar to that of Theorem 5.1 with the use of Proposition 2.3 in place of
Proposition 2.2.
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Proof of Theorems 5.3 (resp. Theorem 5.4)

Similarly to the proof of Theorem 5.1 one can show that the inequality nσ̃2
k ≥ nσ2

k −
ψ′′n and (3.5) imply (λ′σ̃k)2 ≥ (λσk)2. Now the result of Theorem 5.3 follows from
Propositions 3.3, 3.5 and 4.3.

Theorem 5.4 can be proved in the same way using Proposition 3.4 in place of Propo-
sition 3.3.
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