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ABSTRACT

This paper is concerned with testing the hypothesis that atiooradlimedian function is
linear against a nonparametric alternative with unknown smoothiMgsesdevelop a test that is
uniformly consistent against alternatives whose distaree the linear model converges to zero
at the fastest possible rate. The test does not require knewdétite distribution of the model’s
random noise component, and it permits conditional heteroskedasticitykedwn form. The
numerical performance and usefulness of the test are aliedtiby the results of Monte Carlo
experiments and an empirical example.
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AN ADAPTIVE, RATE-OPTIMAL TEST OF LINEARITY FOR MEDIAN REGRESSION
MODELS

1. INTRODUCTION

This paper is concerned with testing a linear medianssgmre model against a
nonparametric alternative. We develop a test that does notedaquiwledge of the smoothness
of the alternative model, achieves the optimal rate ahtgsiniformly over smooth alternatives,
and has other desirable power properties that are not sharexidiyng tests. An important
feature of the test is that it does not require knowledge dliiiébution of the model’s random
noise component, and it permits heteroskedasticity of unknown form.

We consider the model
(1.1) Y =m(X;)+g; i=123,..,

where Y, R is a random variablef; X} ORY is a sequence of distinct, non-stochastic, design

points; m is an unknown function; anfk} is a sequence of unobserved, independently but not

necessarily identically distributed random variables whose medig@ zero. The distributions of

the &’s satisfy mild regularity conditions but are otherwise unknowWe test the null

hypothesisH,, that there is a consta;zﬁD]Rd such thatm(X;) = X{8 for alli. X; denotes the
transpose of the column vectof; . The alternative hypothesisl,, is that there is ng3 such
that m(X;) = X{g for alli. The test can be extended to models in wiyjohntileg; )= C for a

guantile other than the median, but only the median is treatdusirpaper. We set the first

component of eaclX; equal to 1. ThusX; consists ofd -1 “real” variables, and the first
component of$3 is an intercept.

Linear quantile regression models are often used in applisatiSee Buchinsky (1994,
1998), Chamberlain (1994), Koenker and Geling (1999), Maretiah (1995), and Poterba and
Rueben (1994), among others. In contrast to mean regression nop@elsle regression models

do not requires; to have moments, are robust to outlying value¥ pind permit exploration of

the entire conditional distribution of the dependent variablewdver, there has been little
research on testing the hypothesis of linearity. To our knowledge, only Zheng &@9Bierens
and Ginther (2000) have developed tests of parametric quangfessen models against
nonparametric alternatives. In contrast, there is a li@@ture on testing mean regression
models against nonparametric alternatives. See, for exaAipi8ahaliagt al. (1994), Andrews
(1997), Bierens (1982, 1990), Bierens and Ploberger (1997), De Jong (12®@nkEand
Spiegelman (1990), Fan and Li (1996), Gozalo (1993), Hardle anthida (1993), Hart (1997),



Hong and White (1995), Horowitz and Spokoiny (2001), Li and Wang (1998), Q1999),
Whang and Andrews (1993), Wooldridge (1992), Yatchew (1992), and Zheng (1996).

The objective of this paper is to develop a test that has dwmdetical and practical
power properties. The power of a test is often investigated by detivérasymptotic probability

that the test rejects a faldé, against a sequence of local alternative models. Wiens a
linear median regression model, the form of the local alternative misdels

(1.2)  m(¥)=xB+pag(x)

for some,BD]Rd and functiorg, wheren is the sample size, is a real number, ang, — 0 as
n - c. In (1.2), the distance between the null and alternative hypotheses convergestdteer
rate of p,. See Section 4.3 for a more detailed explanation. The tesexB and Ginther

(2000) has non-trivial power (that is, power exceeding the pildpathat a correctH, is

-1/2

rejected) against local alternatives for whigh Cn Zheng’s (1998) test has non-trivial

power against local alternatives for whigh O n"Y2* for anyv >0. However, as is explained
in Horowitz and Spokoiny (2001) (hereinafter HS), the class efradtive models (1.2) is too
small because it requires thafmq(x)/axax' -0 asn - . A less restrictive assumption is
that m, belongs to a class of smooth functions. It follows from Ing4t@®3) that no test ofl,

can have non-trivial power uniformly over reasonable classeshobth functions (e.g., Holder

classes) whose distance from the null hypothesis convergesaat the rate™'2 or n™*/2*

for any sufficiently smally >0. For any given test, eaal, and all sufficiently smalv >0,

-1/2+v

there exists a smooth alternating (x) = X' 8 +n g(x) against which the test's power equals

the probability of rejecting a correét,. The practical significance of this fact is that any oés

Hy for which p, O n"Y2" for sufficiently smallvy >0 has low finite-sample power against

certain classes of smooth alternatives. Section 5 presents examples.
Here, as in HS, we deal with this problem by letting thersdte/e hypothesis consist of

a class of differentiable functions. Define the null-hypothesisto be the set of models for

which m(X;)=X{# for some ,BD]Rd and alli=1,...n. We assume that for eaah, the

alternative models belong to a Holder class, of differentiable functions oRY™? and are
separated from the null-hypothesis set by some distance. In arfieitaetdample treatment of
power under this approach, the quality of a test for any givea measured by the minimum

distance,r,,, between the null hypothesis and the alternative functions &othat is necessary



to achieve a specified level of power. Specifically, #€im) be the distance between a function
mOS and the null-hypothesis set. (See Section 4.4 for an exampte)ofLet a; be the
specified power. Then, is the smallest such that

inf P(H, is rejected againsh Ja;.
S, p(m)=r

An optimal test minimizes,, for the givena; andn while maintaining a specified probability of
rejecting H when it is true .

Unfortunately, an exact finite-sample treatment is diffitalimplement, and tests that
are optimal in finite samples have been found only for a fewnpbes in which thes’s are
identically distributed with a known distribution. Therefore, @keprogress under assumptions
that are less restrictive and more relevant to applicgatiwe use an asymptotic approach. In this

approach, we let, -~ Oasn - « at the fastest possible rate that permits the specifieerpow
be achieved uniformly over seB, ={mOS: g m =Cr,} for some finite constan® . This rate
is called the optimal rate of testing. At the optimal @itéesting, for anya; <1 there exists a

finite C >0 such that
(1.3) lim inf P(H, is rejected againsh Ja;.

n-o mOB

Moreover, the optimal rate of testing is the fastest ratelrach r, can approach zero while
maintaining (1.3). The optimal rate of testing for Hold&wbolev, or Besov classes of functions
that have bounded derivatives of known orsler (d - 1)/4 isn®“* ¢ (Ingster 1982, 1993a,
1993b, 1993c; Guerre and Lavergne 1999). The optimal rate of testing

2s/(4s+d-1
is(n_lﬂlloglogn) o/derd= if s=(d-1)/4 is unknown (Spokoiny 1996). K< (d-1)/4, then

1/4

the optimal rate of testing is ="~ (Guerre and Lavergne 1999).

This paper describes a test Hf, that has the optimal rate of testing uniformly over

Holder classes and does not require knowledgoothe (possibly non-identical) distributions of

the &’sin (1.1). Indeed, we prove that our test satisfies (1.3) sjith1l. This property is called

uniform consistency at the optimal rate of testing. The test is calddptive andrate-optimal
because it adapts to the unknosvand has the optimal rate of testing for the case of an unknown
s. HS developed an adaptive, rate-optimal test of a paramegdaa regression model against a
nonparametric alternative. Fan and Huang (2000) developed an adagtd/optimal test of a
normal, linear mean-regression model. See, also, Ledwina (1994aan.996). This paper

extends the test of HS to median regression models. Althoughdresimilarities between the



test presented here and that of HS, the properties of mediamean regression models are
sufficiently different to make the extension non-trivial and ¢quire separate treatments of
median and mean regressions.

A test that achieves the optimal rate of testing hastivantage of being sensitive to
alternatives uniformly over a smoothness class whose distanoe the null hypothesis
converges to zero at the fastest possible rate. Sucls® a@datains sequences of alternative
models against which the tests of Bierens and Ginther (2000) ang Zh@98) are inconsistent.
In practice, this means that there are smooth alternativassagvhich these tests have much
lower finite-sample power than does a test that achievesptimab rate of testing. In addition,

the optimality properties of the test that we present hold umijoover designs{ X;} and
distributions of thes; 's that satisfy mild regularity conditions. Similarly, the differesxbetween

the exact finite-sample and asymptotic probabilities thattesir rejects H converge to zero

uniformly over designs and distributions of tge Thus, in large samples, the power of the test

and the accuracy of the asymptotic approximations are réjatngensitive to the design and the

possibly heterogeneous distributions of #es.

Since our theoretical results are asymptotic, the desipalwber properties of our test do
not necessarily hold when is small. In particular, whem is small, there may be smooth
alternatives that cannot be detected by our test or any other test. Thisshéppexample, if the
null and alternative models differ only between design poinsweder, we require the distance
between design points to decrease to zern axreases (see Section 4.1). This enables our test
to detect any smooth alternative model whreris sufficiently large. The uniform consistency
property of the test insures that the same “sufficiently largapplies to all smooth alternatives.

A test that achieves the optimal rate of testing uniforougr a smoothness class is
necessarily oriented toward the alternatives within thescthat are hardest to detect. Such a test
may have low power against functions that are less extremheturns out that our test

automatically protects against this possibility. Spedlficave show that our test is consistent
against alternatives of the form (1.2) wheneygr= Cn™12 loglogn for some finiteC > 0.

Consistency of the tests of Bierens and Ginther (2000) and Zh6A8) against alternatives of

the form (1.2) requirep, — 0 more slowly tham™/2,

Thus, in terms of consistency against
such alternatives, there is essentially no penalty paid foadhptiveness and rate optimality of

our test.



Section 2 presents an empirical example that helps to motuatéest. The test is

described in Section 3. Theorems giving properties of theutelsr H, and various alternative

hypotheses are presented in Section 4. Section 5 presents ulie ofsa Monte Carlo
investigation of the test’s finite-sample behavior. Sedfia@ontinues the empirical example of
Section 2. Section 7 presents concluding comments. The proofseafeins are in the

Appendix, which is Section 8.

2. AN EMPIRICAL EXAMPLE
Buchinsky (1998) used data from the 1993 Current Population SUORS) (o estimate
a median regression model of the relation between the weekjgsiof male workers in the U.S.

and a variety of covariates. The model is

logW = By + B X + B X2 +yZ +U
whereW is the weekly wageX is years of labor-force experience, ahis a vector of covariates
that includes years of education and dummy variables indicdtingarker's race, the region of
the country in which the worker is employed, whether the workemisloyed in a metropolitan
area, and whether employment is full time and for the full.y&dris an unobserved random
variable whose median conditional &0 and Z is 0, the #'s are scalar coefficients, and is a
vector of coefficients. In this example, we investigate tiation betweerdogW and X for
white, full-time, full-year, workers with 12 years of educatiomowwere employed in a
metropolitan area in the north central region of the U.S. Thissfixed in the example, and the
model is
(2.1) logW =By +BiX + X7 +U,
where mediafJ | X =x) = 0 almost surely. The 1993 CPS contains 1656 observations of
workers with the specified characteristics. Thé& were estimated by LAD.

The dashed and solid lines in Figure 1 show the parametraadlynonparametrically
estimated conditional median functions. The parametric dstim@dashed line) is

by +b, X +b2X2, whereb; is the LAD estimate of3; (j =0, 1, 2). The nonparametric estimate

(solid line) was obtained by local linear median regressitva@huri 1991). There are obvious
differences between the parametric and nonparametric estjmatéch suggests that the
parametric model is misspecified. However, the graph does netiadivhether this apparent
misspecification is an artifact of random sampling error. péc#ication test is needed to make

this distinction. As will be discussed in Section 6, our test rejects r{adglat the 0.05 level.



We also estimated a version of (2.1) that is augmented by aaﬁirtg the specification,

thereby producing the cubic model

(2.2) logW = By + BiX + BoX 2 + BX° +U .

The dotted line in Figure 1 shows the conditional median functiomatstil by applying LAD to
(2.2). The fit of (2.2) is much better than that of (2.1). Our test does neittregecubic model.

3. THE TEST
Section 3.1 presents an informal description of the testtstatSection 3.2 describes a

method for obtaining critical values for the test.

3.1 The Test Statistic

We assume thad > 2 and that the first component of; is X;; =1. If Hy is true, then

Y, = X/B+& and P(& <0)=0.5 for eachi =1,2,... and someBRY . Leth, denote the least

absolute deviations (LAD) estimator ¢f. Thus,
n
=arg min . —Xb .
by gmd; ¥ - X

If Hy is true, thenb, — P B asn - « (Koenker and Bassett 1978). Hf, is false, theng is

undefined. However, it follows from Proposition 1 in the Appendix that 8* +O( n‘1’2) ,
where * solves

n
(3.1) ;Xi{P[gi < Xib-n( Xp] 1/2} =0 .
Define B, = B if Hy is true, 5, = B* if Hy is false, and§; = 1(Y, — X; 5, <0)-1/2, wherel is
the indicator function. If klis false, thens, depends om and the desigq X} . Moreover,
X{B, can be interpreted as the best linear approximatiom(%,) . If Ho is true, theng, is

independent of botim and the design.

Under Hy, the & ’s are Bernoulli random variables witd(&) =0. If H, is false, then
E(&) =Pl < X{By —m(X;)] -1/2#0 for at least oné. Thus, a test oH, is equivalent to a
test of Hy: E(&) =0 for alli. If B, were known, such a test could be based on the distance

from O of a nonparametric estimator of the ve¢t(s)),....E (£,)] . We obtain a feasible test by

replacing £, with b, . Definegﬁ = 1(Y, - X;b, <0)—1/2. Our test is based Qrcﬁ: i=1,...,n}.



To obtain the test statistic, suppose for the momentfpadnd, therefore, thé,’'s were
known. LetK denote a kernel function (in the sense of honparametric densihatsn) of a
d -1 dimensional argument. ForORY? and bandwidthh>0, let Kp(v) =K(v/h). For
i,j=1,...n, define

Kn(X; = Xj)

D Kp(Xi = Xy)
k=1

Wijh =

anda; , = z::1WM W - Define

n

B2 §*=)

i=1

D W €

=1

2
:z Zaij,hfifj :

i=1 j=1

Observe thatzr;zlij,hfj is a kernel nonparametric estimator B{¢;) . Therefore,S* is the

¢, distance from zero of the kernel estimatof B{¢,),....,E (&,)] . If the & 's were observable,

then a test oH, could be based on the standardized versiof,bf BecauseE () =0 under

Ho, & =1/4, and¢& is independent of; if i # j, the standardize&* is
(3.3) T* =S Nn
Vh

where

n
(34)  Np=(/4) .

i=1
and

1/2

n n
(3.5) Vy=l@8)y. >aly,
i=1 =1
J#i
HS showed that an adaptive, rate-optimal tesHgf can be obtained by rejecting, if the

maximum of T,* over a suitable set of bandwidthss too large. The test proposed here uses the

same idea and is obtained by replacing the unknown vardabléh gﬁ in (3.2)-(3.5).
To this end, defing, = (S, — N,)/V,,, where

n n

(36) S=2. > anéé-

izl j=1



We evaluateT, at eachh in a set of bandwidths and rejekl, if T, is too large for any

bandwidth in this set. The set of bandwidthsHs={h=h;;212@: h<h . k=0,1,2,.},
where h,,, and h,;, are non-stochastic constants satisfying conditions thataiezish Section

4.1. Our test is based on the statistic

T =maxT,.
hOH

The test reject$l at the (asymptoticy level if T exceeds the critical value that is described in

Section 3.2.

3.2 Obtaining the Critical Value
The exacta-level critical value fofT is the 1 -a quantile of the finite-sample distribution

of T. This critical value cannot be evaluated in applicationsusecthe finite-sample distribution

of the ;ﬁ 's is unknown. However, it turns out that the distributiofTotinder H, depends only
weakly on 8 and the distribution of the 's in (1.1), and this dependence vanishes as the sample
size increases. This is true even if thés are not identically distributed. We explain this result

intuitively below and prove it in the Appendix; see Lemma 12 andptbef of Theorem 1.

Therefore, a consistent estimator of thelevel critical value can be obtained as thea
quantile of the distribution off that is induced by the mod&{* = X{b, +&* , where &* is
sampled from a convenient distribution. We recommend samgigirom the empirical
distribution of the residuals (EDR) of the estimated null-hypothegislel. This sampling
procedure is easy to implement, a natural choice ikttseare identically distributed, and (as has
just been explained) valid in large samples even ifghe are non-identically distributed. The
i 'th residual isY, - X;b,. Section 6 presents Monte Carlo evidence on the finite-sample
performance of the test with this distributiongf.

The EDR does not satisfy Assumption 1 of Section 4, which eg)gjf to have an

absolutely continuous distribution with a continuous density. Howeweler our assumptions,
the EDR approximates an absolutely continuous distribution with antbatoconverges to zero

at the raten™/?

. Consequently, the difference between the results obtainedhsitBDR and
with an absolutely continuous distribution vanishegas o« .

We now explain intuitively why the distribution @f underH, depends only weakly on

B and the distribution of the;’s. Under H,, the random variableg = 1(Y;, - X; /<0)-1/2



are independently and identically Bernoulli distributed WRIS; =+1/2)=1/2. This is true
regardless of the distributions of tl#g’'s or whether they are identically distributed. Therefore,
under H, the distribution ofT,* in (3.3) does not depend g6 or the distribution of thes 's

and can be approximated with any precision by Monte Carlo simulaffdve statisticT,, is
obtained fromT,* by replacing thef; 's with the empirical analogé =1(Y, - Xjb,<0)-1/2. It
is proved in Proposition 1 of the appendix tlhﬁt—,&’=0p(n_1’2) under Hy. Therefore, the

difference betweef, and T,* is small uniformly overhOH if n is large. See Lemma 12 of
the appendix. Consequently, the distributionTofunder H depends ong the distributions of
the &’s only weakly throughy, , and this dependence vanishesas .

The recommended estimator of the critical value can be computbedany desired
accuracy by using the following simulation procedure:

1. For each =1, ...,n, generateY,* = X/b, +&* , where&* is sampled randomly from
the residualsy; — X/b, , of the estimated null-hypothesis model.

2. Use the data seYif, X: i =1, ...,n} to estimate 5. Denote the resulting estimate

~

by b,. Compute the statisticT that is obtained by replacing?i (i=1,...n) with
10Y* —Xif)h <0) -1/2 in the formula forT .

3. Estimatd, by the 1 -a quantile of the empirical distribution df that is obtained by

repeating steps 1-2 many times.

4. THE MAIN RESULTS
This section presents theorems that give the behavior girdipesed test under the null
hypothesis, local alternatives, and smooth alternatives thatoataireed in a Holder class.
Section 4.1 states our assumptions. The assumptions apply to any sepwie The results

stated in Sections 4.2-4.4 hold uniformly over models, designs, anthuisins of theg, ’s that
satisfy the assumptions. Section 4.2 gives the behavior of thenigsr H,. Sections 4.3 and

4.4, respectively, give the test’'s behavior under the sequenoeabtilternative hypotheses (1.2)
and under smooth alternatives that are contained in a Holdsrwetexse distance from the null
hypothesis converges to zero at the optimal rate of testing. Thivadagte-optimal property of

the test is established in Section 4.4.



4.1 Assumptions

Our results are obtained under the assumptions stated indfiimseLet|V| denote the
Euclidean norm of the vect® . If D is agxq matrix, define

ol = s 2.
VOIRY, v£0 ||V||

For every xORY and everyh > 0, define M (x) as the number of elements in the set
{Xi:|X =¥ < B . DefineR(u)=P(g <u).

Assumption 1I(Observations):The observations {Y;: i =1,2,...} in (1.1) are independent.
Each cumulative distribution function F is absolutely continuous with respect to Lebesgue
measure with a continuously differentiable density function f,. There are finite constants
C; >0, C¢ and a such that f;(0)=Cs, fi(uysaCg and | f{'(u)|< a2CF for all i,j=1,...n
and u. Moreover, H fi (0)— f; (O)HSC3HXi —XjH for some constant C; < andall i =1,...,n.

Assumption 2(Kernel): K is continuoudy differentiable, non-negative, symmetrical
about the origin, and supported on [—1,1]d‘1. Moreover, K(0)=1 and K(v) is a dtrictly
decreasing function of |v|.

Assumption 3 (Bandwidths): The quantities h,;, and h,. Satisfy hgin <hpaxe
hoin 2 Cin Y2 and h,,, =Cy (loglogn)™ for finite constants y>0, C, >0, and C,, >0.

Assumption 4(Design): (i)The design points { X;: i =1,...,n} are non-stochastic. The
first component of each X; is X;; =1. (ii) There are positive constants Cy; and Cy, such that

for all hOH and all i = 1, ..., n, Cyynh® <M, (X;)<Cy,nh®2. (i) There are finite
-1 n f -1
[n zizlfi(o)xixi:|

(V) infyy g5 n‘lzi”=1| R[X/b—m(X;)] - F[ X8, —n( X;)]| >CJ for some constant C and

constants Cy and Cyy such that |X;|| < Cx for all i and <Cyx -

[0e]

each 0>0.

Section 5.2 describes a method for choosigg and h,,,, in applications. Assumption
4(ii) is satisfied with probability approaching 1 as- « if Assumption 3 holds and components
2,...d of {X} are sampled from a distribution that has bounded support and a deitisity w

respect to Lebesgue measure that is bounded away from zere supjtort. Therefore, our

10



results hold conditionally ofiX} that are generated this way. However, we do not re§ite

to be sampled from a distribution. Assumption 4(iv) is an identiificacondition. It excludes

perfectly collinear designs and the possibility tia{u) is constant in a neighborhood of
u=X;5,—-m(X;) for everyi=1,2,... Itis easy to verify that a local version of 4(iv) (flor
satisfying d <|b- | < &, with sufficiently smalld and & > &) follows from Assumptions 1

and 4(iii).

4.2 Behavior of the Test Statistic under the Null Hypothesis

The null hypothesisH,, is that P(Y, - X{3<0)=1/2 for alli and some,B’D]Rid . Let
t, be thea -level critical value that is that is induced by the mogel= X/b, + &* described in
Section 3.2. The main result on the behavioiT ainder H is thatt, is an asymptotically
correct a -level critical value. Moreovert, is an approximately correct finite-sample critical

value whenn is large. The approximation error converges to zern aso and depends only

on the constants in Assumptions 1-4. It does not depen@,dhe design, or the distributions of
the &’s, provided that these satisfy Assumptions 1-4. This resafitéblished by the following

theorem.

Theorem 1 Let H, betrue. Then thereis a sequence of positive constants {a,} such
thatc,; — O monotonicallyas n — « and

IP(T >t,) -al< wny
for all linear models (1.1) that satisfy Assumptions 1-4. The sequence {w,;} depends only on the

constants in Assumptions 1-4.

4.3 Power against a Sequence of Local Alternatives

This section establishes the consistency of our test uodalr alternatives of the form

(1.2) with p,, = Cn_llz,/loglogn for some constar@ > 0. Normalizeg so that

@D Joff ==Y 190 F 21,
i=1

This normalization depends on the design and insures that tleefersough” design points

within the support ofg. Let X be thed xn matrix whosea’th column is X;, F be thenxn

diagonal matrix whosé,() element isf; (0), andG be thenx1 vector whosé’'th component is

11



g(X;). Let 1, be thenxn identity matrix. Define thexxn matrix M =1, - X'(XFX") " XF .
If the &’s areiid, thenTll is the projection operator into the orthogonal complement of the spac

spanned by theX;’s. Assume that for all sufficiently largeand somed >0,

42) V=nn Q||2 >0,

If the &'s areiid, then (4.2) stateg has a non-zero projection into the orthogonal complement
of the space spanned by thg’s. Conditions (4.1) and (4.2) insure that the distance between the
null hypothesis and the sequence of alternative models,

N 1/2
inf (n‘lz”x;b— xi'ﬂ—png(xi)llzJ ,
i=1

bOR¢

converges to O at the rate @f, rather than a faster rate. The following theorem estadsi
consistency of our test under a sequence of local alternatives.
Theorem 2 Let Assumptions 1-4 hold. Let (1.2) hold with p, = Cn™*2 floglogn and
g satisfying (4.1)-(4.2). There exists a constant C* <, depending on g, J, and the constants
in Assumptions 1-4, and a sequence of constants {5} such thata,, — 0 monotonically as
n - o and
PT>t) 21~y
whenever C>C*. The sequence {«w,5 depends only on the constants in Assumptions 1-4.
This result holds uniformly ovep, the design{ X} , and the possibly heterogeneous
distributions of theg's, but it is not uniform over “directions’g of departure from H

Theorem 2 is useful because, as was explained in Section durésnthat whem is large, our
test has high power against alternatives that are lessmexttean the ones that determine the

optimal uniform rate of testing.

4.4 Power against a Smooth Alternative

This section gives conditions under which our test is consisteiformly over
alternatives in a Holder smoothness class whose distameethe class of linear conditional
median functions converges to zero at the fastest possible The distance between the null-
hypothesis set and the conditional median functigr) can be measured by

] 1/2
m)=inf | N> m(X;) - X'b?
21(m) inf, ;l (Xi) = X{b|

12



However, it is more convenient to work with another distance ifum¢hat we define by using
the functionsH; (x) = R[X B, —m(X)], where £, is as defined in (3.1). Under,HH,(x) =1/2
for all x. Therefore, we can measure the distance between the null-hypothesis méx)abg
N 1/2
,oz(H){n‘l;lHi(xi)—l/ZF} ,
where H refers to the vector of functior($1,,...,H, ). In what follows, we will be interested in

2s/(4s+d-1
sets of functiongH;,...,H,,) such thatp,(H) zca(n‘lﬁllog Iogn) o/derd= for some constant

C,<w. One can easily check that when this condition and Assumptiégn$dld, then

2s/(4s+d-1
£1(m) zcb(n_ldloglogn) o/derd = for someC, <« and thatp, and p, give the same rate of

convergence of the distance between the null and alternative hypotheses.

Let j = (2 ..., jo), Wherej, ..., j¢ = 0 are integers, be a multi-index. Define
. d .
liFD,, ik and
. il
DJHi(X)Z ajHI(Xj)
X5t .. OXy

whenever the derivative exists. Define the Holder norm

[Hil, o= sup D ID'H; &).

x5 ECx [jl<'s
The smoothness classes that we consider consist of functiehs....H,)0S, S)=
{Hy....Hy:[Hi], (<Ck foralli=1,...n} for somes= max[2, @l - 1)/4]andCs < co.

Theorem 3 states that our test is consistent uniformly over the sets

(4.3) B,={Hy,...H,0S,(6): Pz(H)ZCa(n_l Ioglogn)ZS/(4S+d—l)}

for somes > max[2, @ — 1)/4] and all sufficiently larg€, < o. If (Hq,...,H,)dB,, thenm

2s/(4s+d-1
belongs to a Holder class of orgesnd o, (m) =2 C, (n‘lﬂlloglogn) /tdsrd= for someC, <o .

Theorem 3Let Assumptions 1-4 hold. Then for 0 < a < 1and B, as defined in (4.3),

thereis a constant C,* and a sequence of constants {«w,3t such that w,; — 0 monotonically as
n - o and

inf P(T >t,)=1-
H H Y5 ( a) a)nS

n n
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whenever C, 2C.*. C, and {w,3 depend only on s and the constantsin Assumptions 1-4.

This result shows that our test is consistent at the fastest postildé testing uniformly
over alternatives in the smoothness clagsesind over designs and distributions of thés that
satisfy Assumptions 1-4. These uniformity properties insurettigatest’s power is not highly

sensitive to the alternative model, design, or distributions of;tlsevhenn is large.

5. MONTE CARLO EXPERIMENTS
This section presents the results of Monte Carlo experintbat illustrate the numerical
performance of the adaptive, rate-optimal test. The section hasttgo Pection 5.1 presents an
example in which our test is consistent but the tests aeBseand Ginther (2000) and Zheng
(1998) are not. This example motivates the design of the Moat® @xperiments. The

experiments and their results are described in Section 5.2.

5.1 An Example

This section presents a parametric model and a sequencterof@es. Our test is
consistent against the alternatives but the tests of Biareh&inther (2000) and Zheng (1998)
are not. The null hypothesis model in the example is
(5.1) X =B+BX ts,
where f, and B, are constants, th¥'s are scalars that are sampled from a distribution that is

symmetrical about 0, angl~ N (O, 02) for everyi. The sequence of alternative models is
(52) X =X+ 'AX 1 1,)+ &,

-1/9
where g ~ N(0,1), gis the standard normal density function, amgd= C(n‘lq/loglogn) for

some finiteC > 0. The functionm,(x) = x + 1,'¢(x/7;) has a peak that is centerecat 0 and that
becomes narrower asincreases. The sequence of alternative modelsi§ contained inj3,

with s = 2. The distance betweem, and the parametric model (5.1) satisfies

-4/9
o (my) O (n'lalloglogn) . It is not difficult to show that under that the sequence (&),

noncentral parameters of the tests of Bierens and Ginther (a86QXheng (1998) converge to
zero amn - oo, so those tests are inconsistent against (5.2). It follows Tiworem 3, however,

that the adaptive, rate optimal test is consistent againsetiugsce iC is sufficiently large.

14



5.2 Monte Carlo Experiments

This section presents the results of Monte Carlo experintbat illustrate the numerical
performance of the adaptive, rate-optimal test. The desigihe @&xperiments are motivated by
the example of Section 5.1 and are taken from HS with the roaiiifn that they specify
conditional medians instead of means. In each experiment, a pacanméitfiypothesis model
and two alternatives are specified. Monte Carlo simulatione@ tesestimate the probability that
the adaptive, rate-optimal test rejects the parametric mduksh it is correct and the test’s power
against the alternatives. To provide a basis for judging wh#tkeest’s power is high or low,
the power of Zheng's (1998) test is also estimated by Monte Carlo sionuldt all experiments,
the nominal probability of rejecting a correct null hypothesis is 0.05.

The null-hypothesis model in the experiments is
(53) Y =pB+BX +teg; i=1L2,.n
wheren = 100 or 250 and eacK is a scalar that is sampled from tN€0,25) distribution
truncated at its 5th and 95th percentiles. In experiments where (5.3) id @dgrisarue),5 = 5
= 1. Theg's were sampled independently from three distributions, dependitigea@xperiment.
These areN(0,4), a variance mixture of normals in whighis sampled fronN(0,1.56) with
probability 0.9 and fronN(0,25) with probability 0.1, and the Type | extreme value distributio
shifted and scaled to have median zero and variance of 4. Theerdigtribution is leptokurtic
with a variance of 3.9, and the Type | extreme value distribut@symmetrical. Variation in
X explains 77-79 percent of the variation¥nin (5.3), depending om and the distribution of
£. Specifically,0.77< 1-Var ¢ )Nar ¥ )< 0.7<

The alternative models have the form

Y, =1+ X; + (41T)p(X; IT)+ &,
where theg’s are sampled from one of the three distributions just destiandr = 1 or 0.25,

depending on the experiment. Figure 2 plots the funatifx) =1+ x+ (4/7)p(x/T) for each

value ofr. TheX;'s were sampled once from the specified distribution and hedd fn repeated
realizations of they;'s. The values off and 5, were estimated by least absolute deviations
(LAD). The kernel used for the adaptive, rate-optimal tmstt Zheng's (1998) test is

K(u)=(15/16)@-u? 1 (u k£ 1.
At the suggestion of a referee, we carriedPtests of the hypothesd,: 3, =0 in the
augmented modelY, = £, + B, X; + B,X? +&. Rejection of H, implies that (5.3) is

misspecified, but a test ¢f, =0 is not consistent against all fixed, smooth alternatives to (5.3).

15



Implementation of Zheng's (1998) test requires selecting a baridpédameter. Zheng
(1998) proposed a generalized cross validation procedure for danguhin our experiments it
gave bandwidths that were much too large and often exceeded tleeofatite values oK.
Therefore, we selected the bandwidth through Monte Carlo experiinantat maximize the
test's power subject to the restriction that the empiricabability of rejecting (5.3) when it is
correct be contained in a 95% confidence interval around the nonejeation probability.
Zheng's test uses a critical value that is based on thepssticnnormal distribution of his test
statistic, and we used this critical value to compute his test’s ealpiejiection probabilities.

The adaptive, rate-optimal test requires choosing the setndinMidths H. We used a

geometric grid consisting of the poimzsj hnin (1=0,1,2,...N' = 1, where N is the number of

1IN -1)

grid points and w= (hpax/ Dimin) The smallest and largest bandwidths dwg, =

2maxXjy — X ) {=1,..n— 1 and h,,, = 0.4(X, - X;)/loglogn, where theX;’s are sorted
in increasing order. We chos#&” according to the rule of thumtv=logn. This rule is
consistent with the theory of the test, which requifés O(logn). Motivated by the rule of

thumb, we did experiments with values &f in the range 4-10. The results varied little over
this range, so we report only the results fdr 4.

The experiments were carried out in GAUSS using GAUSS psamda@m number
generators. There were 1000 Monte Carlo replications in theierguds in which His true and
500 in the experiments in whichyHs false. The larger number of replications for the
experiments with a truensures that the probabilities of Type | errors are esticheeasonably
precisely. The lower number of replications with a falgecbhserves computing time while
providing sufficient precision to be informative about the reéafiowers of the tests. There were
99 replications in the Monte Carlo procedure that was usedtimate the critical value of the
adaptive, rate-optimal test.

The results of the experiments are presented in TablWHen H is true, all tests have
empirical rejection probabilities that are close to the nainprobability of 0.05. None of the
differences between the nominal and empirical rejection prolebiig significantly different

from zero at the 0.05 level. When 4 false, the power of the adaptive, rate-optimal test is much
higher than the powers of Zheng’s test andRHest of H,. All of the differences between the

powers of the adaptive, rate-optimal test and either Zhenglsedt-test are significant at the
0.01 level.
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6. CONTINUATION OF THE EMPIRICAL EXAMPLE
We now present the application of our test to models (2.1) and y&i12) the data
described in Section 2. The test was carried out using the geometric grid widihsdlescribed
in Section 5.2 with A/ =7, the integer closest ttogn. The adaptive, rate-optimal test of the
guadratic model (2.1) gives =2.10 with a 0.05-level critical value of 0.88. Thus, model (2.1)
is rejected at the 0.05 level. Antest of the hypothesis thaf; =0 in (2.2) also rejects the

guadratic model < 0.01). The adaptive, rate-optimal test of the cubic model gAB5 T =
-0.46 with a 0.05-level critical value of 0.75. Thus, the model (2.2) is not rejected.

7. CONCLUSIONS
This paper has developed a test of the hypothesis that aieoaldinedian function is
linear against a nonparametric alternative. The test @adapghe unknown smoothness of the
alternative model, does not require knowledge of the distributibtise possibly heterogeneous

noise components of the model (thes in (1.1)), and is uniformly consistent against alternative
models whose distance from the class of linear functions cars/éogzero at the fastest possible

rate. This rate is slower than’2. In addition, the new test is consistent (though not uniformly)

against local alternative models whose distance from thealdisgar models decreases at a rate

2

that is only slightly slower than™/2. The results of Monte Carlo simulations and an empirical

application have illustrated the usefulness of the new test.

8. MATHEMATICAL APPENDIX

This appendix presents the proofs of the theorems in theEexept as otherwise noted,

it is assumed that Assumptions 1-4 hold. Throughout the prfaf$,.{a,} ,..., and{sy} ,
{s\3 .... denote sequences of non-negative numbers that depend only on thentsois

Assumptions 1-4 and converge monotonically to zermasc . The latter property will be

denoteda,, =0,(1) ands, =0,() for k=1,2....
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8.1 Properties of the Parametric Model
The main result of this section is a proof of 2 asymptotic normality of the LAD
estimatorb,. Let F and ﬂ respectively, denote the probability distribution and density

functions ofY,. Define

Q==Y X XiFi (XA,
i=1

M= —Qn‘ln‘l’zi Xi[10Y; = X{ By <0) = F (X{ Bo)l ,

i=1

and
Zn =Q;1{%Z xixi'lf.(x;ﬂo)[l—lf.(x;ﬁo)l}Q;l-
i=1

Proposition 1 Let Assumptions 1-4 hold. Let the sequence {J,} satisfy nY 2/5n =0(1)
asn - o and &, < (n"tlogn)/2. Thenthere existsarandomset A, satisfying P(Ay)=1-a,
with a,; =0,(1) and such that on Ay, b, = A<, and

|2 (80 = Bo) = 1| < Co(B, log ),

where C, is a constant whose value depends only on d and the constants from Assumptions 1-4.

Moreover, =:27. -9 N(0,1,), where I, isthe d xd identity matrix.

Remark An immediate corollary of this result is thajclz(bn - o) is asymptotically

normal.
The proof relies on the following lemmas.
Lemma 1 Define C, =dCy /2. Thevector b, satisfies
(8.1)

ixi[l(\(i ~ X/, <0)-1/2]|<C,.

i=1

Proof See Koenker and Bassett (1978).

Lemma 2 Let {«;: i=1...,n} be independent Bernoulli random variables with
parameters {p}, and let {G: i=1,...,n} be constants. Let V be a constant such that
Zinzlcizp, (- p)<V?2. Givenanyreal z, define

G? = maxexplc /(¥ )

I<i<n
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If GZ< 2, then

(8.2) Pl}:iq K -p)> ZV:| <exp2z2 /4).

i=1

Moreover, if zillcizmsvz, then for all z=0

(8.3) Pl}:iq K -p)> ZV:| <expz2 /2).
i1

Proof It follows from Chebyshev's exponential inequality that for evéry0,

p[zn:q;(i >Zn:q b+ zv]s exp——/]zV —Azn:q o } E{eX{/\Zn:in ﬂ

i=1 i=1 i=1 i=1

i n n
=exp -AV -A> .G p + Y log(l- p + pe’® )}
i i=1 i=1

The function f,(x) =log(1- p- pe*) satisfiesf,(0)=0, f;(0)=p, and

(= PA=PE" :
f = < p@l- :
p0 = s P pe

2 -
Therefore, f,(X) < px+ p(1- p)x /2. SetA=2z/(2V). Then

n n n
—AV =AY cp + D log- p + pe’t ) -AV + ) p (1- p WP /2

i=1 i=1 i=1

= -2V + AV 2G?/2.
Application of this inequality withd = z/(2V) and G%<2 yields
A2V + AN 2G?[2<-72(1-G 2/ 4)/2< -2 ? ] 4.
Similarly, one can bountﬂ’[zinzlci (ki —p)< —ZV} , and (8.2) follows.
Next, the inequalityab < (a+b)2/4 with a=1-p andb= pe* implies
_ X
frg=—PAZPE gy

(1-p+pe)*
for all x=0 and p0d[0,1]. Therefore,
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n n /]2 n
AV =23 cp + Y log- p + gt ) —Azv + 23 P
A =AD G+ logl-p + pe)S-AV + D g

i=1 i=1 i=1
==V + AV 2?]2.

This inequality applied withd = z/V yields (8.3). Q.E.D.

We also present a vector version of Lemma 2. For anyon/@cD]Rd, define
I, = maxgj<q Ix; |

Lemma 3 Let {«;: i=L...,n} be independent Bernoulli random variables with
parameters { p} , and let {G: i =1,...,n} be constant vectorsin RY. Let V be a constant such
that Zin=1||ci |2 m(1-p)sdv?. Givenanyreal 220, define

G? =maxexpg|g |, /(¥ )]
I<i<n

If GZ< 2, then

"L

Zci(/(i - p)
=1

> 2vdY 2] < 2d expEz2 1 4).

00

Moreover, if Zin:l"ci |2 14<V2, thenfor all z=0

"L

DGk —p)
=

> zV] <2d expt2z2 /2).

Proof Apply Lemma 4.2 to every componentﬁin:lq (<, —p). Q.E.D.
For any fixed30OR? define & (8) = 1(Y, - X/8<0)-F (X;8) and

2(B) =2 X &(B).

i=1

Lemma 4 Therandomfield Z(,B)DRd satisfies E¢(f) =0,

ECIAIC(B) =Y X XiR (XA~ F (XA S 2= Y XiXi.
i=1

i=1

E|¢(B) - {(Bs)|< CECxx | BL- B +0.5C2Cra%| 81~ B,

and, for every z=0,

P([¢(B)| > xCx 12)< 2expE2* 12).
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Proof The first two statements obviously follow from independencehefBernoulli

random variables; . It is also straightforward to check that

E & (B)-& (Bo) P< IR X(B)-F KB IIE IR &(BL)-F &8I

<IR(X/B) =R (XiB)I.

A Taylor series expansion and Assumption 1 yield

| (X{B) = F (X B2) I< | (X[ B)(B1- B + 0.558° X B1-B,)F

< £ (X B)|B- B + 0.5C5Cra?|By- B -

Therefore,

E|(B) =B =UELZ(B) (B BY - B

=07 X X(E | (B) - (B) P
i=1

<Y XX 1R (XIB) - F OB,

i=1
<nCE |8 - oD F(Xi B +0.5C5Cea%| By - B
i=1

2
< C%Crx ||,31 - /32" +0.5Cx Cr 32”,31_ :32” .
The last statement of the lemma now follows from Lemma 3. Q.E.D.

The following lemma establishes stochastic equicontinuit(¢) .

Lemma 5 Let a0(1/2,1). There are positive constants C,; and C,, such that for

every fixed BORY,

P sup
B|B-plsne

Proof Let 3 satisfy“[}’—/?” <n™?. Itis easy to see that

{B)-¢ (Eﬂzcﬂn‘“*l’z]s 2exp€—C22nl‘” /%.

lc)-¢(B)|=n"?

in[a(ﬂ)—a(ﬁnu
i=1
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<n V23 1Y - X BI<IX B~ B))

i=1

+ n—1/2

S X IE (D) —ﬁ.<x;zf>H.

i=1

Since| X{([S’—,B) |< Cyn™?, for some| @ |< 1 we have

i=1

in['f.(xi'ﬂ)—li.(xi'ﬁ)H=
=

inﬁ[x;ﬂ+9(/3’—,6’)]x;(/3’—@H

<cicur|p-4

< CZCyuyn™ 7.

Therefore,
©4) 0B -cB|snic Y n +Cieunt?,
i=1

where ther, = 1(]Y, - X'8 K Cy n"?) are Bernoulli random variables with

B =Ef =P(Y, - X(BISCxn™)=F (X/B+Cxn™™)-F (X{#-Cxn™)..
As in the proof of Lemma 4, one bounds

n

n
D ps2Ccn ™) £ (X B)+CiCra’n # !
= i=1

<2CyCyyn ¥t +CiCra’n ¥*1<C,,n?"!
for some constantC,, =2CyxCyx . Application of Lemma 2 withg =1, z=V, and

V2= zin:l p <C,ont7 (so thatG? =e'/?<2) yields

Pl:zn:(ri - g)zVZ}SZexp(—Vz 14).

i=1

Therefore,

n
P [Z I > zczznl‘”j < 2exptC,,n"? /4).
i=1

This inequality and (8.4) yield the result. Q.E.D.
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The next lemma gives a uniform bound 8) - (5,) when |8~ 5| <2 .

Lemma 6 Let n"Y2< d<1. Then for some constant C, dependingon d, Cr and Cy

only, there exists a random set A, satisfying P(A,,)=1-a,, with a,, =0,(1) such that on
A2

sup ¢ (8)-¢ (6 ) <C, @ logn }'2.
B16-plzo

Proof Let D, be as-netin the bal{ B: |8~ S| <d with the stepn™ for a=3/4.
This net can be constructed with cardinafgon)? < (2n*#)y. Fix S0D,. By Lemma 4,
E|Z(B) —Z(,BO)”2 <dC,3|B - By for some constan€,; =C5 Xxx /d. Now apply Lemma 3
to ¢(B)-{(B,) with ¢ =n"Y'2X,, V2 =C,30 andz=(4d logn)’2. Then

logG? <Cyn Y2z/(2v)=Cyn"Y2(d logn)*'2/(C,30) Y.
Clearly, 0=n"Y2 implies G? < 2 for n sufficiently large. By (8.3)
PI£(8) = (Bo)]|2 2d (C o8 10gn)'? | < 2067 °0".

Now

Pl sup [¢B)-C Bo)= @ Cpad logn 2 +Cpn @2
_,B:H,B_.BOHSJ

<> Pl sup
gD, | Bls-Bjsne

7 B)-¢ (B 1‘ > Czln—a+1/2

+ Y P[I¢(B) -2 (Bo)| 2 2d(C,e010gn) 2]

D,

< (2n*'*)[expC,onTY 14)+ A exptd log JEa,, — (

asn - o . The lemma follows becaugg’? <n'’* andn™*/2 =n'4. Q.E.D.

Define

B(B)=n""2> X{[R(X/B) =R (X/B)] -

i=1
Note thatB(f) = E[{(£) —{(5,)] . The next lemma states thB{[) is nearly linear in a small

neighborhood off,. Let F(X'p) be the vector whose components érex;,g) .
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Lemma 7 For all g
[FOXB) - F (X' o) - Fx' (B~ Bo)|| < 0.0 *Cr.a?| B~ |

and

|B(8)-n'"?Qu (8- 5)| < <cah™i8- 8.

052 V2 X, IX; (B fi) ﬁ
i=1

where C; =0.5C3Cx .
Proof This result follows from a Taylor series expansion and Assumption 1. Q.E.D
Lemma 8 Let the sequence {J,} satisfy n™/2/5, - 0 as n - . Then there exists a
randomset A satisfying P(A;3) 21-a,3 With a,3 =0,(1) suchthat on A3, [b, = B||<J, .-

Proof Lemma 7 and Assumption 4 imply that

inf B -
ﬂ:Hﬁ_ﬂondn (ﬂ)

asn - o. By Lemmas 4 and & (f) is bounded in probability in every neighborhod £y.

Moreover, (8.1) implies thai¢ (,) - B(b,)|< C,n™'2. The lemma follows from this inequality

and monotonicity arguments. See Portnoy (1991) for details. Q.E.D.
. — — — n
Define 77, = -Q'¢ (Bo) =-n"""2Q ™D Xi& (Bo) -
Lemma 9 5.2, 9 N(O,l4).

Proof By Lemma 4,En, =0 and En, 7, =Z,,. Asymptotic normality follows from the

central limit theorem for sums of uniformly bounded random varialffie® Koenker and Bassett
(1978) for details. Q.E.D.

Proof of Proposition:1 By definition

n‘”zi Xi[1(Y, = X{B<0)~1/2]={ (B)+ B(B).

i=1

By Lemma 1,
¢ () + B(by)|| < 2.

Let g, satisfy n'/23, - 0 asn - . Then by Lemmas 6 and 7, on the random Agt
2(8)=¢(Bo)]|= (3, logn'? and [B(tn) ~n"'2Q, (b, - fo)| < Cxa’57n ™2 for all A with

1B~ Bo|< 3, Similarly, by Lemma 8lb, - 3| <d, on Ajs. Define Ay =A,,NA;. Then
P(Ay) 21-a,; —a,3, and onAy,
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¢ (00) = (Bo)]| < (&, logn)H'?

and
[B6,) ~2Q, b, - )] s Ca%en 2
Thus,

[¢(Bo) +112Qn 8, = Bo)| s Cin 2+ Gy logm) 2+ Ca h VB

By Assumption 4

-1
Cn
00

< Cgx , and hence

7200, = o) + Q¢ (B)| < Cox [ G2+ Cfdy logm M2+ Ca h V3, 7.
But 7,=-Q;7(8,). If &, satisfies J,<(ntlogn)’?, then on the setA,,
|20 = Bo) =12

than C,. Asymptotic normality follows from Lemma 9. Q.E.D.

< Cy(9,log n)l/2 with probability approaching 1, whefg, is slightly larger

8.2 Properties of Nonparametric Smoothers

Let W, be the matrix whos€, j) element isw; ,. Let| W] =sup, -

MeA[ 41A] -
Lemma 10(Horowitz and Spokoiny (2000))There exist constants C,;,, C,, C,; and
Cy, depending only on the constants in Assumption 4 such that for all hOH,

n n —
Zi:]_ ijlaijz,h SC\/Zh 1'
Proof See HS. Q.E.D.

8.3 Asymptotic Expansion of the Statisti§s

For everyBORY define

2
$(B)=> [Zw.,-,h[l(v,- —x;,BSO)—l/z]J
i= j=1

2
Z [ZWE],h[fj(ﬂ) +F(X;B) —1/2]} .

i=1 \j=1

25



Also define z;(B) =F;(X;B) - F;(X;B,). We use a matrix representation §(3). Let
Z(B), F(X'B), and z(B), respectively, be the vectors iR" with componentss; (B)

Ifj(X],B) ,andz;(B). LetW, be thenxn matrix whose(i, j) elementisw; . Then

S$.(B) = WHlEB) + E(x ) ~112][" = W& B) + F(X' ) -1/ 2+ 2B)]]
Under the null hypothesiss; (X 3) =1/2, so S,(8) =[W[(B) + z(ﬂ)]||2. The test statistic is
based onS,(b,). Lemma 11 enables us to obtain an asymptotic expansio8,ferS,(b,).

Define thenx n matricesA, =W W, and Mg = FX'(XFX') X

1/2

Lemma 11 Let &, satisfy d, < (n"tlogn)’? andn™/2/4, - 0 asn - w. Thereexist

a constant Cy and a random set A, satisfying P(A,,) 21-a,, with a,, =0,(1) such that on
Ay

<Cydt?h tlogn

S, ~M1e)eCa) + FOx o -2l

forall hOH.

Proof We prove this lemma under the null hypothesis only. The general case can be

considered similarly. For a8 such thal|8 - 3| < J,, Assumption 1 yields
(85)  |F(X{B)~F(Xif)|<Csad,,

. 2 2
whre C5 =CCy . We now bound the differenc@&i[&(8) + 2 B)]|” — W & B +4 B]||
uniformly overhOH and B with ||~ 3| < J,. Definesn,(B8) =W,é(B). Asin Lemma 4,

each element ofy,(3) satisfiesEn, ,(8) =0, Ef n(B)* < (1/4)2;_‘:1w,j2,h =g;, /4, and

EL (B ~ (B2 =Y W | (X 8) — Fi( X' Bo)|
=1

n
< Csafynzwﬁ,h =C520,8; -
=

As in Lemma 6, there exists a random 8gy} satifsying P(A5) 21-a,5 with Az =0,(1) such
that on Ays 177, (8) =17, (Bo) I Ce @ nad, logn )2, and

(8.6) 17.n(Bo)|< Cs(@ 1, logn)?
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for some constant§€; andC;, all hO%, all B such thal|8 - 5||<d,, and alli =1,...n. This
and (8.5) imply that orA,

MALECD) - &G < CEadr(AYlog n,

Mi(Bo)|| < Citr (A logn,

and

MLLE(Bo) + 2 B)|< Ciltr(A)log n*'2+ Can''?s,.
Now by the inequalit){||x||2 -| y||2 |<|x=y| {x-y[|+ 2|x|) and Lemma 10, the following holds
on A, for all B satisfying| 8- B[ < d,:

k(8 + 2B -kl o) + A BIY| < Coad)™dcdag) V2 +2Ctr( AYlog

(8.7) < Cg(ad,)?h tlogn.
By Proposition 1]b, - 3| < J, on the setA; satisfyingP(A,) =1-a,;. Therefore, on
A = AN Ays, inequality (8.7) holds wheg is replaced byp, . Also, Proposition 1 and

Assumption 1 imply that on the séy, ,
|F(XDy) = F (X' o) =M &(By)| < Coln logn),
whereC, =CyCyCr. Therefore, by Lemma 10,

AL 2(n) = MBI = AL F(X'ly) ~F(X'B) ~T & B9 |

Coa(d, logn)t'?
on A4, whereCy =CyC,,;. The proof is now completed similarly to (8.7). Q.E.D.

Lemma 11 implies that under the null hypothes$, can be approximated by

MLE(Bo) —WhI'IFg‘(,BO)”z. The second term in this expression comes from the pararamic

fit. The next lemma shows that the effect of this termasgmptotically negligible when

h,...—-0asn- o.

max

Lemma 12 Let h,, — 0 as n - . Then under the null hypothesis there exists a

randomset A, satisfying P(A,g) 21— 48,6 With a,5 =0,,(1) such that on A

Suph''?|S, - [\Whe % )| < s =0, O
hOH
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Proof By Lemma 11, it suffices to show that there exists a rargkim; satisfying

P(A;7) 21-a,7 with a,; =0,(1) suchthaton A,
1o = SUB NG =1 O (6 I < ke 8o ) <50 =0, .

This would follow from

3" R 2EMA(1 = TE)EBo)| = MEEBo) 7] = 0p0)

hOH

and

> Y Aar W1, = M) & Bo)|* ~Mh&(Bo)|[ 7T = 0p(0) -

hCH
The definition of&(3,) yields EE(B,)E(By) =1,/4. Sincelg is a projection operator iR"

onto ad -dimensional subspacé,(lMg)=d. This and Lemma 10 imply that

E[||V\/h<‘(,6’o)||2 ~Ma(1, -1 F)c‘(ﬁ’o)IIZ] =2Etr[W,M (B $( Bo Wl
= Etr[WLM £ &(50)$(Bo) TT WL
= (1/ A)tr (M, W)

<P tr(Mg) < C2d /4,
Similarly

Var[Mh&(Bo) [F = [MWh(1n =M )BT
=Var[&(Bo) (Mg Ay + AN ~Me ANE)E(So)]

< @2 (A + AN -MeANE P<C

whereC is a constant that depends only@p andd . Since’H is a geometric grid,

1/2 1/2
> W< cyhys - 0.
hOH

A similar result holds forZhDHh. The result of the lemma follows. Q.E.D.
The results of Lemmas 10 and 12 imply that under the null hypothesis ag on

(8.8) sup[Ty*=Tho [€Sh3= 0, (1,
hoH

where
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MAEB)|° - @1 4)> a2,
i=1

/
s,
8i=1 |

Tho =

8.4 Proof of Theorem 1

Relation (8.8) reduces the proof to considerisgp,, Tho. Tho IS the centered,

standardized quadratic forthvhé(ﬁo)nz, and é(f,) is a vector of independently and identically

distributed Bernoulli random variables with parameters 1/2 arahsnef zero. The distribution

of T, o does not depend on the unknown distributions ofghe in (1.1). The distribution of

SUpoy Tho is investigated in HS and Spokoiny (2000). Here, we briefly review the ssaies.

Let & be annx1 Gaussian random vector with zero mean and covariance nhatrix

- =112
Define T, o by centering and standardizivﬁ\glhfu . Thensupy, Ty o is close in distribution to
T =supy -I:h,O- Let f, be thel-a quantile of the distribution of . Thenf, = O(,/loglogn)

and T has a bounded, continuous densityi,at This and (8.8) imply Theorem 1. See HS and
Spokoiny (2000) for details.

8.5 Proofs of Theorems 2 and 3

The next proposition gives sufficient conditions for consistesficyhe adaptive, rate-

optimal test. Defing, =F (X/5,)-1/2. LetA be the vector irR" with elementsA,. Define

V9 2=yl > aln=tr(A)/8.

Proposition 2 Suppose there isa sequence {r,} suchthat r, — © asn - o and

n n
89) D D anlh; = (ty +r)Vyt
=1 j=1
j#i
for some hOH . Then

lim P(T >t;) 21-s,, =1-0,(1).

n- oo
Proof It suffices to show that for a givemOH, P(T, <t;)<S,4=0,(1) asn - o,

The asymptotic expansion from Lemma 11 reduces this condition to
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= MG (1, =M )E(Bo) +WhA —tr(A,) /4
Vi *

<ta S S :on(l)-

Now

ML (1 = TTE)E(Bo) +Wed| —tr (A,) /4

2 2 I R
=[MRA[ + M (1 =T )E(Bo)|” —tr (Ay) 4+ 28V, (1 =M )E (o )-
Note that under the alternative model, the elemén({g,) of the vectoré(3,) are independent

Bernoulli random variables with zero means and paramétexs,) =4, +1/2. By Lemma 2,

AWWL(In —ME)E(B)

>r./2|<e06/ g
AW, (1, =11 )|

as n - . Moreover, because the elements Mf satisfy |A; |[< 1/2 and |, -Tg is a
projection operator iR" , it follows that
n n 2 n
AV (1 = T < (07 4)tr (WG, )P = 284, )°.
Therefore, there exists a random gf satisfying P(A,g) 21-a,g with a,5 =0,(1) such that

on Ag, 2AWW, (I, =M E)E(By) < (1, N2V, *. As in the proof of Lemma 12, one can show
that

2 272 2
E| Wh (1 ~NR)EBI - EMREBIT | = 0 * #5197,

where s, =0,(1). This implies by the Cauchy-Schwartz inequality that

P 94010 M - B> ot < S 5

as n - o. Thus, there exists a random s&fy satisfying P(A,g) 21-a,9 with a,y =0,(1)
such that onAg,

V) k(1 =M & B I - EMbE B ] < i 4

Since E& (5,)% =1/4- 47, it follows that

n n

EMLEBOI =ED" D" anéi (Bo)E (Bo) = Za,.h(lm A?)

i=1 j=1

so that
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n
EMLECBo)|” — @/ 4 ()= a pld”
i=1
Since, in addition|\WhA| = Zinzl Z?:laij’hAiAj , we conclude that oy, N Ang

()7 (1 =R E8) +Wh]” ~tr( A 4] =1,

n n

Z(Vh*)_lz Za”’hA,AJ _ta —rn/\/2_—rn/4
=

>(3/4-1A/2)y,> 0

for sufficiently largen,and the proposition follows. Q.E.D.

Proof of Theorem:2 Define A as in Proposition 2. Set, = CnY2 loglogn for some

finite C>0. The definition of 5, (eq. 3.1) implies that

D XR(XiBo) =1/ 2]1= " X{ FL X{ By~ 1( X)] ~F(0)] =0 .

i=1 i=1

Under the local alternativen(x) = X' 5 + p,9(X) , this means that

D XARIX{ By = X{ B~ pad X)] =)} =0 .

i=1

Assumptions 1 and 4(iv) and a Taylor series expansion yield

X OB~ Xi B~ Prg (X))

i=1

=|XFLX(Bo = B) — PG| < NPrSH7

wheres,; =0,(1). This and Assumption 4(iii) imply that

Bo = B~ P(XFX)FXFG| < pysig,

where s,g = CyxSh7 =05(1). But 4 =R (X{5y) ~1/2=F[X{By— X{Bo - p,9(X;)] under the

local alternative. Therefore,

o+ poFL2 (XFA) XFG -G Hz <nps.

with s, =0,(1) or, equivalently, ||A—,on7-"l'lg||2<n,oﬁsng. As in HS, one can show that

hmax — O and continuity of f;(0) and g imply that W, 7T1G|/|FTG| -1 asn - . This
result and (4.2) imply that for sufficiently large
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||A||2 > 0.5|7T1 g||2 >CJd loglogn,
whered >0 is as in (4.2). By Lemma 1@,,/h< (V;*)? <G,/ h for finite constantsC,; and
Cy,. Therefore, settinch=h,,, and r, =(Iog|ogn)1’4 and noting thatt, =O(1/Iog Iogn)

yields (t, +r,)Vy =Q(loglogn). It follows that (8.9) holds for all sufficiently larg€. The

theorem now follows from Proposition 2. Q.E.D.

Proof of Theorem 31t is straightforward to see that for a continudus S(s)

s 2

D a ph
e
n n

D D ainbib,

i=1 j=1

=0(1).

Moreover,
(8.10) [WhA[2Cgy A -Coen®'?h®

for constantECy andCg, that depend only on the desigK;: i =1,...,n}. See HS (proof of

Theorem 4). Now s, =t, +\/2 loglogn =O(\/ loglogn ). Defineh to be the element dft

)—2/(4s+d -1) -2 /(4s+d-1)
n

that is closest from below tn/t . Since’H is a geometric gridn< (n/t,)

and h= (n/t,)2/(s*4"D " By | emma 10(V;,*) " < C;?hY'2 for some fixed constar@, . Now
the inequalityn™'2|A = CgX(C,, + Gy )(n/t,)” 2 ®**4~ D and (8.10) yield
— 2 — — —
Vi) "R 2 Gy 1) HETTRC g A - Con ') P2t

Therefore,(V,*) ‘1|[\NhA||2 -t, -~ asn - o, as is required to prove the theorem. Q.E.D.
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TABLE 1: RESULTSOF MONTE CARLO EXPERIMENTS"

Probability of Rejecting
Null Hypothesis

Distribution Zheng's F Rate-Optimal
n of £ T Test Test Test

Null Hypothesis Is True

100 Normal 0.047 0.050 0.0 63
Mixture 0.048 0.050 0.0 56
Extr. Val. 0.048 0.051 0.0 57

250 Normal 0.048 0.052 0.0 55
Mixture 0.050 0.048 0.0 49
Extr. Val. 0.056 0.050 0.0 51

Null Hypothesis Is False

100 Normal 1.0 0.100 0.207 0.7 94
Mixture 1.0 0.120 0.276 0.6 74
Extr.Val. 1.0 0.090 0.193 0.5 30
Normal 0.25 0.162 0.131 0.6 08
Mixture 0.25 0.204 0.117 0.5 52
Extr. Val 0.25 0.240 0.162 0.5 34

250 Normal 1.0 0.776 0.460 0.9 80
Mixture 1.0 0.600 0.462 0.9 58
Extr.vVal. 1.0 0490 0.340 0.7 96
Normal 0.25 0.516 0.172 0.8 68
Mixture 0.25 0.300 0.144 0.7 96
Extr. Val 0.25 0.446 0.130 0.8 02

! The differences between empirical and nominal rejection pratesbiunder H are not

significant at the 0.05 level. Under,Hhe differences between the rejection probabilities of the
rate-optimal and Zheng's test are significant at the 0.01 level.
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