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ABSTRACT 
 

 
 This paper is concerned with testing the hypothesis that a conditional median function is 
linear against a nonparametric alternative with unknown smoothness.  We develop a test that is 
uniformly consistent against alternatives whose distance from the linear model converges to zero 
at the fastest possible rate.  The test does not require knowledge of the distribution of the model’s 
random noise component, and it permits conditional heteroskedasticity of unknown form.  The 
numerical performance and usefulness of the test are illustrated by the results of Monte Carlo 
experiments and an empirical example. 
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AN ADAPTIVE, RATE-OPTIMAL TEST OF LINEARITY FOR MEDIAN REGRESSION 
MODELS 

1.  INTRODUCTION 

 This paper is concerned with testing a linear median-regression model against a 

nonparametric alternative.  We develop a test that does not require knowledge of the smoothness 

of the alternative model, achieves the optimal rate of testing uniformly over smooth alternatives, 

and has other desirable power properties that are not shared by existing tests.  An important 

feature of the test is that it does not require knowledge of the distribution of the model’s random 

noise component, and it permits heteroskedasticity of unknown form. 

 We consider the model 

(1.1) ( ) ; 1,2,3,...i i iY m X iε= + = , 

where iY ∈ℝ  is a random variable; { } d
iX ∈ℝ  is a sequence of distinct, non-stochastic, design 

points; m  is an unknown function; and { }iε  is a sequence of unobserved, independently but not 

necessarily identically distributed random variables whose medians are zero.  The distributions of 

the iε ’s satisfy mild regularity conditions but are otherwise unknown.  We test the null 

hypothesis, 0H , that there is a constant dβ ∈ℝ  such that ( )i im X X β′=  for all i. iX ′  denotes the 

transpose of the column vector iX .  The alternative hypothesis, 1H , is that there is no β  such 

that ( )i im X X β′=  for all i.  The test can be extended to models in which quantile( ) 0iε =  for a 

quantile other than the median, but only the median is treated in this paper. We set the first 

component of each iX  equal to 1.  Thus, iX  consists of 1d −  “real” variables, and the first 

component of β  is an intercept. 

 Linear quantile regression models are often used in applications.  See Buchinsky (1994, 

1998), Chamberlain (1994), Koenker and Geling (1999), Manning et al. (1995), and Poterba and 

Rueben (1994), among others.  In contrast to mean regression models, quantile regression models 

do not require iε  to have moments, are robust to outlying values of iY , and permit exploration of 

the entire conditional distribution of the dependent variable.  However, there has been little 

research on testing the hypothesis of linearity.  To our knowledge, only Zheng (1998) and Bierens 

and Ginther (2000) have developed tests of parametric quantile regression models against 

nonparametric alternatives.  In contrast, there is a large literature on testing mean regression 

models against nonparametric alternatives.  See, for example, Aït-Sahalia, et al. (1994), Andrews 

(1997), Bierens (1982, 1990), Bierens and Ploberger (1997), De Jong (1996), Eubank and 

Spiegelman (1990), Fan and Li (1996), Gozalo (1993), Härdle and Mammen (1993), Hart (1997), 
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Hong and White (1995), Horowitz and Spokoiny (2001), Li and Wang (1998), Stute (1997), 

Whang and Andrews (1993), Wooldridge (1992), Yatchew (1992), and Zheng (1996).   

 The objective of this paper is to develop a test that has good theoretical and practical 

power properties.  The power of a test is often investigated by deriving the asymptotic probability 

that the test rejects a false 0H  against a sequence of local alternative models.  When 0H  is a 

linear median regression model, the form of the local alternative models is 

(1.2) ( ) ( )n nm x x g xβ ρ′= +  

for some dβ ∈ℝ  and function g, where n  is the sample size, ρn is a real number, and 0nρ →  as 

n → ∞.  In (1.2), the distance between the null and alternative hypotheses converges to zero at the 

rate of nρ .  See Section 4.3 for a more detailed explanation.  The test of Bierens and Ginther 

(2000) has non-trivial power (that is, power exceeding the probability that a correct 0H  is 

rejected) against local alternatives for which 1/ 2
n nρ −∝ .  Zheng’s (1998) test has non-trivial 

power against local alternatives for which 1/ 2
n n νρ − +∝  for any 0ν > .  However, as is explained 

in Horowitz and Spokoiny (2001) (hereinafter HS), the class of alternative models (1.2) is too 

small because it requires that 2 ( ) / 0nm x x x′∂ ∂ ∂ →  as n → ∞ .  A less restrictive assumption is 

that nm  belongs to a class of smooth functions.  It follows from Ingster (1993) that no test of 0H  

can have non-trivial power uniformly over reasonable classes of smooth functions (e.g., Hölder 

classes) whose distance from the null hypothesis converges to zero at the rate 1/ 2n−  or 1/ 2n ν− +  

for any sufficiently small 0ν > .  For any given test, each n , and all sufficiently small 0ν > , 

there exists a smooth alternative 1/ 2( ) ( )nm x x n g xνβ − +′= +  against which the test’s power equals 

the probability of rejecting a correct 0H .  The practical significance of this fact is that any test of 

0H  for which 1/ 2
n n νρ − +∝  for sufficiently small 0ν >  has low finite-sample power against 

certain classes of smooth alternatives.  Section 5 presents examples.   

 Here, as in HS, we deal with this problem by letting the alternative hypothesis consist of 

a class of differentiable functions.  Define the null-hypothesis set to be the set of models for 

which ( )i im X X β′=  for some dβ ∈ℝ  and all 1,...,i n= .  We assume that for each n , the 

alternative models belong to a Hölder class, S , of differentiable functions on 1d −
ℝ  and are 

separated from the null-hypothesis set by some distance.  In an exact finite-sample treatment of 

power under this approach, the quality of a test for any given n  is measured by the minimum 

distance, nr , between the null hypothesis and the alternative functions from S  that is necessary 
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to achieve a specified level of power.  Specifically, let ( )mρ  be the distance between a function 

m∈S  and the null-hypothesis set.  (See Section 4.4 for an example of ρ .)  Let 1α  be the 

specified power.  Then nr  is the smallest r  such that 

0 1
, ( )
inf (  is rejected against )

m m r
H m

ρ
α

∈ ≥
≥P

S
. 

An optimal test minimizes nr  for the given 1α  and n  while maintaining a specified probability of 

rejecting H0 when it is true . 

 Unfortunately, an exact finite-sample treatment is difficult to implement, and tests that 

are optimal in finite samples have been found only for a few examples in which the iε ’s are 

identically distributed with a known distribution.  Therefore, to make progress under assumptions 

that are less restrictive and more relevant to applications, we use an asymptotic approach.  In this 

approach, we let 0nr → as n → ∞  at the fastest possible rate that permits the specified power to 

be achieved uniformly over sets { : ( ) }n nB m m Crρ= ∈ ≥S  for some finite constant C .  This rate 

is called the optimal rate of testing.  At the optimal rate of testing, for any 1 1α <  there exists a 

finite 0C >  such that 

(1.3) 0 1lim inf (  is rejected against )
nn m B

H m α
→∞ ∈

≥P . 

Moreover, the optimal rate of testing is the fastest rate at which rn can approach zero while 

maintaining (1.3).  The optimal rate of testing for Hölder, Sobolev, or Besov classes of functions 

that have bounded derivatives of known order s ≥ (d - 1)/4 is n-2s/(4s + d - 1) (Ingster 1982, 1993a, 

1993b, 1993c; Guerre and Lavergne 1999).  The optimal rate of testing 

is( )2 /(4 1)1 log log
s s d

n n
+ −−  if ( 1) / 4s d≥ −  is unknown (Spokoiny 1996).  If ( 1) / 4s d< − , then 

the optimal rate of testing is 1/ 4n−  (Guerre and Lavergne 1999). 

 This paper describes a test of 0H  that has the optimal rate of testing uniformly over 

Hölder classes and does not require knowledge of s or the (possibly non-identical) distributions of 

the iε ’s in (1.1).  Indeed, we prove that our test satisfies (1.3) with 1 1α = .  This property is called 

uniform consistency at the optimal rate of testing.  The test is called adaptive and rate-optimal 

because it adapts to the unknown s and has the optimal rate of testing for the case of an unknown 

s.  HS developed an adaptive, rate-optimal test of a parametric mean regression model against a 

nonparametric alternative.  Fan and Huang (2000) developed an adaptive, rate-optimal test of a 

normal, linear mean-regression model.  See, also, Ledwina (1994) and Fan (1996).  This paper 

extends the test of HS to median regression models.  Although there are similarities between the 
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test presented here and that of HS, the properties of median and mean regression models are 

sufficiently different to make the extension non-trivial and to require separate treatments of 

median and mean regressions.   

 A test that achieves the optimal rate of testing has the advantage of being sensitive to 

alternatives uniformly over a smoothness class whose distance from the null hypothesis 

converges to zero at the fastest possible rate.  Such a class contains sequences of alternative 

models against which the tests of Bierens and Ginther (2000) and Zheng (1998) are inconsistent.  

In practice, this means that there are smooth alternatives against which these tests have much 

lower finite-sample power than does a test that achieves the optimal rate of testing.  In addition, 

the optimality properties of the test that we present hold uniformly over designs { }iX  and 

distributions of the iε ’s that satisfy mild regularity conditions.  Similarly, the differences between 

the exact finite-sample and asymptotic probabilities that our test rejects H0 converge to zero 

uniformly over designs and distributions of the iε .  Thus, in large samples, the power of the test 

and the accuracy of the asymptotic approximations are relatively insensitive to the design and the 

possibly heterogeneous distributions of the iε ’s. 

 Since our theoretical results are asymptotic, the desirable power properties of our test do 

not necessarily hold when n  is small.  In particular, when n  is small, there may be smooth 

alternatives that cannot be detected by our test or any other test.  This happens, for example, if the 

null and alternative models differ only between design points.  However, we require the distance 

between design points to decrease to zero as n  increases (see Section 4.1).  This enables our test 

to detect any smooth alternative model when n  is sufficiently large.  The uniform consistency 

property of the test insures that the same “sufficiently large” n  applies to all smooth alternatives. 

 A test that achieves the optimal rate of testing uniformly over a smoothness class is 

necessarily oriented toward the alternatives within the class that are hardest to detect.  Such a test 

may have low power against functions that are less extreme.  It turns out that our test 

automatically protects against this possibility.  Specifically, we show that our test is consistent 

against alternatives of the form (1.2) whenever ρn Cn n≥ −1 2/ log log  for some finite C > 0.  

Consistency of the tests of Bierens and Ginther (2000) and Zheng (1998) against alternatives of 

the form (1.2) requires ρn → 0 more slowly than 1/ 2n− .  Thus, in terms of consistency against 

such alternatives, there is essentially no penalty paid for the adaptiveness and rate optimality of 

our test. 
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 Section 2 presents an empirical example that helps to motivate our test.  The test is 

described in Section 3.  Theorems giving properties of the test under 0H  and various alternative 

hypotheses are presented in Section 4.  Section 5 presents the results of a Monte Carlo 

investigation of the test’s finite-sample behavior.  Section 6 continues the empirical example of 

Section 2.  Section 7 presents concluding comments.  The proofs of theorems are in the 

Appendix, which is Section 8.   

2.  AN EMPIRICAL EXAMPLE 

 Buchinsky (1998) used data from the 1993 Current Population Survey (CPS) to estimate 

a median regression model of the relation between the weekly wages of male workers in the U.S. 

and a variety of covariates.  The model is 

 2
0 1 2logW X X Z Uβ β β γ ′= + + + + , 

where W is the weekly wage, X is years of labor-force experience, and Z is a vector of covariates 

that includes years of education and dummy variables indicating the worker’s race, the region of 

the country in which the worker is employed, whether the worker is employed in a metropolitan 

area, and whether employment is full time and for the full year.  U is an unobserved random 

variable whose median conditional on X  and Z  is 0, the β ’s are scalar coefficients, and γ  is a 

vector of coefficients.  In this example, we investigate the relation between logW  and X  for 

white, full-time, full-year, workers with 12 years of education who were employed in a 

metropolitan area in the north central region of the U.S.  Thus, Z is fixed in the example, and the 

model is  

(2.1) 2
0 1 2logW X X Uβ β β= + + + , 

where median( | )U X x=  = 0 almost surely.  The 1993 CPS contains 1656 observations of 

workers with the specified characteristics.  The β ’s were estimated by LAD. 

 The dashed and solid lines in Figure 1 show the parametrically and nonparametrically 

estimated conditional median functions.  The parametric estimate (dashed line) is 

2
0 1 2b b X b X+ + , where jb  is the LAD estimate of jβ  (j = 0, 1, 2).  The nonparametric estimate 

(solid line) was obtained by local linear median regression (Chaudhuri 1991).  There are obvious 

differences between the parametric and nonparametric estimates, which suggests that the 

parametric model is misspecified.  However, the graph does not indicate whether this apparent 

misspecification is an artifact of random sampling error.  A specification test is needed to make 

this distinction.  As will be discussed in Section 6, our test rejects model (2.1) at the 0.05 level.  
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 We also estimated a version of (2.1) that is augmented by adding 3X  to the specification, 

thereby producing the cubic model 

(2.2) 2 3
0 1 2 3logW X X X Uβ β β β= + + + + . 

The dotted line in Figure 1 shows the conditional median function estimated by applying LAD to 

(2.2).  The fit of (2.2) is much better than that of (2.1).  Our test does not reject the cubic model. 

3.  THE TEST 

 Section 3.1 presents an informal description of the test statistic.  Section 3.2 describes a 

method for obtaining critical values for the test.   

 3.1  The Test Statistic 

 We assume that 2d ≥  and that the first component of iX  is 1 1iX = .  If 0H  is true, then 

i i iY X β ε′= +  and ( 0) 0.5iε ≤ =P  for each 1,2,...i =  and some dβ ∈ℝ .  Let nb  denote the least 

absolute deviations (LAD) estimator of β .  Thus, 

1

arg min | |
d

n

n i i
b

i

b Y X b
∈ =

′= −∑
ℝ

. 

If 0H  is true, then p
nb β→  as n → ∞  (Koenker and Bassett 1978).  If 0H  is false, then β  is 

undefined.  However, it follows from Proposition 1 in the Appendix that 1/ 2* ( )n pb O nβ −= + , 

where *β  solves 

(3.1) 
1

{ [ ( )] 1/ 2} 0
n

i i i i
i

X X b m Xε
=

′≤ − − =∑ P . 

Define 0β β=  if 0H  is true, 0 *β β=  if 0H  is false, and 0( 0) 1/ 2i i iY Xξ β= − ≤ −1 , where 1  is 

the indicator function.  If H0 is false, then 0β  depends on n  and the design { }iX .  Moreover, 

0iX β′  can be interpreted as the best linear approximation to ( )im X .  If H0 is true, then 0β  is 

independent of both n  and the design. 

Under 0H , the iξ ’s are Bernoulli random variables with ( ) 0iξ =E .  If 0H  is false, then 

0( ) [ ( )] 1/ 2 0i i i iX m Xξ ε β′= ≤ − − ≠E P  for at least one i.  Thus, a test of 0H  is equivalent to a 

test of 0H′ : ( ) 0iξ =E  for all i.  If 0β  were known, such a test could be based on the distance 

from 0 of a nonparametric estimator of the vector 1[ ( ),..., ( )]nξ ξ ′E E .  We obtain a feasible test by 

replacing 0β  with nb .  Define ˆ ( 0) 1/ 2i i i nY X bξ ≡ − ≤ −1 .  Our test is based on ̂{ : 1,..., }i i nξ = . 
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To obtain the test statistic, suppose for the moment that 0β  and, therefore, the iξ ’s were 

known.  Let K  denote a kernel function (in the sense of nonparametric density estimation) of a 

1d −  dimensional argument.  For 1dv −∈ℝ  and bandwidth 0h > , let ( ) ( / )hK v K v h= .  For 

, 1,...,i j n= , define  

,

1

( )

( )

h i j
ij h n

h i k
k

K X X
w

K X X
=

−
=

−∑
 

and , , ,1

n
ij h ki h kj hk

a w w
=

=∑ .  Define  

(3.2) 

2

, ,
1 1 1 1

*
n n n n

h ij h j ij h i j
i j i j

S w aξ ξ ξ
= = = =

= =∑∑ ∑ ∑ . 

Observe that ,1

n
ij h jj

w ξ
=∑  is a kernel nonparametric estimator of ( )iξE .  Therefore, *hS  is the 

2ℓ  distance from zero of the kernel estimator of 1[ ( ),..., ( )]nξ ξ ′E E .  If the iξ ’s were observable, 

then a test of 0H  could be based on the standardized version of *hS .  Because ( ) 0iξ =E  under 

0H , 2 1/ 4iξ = , and iξ  is independent of jξ  if i j≠ , the standardized *hS  is 

(3.3) 
*

* h h
h

h

S N
T

V

−
= , 

where  

(3.4) ,
1

(1/ 4)
n

h ii h
i

N a
=

= ∑ , 

and 

(3.5) 

1/ 2

2
,

1 1

(1/8)
n n

h ij h
i j

j i

V a
= =

≠

 
 

=  
 
  

∑ ∑ . 

HS showed that an adaptive, rate-optimal test of 0H  can be obtained by rejecting 0H  if the 

maximum of *hT  over a suitable set of bandwidths h is too large.  The test proposed here uses the 

same idea and is obtained by replacing the unknown variable iξ  with îξ  in (3.2)-(3.5).   

 To this end, define ( ) /h h h hT S N V= − , where 

(3.6) ,
1 1

ˆ ˆ
n n

h ij h i j
i j

S a ξ ξ
= =

=∑ ∑ . 
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We evaluate hT  at each h in a set of bandwidths and reject 0H  if hT  is too large for any 

bandwidth in this set.  The set of bandwidths is /[2( 1)]
min max{ 2 : , 0,1,2,...}k dh h h h k−= = ≤ =H , 

where maxh  and minh  are non-stochastic constants satisfying conditions that are stated in Section 

4.1.  Our test is based on the statistic 

max h
h

T T
∈

=
H

. 

The test rejects 0H  at the (asymptotic) α  level if T  exceeds the critical value that is described in 

Section 3.2. 

 3.2  Obtaining the Critical Value 

The exact α-level critical value for T is the 1 - α quantile of the finite-sample distribution 

of T.  This critical value cannot be evaluated in applications because the finite-sample distribution 

of the îξ ’s is unknown.  However, it turns out that the distribution of T  under 0H  depends only 

weakly on β  and the distribution of the iε ’s in (1.1), and this dependence vanishes as the sample 

size increases.  This is true even if the iε ’s are not identically distributed.  We explain this result 

intuitively below and prove it in the Appendix; see Lemma 12 and the proof of Theorem 1.  

Therefore, a consistent estimator of the α -level critical value can be obtained as the 1 α−  

quantile of the distribution of T  that is induced by the model * *i i n iY X b ε′= + , where *iε  is 

sampled from a convenient distribution.  We recommend sampling *iε  from the empirical 

distribution of the residuals (EDR) of the estimated null-hypothesis model.  This sampling 

procedure is easy to implement, a natural choice if the iε ’s are identically distributed, and (as has 

just been explained) valid in large samples even if the iε ’s are non-identically distributed.  The 

i ’th residual is i i nY X b− .  Section 6 presents Monte Carlo evidence on the finite-sample 

performance of the test with this distribution of *iε .   

The EDR does not satisfy Assumption 1 of Section 4, which requires *iε  to have an 

absolutely continuous distribution with a continuous density.  However, under our assumptions, 

the EDR approximates an absolutely continuous distribution with an error that converges to zero 

at the rate 1/ 2n− .  Consequently, the difference between the results obtained with the EDR and 

with an absolutely continuous distribution vanishes as n → ∞ . 

 We now explain intuitively why the distribution of T  under 0H  depends only weakly on 

β  and the distribution of the iε ’s.  Under 0H , the random variables ( 0) 1/ 2i i iY Xξ β= − ≤ −1  
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are independently and identically Bernoulli distributed with ( 1/ 2) 1/ 2iξ = ± =P .  This is true 

regardless of the distributions of the iε ’s or whether they are identically distributed.  Therefore, 

under 0H  the distribution of *hT  in (3.3) does not depend on β  or the distribution of the iε ’s 

and can be approximated with any precision by Monte Carlo simulation.  The statistic hT  is 

obtained from *hT  by replacing the iξ ’s with the empirical analogs ˆ ( 0) 1/ 2i i i nY X bξ = − ≤ −1 .  It 

is proved in Proposition 1 of the appendix that 1/ 2( )n pb O nβ −− =  under 0H .  Therefore, the 

difference between hT  and *hT  is small uniformly over h∈H  if n  is large.  See Lemma 12 of 

the appendix.  Consequently, the distribution of T  under H0 depends on β  the distributions of 

the iε ’s only weakly through nb , and this dependence vanishes as n → ∞ . 

The recommended estimator of the critical value can be computed with any desired 

accuracy by using the following simulation procedure: 

 1.  For each i = 1, …, n, generate * *i i n iY X b ε′= + , where *iε  is sampled randomly from 

the residuals, i i nY X b′− , of the estimated null-hypothesis model.  

 2.  Use the data set {Yi*, Xi:  i = 1, …, n} to estimate β .  Denote the resulting estimate 

by n̂b .  Compute the statistic ̂T  that is obtained by replacing ̂ ( 1,..., )i i nξ =  with 

ˆ( * 0) 1/ 2i i nY X b− ≤ −1  in the formula for T . 

 3.  Estimate tα by the 1 - α quantile of the empirical distribution of T̂  that is obtained by 

repeating steps 1-2 many times. 

4.  THE MAIN RESULTS 

 This section presents theorems that give the behavior of the proposed test under the null 

hypothesis, local alternatives, and smooth alternatives that are contained in a Hölder class.  

Section 4.1 states our assumptions.  The assumptions apply to any sample size, n.  The results 

stated in Sections 4.2-4.4 hold uniformly over models, designs, and distributions of the iε ’s that 

satisfy the assumptions.  Section 4.2 gives the behavior of the test under 0H . Sections 4.3 and 

4.4, respectively, give the test’s behavior under the sequence of local alternative hypotheses (1.2) 

and under smooth alternatives that are contained in a Hölder class whose distance from the null 

hypothesis converges to zero at the optimal rate of testing.  The adaptive, rate-optimal property of 

the test is established in Section 4.4. 
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 4.1  Assumptions 

 Our results are obtained under the assumptions stated in this section.   Let V  denote the 

Euclidean norm of the vector V .  If D  is a q q×  matrix, define 

, 0
sup

qv v

Dv
D

v∞
∈ ≠

=
ℝ

. 

For every dx∈ℝ  and every h > 0, define Mh(x) as the number of elements in the set 

{ : }X X x hi i − ≤ .  Define ( ) ( )i iF u uε≡ ≤P . 

 Assumption 1 (Observations):  The observations { : 1,2,...}iY i =  in (1.1) are independent.  

Each cumulative distribution function iF  is absolutely continuous with respect to Lebesgue 

measure with a continuously differentiable density function if . There are finite constants 

0fC > , FC  and a  such that (0)i ff C≥ , ( )i Ff u aC≤  and 2| ( ) |i Ff u a C′ ≤  for all , 1,...,i j n=  

and u.  Moreover, 3(0) (0)i j i jf f C X X− ≤ −  for some constant 3C < ∞  and all 1,...,i n= . 

 Assumption 2 (Kernel):  K  is continuously differentiable, non-negative, symmetrical 

about the origin, and supported on 1[ 1,1]d −− .  Moreover, (0) 1K =  and ( )K v  is a strictly  

decreasing function of v . 

 Assumption 3 (Bandwidths): The quantities minh  and maxh  satisfy min maxh h< , 

1/ 2
min hh C n γ− +≥ , and 1

max (log log )Hh C n −=  for  finite constants 0γ > , 0hC > , and 0HC > . 

 Assumption 4 (Design):  (i) The design points { : 1,..., }iX i n=  are non-stochastic.  The 

first component of each iX  is 1 1iX = .  (ii) There are positive constants 1XC  and 2XC  such that 

for all h∈H  and all i = 1, …, n, 1 1
1 2( )d d

X h i XC nh M X C nh− −≤ ≤ .  (iii) There are finite 

constants XC  and XXC  such that  i XX C≤  for all i and 
1

1
1

(0)
n

i i i XXi
n f X X C

−
−

=
∞

 ′ ≤
  ∑ .  

(iv) 
0

1
0: 1

inf | [ ( )] [ ( )] |
n

i i i i i ib b i
n F X b m X F X m X Cβ δ β δ−

− > =
′ ′− − − >∑  for some constant C  and 

each 0δ > . 

Section 5.2 describes a method for choosing minh  and maxh  in applications.  Assumption 

4(ii) is satisfied with probability approaching 1 as n → ∞  if Assumption 3 holds and components 

2,...,d  of { }iX  are sampled from a distribution that has bounded support and a density with 

respect to Lebesgue measure that is bounded away from zero on its support.  Therefore, our 
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results hold conditionally on { }iX  that are generated this way.  However, we do not require { }iX  

to be sampled from a distribution.  Assumption 4(iv) is an identification condition.  It excludes 

perfectly collinear designs and the possibility that ( )iF u  is constant in a neighborhood of 

0 ( )i iu X m Xβ= −  for every 1,2,...i = .  It is easy to verify that a local version of 4(iv) (for b  

satisfying 0 1bδ β δ≤ − ≤  with sufficiently small δ  and 1δ δ> ) follows from Assumptions 1 

and 4(iii). 

 4.2  Behavior of the Test Statistic under the Null Hypothesis 

 The null hypothesis, 0H , is that ( 0) 1/ 2i iY X β′− ≤ =P  for all i and some dβ ∈ℝ .  Let 

tα  be the α -level critical value that is that is induced by the model * *i i n iY X b ε′= +  described in 

Section 3.2.  The main result on the behavior of T under 0H  is that tα  is an asymptotically 

correct α -level critical value.  Moreover, tα  is an approximately correct finite-sample critical 

value when n  is large.  The approximation error converges to zero as n → ∞  and depends only 

on the constants in Assumptions 1-4.  It does not depend on β , the design, or the distributions of 

the iε ’s, provided that these satisfy Assumptions 1-4.  This result is established by the following 

theorem. 

 Theorem 1:  Let 0H  be true.  Then there is a sequence of positive constants 1{ }nω  such 

that 1 0nω →  monotonically as n → ∞  and  

 1( ) nT tα α ω> − ≤P  

for all linear models (1.1) that satisfy Assumptions 1-4.  The sequence 1{ }nω  depends only on the 

constants in Assumptions 1-4. 

 4.3  Power against a Sequence of Local Alternatives 

This section establishes the consistency of our test under local alternatives of the form 

(1.2) with ρn Cn n≥ −1 2/ log log  for some constant C > 0.  Normalize g  so that  

(4.1) 
2 2

1

1
| ( ) | 1

n

i
i

g g X
n =

≡ ≥∑ . 

This normalization depends on the design and insures that there are “enough” design points 

within the support of g .  Let X  be the d n×  matrix whose i’th column is iX , F  be the n n×  

diagonal matrix whose (i,i) element is (0)if , and G  be the 1n ×  vector whose i’th component is 
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( )ig X .  Let nI  be the n n×  identity matrix.  Define the n n×  matrix 1( )n
−′ ′Π = −I X XFX XF . 

If the iε ’s are iid, then Π  is the projection operator into the orthogonal complement of the space 

spanned by the iX ’s.  Assume that for all sufficiently large n and some 0δ > , 

(4.2) 
22 1v n δ−≡ Π ≥G . 

If the iε ’s are iid, then (4.2) states G  has a non-zero projection into the orthogonal complement 

of the space spanned by the iX ’s.  Conditions (4.1) and (4.2) insure that the distance between the 

null hypothesis and the sequence of alternative models,  

1/ 2
21

1

inf ( )
d

n

i i n i
b

i

n X b X g Xβ ρ−

∈ =

 
′ ′− −  

 
∑

ℝ
, 

converges to 0 at the rate of nρ  rather than a faster rate.  The following theorem establishes 

consistency of our test under a sequence of local alternatives.  

 Theorem 2:  Let Assumptions 1-4 hold.  Let (1.2) hold with ρn Cn n≥ −1 2/ log log   and 

g satisfying (4.1)-(4.2).  There exists a constant *C < ∞ , depending on g , δ , and the constants 

in Assumptions 1-4, and a sequence of constants 2{ }nω  such that 2 0nω →  monotonically as 

n → ∞  and  

2( ) 1 nT tα ω> ≥ −P  

whenever *C C≥ .   The sequence 2{ }nω  depends only on the constants in Assumptions 1-4. 

 This result holds uniformly over β , the design { }iX , and the possibly heterogeneous 

distributions of the iε ’s, but it is not uniform over “directions” g  of departure from H0.  

Theorem 2 is useful because, as was explained in Section 1, it insures that when n  is large, our 

test has high power against alternatives that are less extreme than the ones that determine the 

optimal uniform rate of testing.   

 4.4  Power against a Smooth Alternative 

 This section gives conditions under which our test is consistent uniformly over 

alternatives in a Hölder smoothness class whose distance from the class of linear conditional 

median functions converges to zero at the fastest possible rate.  The distance between the null-

hypothesis set and the conditional median function ( )m x  can be measured by 

1/ 2
1 2

1
1

( ) inf | ( ) |
d

n

i i
b

i

m n m X X bρ −

∈ =

 
′= − 

  
∑

ℝ
. 
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However, it is more convenient to work with another distance function that we define by using 

the functions 0( ) [ ( )]i iH x F x m xβ′= − , where 0β  is as defined in (3.1).  Under H0, ( ) 1/ 2iH x =  

for all x .  Therefore, we can measure the distance between the null-hypothesis set and ( )m x  by  

1/ 2
1 2

2
1

( ) | ( ) 1/ 2 |
n

i i
i

H n H Xρ −

=

 
= − 
  
∑ , 

where H  refers to the vector of functions 1( ,..., )nH H .  In what follows, we will be interested in 

sets of functions 1( ,..., )nH H  such that ( )2 /(4 1)1
2( ) log log

s s d

aH C n nρ
+ −−≥  for some constant 

aC < ∞ .  One can easily check that when this condition and Assumptions 1-4 hold, then 

( )2 /(4 1)1
1( ) log log

s s d

bm C n nρ
+ −−≥  for some bC < ∞  and that 1ρ  and 2ρ  give the same rate of 

convergence of the distance between the null and alternative hypotheses.   

Let j = (j2, …, jd), where j2, …, jd ≥ 0 are integers, be a multi-index.  Define 

2
| |

d
kk

j j
=

=∑  and 

 
1

| |

2

( )
( )

... d

j
j i

i jj
d

H x
D H x

x x

∂=
∂ ∂

 

whenever the derivative exists.  Define the Hölder norm 

 
,

:| | | |

sup | ( ) |
i X

j
i iH s

x x C j s

H D H x
≤ ≤

= ∑ . 

The smoothness classes that we consider consist of functions 1( ,..., ) ( )n nH H s∈ ≡S  

1 ,
{ ,..., : for all 1,..., }n i FH s
H H H C i n≤ =  for some s ≥ max[2, (d - 1)/4] and CF < ∞.  

Theorem 3 states that our test is consistent uniformly over the sets  

(4.3) ( ){ }2 /(4 1)1
1 2,..., ( ) : ( ) log log

s s d

n n n aH H s H C n nρ
+ −−≡ ∈ ≥B S  

for some s ≥ max[2, (d – 1)/4] and all sufficiently large Ca < ∞.  If 1( ,..., )n nH H ∈B , then m  

belongs to a Hölder class of order s and ( )2 /(4 1)1
1( ) log log

s s d

bm C n nρ
+ −−≥  for some bC < ∞ .  

 Theorem 3: Let Assumptions 1-4 hold.  Then for 0 < α < 1 and nB  as defined in (4.3), 

there is a constant *aC  and a sequence of constants 3{ }nω  such that 3 0nω →  monotonically as 

n → ∞  and 

 
1

3
: ( ,..., )

inf ( ) 1
n n

n
m H H

T tα ω
∈

> ≥ −P
B
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whenever *a aC C≥ .  aC  and 3{ }nω  depend only on s  and the constants in Assumptions 1-4.   

 This result shows that our test is consistent at the fastest possible rate of testing uniformly 

over alternatives in the smoothness classes nB  and over designs and distributions of the iε ’s that 

satisfy Assumptions 1-4.  These uniformity properties insure that the test’s power is not highly 

sensitive to the alternative model, design, or distributions of the iε ’s when n  is large. 

5.  MONTE CARLO EXPERIMENTS 

 This section presents the results of Monte Carlo experiments that illustrate the numerical 

performance of the adaptive, rate-optimal test.  The section has two parts.  Section 5.1 presents an 

example in which our test is consistent but the tests of Bierens and Ginther (2000) and Zheng 

(1998) are not.  This example motivates the design of the Monte Carlo experiments.  The 

experiments and their results are described in Section 5.2. 

5.1  An Example 

 This section presents a parametric model and a sequence of alternatives. Our test is 

consistent against the alternatives but the tests of Bierens and Ginther (2000) and Zheng (1998) 

are not.  The null hypothesis model in the example is 

(5.1) Y Xi i i= + +β β ε0 1 , 

where β0 and β1 are constants, the Xi’s are scalars that are sampled from a distribution that is 

symmetrical about 0, and εi ~ N ( , )0 2σ  for every i.  The sequence of alternative models is 

(5.2) Y X Xi i n i n i= + +τ φ τ ε4 ( / ) , 

where εi ~ N(0,1), φ is the standard normal density function, and τ n C n n= − −1 1 9
loglog

/
e j  for 

some finite C > 0.  The function mn(x) = x + τn
4φ(x/τn) has a peak that is centered at x = 0 and that 

becomes narrower as n increases.  The sequence of alternative models {mn} is contained in nB  

with s = 2.  The distance between mn and the parametric model (5.1) satisfies 

( ) 4 / 91
1( ) log lognm n nρ

−−∝ .  It is not difficult to show that under that the sequence (5.2), the 

noncentral parameters of the tests of Bierens and Ginther (2000) and Zheng (1998) converge to 

zero as n → ∞, so those tests are inconsistent against (5.2).  It follows from Theorem 3, however, 

that the adaptive, rate optimal test is consistent against this sequence if C is sufficiently large. 
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5.2  Monte Carlo Experiments 

 This section presents the results of Monte Carlo experiments that illustrate the numerical 

performance of the adaptive, rate-optimal test.  The designs of the experiments are motivated by 

the example of Section 5.1 and are taken from HS with the modification that they specify 

conditional medians instead of means.  In each experiment, a parametric null-hypothesis model 

and two alternatives are specified.  Monte Carlo simulation is used to estimate the probability that 

the adaptive, rate-optimal test rejects the parametric model when it is correct and the test’s power 

against the alternatives.  To provide a basis for judging whether the test’s power is high or low, 

the power of Zheng’s (1998) test is also estimated by Monte Carlo simulation.  In all experiments, 

the nominal probability of rejecting a correct null hypothesis is 0.05.   

 The null-hypothesis model in the experiments is 

(5.3) 0 1 ; 1,2,...,i i iY X i nβ β ε= + + =  

where n = 100 or 250 and each Xi is a scalar that is sampled from the N(0,25) distribution 

truncated at its 5th and 95th percentiles.  In experiments where (5.3) is correct (H0 is true), β0 = β1 

= 1.  The εi’s were sampled independently from three distributions, depending on the experiment.  

These are N(0,4), a variance mixture of normals in which εi is sampled from N(0,1.56) with 

probability 0.9 and from N(0,25) with probability 0.1, and the Type I extreme value distribution 

shifted and scaled to have median zero and variance of 4.  The mixture distribution is leptokurtic 

with a variance of 3.9, and the Type I extreme value distribution is asymmetrical.  Variation in 

X  explains 77-79 percent of the variation in Y  in (5.3), depending on n  and the distribution of 

ε .  Specifically, 0.77 1 ( ) / ( ) 0.79Var Var Yε≤ − ≤ . 

 The alternative models have the form 

 1 (4 / ) ( / )i i i iY X Xτ φ τ ε= + + + , 

where the εi’s are sampled from one of the three distributions just described and τ = 1 or 0.25, 

depending on the experiment.  Figure 2 plots the function ( ) 1 (4 / ) ( / )m x x xτ φ τ= + +  for each 

value of τ.  The Xi’s were sampled once from the specified distribution and held fixed in repeated 

realizations of the Yi’s.  The values of β0 and β1 were estimated by least absolute deviations 

(LAD).  The kernel used for the adaptive, rate-optimal test and Zheng’s (1998) test is 

2 2( ) (15/16)(1 ) (| | 1)K u u u= − ≤1 . 

At the suggestion of a referee, we carried out F tests of the hypothesis 0 2H : 0β =ɶ  in the 

augmented model 2
0 1 2i i i iY X Xβ β β ε= + + + .  Rejection of 0Hɶ  implies that (5.3) is 

misspecified, but a test of 2 0β =  is not consistent against all fixed, smooth alternatives to (5.3).   
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 Implementation of Zheng’s (1998) test requires selecting a bandwidth parameter.  Zheng 

(1998) proposed a generalized cross validation procedure for doing this, but in our experiments it 

gave bandwidths that were much too large and often exceeded the range of the values of X.  

Therefore, we selected the bandwidth through Monte Carlo experimentation to maximize the 

test’s power subject to the restriction that the empirical probability of rejecting (5.3) when it is 

correct be contained in a 95% confidence interval around the nominal rejection probability.  

Zheng’s test uses a critical value that is based on the asymptotic normal distribution of his test 

statistic, and we used this critical value to compute his test’s empirical rejection probabilities. 

The adaptive, rate-optimal test requires choosing the set of bandwidths H .  We used a 

geometric grid consisting of the points min ( 0,1,2,..., 1)jh jω = −N , where N  is the number of 

grid points and 1/( 1)
max min( / )h hω −= N .  The smallest and largest bandwidths are minh =  

12max( ) ( 1,..., 1)i iX X i n+ − = −  and maxh =  10.4( ) / log lognX X n− , where the iX ’s are sorted 

in increasing order.  We chose N  according to the rule of thumb logn≈N�� .  This rule is 

consistent with the theory of the test, which requires (log )O n=N� .  Motivated by the rule of 

thumb, we did experiments with values of N  in the range 4-10.  The results varied little over 

this range, so we report only the results for 4=N� . 

 The experiments were carried out in GAUSS using GAUSS pseudo-random number 

generators.  There were 1000 Monte Carlo replications in the experiments in which H0 is true and 

500 in the experiments in which H0 is false.  The larger number of replications for the 

experiments with a true H0 insures that the probabilities of Type I errors are estimated reasonably 

precisely.  The lower number of replications with a false H0 conserves computing time while 

providing sufficient precision to be informative about the relative powers of the tests.  There were 

99 replications in the Monte Carlo procedure that was used to estimate the critical value of the 

adaptive, rate-optimal test.  

 The results of the experiments are presented in Table 1.  When H0 is true, all tests have 

empirical rejection probabilities that are close to the nominal probability of 0.05.  None of the 

differences between the nominal and empirical rejection probabilities is significantly different 

from zero at the 0.05 level.  When H0 is false, the power of the adaptive, rate-optimal test is much 

higher than the powers of Zheng’s test and the F-test of 0Hɶ .  All of the differences between the 

powers of the adaptive, rate-optimal test and either Zheng’s or the F-test are significant at the 

0.01 level.   
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6.  CONTINUATION OF THE EMPIRICAL EXAMPLE 

 We now present the application of our test to models (2.1) and (2.2) using the data 

described in Section 2.  The test was carried out using the geometric grid of bandwidths described 

in Section 5.2 with 7=N , the integer closest to logn .  The adaptive, rate-optimal test of the 

quadratic model (2.1) gives 2.10T =  with a 0.05-level critical value of 0.88.  Thus, model (2.1) 

is rejected at the 0.05 level.  An F-test of the hypothesis that 3 0β =  in (2.2) also rejects the 

quadratic model (p < 0.01).  The adaptive, rate-optimal test of the cubic model (2.2) gives T = 

-0.46 with a 0.05-level critical value of 0.75.  Thus, the model (2.2) is not rejected. 

7.  CONCLUSIONS 

 This paper has developed a test of the hypothesis that a conditional median function is 

linear against a nonparametric alternative.  The test adapts to the unknown smoothness of the 

alternative model, does not require knowledge of the distributions of the possibly heterogeneous 

noise components of the model (the iε ;s in (1.1)), and is uniformly consistent against alternative 

models whose distance from the class of linear functions converges to zero at the fastest possible 

rate.  This rate is slower than 1/ 2n− .  In addition, the new test is consistent (though not uniformly) 

against local alternative models whose distance from the class of linear models decreases at a rate 

that is only slightly slower than 1/ 2n− .  The results of Monte Carlo simulations and an empirical 

application have illustrated the usefulness of the new test. 

8.  MATHEMATICAL APPENDIX 

 This appendix presents the proofs of the theorems in the text.  Except as otherwise noted, 

it is assumed that Assumptions 1-4 hold.  Throughout the proofs, 1{ }na , 2{ }na ,…, and 1{ }ns , 

2{ }ns ,… denote sequences of non-negative numbers that depend only on the constants in 

Assumptions 1-4 and converge monotonically to zero as n → ∞ .  The latter property will be 

denoted (1)nk na o=  and (1)nk ns o=  for 1,2...k = . 
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 8.1  Properties of the Parametric Model 

 The main result of this section is a proof of 1/ 2n  asymptotic normality of the LAD 

estimator nb .  Let iFɶ  and if
ɶ , respectively, denote the probability distribution and density 

functions of iY .  Define 

0
1

1
( )

n

n i i i i
i

Q X X f X
n

β
=

′ ′= ∑ ɶ , 

1 1/ 2
0 0

1

[ ( 0) ( )]
n

n n i i i i i
i

Q n X Y X F Xη β β− −

=

′ ′= − − ≤ −∑ 1 ɶ , 

and 

1 1
0 0

1

1
( )[1 ( )]

n

n n i i i i i i n
i

Q X X F X F X Q
n

β β− −

=

  ′ ′ ′Σ = − 
  
∑ ɶ ɶ . 

 Proposition 1:  Let Assumptions 1-4 hold.  Let the sequence { }nδ  satisfy 1/ 2 / (1)nn oδ− =  

as n → ∞  and 1 1/ 2( log )n n nδ −≤ .  Then there exists a random set 1nA  satisfying 1 1( ) 1n nA a≥ −P  

with 1 (1)n na o=  and such that on 1nA , 0n nb β δ− ≤  and 

1/ 2 1/ 2
0 0( ) ( log )n n nn b C nβ η δ− − ≤ , 

where 0C  is a constant whose value depends only on d and the constants from Assumptions 1-4.  

Moreover, 1/ 2 (0, )d
n n dN Iη−Σ → , where dI  is the d d×  identity matrix. 

 Remark:  An immediate corollary of this result is that 1/ 2
0( )nn b β−  is asymptotically 

normal. 

 The proof relies on the following lemmas. 

 Lemma 1:  Define 1 / 2XC dC= .  The vector nb  satisfies 

(8.1) 1
1

[ ( 0) 1/ 2]
n

i i i n
i

X Y X b C
=

′− ≤ − ≤∑ 1 . 

 Proof:  See Koenker and Bassett (1978). 

 Lemma 2:  Let { : 1,..., }i i nκ =  be independent Bernoulli random variables with 

parameters { }ip , and let { : 1,..., }ic i n=  be constants. Let V  be a constant such that 

2 2
1

(1 )
n

i i ii
c p p V

=
− ≤∑ .  Given any real z, define 

 2

1
max exp[ /(2 )]i

i n
G zc V

≤ ≤
= . 
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If 2 2G ≤ , then 

(8.2) 2

1

( ) exp( / 4)
n

i i i
i

c p zV zκ
=

 
± − > ≤ − 
  
∑P . 

Moreover, if 2 2
1

/ 4
n

ii
c V

=
≤∑ , then for all 0z ≥  

(8.3) 2

1

( ) exp( / 2)
n

i i i
i

c p zV zκ
=

 
± − > ≤ − 
  
∑P . 

 Proof:  It follows from Chebyshev’s exponential inequality that for every 0λ > , 

1 1 1 1

1 1

exp exp

exp log(1 ) .i

n n n n

i i i i i i i i
i i i i

n n
c

i i i i
i i

c c p zV zV c p c

zV c p p p eλ

κ λ λ λ κ

λ λ

= = = =

= =

      
> + ≤ − −                 

 
= − − + − + 

  

∑ ∑ ∑ ∑

∑ ∑

P E

 

The function ( ) log(1 )x
pf x p pe= − −  satisfies (0) 0pf = , (0)pf p′ = , and 

2

(1 )
( ) (1 )

(1 )

x
x

p x

p p e
f x p p e

p pe

−′′ = ≤ −
− +

. 

Therefore, 2( ) (1 ) / 2x
pf x px p p x e≤ + − .  Set /(2 )z Vλ = .  Then 

2 2

1 1 1

2 2 2

log(1 ) (1 ) / 2

/ 2.

i i

n n n
c c

i i i i i i i
i i i

zV c p p p e zV p p c e

zV V G

λ λλ λ λ λ

λ λ

= = =
− − + − + ≤ − + −

= − +

∑ ∑ ∑

 

Application of this inequality with /(2 )z Vλ =  and 2 2G ≤ yields 

 2 2 2 2 2 2/ 2 (1 / 4) / 2 / 4zV V G z G zλ λ− + ≤ − − ≤ − . 

Similarly, one can bound 
1

( )
n

i i ii
c p zVκ

=
 − < −
  ∑P , and (8.2) follows.   

 Next, the inequality 2( ) / 4ab a b≤ +  with 1a p= −  and xb pe=  implies 

2

(1 )
( ) 1/ 4

(1 )

x

p x

p p e
f x

p pe

−′′ = ≤
− +

 

for all 0x ≥  and [0,1]p∈ .  Therefore, 
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2
2

1 1 1

2 2

log(1 )
8

/ 2.

i

n n n
c

i i i i i
i i i

zV c p p p e zV c

zV V

λ λλ λ λ

λ λ

= = =
− − + − + ≤ − +

= − +

∑ ∑ ∑

 

This inequality applied with /z Vλ =  yields (8.3).  Q.E.D. 

 We also present a vector version of Lemma 2.  For any vector dx∈ℝ , define 

1max | |j d jx x≤ ≤∞ = . 

 Lemma 3: Let { : 1,..., }i i nκ =  be independent Bernoulli random variables with 

parameters { }ip , and let { : 1,..., }ic i n=  be constant vectors in d
ℝ .  Let V  be a constant such 

that 
2 2

1
(1 )

n
i i ii

c p p dV∞=
− ≤∑ .   Given any real 0z ≥ , define 

 2

1
max exp[ /(2 )]i

i n
G z c V∞≤ ≤

= . 

If 2 2G ≤ , then 

1/ 2 2

1

( ) 2 exp( / 4)
n

i i i
i

c p zVd d zκ
= ∞

 
 − > ≤ −
  
∑P . 

Moreover, if 
2 2

1
/ 4

n
ii

c V∞=
≤∑ , then for all 0z ≥  

2

1

( ) 2 exp( / 2)
n

i i i
i

c p zV d zκ
= ∞

 
 − > ≤ −
  
∑P . 

 Proof:  Apply Lemma 4.2 to every component of 
1

( )
n

i i ii
c pκ

=
−∑ .  Q.E.D. 

 For any fixed dβ ∈ℝ  define ( ) ( 0) ( )i i i i iY X F Xξ β β β′ ′= − ≤ −1 ɶ  and 

1/ 2

1

( ) ( )
n

i i
i

n Xζ β ξ β−

=
= ∑ . 

 Lemma 4:  The random field ( ) dζ β ∈ℝ  satisfies ( ) 0ζ β =E , 

1

1 1

1
( ) ( ) ( )[1 ( )]

4

n n

i i i i i i i i
i i

n X X F X F X X X
n

ζ β ζ β β β−

= =

′ ′ ′ ′ ′= − ≤∑ ∑E , 

22 2 2
1 2 1 2 1 2( ) ( ) 0.5X XX X FC C C C aζ β ζ β β β β β− ≤ − + −E , 

and, for every 0z ≥ , 

2( ( ) / 2) 2exp( / 2)XxC zζ β > ≤ −P . 
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 Proof:  The first two statements obviously follow from independence of the Bernoulli 

random variables iξ .  It is also straightforward to check that 

2
1 2 1 2 1 2

1 2

| ( ) ( ) | | ( ) ( ) | [1 | ( ) ( ) |]

| ( ) ( ) | .

i i i i i i i i i i

i i i i

F X F X F X F X

F X F X

ξ β ξ β β β β β

β β

′ ′ ′ ′− ≤ − − −

′ ′≤ −

E ɶ ɶ ɶ ɶ

ɶ ɶ

 

A Taylor series expansion and Assumption 1 yield 

2 2
1 2 1 1 2 1 2

24 2
1 1 2 1 2

| ( ) ( ) | ( )( ) 0.5 | ( ) |

( ) 0.5 .

i i i i i i F i

i i X F

F X F X f X C a X

f X C C a

β β β β β β β

β β β β β

′ ′ ′ ′− ≤ − + −

′≤ − + −

ɶɶ ɶ

ɶ

 

Therefore, 

2
1 2 1 2 1 2

1 2
1 2

1

1
1 2

1

21 2 4 2
1 2 1 1 2

1

22 4 2
1 2 1 2

( ) ( ) [ ( ) ( )][ ( ) ( )]

| ( ) ( ) |

| ( ) ( ) |

( ) 0.5

0.5 .

n

i i i i
i

n

i i i i i i
i

n

X i i X F
i

X FX X F

tr

n tr X X

n tr X X F X F X

n C f X C C a

C C C C a

ζ β ζ β ζ β ζ β ζ β ζ β

ξ β ξ β

β β

β β β β β

β β β β

−

=

−

=

−

=

′− = − −

′= −

′ ′ ′≤ −

′≤ − + −

≤ − + −

∑

∑

∑

E E

E

ɶ ɶ

ɶ

 

The last statement of the lemma now follows from Lemma 3.  Q.E.D. 

 The following lemma establishes stochastic equicontinuity of ( )ζ β . 

 Lemma 5:  Let (1/ 2,1)α ∈ .  There are positive constants 1zC  and 2zC  such that for 

every fixed dβ ∈ℝ , 

( )1/ 2 1
1 2

:

sup ( ) ( ) 2exp / 4z z
n

C n C n
α

α α

β β β
ζ β ζ β

−

− + −

− ≤

 
 − ≥ ≤ −
 
 

P
ɶ ɶ

ɶ . 

 Proof:  Let βɶ  satisfy n αβ β −− ≤ɶ .  It is easy to see that 

1/ 2

1

( ) ( ) [ ( ) ( )]
n

i i i
i

n Xζ β ζ β ξ β ξ β−

=
− = −∑ɶ ɶ  
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1/ 2

1

1/ 2

1

(| | | ( ) |)

[ ( ) ( ) .

n

i i
i

n

i i i i i
i

n Y X X

n X F X F X

β β β

β β

−

=

−

=

′ ′≤ − ≤ −

′ ′+ −

∑

∑

1 ɶ

ɶɶ ɶ

, 

Since | ( ) |i XX C n αβ β −′ − ≤ɶ , for some | | 1θ ≤  we have 

1 1

2

2 1

[ ( ) ( ) [ ( )] ( )

.

n n

i i i i i i i i i
i i

X XX

X XX

X F X F X X f X X

C C n

C C n α

β β β θ β β β β

β β

= =

−

′ ′ ′ ′− = + − −

≤ −

≤

∑ ∑ ɶɶ ɶ ɶɶ ɶ

ɶ  

Therefore, 

(8.4) 1/ 2 2 1/ 2

1

( ) ( )
n

X i X XX
i

n C C C n αζ β ζ β τ− −

=
− ≤ +∑ɶ , 

where the (| | )i i XY X C n ατ β −′≡ − ≤1  are Bernoulli random variables with  

(| | ) ( ) ( )i i i i X i i X i i Xp Y X C n F X C n F X C nα α ατ β β β− − −′ ′ ′≡ = − ≤ = + − −E P ɶ ɶ ..   

As in the proof of Lemma 4, one bounds 

2 2 2 1

1 1

1 2 2 2 1 1
2

2 ( )

2

n n

i X i i X F
i i

X XX X F z

p C n f X C C a n

C C n C C a n C n

α α

α α α

β− − +

= =

− − − + − +

′≤ +

≤ + ≤

∑ ∑ ɶ

 

for some constant 2 2z X XXC C C≈ .  Application of Lemma 2 with 1ic = , z V= , and 

2 1
21

n
i zi

V p C n α−
=

= ≤∑  (so that 2 1/ 2 2)G e= <  yields 

2 2

1

( ) 2exp( / 4)
n

i i
i

p V Vτ
=

 
− ≥ ≤ − 

  
∑P . 

Therefore, 

1 1
2 2

1

2 2exp( / 4)
n

i z z
i

C n C nα ατ − −

=

 
≥ ≤ −  

 
∑P . 

This inequality and (8.4) yield the result. Q.E.D. 
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 The next lemma gives a uniform bound for 0( ) ( )ζ β ζ β−  when 0β β δ− ≤ . 

 Lemma 6:  Let 1/ 2 1n δ− ≤ ≤ .  Then for some constant 2C  depending on d , FC  and XC  

only, there exists a random set 2nA  satisfying 2 2( ) 1n nA a≥ −P  with 2 (1)n na o=  such that on 

2nA  

0

1/ 2
0 2

:
sup ( ) ( ) ( log )C n

β β β δ
ζ β ζ β δ

− ≤
− ≤ . 

 Proof:  Let nD  be a ε -net in the ball 0{ : }β β β δ− ≤  with the step n α−  for 3/ 4α = .  

This net can be constructed with cardinality 3/ 4(2 ) (2 )d dn nαδ ≤ .  Fix nβ ∈D .  By Lemma 4, 

2
0 3 0( ) ( ) zdCζ β ζ β β β− ≤ −E  for some constant 2

3 /z X XXC C X d≈ .  Now apply Lemma 3 

to 0( ) ( )ζ β ζ β−  with 1/ 2
i ic n X−= , 2

3zV C δ=  and 1/ 2(4 log )z d n= .  Then 

2 1/ 2 1/ 2 1/ 2 1/ 2
3log /(2 ) ( log ) /( )X X zG C n z V C n d n C δ− −≤ = . 

Clearly, 1/ 2nδ −≥  implies 2 2G ≤  for n  sufficiently large.  By (8.3) 

1/ 2 log
0 3( ) ( ) 2 ( log ) 2 d n

zd C n deζ β ζ β δ − − ≥ ≤ P . 

Now 

0

1/ 2 1/ 2
0 3 1

:

1/ 2
1

:

1/ 2
0 3

3/ 4 1
2 2

sup ( ) ( ) 2 ( log )

sup ( ) ( )

( ) ( ) 2 ( log )

(2 ) [exp( / 4) 2 exp( log )] 0

n

n

z z

z
n

z

d
z n

d C n C n

C n

d C n

n C n d d n a

α

α

β β β δ

α

β β ββ

β

α

ζ β ζ β δ

ζ β ζ β

ζ β ζ β δ

−

− +

− ≤

− +

− ≤∈

∈

−

 
− ≥ + 

  

 
 ≤ − ≥
 
 

 + − ≥
 

≤ − + − ≡ →

∑

∑

P

P

P

ɶ ɶ

ɶ

D

D

 

as n → ∞ .  The lemma follows because 1/ 2 1/ 4nδ ≤  and 1/ 2 1/ 4n nα− + = .  Q.E.D. 

 Define  

1/ 2
0

1

( ) [ ( ) ( )]
n

i i i i i
i

B n X F X F Xβ β β−

=

′ ′= −∑ ɶ ɶ . 

Note that 0( ) [ ( ) ( )]B β ζ β ζ β= −E .  The next lemma states that ( )B β  is nearly linear in a small 

neighborhood of 0β .  Let ( )F X β′ɶ  be the vector whose components are ( )i iF X β′ɶ . 
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 Lemma 7:  For all β  

21/ 2 2
0 0 0( ) ( ) ( ) 0.5 FF X F X n C aβ β β β β β′ ′ ′− − − ≤ −ɶ ɶ FX  

and 

21/ 2 2 1/ 2 2 2 1/ 2
0 0 3 0

1

( ) ( ) 0.5 | ( ) |
n

n F i i
i

B n Q a C n X X C a nβ β β β β β β−

=

′− − ≤ − ≤ −∑ , 

where 2
3 0.5 X FC C C= . 

 Proof:  This result follows from a Taylor series expansion and Assumption 1.  Q.E.D. 

 Lemma 8:  Let the sequence { }nδ  satisfy 1/ 2 / 0nn δ− →  as n → ∞ .  Then there exists a 

random set 3nA  satisfying 3 3( ) 1n nA a≥ −P  with 3 (1)n na o=  such that on 3nA , 0n nb β δ− ≤ .. 

 Proof:  Lemma 7 and Assumption 4 imply that  

0:
inf ( )

n

B
β β β δ

β
− ≥

→ ∞  

as n → ∞ .  By Lemmas 4 and 6, ( )ζ β  is bounded in probability in every neighborhod of 0β .  

Moreover, (8.1) implies that 1/ 2
1( ) ( )n nb B b C nζ −− ≤ .  The lemma follows from this inequality 

and monotonicity arguments.  See Portnoy (1991) for details.  Q.E.D. 

 Define 1 1/ 2 1
0 01

( ) ( )
n

n n n i ii
Q n Q Xη ζ β ξ β− − −

=
= − = − ∑ . 

 Lemma 9:  1/ 2 (0, )d
n n dN Iη−Σ → . 

 Proof:  By Lemma 4, 0nη =E  and n n nη η′ = ΣE .  Asymptotic normality follows from the 

central limit theorem for sums of uniformly bounded random variables.  See Koenker and Bassett 

(1978) for details.  Q.E.D. 

 Proof of Proposition 1:  By definition 

1/ 2

1

[ ( 0) 1/ 2] ( ) ( )
n

i i i
i

n X Y X Bβ ζ β β−

=

′− ≤ − = +∑ 1 . 

By Lemma 1, 

1/ 2
1( ) ( )n nb B b C nζ −+ ≤ . 

Let nδ  satisfy 1/ 2 0nn δ →  as n → ∞ .  Then by Lemmas 6 and 7, on the random set 2nA  

1/ 2
0 2( ) ( ) ( log )nC nζ β ζ β δ− ≤  and 1/ 2 2 2 1/ 2

0 3( ) ( )n n n nB b n Q b C a nβ δ− − ≤  for all β  with 

0 nβ β δ− ≤ .  Similarly, by Lemma 8 0n nb β δ− ≤  on 3nA .  Define 1 2 3n n nA A A= ∩ .  Then 

1 2 3( ) 1n n nA a a≥ − −P , and on 1nA , 
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1/ 2
0 2( ) ( ) ( log )n nb C nζ ζ β δ− ≤   

and 

1/ 2 2 2 1/ 2
0 3( ) ( )n n n nB b n Q b C a nβ δ− − ≤ . 

Thus, 

1/ 2 1/ 2 1/ 2 2 1/ 2 2
0 0 1 2 3( ) ( ) ( log )n n n nn Q b C n C n C a nζ β β δ δ−+ − ≤ + + . 

By Assumption 4, 1
n FXQ C−

∞
≤ , and hence 

1/ 2 1 1/ 2 1/ 2 2 1/ 2 2
0 0 1 2 3( ) ( ) ( log )n n XX n nn b Q C C n C n C a nβ ζ β δ δ− − − + ≤ + +  . 

But 1
0( )n nQη ζ β−= − .  If nδ  satisfies 1 1/ 2( log )n n nδ −≤ , then on the set 1nA , 

1/ 2 1/ 2
0 0( ) ( log )n n nn b C nβ η δ− − ≤  with probability approaching 1, where 0C  is slightly larger 

than 2C .  Asymptotic normality follows from Lemma 9.  Q.E.D. 

8.2  Properties of Nonparametric Smoothers 

 Let hW  be the matrix whose ( , )i j  element is ,ij hw .  Let sup /nh hW Wλ λ λ∈∞ =
ℝ

. 

 Lemma 10 (Horowitz and Spokoiny (2000)):  There exist constants 1wC , aC , 1VC  and 

2VC  depending only on the constants in Assumption 4 such that for all h∈H , 

, 11
( 1,..., )

n
ij h wi

w C j n
=

≤ =∑ , 1h wW C∞ ≤ , 1
,1

n
ii h ai

a C h−
=

≤∑ , 2 1
, 11

n
ij h Vi j i

a C h−
= ≠

≥∑ ∑ , and 

2 1
, 21 1

n n
ij h Vi j

a C h−
= =

≤∑ ∑ . 

 Proof:  See HS.  Q.E.D. 

8.3  Asymptotic Expansion of the Statistics hS  

 For every dβ ∈ℝ  define 

2

,
1 1

2

,
1 1

( ) [ ( 0) 1/ 2]

[ ( ) ( ) 1/ 2] .

n n

h ij h j j
i j

n n

ij h j j j
i j

S w Y X

w F X

β β

ξ β β

= =

= =

 
 ′= − ≤ −
 
 

 
 ′= + −
 
 

∑ ∑

∑ ∑

1

ɶ
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Also define 0( ) ( ) ( )j j j j jz F X F Xβ β β′ ′= −ɶ ɶ .  We use a matrix representation of ( )hS β .  Let 

( )ζ β , ( )F X β′ɶ , and ( )z β , respectively, be the vectors in nℝ  with components ( )jξ β , 

( )j jF X β′ɶ , and ( )jz β .  Let hW  be the n n×  matrix whose ( , )i j  element is ,ij hw .  Then 

2 2
0( ) [ ( ) ( ) 1/ 2] [ ( ) ( ) 1/ 2 ( )]h h hS W F X W F X zβ ξ β β ξ β β β′ ′= + − = + − +ɶ ɶ . 

Under the null hypothesis, 0( ) 1/ 2j jF X β′ =ɶ , so 
2

( ) [ ( ) ( )]h hS W zβ ξ β β= + .  The test statistic is 

based on ( )h nS b .  Lemma 11 enables us to obtain an asymptotic expansion for ( )h h nS S b≡ .  

Define the n n×  matrices h h hA W W′=  and 1( )F
−′ ′Π = FX XFX X . 

 Lemma 11:  Let nδ  satisfy 1 1/ 2( log )n n nδ −≤  and 1/ 2 / 0nn δ− →  as n → ∞ .  There exist 

a constant 9C  and a random set 4nA  satisfying 4 4( ) 1n nA a≥ −P  with 4 (1)n na o=  such that on 

4A  

2 1/ 2 1
0 0 9[( ) ( ) ( ) 1/ 2] logh h n F nS W F X C h nξ β β δ −′− − Π + − ≤I ɶ  

for all h∈H . 

 Proof:  We prove this lemma under the null hypothesis only.  The general case can be 

considered similarly.  For all β  such that 0 nβ β δ− ≤ , Assumption 1 yields 

(8.5) 0 5( ) ( )i i i i nF X F X C aβ β δ′ ′− ≤ɶ ɶ , 

whre 5 F XC C C= .  We now bound the differences 
2 2

0[ ( ) ( )] [ ( ) ( )]h hW z W zξ β β ξ β β+ − +  

uniformly over h∈H  and β  with 0 nβ β δ− ≤ .  Define ( ) ( )h hWη β ξ β= .  As in Lemma 4, 

each element of ( )hη β  satisfies , ( ) 0i hη β =E , 2 2
, , ,1

( ) (1/ 4) / 4
n

i h ij h ii hj
w aη β

=
≤ =∑E , and 

2 2
, , 0 , 0

1

2
5 , 5 ,

1

[ ( ) ( )] ( ) ( )

.

n

i h i h ij h j j j j
j

n

n ij h n ii h
j

w F X F X

C a w C a a

η β η β β β

δ δ

=

=

′ ′− = −

≤ =

∑

∑

E ɶ ɶ

 

As in Lemma 6, there exists a random set 5nA  satifsying  5 5( ) 1n nA a≥ −P  with 5 (1)n nA o=  such 

that on 5nA  1/ 2
, , 0 6 ,| ( ) ( ) | ( log )i h i h ii h nC a a nη β η β δ− ≤ , and 

(8.6) 1/ 2
, 0 7 ,| ( ) | ( log )i h ii hC a nη β ≤  
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for some constants 6C  and 7C , all h∈H , all β  such that 0 nβ β δ− ≤ , and all 1,...,i n= .  This 

and (8.5) imply that on nA  

2 2
0 6[ ( ) ( )] ( ) log ,h n hW C a tr A nξ β ξ β δ− ≤  

2 2
0 7( ) ( ) logh hW C tr A nξ β ≤ , 

and 

1/ 2 1/ 2
0 7 5[ ( ) ( ) [ ( ) log ]h h nW z C tr A n C anξ β β δ+ ≤ + . 

Now by the inequality 
2 2

| | ( 2 )x y x y x y x− ≤ − − +  and Lemma 10, the following holds 

on nA  for all β  satisfying 0 nβ β δ− ≤ : 

2 2 1/ 2 1/ 2
0 6 6 7

1/ 2 1
8

[ ( ) ( ) [ ( ) ( ) ( ) [ ( ) 2 ] ( ) log

(8.7) ( ) log .

h h n n h

n

W z W z C a C a C tr A n

C a h n

ξ β β ξ β β δ δ

δ −

+ − + ≤ +

≤

 

By Proposition 1, 0n nb β δ− ≤  on the set 1nA  satisfying 1 1( ) 1n nA a= −P .  Therefore, on 

4 1 5n n nA A A= ∩ , inequality (8.7) holds when β  is replaced by nb .  Also, Proposition 1 and 

Assumption 1 imply that on the set 1nA , 

1/ 2
0 0 0( ) ( ) ( ) ( log )n F nF X b F X C nβ ξ β δ′ ′ ′− − Π ≤ɶ ɶ , 

where 0 0 X FC C C C′ ≈ .  Therefore, by Lemma 10, 

0 0 0

1/ 2
9

[ ( ) ( )] [ ( ) ( ) ( )

( log )

h n F h n F

n

W z b W F X b F X

C a n

ξ β β ξ β

δ

′ ′− Π = − − Πɶ ɶ

 

on 4nA , where 9 0 1wC C C′= .  The proof is now completed similarly to (8.7).  Q.E.D. 

 Lemma 11 implies that under the null hypothesis, hS  can be approximated by 

2
0 0( ) ( )h h FW Wξ β ξ β− Π .  The second term in this expression comes from the parametric LAD 

fit.  The next lemma shows that the effect of this term is asymptotically negligible when 

max 0h →  as n → ∞ . 

 Lemma 12:  Let max 0h →  as n → ∞ .  Then under the null hypothesis there exists a 

random set 6nA  satisfying 6 6( ) 1n nA a≥ −P  with 6 (1)n na o=  such that on 6nA  

21/ 2
0 1sup ( ) (1).h h n n

h
h S W s oξ β

∈
− ≤ =

H
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 Proof:  By Lemma 11, it suffices to show that there exists a random set 7nA  satisfying 

7 7( ) 1n nA a≥ −P  with 7 (1)n na o=  such that on 7nA  

2 21/ 2
0 0 2sup ( ) ( ) ( ) (1)n h n F h n n

h
h W W s oτ ξ β ξ β

∈
≡ − Π − ≤ =I

H

. 

This would follow from 

2 21/ 2
0 0[ ( ) ( ) ( ) ] (1)h n F h p

h

h W W oξ β ξ β
∈

− Π − =∑ E I
H

 

and 

2 21/ 2
0 0[ ( ) ( ) ( ) ] (1)h n F h p

h

h Var W W oξ β ξ β
∈

− Π − =∑ I
H

. 

The definition of 0( )ξ β  yields 0 0( ) ( ) / 4nξ β ξ β ′ =E I .  Since FΠ  is a projection operator in nℝ  

onto a d -dimensional subspace, ( )Ftr dΠ = .  This and Lemma 10 imply that 

2 2
0 0 0 0

0 0

2 2
1

[ ( ) ( ) ( ) ] 2 [ ( ) ( ) ]

[ ( ) ( ) ]

(1/ 4) ( )

( ) / 4.

h h n F h F h

h F F h

h F h

h F w

W W tr W W

tr W W

tr W W

W tr C d

ξ β ξ β ξ β ξ β

ξ β ξ β

∞

′ ′− − Π = Π

′ ′− Π Π

′= Π

≤ Π ≤

E I E

E

 

Similarly 

2 2
0 0

0 0

2

[ ( ) ( ) ( ) ]

[ ( ) ( ) ( )]

(1/ 2) ( )

h h n F

F h h F F h F

F h h F F h F

Var W W

Var A A A

tr A A A C

ξ β ξ β

ξ β ξ β

− − Π

′= Π + Π − Π Π

≤ Π + Π − Π Π ≤

I

 

where C  is a constant that depends only on 1wC  and d .  Since H  is a geometric grid, 

1/ 2 1/ 2
1 max 0h

h

h C h
∈

≤ →∑
H

. 

A similar result holds for 
h

h
∈∑ H

.  The result of the lemma follows.  Q.E.D. 

 The results of Lemmas 10 and 12 imply that under the null hypothesis and on 6nA , 

(8.8) ,0 3sup | * | (1)h h n n
h

T T s o
∈

− ≤ =
H

, 

where 
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2 2
0 ,

1
,0 1/ 2

2
,

1

( ) (1/ 4)

1
8

n

h ii h
i

h
n

ii h
i

W a

T

a

ξ β
=

=

−
=

 
  
 

∑

∑

. 

 8.4  Proof of Theorem 1 

 Relation (8.8) reduces the proof to considering ,0suph hT∈H .  ,0hT  is the centered, 

standardized quadratic form 
2

0( )hW ξ β , and 0( )ξ β  is a vector of independently and identically 

distributed Bernoulli random variables with parameters 1/2 and means of zero.  The distribution 

of ,0hT  does not depend on the unknown distributions of the iε ’s in (1.1).  The distribution of 

,0suph hT∈H  is investigated in HS and Spokoiny (2000).  Here, we briefly review the main issues. 

 Let ξɶ  be an 1n ×  Gaussian random vector with zero mean and covariance matrix / 4nI .  

Define ,0hTɶ  by centering and standardizing 
2

hW ξɶ .  Then ,0suph hT∈H  is close in distribution to 

,0suph hT T∈=ɶ ɶ
H .  Let tαɶ  be the 1 α−  quantile of the distribution of Tɶ .  Then ( log log )t O nα =ɶ  

and Tɶ  has a bounded, continuous density at tαɶ .  This and (8.8) imply Theorem 1.  See HS and 

Spokoiny (2000) for details.  

 8.5  Proofs of Theorems 2 and 3 

 The next proposition gives sufficient conditions for consistency of the adaptive, rate-

optimal test.  Define 0( ) 1/ 2i i iF X β′∆ = −ɶ .  Let ∆  be the vector in n
ℝ  with elements i∆ .  Define 

2 2 2
,1 1

( *) (1/8) ( ) /8
n n

h ij h hi j
V a tr A

= =
= =∑ ∑ . 

 Proposition 2:  Suppose there is a sequence { }nr  such that nr → ∞  as n → ∞  and 

(8.9) ,
1 1

( ) *
n n

ij h i j n h
i j

j i

a t r Vα
= =

≠

∆ ∆ ≥ +∑ ∑  

for some h∈H .  Then 

4lim ( ) 1 1 (1)n n
n

T t s oα
→∞

> ≥ − = −P . 

 Proof:  It suffices to show that for a given h∈H , 4( ) (1)h n nT t s oα< ≤ =P  as n → ∞ .  

The asymptotic expansion from Lemma 11 reduces this condition to 
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2
0

5
( ) ( ) ( ) / 4

(1)
*

h n F h h
n n

h

W W tr A
t s o

V α
ξ β − Π + ∆ −

 < ≤ =
 
 

I
P . 

Now 

2
0

2 2
0 0

( ) ( ) ( ) / 4

( ) ( ) ( ) / 4 2 ( ) ( ).

h n F h h

h h n F h h h n F

W W tr A

W W tr A W W

ξ β

ξ β ξ β

− Π + ∆ −

′ ′= ∆ + − Π − + ∆ − Π

I

I I

 

Note that under the alternative model, the elements 0( )iξ β  of the vector 0( )ξ β  are independent 

Bernoulli random variables with zero means and parameters 0( ) 1/ 2i iF X β′ = ∆ +ɶ .  By Lemma 2, 

20.5( / 2)0( ) ( )
/ 2 0

( )
nrh h n F

n
h h n F

W W
r e

W W

ξ β − ′ ′∆ − Π
> ≤ → ′ ′∆ − Π  

I
P

I
 

as n → ∞ .  Moreover, because the elements of ∆  satisfy | | 1/ 2i∆ ≤  and n F− ΠI  is a 

projection operator in n
ℝ , it follows that 

2 2 2( ) (1/ 4) ( ) 2( *)h h n F h h hW W tr W W V′ ′ ′∆ − Π ≤ =I . 

Therefore, there exists a random set 8nA  satisfying 8 8( ) 1n nA a≥ −P  with 8 (1)n na o=  such that 

on 8nA , 02 ( ) ( ) ( / 2) *h h n F n hW W r Vξ β′ ′∆ − Π ≤I .  As in the proof of Lemma 12, one can show 

that  

22 2 2
0 0 6( ) ( ) ( ) ( * )h n F h h nW W V sξ β ξ β − Π − ≤ +  

E I E , 

where 6 (1)n ns o= .  This implies by the Cauchy-Schwartz inequality that  

2
2 2 6

0 0 2

( * )
( ) ( ) ( ) ( / 4) * 0

( * / 4)
h n

h n F h n h
n h

V s
W W r V

r V
ξ β ξ β + − Π − > ≤ →  

P I E  

as n → ∞ .  Thus, there exists a random set 9nA  satisfying 9 9( ) 1n nA a≥ −P  with 9 (1)n na o=  

such that on 9nA , 

2 21
0 0( *) ( ) ( ) ( ) / 4h h F h nV W I W rξ β ξ β− − Π − ≤E . 

Since 2 2
0( ) 1/ 4i iξ β = − ∆E , it follows that 

2 2
0 , 0 0 ,

1 1 1

( ) ( ) ( ) (1/ 4 )
n n n

h ij h i j ii h i
i j i

W a aξ β ξ β ξ β
= = =

= = − ∆∑ ∑ ∑E E  

so that 
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2 2
0 ,

1

( ) (1/ 4) ( )
n

h h ii h i
i

W tr A aξ β
=

− = − ∆∑E . 

Since, in addition, 
2

,1 1

n n
h ij h i ji j

W a
= =

∆ = ∆ ∆∑ ∑ , we conclude that on 8 9n nA A∩  

21
0

1
,

1 1

( *) ( ) ( ) ( ) / 4

( * ) / 2 / 4

(3/ 4 1/ 2) 0

h h n F h h

n n

h ij h i j n n
i j

j i

n

V W W tr A t

V a t r r

r

α

α

ξ β−

−

= =
≠

 − Π + ∆ − −  

≥ ∆ ∆ − − −

≥ − >

∑ ∑

I

 

for sufficiently large n ,and the proposition follows.  Q.E.D. 

 Proof of Theorem 2:  Define ∆  as in Proposition 2.  Set 1/ 2 log logn Cn nρ −=  for some 

finite 0C > .  The definition of 0β  (eq. 3.1) implies that  

0 0
1 1

[ ( ) 1/ 2] { [ ( )] (0)] 0
n n

i i i i i i i i
i i

X F X X F X m X Fβ β
= =

′ ′− = − − =∑ ∑ɶ . 

Under the local alternative ( ) ( )nm x x g xβ ρ′= + , this means that 

0
1

{ [ ( )] (0)} 0
n

i i i i n i i
i

X F X X g X Fβ β ρ
=

′ ′− − − =∑ . 

Assumptions 1 and 4(iv) and a Taylor series expansion yield 

0 0 7
1

(0)[ ( )] [ ( ) ]
n

i i i i n i n n n
i

X f X X g X n sβ β ρ β β ρ ρ
=

′ ′− − = − − <∑ XF X G , 

where 7 (1).n ns o=   This and Assumption 4(iii) imply that 

1
0 8( )n n nsβ β ρ ρ−′− − <XFX XFG , 

where 8 7 (1)n XX n ns C s o= = .  But 0 0( ) 1/ 2 [ ( )]i i i i i i n iF X F X X g Xβ β βρ ρ′ ′ ′∆ ≡ − = − −ɶ  under the 

local alternative.  Therefore, 

21 2
9[ ( ) ]n n nn sρ ρ−′ ′∆ + − <F X XFX XFG G  

with 9 (1)n ns o=  or, equivalently, 
2 2

9n n nn sρ ρ∆ − Π <F G .  As in HS, one can show that 

max 0h →  and continuity of (0)if  and g  imply that 1hW Π Π →F G F G  as n → ∞ .  This 

result and (4.2) imply that for sufficiently large n , 
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2 2
0.5 log logC nδ∆ ≥ Π ≥F G , 

where 0δ >  is as in (4.2).  By Lemma 10, 2
1 2/ ( * ) /V h VC h V C h≤ ≤  for finite constants 1VC  and 

2VC .  Therefore, setting maxh h=  and 1/ 4(log log )nr n=  and noting that ( )log logt O nα =  

yields ( ) * (log log )n ht r V O nα + = .  It follows that (8.9) holds for all sufficiently large C .  The 

theorem now follows from Proposition 2.  Q.E.D. 

 Proof of Theorem 3:  It is straightforward to see that for a continuous ( )s∆ ∈S  

2
,

1

,
1 1

(1)

n

ii h i
i

n n

ij h i j
i j

a

o

a

=

= =

∆
=

∆ ∆

∑

∑ ∑
. 

Moreover, 

(8.10) 1/ 2
1 2

s
h s sW C C n h∆ ≥ ∆ −  

for constants 1sC  and 2sC  that depend only on the design { : 1,..., }iX i n= .  See HS (proof of 

Theorem 4).  Now set 2log log ( log log )nt t n O nα= + = .  Define h  to be the element of H  

that is closest from below to 2 /(4 1)( / ) s d
nn t − + − .  Since H  is a geometric grid, 2 /(4 1)( / ) s d

nh n t − + −≤  

and 2 /(4 1)( / ) s d
nh n t − + −≈ .  By Lemma 10, 1 2 1/ 2( *)h VV C h− −≤  for some fixed constant VC .  Now 

the inequality 1/ 2 1 2 /(4 1)
1 2( )( / ) s s d

s s V nn C C C n t− − − + −∆ ≥ +  and (8.10) yield 

21 2 1/(4 1) 1/ 2 2
1 2( *) ( / ) ( )s d s

h h V n s s nV W C n t C C n h t− − − + −∆ ≥ ∆ − ≥ . 

Therefore, 
21( *)h hV W tα

− ∆ − → ∞  as n → ∞ , as is required to prove the theorem.  Q.E.D. 
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TABLE 1:  RESULTS OF MONTE CARLO EXPERIMENTS1 

 
 

         Probability of Rejecting 
          _____Null Hypothesis____  

  
     Distribution           Zheng’s     F    Rate-Optimal 
n     of ε           τ        Test     Test      Test_____  

 
Null Hypothesis Is True 

 
100    Normal                0.047    0.050     0.0 63     
       Mixture               0.048    0.050     0.0 56     
       Extr. Val.            0.048    0.051     0.0 57     
 
250    Normal                0.048    0.052     0.0 55     
       Mixture               0.050    0.048     0.0 49     
       Extr. Val.            0.056    0.050     0.0 51     

 
Null Hypothesis Is False 

 
100    Normal       1.0      0.100    0.207     0.7 94     
       Mixture      1.0      0.120    0.276     0.6 74     
       Extr. Val.   1.0      0.090    0.193     0.5 30     

 
       Normal       0.25     0.162    0.131     0.6 08     
       Mixture      0.25     0.204    0.117     0.5 52     
       Extr. Val    0.25     0.240    0.162     0.5 34     

 
250    Normal       1.0      0.776    0.460     0.9 80     
       Mixture      1.0      0.600    0.462     0.9 58     
       Extr. Val.   1.0      0.490    0.340     0.7 96     

 
       Normal       0.25     0.516    0.172     0.8 68     
       Mixture      0.25     0.300    0.144     0.7 96     
       Extr. Val    0.25     0.446    0.130     0.8 02     
__ _________________________________________     __ _    _  

 
 
1  The differences between empirical and nominal rejection probabilities under H0 are not 
significant at the 0.05 level.  Under H1, the differences between the rejection probabilities of the 
rate-optimal and Zheng’s test are significant at the 0.01 level.   
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  Figure 1:  Estimates of Median Log(Wages) 
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Figure 2:  Null and Alternative Models 
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