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choice. The procedure is fully adaptive and nearly optimal up to a log log factor.
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1. Introduction

In this paper, we propose a procedure for adaptive estimation of “av-
eraged” characteristics of a two scaled diffusion system described by
the Tt6 equations (w.r.t. independent Wiener processes wy, W;) with a
small parameter e:

dXj = f(X7.Y)dt+g(X7. Yf)dw,,  X§=ugo, (L)
edVf = F(Y7)+ VEG(YS) AW, Yo =y (12)

Hereafter, X; and Y,® are referred as the “slow” and “fast” components
respectively. All the functions f, g, F, G, entering in (1.1) and (1.2), are
unknown and only the slow component X*¢ is observed. The goal is to
recover from the observations X;, 0 <t < T, some characteristics of
the process X° which can be used for a further statistical analysis of
this process or forecasting.

Examples of such problems meet, for instance, in satellite imaging,
where X; describes the observed signal and Y is used to describe
rotation and vibration of the satellite. One more reasonable example
is connected to asset price processes in financial markets. A weekly
(or monthly) observed asset price process X° can be interpreted as
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2 R. Liptser and V. Spokoiny

the “slow” component. If we are interested in some “global” (macro)
characteristics of this process, then the influence of other components
of the market can be modeled via the “fast” process Y,°. Some other
applications of such approach to the control theory can be found in
Kushner (1990) or Liptser, Runggaldier, Taksar (1996).

Equations of the form dX; = f(X;+Y}) d¢t + dw, are often used to
model regression problems with errors in regressors. It is well known, see
e.g. Carrol and Hall (1988), Fan and Truong (1993) that the presence of
the “error” component Y; in the regressor variable makes the problem
of estimating the regression function f much more difficult. Even if
the distribution of Y; is known, the optimal rate of estimating the
function f is only logarithmic in the observation time. We do not
assume special additive structure for the arguments of the drift function
f and no information about the distribution of the noisy component Y
is available. Instead we only assume that Y¢ is a fast oscillating process.
We shall see that this qualitative assumption allows for a reasonable
quality of estimation of the “averaged” drift function f which describes
the “macro” characteristics of the process X°¢.

It is well known from Khasminskii (1966) (see also Freidlin and
Wentzell (1984), Veretennikov (1991)) that, under some regularity con-
ditions on the functions F' and G from (1.2), Y¢ is a fast oscillating
ergodic process while the slow process X* obeys, so called, Bogolubov’s
averaging principle. This roughly means that the distribution of the
slow component is close to the distribution of the diffusion process X;
defined by the It6 equation

dX; = f(X;)dt + g(X;) dwy, (1.3)

where @ is some Wiener process and the drift and diffusion coefficients
f,g are defined by averaging the original coefficients with respect to
the stationary density p of the fast process:

flz) = /f(w,y)p(y) dy and g(z)= </92(x,y)p(y) dy) 1/2.

In other words, the “macro behavior” of the process X¢ is determined
only by the averaged functions f and g. This naturally leads to the
problem of statistical estimation of these functions from observations

X;,0<t<T, where T is the observation time.

In this paper, we focus on estimating the dynamic function f(x).
We do not discuss here the problem of estimating the diffusion co-
efficient g since in the case of continuous observations, the required
information about the function g can be exactly recovered from the
data, Section 3.5 below. We also restrict ourselves to the problem of
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On estimating a dynamic function 3

pointwise estimation, that is, given a point z, we estimate the value
f(z). We refer to Lepski, Mammen and Spokoiny (1997) for a dis-
cussion of the relation between pointwise and global estimation. Note
that the problem of the pointwise estimation of the drift function f is
closely connected to the problem of forecasting the process X*. Indeed,
if we observe the process (X;) until the time-point 7', and if we are
interested in a behavior of the process in the nearest future after T,
then we have to estimate f(z) for z = X7 .

The estimation theory for diffusion type processes is well developed
under the parametric modeling when underlying functions (drift and
diffusion) are specified up to a value of a finite dimensional parameter
(cf. Kutoyants, 1984b, 1994) or Bhattacharya and Gotze (1995). In
contrast, nonparametric estimation is not studied in details. The known
results concern only with statistical inference for diffusion models with
a small noise or for ergodic diffision and a large observation time 7.
Kutoyants (1984a) evaluated the minimax rate of estimation of the
drift coefficient using a kernel type estimator. Genon-Catalot, Laredo
and Picard (1992) applied wavelets. Locally polynomial estimators are
described in Fan and Gijbels (1996). Milstein and Nussbaum (1994)
established the LeCam equivalence between the diffusion model and
the “white noise model”. Some pertinent results for autoregressive
models in discrete time can be found in Doukhan and Ghindes (1980),
Collomb and Doukhan (1983), Doukhan and Tsybakov (1993), Delyon
and Juditsky (1997), Neumann (1998). A series of papers discusses
simultaneous estimation of the drift and diffusion functions, among
them Hall and Carroll (1989), Hirdle and Tsybakov (1997), Ruppert
et al (1997), Fan and Yao (1988).

In this paper, we assume neither ergodic properties of the slow
component nor the large observation time 7'. This makes the problem
more complicated. Additional difficulties come from the fact that the
coefficients of the slow process are contaminated by the unobserved fast
one. To our knowledge, nonparametric statistical inference for diffusion
models (1.1), (1.2) with averaging has not yet been considered.

We propose a locally linear estimator of f(x) with a data-driven
bandwidth choice and show that this method provides a nearly optimal
rate of estimation up to a log log factor.

The paper is organized as follows. The next section contains the
description of the locally linear estimator. Its properties are discussed in
Section 3. The data-driven bandwidth choice is presented in Section 4.
All proofs are collected in Sections 5.
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4 R. Liptser and V. Spokoiny

2. A locally linear estimator

For fixed z, to estimate the value f(z) we apply the locally linear
smoother (cf. Katkovnik (1985), Tsybakov (1986), Fan and Gijbels
(1996)).

We begin with some heuristic explanations of the method. Imagine
for a moment that the observed process X;, 0 <t < T satisfies the Ito
equation with respect to Wiener process w; :

dX; = f(X;)dt + g(X;) duy (2.1)

with the linear function f: f(u) = 6y + 6,“7%, depending on two
parameters 60y, 01, where £ and h > 0 are fixed. These parameters can
be estimated by the maximum likelihood method:

~ ~ T R
(9[], 91) = argmax{/ (9[] + 04 X4 :12) dX;
00,01 0 h

1 /T X, —z\?
- Oy + 6 dt
o (mro) e,

that is, with py = fUT (X’h”")k dt, k=0,1,2, we get

T T
po [ dXy — py [ 22 dX,
0 0

90 = 2 s
Mot — K7
T T .
—p1 [ dXi 4 po [ A2 dX,
b, = 0 0

Hop2 — M%

Since clearly f(z) = g, the value 6y can be taken as the estimate of
f(@).

The locally linear smoother is defined in a similar way. The only
difference is that the function f is not assumed to be linear but it is
approximated by a linear function g + 61 “7* in a small neighborhood
[x—h,z+h] of the point z. Then the coefficients 6y, 0; of this function
can be estimated from the observations of X; falling into the interval
[ — h,z + h]. For the formal description, let us introduce the kernel
function K (u) which is assumed to be smooth, non-negative, bounded
by 1, and vanishing outside of [—1,1]. Then the locally linear estimate
with the kernel K and a bandwidth h is defined as:

T T
i B (S55) X, = o [ 555 K (352) ax,

Y (2'2)

fu(z) =

2
Ho,nH2,n — B p
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where

T _ k _
Mkh:/ (Xt f”) K(Xt I) dt, k=012
P e T I

Now we come back to the more complicated two-scaled model (1.1),
(1.2). Here, due to the averaging principle, the observed process X is
closed in the distribution sense to the “limit” process X; described by
the equation (1.3). Therefore, to define our estimate f,(z) of f(z), we
simply replace in the expression (2.2) the “limit” process X; by our
observations X;:

T 1> T 1> 1>
i 1 (S577) ax - s | 577 (5
0 0

fh(x) = ) (2'3)

2
Ho,nH2,n — K1 p

where now

T Xe — k XE —
ﬂkh:/ ( t x) K( t x) dt, k=012 (2.4)
= h h

The quality of estimate (2.3) essentially depends on the bandwidth
h. Some useful properties of f,(z) for the fixed h are described
in Section 3. We discuss the adaptive choice of the bandwidth h in
Section 4.

3. Accuracy of the locally linear estimate

In this section we study some properties of the locally linear estimate
frn(z) from (2.3). We first formulate the required conditions on the
coefficients of the two-scaled system (1.1), (1.2). Then we present the
result and discuss some its corollaries.

3.1. CONDITIONS

In the sequel we suppose that the functions f,g and F,G from (1.1)
and (1.2) obey the following conditions:

(Ag) Functions f(z,y) and g(z,y) are Lipschitz continuous in z, y and
f(z,y) is three times continuously differentiable in z. For some
positive constants gmin < gmax

Imin < |9(«Ta3/)‘ < Gmax-
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6 R. Liptser and V. Spokoiny

(Af) 1. Functions F(y) and G(y) are Lipschitz continuous in y and
continuously differentiable (F' once, G twice) and their deriva-
tives are continuous and bounded.

2. There exist constants x > 0 and C > 1 such that for |y| > C
yF(y) < —lyl”,

3. Function G is bounded and strongly positive, i.e. for any y
0< Gmin S ‘G(y)| S Gmax-

Condition (Af) guarantees the required ergodicity of the fast pro-
cess Y, and, moreover, this condition can be viewed as the mathe-
matical formulation of the ergodic property of the fast process, see
Veretennikov (1991) for more detailed analysis. Under (Ay) the invari-
ant density of the fast process can be explicitly described (Khasminskii,
1966) and it does not depend on e:

y
F
exp {2 i Gg((uu)) du}
0
G*(y)
It is worth to mention that neither the constants C, k, G min, Gmax » DOT
the invariant density p are not assumed to be known and they do not

enter into the description of the procedure and into the formulation of
the main results.

p(y) = Const. (3.1)

3.2. ACCURACY OF THE LOCALLY LINEAR ESTIMATE

To state the result, we introduce some additional notations. With gy,
defined in (2.4), set

Dy, = ponpon — M%,h, (3.2)
and
1 T X:—z)\2 Xf—2x
oj(z) = F/o <M2,h—ul,h th ) KQ( th )gQ(Xf,Yf)dt
h
= v3,Vor — 2000024 Vih + V3, Vo (3.3)
where
ohn = Pkh _ ok, .

2 )
Dy poppon — pip,

T rxe —g\* X;—=
v = [ (FE) e () o a
0
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On estimating a dynamic function 7

Although the expressions for V., k= 0,1,2, use the unknown diffu-
sion coefficient ¢2(X7,Y;) and moreover, one of its arguments Y}
is not observed, these values can be computed on the base of our
observations (X[, 0 <t <T) only, see Section 3.5.

The value U,Ql(at) is called the conditional variance of the estimate
fh(:zz) We use this terminology by analogy with the regression case,
where X; is a deterministic design process and o} (z) is really the
variance of the least squares estimate fh(x) . Note that for the regres-
sion setup, some design regularity is required to ensure that 0,21(37) is
not too large.

In our case, X} is the observed process which at the same time can
be viewed as the design process. We therefore impose some conditions
on the trajectories of the process X; which are similar to that of used
to describe the design regularity in the regression setting. Our results
are also similar to that of usually obtained in the regression estimation.
In particular, we show that under the conditions imposed, the condi-
tional variance o7 (z) helps to control the stochastic component of the
estimate fj(z).

For some p>0, r>0, >0 and B > 1 we introduce the set

b bB b 2 bB
75 Svon < s o < oj(x) < 7

Ap =< pop < o, Voo, <rVap,
Mih < P lopk2,h th < pVonVon

Since X§ is the random process, the set Aj is random as well. In the
sequel we study the properties of f(z) restricted to the set Ay, see
Section 3.3 for further discussion.

The quality of the approximation of f(u,y) by a linear in u function
in the neighborhood w € [z — h, z + h] is characterized by the following
quantity

Ap(z) = sup  |f(u,y) = f(z,y) — (u—2)fo(z,y)l.  (3.4)
lu—z|<h,yeR

In the next theorem we describe some useful properties of the estimate
(2.3).

THEOREM 3.1. Let (As) and (Ay) be fulfilled, and let the values €
and €T be sufficiently small and Th > 1. Then for every A > /2

P (
a(\) = 4elog(4B?) <1+4r1/%+; A2> Ne (3.6)

fulw) = F(@)] > cAnle) + don(@), An) <o) (35)
with
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and ¢ = (1—p)~'/2.

Informally the result of the theorem means that for sufficiently large
A, the losses |fy(x) — f(x)| of the estimate f;(x), being restricted to
Ap, , are bounded by the sum of two terms: cAp(z) and Aop(z). The
first one mimics the accuracy of approximating the function f(u) by a
linear in u function in the small vicinity [z —h,z+h] of z . The second
term is in proportion to the “stochastic standard deviation” oy(x).

3.3. SOME REMARKS RELATED TO THE RANDOM SET A,

The result of Theorem 3.1 describes the accuracy of the estimate fj ()
on the random set Aj, only. Here we briefly discuss some related
questions.

3.3.1. Reason for restricting to Ay,

It was mentioned previously that restricting to A, allows to eliminate
irregular cases when, for instance, the trajectory X[EO’T} does not pass
through the interval [z —h,z +h] and pop = p1p = pon = Dy =0.
Note that for typical applications to forecasting, one has to estimate
f(z) with z = X7, and the path Xy, obviously passes through z.

3.3.2. Verifying the condition X[E(],T} € Ay

Clearly the event A, is completely determined by the known values
prn and Vi, k= 0,1,2. It is therefore always possible to check
whether the observed trajectory XF[LT} belongs to Aj or not. If the
trajectory X[EO’T} does not belong to Ay, we are not able to guarantee

a reasonable quality for the estimate fh(:zz) .

3.3.3. The conditions entering into the definition of Ay,

The conditions 0 < K(u) <1 and K(u) =0 for |u| > 1 imply pgp <
po,n and Vo < Vpp, . Further, by the Cauchy-Schwarz inequality, it
holds uih < ponpto,n and th < VonVo . The conditions pig ) <
r2.n s Voo <1mVop, Mih < ppro,ppi2,n and th < pVorVo, with p <1
and r > 1 ensure that the local linear estimate is well defined. Note
that these conditions are not completely independent. In particular, if
g(z) is a constant function and if K(u) = 1(Ju| <1), then ppp = Vi p
for k=0,1,2 and o}(z) = vo.n = pon/(Bonkan — 13 ,)-
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On estimating a dynamic function 9

3.3.4. The choice of the constants p, b, B, r
The choice of constants p, b, B, r, entering in the definition of the
set Ay , is optional and they even may depend on T'.

For a regular design in the regression setup, it holds p;, = Vi 5 = 0.
If, in addition, g(u) is constant in the interval [z — h,z + h], then
pon = r(K)pay and Vg, = r(K)Vay with

r(K) = /K(u) du </u2K(u) du> 71.

Therefore, I reasonable choice would be p =1/2 and r = 2r(K).
Concerning the choice of the parameters b, B, note that the upper
bound (3.5) from Theorem 3.1 does not depends on b and it depends on
B (which determines the range of different values for the conditional
variance o7 (z)) only via the log-factor log(4B?). Simple heuristic
consideration prompt a possible choice b = Ay and B=1T .

3.3.5. Unconditional result under ergodicity

If the coefficients f and g obey some additional conditions which
ensure ergodicity of the process X[, see e.g. Veretennikov (1991),
then, at least with growing 7' the normalized integrals (Th) 'u and
(Th) 'Vin (k=0,1,2) converge to some fixed values which depend
only on the stationary distribution of the process X;. Moreover, one
can usually select fixed constants b, B and p,r in such a way that
1 — P(Ap) converges to zero exponentially fast as 7' — oo. Since
obviously

P (|fu(2) = F(@)| > cAu(e) + Aon(a))
< P (|ful@) = Fl@)] > cdn(a) + Aon(e), An) + P(AF)

we obtain in this situation an unconditional asymptotic bound for the
risk of the estimate fj(x).

3.4. QUALITY OF ESTIMATION UNDER SMOOTHNESS ASSUMPTIONS

Due to the assumptions (As) from Section 3, the function f is twice
continuously differentiable with respect to the first argument. Assume
also that for every w from a small vicinity of z and any fixed y

‘ 0 f (u,y)

- ‘ <L (3.7)

Then the value Ay(z) defined in (3.4), is bounded above by Lh?/2.
On the other hand, on the set A the stochastic variance o7 (z) is of
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order (Th)~!. Therefore, following to the standard approach in non-
parametric estimation, the bandwidth A can be chosen by balancing
the accuracy of approximation and the stochastic error:

1
2 o
Lh* =< Nl
This leads to the choice h =< (T L?)~'/®> and hence to the rate of the
estimation L'/5T~2/> which is optimal in the minimax sense under
the smoothness assumptions (3.7), see e.g. Ibragimov and Khasmiskii
(1981). Unfortunately this approach hardly applies in practice, since
the constant L in (3.7) is typically unknown. An adaptive (data-driven)
choice of the bandwidth is discussed in the next section.

3.5. COMPUTATION OF 073 (z)

Recall that with fixed &, the value o7 (z) is defined by the formula

1 [T Xi—=z X;—z\’
O'}QZ(I) = F/O‘ K2< th ) <N2,h_ﬂl,h th ) 92(X§7Y't6) dt
h

2 2
= 03, Vo.n — 2010020 Vi p + 07 Vaorn

T k
Xf—z X;—x
= K dt
Hhh /0< h ) < h ) ’

2

Dy = pontan — 11 p

v HEk.h HEk.h

k.,h — = P
Dy ponkon — 1y,

T k
X —=x X —=x
v = [ (F0) & (K e an
0

for kK =0,1,2. The formula for o?(z) includes the unknown diffusion
coefficient ¢?(X7,Yf) and the unobserved process Y as one of its
arguments. We now show that despite of this fact, the value U,Ql(at) can

be computed via the trajectory X [’EU’T} only.

with

Let us introduce two random processes

t XE t X — Xe —
Z;:/K< - "”) dX? and Z{’:/K( = "”) - T ax:
0 0

0.7]"

which are completely determined on the time interval [0, 7] by X
Applying the Ttd formula we get

T
(Zy)? = 2/ Z1AZ + Vi
0
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T
(Z4)* 2/ Z'dZ) + Vay,
0

T T
VA :/U Z;dzt”+/0 ZydZ{ 4+ Vi .

T
Hence Vo, = (Z'1)*-2 [ Z{dZ}, so that Vg, is completely determined
0

by X[E(],T}' Similar arguments apply for V;; and V5, and hence for

o2 (z) as required.

4. Data-driven bandwidth selection

In this section we consider the problem of bandwidth selection for the
locally linear estimator described in Section 2. It is assumed here that
the method of estimation, that is, the locally linear smoother with the
kernel K, is fixed and only the bandwidth A has to be chosen. Below
we discuss one adaptive (data driven) approach which goes back to the
idea of pointwise adaptive estimation, see Lepski (1990), Lepski and
Spokoiny (1997) and Spokoiny (1998).

The idea of the method can be explained as follows. In the light of
Theorem 3.1, we would be interested to select a bandwidth h which
leads to a possibly small sum of the form cAy(z) + Aop(z) among all
considered bandwidth values A . This sum is comprised of two terms.
The first one (“bias”) characterizes the accuracy of local approxima-
tion of the underlying drift function f by the linear functions and
it typically increases with h. The second term is proportional to the
conditional standard deviation oy (x) which typically decreases with h .
(Indeed, an increase of h makes the estimation window [z — h,z + h]
larger and hence more observations can be used for estimating the
underlying function f at the point z . This results in a smaller variance
of the estimate.) To simplify the exposition, we suppose that o (z)
strongly decreases in h € H. (If this assumption is not fulfilled for
the original set #, i.e. if there is h' < h € H with the property
o2(z) > o2/(z), then we simply exclude h from H.)

Therefore, a “good” (or “ideal”) choice hiq corresponds to a pos-
sibly large bandwidth A (which makes the stochastic component of
the estimate small) still providing that the “bias” component cAj(x)
is not significantly larger than op(z). (We call hig an “ideal” band-
width since its definition relies on the unknown function Ay (z).) The
latter property is clearly fulfilled for all smaller bandwidths h < hiq.
Therefore, if hiq is “good” and h < hjq, then the two corresponding
estimates f5.,(z) and f(z) should not differ significantly.
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The proposed procedure can be viewed as a family of tests whether
the estimate f;(z) for a bandwidth-candidate A does not differ signif-
icantly from estimates f,(z) with smaller bandwidths 7 < h. The
latter is done on the base of Theorem 3.1 which allows to bound
with a large probability the difference |fy(z) — fy(z)] by Aop(z) +
Aoy(z) + cAp(z) + ¢Ay(z) provided that X is sufficiently large. The
terms cAp(z) and cAy(z) in this sum are unknown but, if A is
“good” that is, if Aj(z) < op(x), then their contribution is negligible.
In opposite, a significant deviation of |f(z) — f,(z)| over the level
Aop(z) + Aoy(z) can be explained only by a large bias component
indicating that h is not a “good” bandwidth. The procedure searches
for the largest bandwidth A such that the hypothesis f(z) = fy(z)
is not rejected for all n < h.

Now we present a formal description. Suppose a family H of band-
width-candidates h is fixed. For technical reasons, we assume that this
set is finite and denote by H the number of its elements. Usually H is
taken as a geometric grid:

H={h=hnna*, k=0,1,2,...: h < hpay},

where Amin < hmax and a > 1 are some prescribed constants. As in
Section 3 we restrict ourselves only to those h from H for which the
observed path X[EU 7] belongs to Ay.

With every bandwidth value h we associate the estimate f,(z)
of f(z) and the corresponding conditional standard deviations oy,(x)
which can be precisely calculated as described in Section 3.5.

Now, with two constants Ay and Ao, define the adaptive choice of
bandwidth by the following iterative procedure:

Initialization Select the smallest bandwidth in H .

Iteration Select the next larger bandwidth h in H and calculate
the corresponding estimate f(z) and the conditional standard
deviation op(x).

Testing Reject h, if there exists one n € H with n < h such that
|Fn(@) = Fy(@)] > M oy(x) + Ao o (). (4.1)

Loop If A is not rejected, then continue with iteration step by choosing
a larger bandwidth A in H. Otherwise, set h = ”the latest non
rejected h”.

The proposed rule can be packed in the following form:

A = max {h EH: | fw(@) = fo(@)] < Moy(z) + Aoow (@) (4.2)
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Vi',n € H,n < h' < h}.

The choice of the parameters Ai, Ao and the set H is discussed in
Section 4.1.

Finally, to define our adaptive estimate, we plug the data-driven
bandwidth A in the estimate fy(z), that is, f(z) = fi(z).

In the next theorem we describe some properties of the adaptive
estimate f(z) restricted to the set

A= A

heH

THEOREM 4.1. The estimate f(z) = fh(a:) with h from (4.2) and
A2 > A1 fulfills the following property:

P(|f) —f(:z:)‘ > (@0 X)on (1), AT) < 30 aldy) (43)

nEH :n<hiq
where a(X) is defined in (3.6) and

Ap =M —cAy(x)/oy(x). (4.4)

4.1. THE CHOICE OF PARAMETERS A1, A2, Amin, Amax AND a

Different proposals for the choice of the grid H is discussed in Lepski,
Mammen and Spokoiny (1997) and in Lepski and Spokoiny (1997).
One possible choice for the grid H reads as follows: Ay, = 1/T,
hmax = 1, a = \/5, although these values can be changed without
essential influence on the quality of the procedure.

The choice of parameters Ay, Ay, entering in (4.2), plays more
important role. We start with the following general remark: the upper
bound for the risk from Theorem 4.1 is rather rough and should be
used with care for the parameter selection. However, it delivers some
useful qualitative information about this choice which can be used
for a theoretical study. The bound in (4.3) shows that the probabil-
ity for |f(z) — f(z)| of being large is small, provided that the value
> oneH:n<hy @(Ay) is sufficiently small. Here we discuss shortly the
specific case when the values A, (z) vanish. The general case can be
relatively easily reduced to that one. Indeed, a “good”bandwidth hiq
can be defined by trade-off arguments between the “bias” cAy, () and
the conditional standard deviation oy, (), that is, hiq is the maximal
h from H with cAp(z) < Doy(z) for some fixed value D . Taking D
small enough provides that cA,(z) < oy,(z) for all n < hiq.
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14 R. Liptser and V. Spokoiny

If A,(z) vanishes for all such 7, then X\, = A\; and
> aly) < Halh).

n€H :n<hiq

Therefore, A; should be selected in a way to provide that Ha(A1) is
sufficiently small. This leads to the choice

A & /2log(H) + \?

with some fixed constant A so that

He_)‘%/2 ~ e_/\2/2.

If H is taken in the form of the geometric grid, then we get H =
log, (hmax/Pmin). Therefore, taking hmax =~ 1 and hpin = 1/T, we

arrive at
A1 & v/2loglog T + A2,

There is much more degree of freedom in the choice of Ay. The con-
straint Ao > A\ from Theorem 4.1 is of technical matter and it is
used only in theoretical investigations. In can be skipped in practical
applications. Simulation results show a reasonable (and very similar)
performance of the presented procedure with Ay ~ 2 and Ay = 1,
or \{ = Ao = 1.5 in the most cases. We refer to the forthcoming
paper by Mercurio and Spokoiny (2000) for a more detailed discussion
of practical issues and for a proposal of a data-driven choice of the
parameters A; and Ao in the context of applications to finance time
series.

4.2. ACCURACY OF ADAPTIVE ESTIMATION

We now compare the accuracy of the adaptive procedure (4.2) with the
“optimal” one designed for the case of known smoothness properties of
the underlying function f (see Section 3.4).

Assume |f"(u)] < L, see (3.7). Then Ay(z) < Lh%/2 and the
conditions o7 (z) < (hT)~" and the balance relation cAy(z) < Doy (z)
yield for hiq:

hid = (TL2) -1/

so that oy, (z) < L'/T~2/5. Hence, the above-mentioned choice A ~
v2loglogT and Ay = A\; leads due to Theorem 4.1 to the following
accuracy of the adaptive estimation:

log log T\ %/
(201 + Ao)on, (z) = LV/3 <%) |
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On estimating a dynamic function 15

At the same time, the “ideal” choice of the bandwidth leads to the rate
LY/5T=2/5 gee Section 3.4. Thus, the accuracy of adaptive estimation
is worse than the “ideal” one within a loglog T -factor only.

The origin of the loglogT -factor in the rate of adaptive estimation
can be easily explained. The total number H of considered estimates
is logarithmic in the observation time T and the adaptive choice of the
bandwidth leads to a worse accuracy by factor log(H) at some power.

The notion of “payment for adaptation” is now well understood in
nonparametric estimation: if we have too many estimates to select be-
tween, we have to “pay” for the adaptive choice some additional factor
in the risk of estimation. In particular, it is shown in Lepski (1990)
and Brown and Low (1996) (see also Lepski and Spokoiny (1997)) that
for the problem of pointwise adaptive estimation, the optimal adaptive
rate has to be worse than the optimal one by a log-factor.

In our results a loglog-factor appears. This fact is not in contra-
diction to earlier issues, since the above-mentioned results correspond
to the case of the power loss function 4(z) = |z[P, p > 0, while we
consider the bounded loss function. It can be also shown that the rate
achieved by our estimate is optimal for pointwise adaptive estimation
with a bounded loss function (see Spokoiny (1997) for similar results
in the adaptive testing problem).

5. Proofs

In this section we prove Theorems 3.1 and 4.1. For a generic positive
constant the notation ‘¢’ will be used hereafter.

5.1. DECOMPOSITION OF fp(z)

We use two obvious identities characterizing the local linear smoother:

for vy, = —“5’: and vg ), = —“5’:

T X — Xé —
/ K< sh $> <'02,h_'ul,h sh $> dS =1
0

T (X:—x Xé—x (X —1z)?
/0K< . ><1)2’h . — VL 2 )ds:(]

and hence, with U¢, = X%
) ssh — h

T
| K W) (an = oVia) F@ s = f@) - G)

T
/0 K (U3 ) (v20U5 ), — U1,h(U§,h)2) fe(z)ds = 0. (5.2)
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16 R. Liptser and V. Spokoiny

Due to (2.3) and (1.1), the estimate f,(z) can be represented as follows:

T
Fala) = van [ K (U35) aX;
0

K (Usp) Usn9(X5,Y5) dus.
Now (5.1) and (5.2) imply the following decomposition

fu(@) = F@) + & +rn+ ¢V + ¢ (5.3)

where, with 6(XZ, Y7, z) = f(XZ,YE) — f(a,YE) — X2 fo(2,YE),

T
T, = / K(Uih) (vgyh—vl’h USE,h) 0(X:, Y7 x)ds,
° T
€ = van / K (U2,) g(XZ, Y7 du,
° T
_Ul,h/ K (Usg,h) UsE,hg(ngvysa) dws,
T[]
¢ = vy / K (UZ,) [ (2, YE) - F(x)] ds
0 . )
i / K (U2,) [f (@, YE) = F(2)] U, ds,
T
(P = g / K (UZ3) [fa,Y5) — fuol@)] US, ds

T E_ g 2
o [ K U3 e ¥9) - £ B

Below we evaluate separately each term in this decomposition.
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On estimating a dynamic function 17

5.2. AN UPPER BOUND FOR |ry}|

Since K (%32) vanishes for any u ¢ [z —h,z+h] and [0(XE, Y, z)| <
Ap(z) for | X —z| < h, we get
T
< [ K (U5) (20— 0 U) [80X5 Y5 )] ds
0

X:—
Vo.h — V1h sh Tl ds. (5.4)

T
< Ah(«??)/o K (U;4)

The properties |K(u)| <1 and K(u) =0, |u| > 1 imply the inequality
po.n < o - In addition we know that it holds on A,

13 1 < PHopl2b- (5.5)
We now show that
ral < (1—p)"2A(z)  on A (5.6)

The Cauchy-Schwarz inequality applied to (5.4) gives

T T
< A [ R (0 as [ K (W) (v vaU)* ds

T
/o K (U; ) ds = pon,

and using vy p = pgp/Dy, with Dy = pa ppion — “%,hv k=0,1,2, we
get

T
/U K (Ugp) (va,n — vl,hUsE,h)Q ds

1 [T 9
= [ K () (2 1aU3)” s
Dh 0
2 T 2 T
Ha p HA
-2 / K( th) ds + D2 K( th)( sE,h)2 ds
h 40 h J0
2u1 npon [T
- D2 K ( Sa,h) Usa,h ds
h 0
2 2
Mo pHo.n — H2,hHT
— 7
= pio,n/Dp.
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18 R. Liptser and V. Spokoiny

Hence, in view of (5.5),
1
l—p

2 2 H0,h 42,k 2 H0,h 12,k 2
r? < AF(z)EREERL A2 () LORERR o A2y
h h Dy, h Mo, hib2,h — Mih h

as required.

5.3. AN UPPER BOUND FOR &

We study here some properties of the “stochastic term”

T
X¢ —x
fh = ’027}1/ K< Sh )g(ng,Y'sg) d’U)s
0

T

Xe _ Xe _

_vl,h/ K( sh x) sh xg(ngaYsg)dws-
0

Namely, we intend to show that the probability of the event {&, >
Aop(z)} with o (z) from (3.3) is small provided that A is large enough.
Set for ¢t <T

t X¢ —
Moy = [ & (B2 o0, 0) dun
0

t XE — X¢ —
My, = / K( = I) = T (X2, YF) dws.
0

The Ito integrals My; and M;; are continuous local martingales with
the predictable quadratic variations (see e.g. Liptser and Shiryayev
(1989))

! X -2
oy =[R2 () ) as

t Xe—z\ Xi—x
o w)e = [ w2 (B0 B v as

t X — XE — 2
[ (BE0) (B52) e as

so that <M[]>T = V()’h, <M0,M1>T = Vl,h and <M1>T = VZ,h- This
yields

(M)

En(z) = vo Mo —v1 My,
op(x) = v3 ,(Mo)r — 201 hvon (Mo, Mi)T + vi 5, (M) 1.

Denote
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On estimating a dynamic function 19
Obviously
P (|€n] > Aon(), Ap)

= P<|M[]7T — uhM17T| > A/ VT(uh), .Ah>

with Vi (up) = (Mo)r — 2up (Mo, My)p + u%(Ml)T. To evaluate from
above the right side of this equality, we apply the general result from
Proposition 6.2, see Appendix. First we check the required conditions.
The value |uy,|, being restricted to Ay, can be bounded as:

fup| < /PHO 2, < Jr

H2.h
Note now that
(M)
(Mo)r — 2up (Mo, My)r + ui (My)r
_ Vo
Vo, — 2upVip + ui Vo,
Vih

VoV = Vi, + (Vin — unVan)?’
and it holds on Ay, in view of Vo, < Vpy,

(My)r < Vi 1
(Mo) — 2up(Mo, My)r +uz (Mi)r = (1—p)VopVon — 1—p

In addition, the definition of A; provides the following bounds for
o2(z) on this set
or(z)  Thop(z) LB _B
Thv?, — (Thvyp)? = b b’
or(z) _ Thop(z) b1

Thv?, (Thvyp)? ~ (bB)?  bB?

Vv

Applying now Proposition 6.2 we get

P ([&n] > Aoy (), Ap)

1 2
< 4delog(4B?) (1 Ty /5 tr A2> Xe t. (5.7)
—p
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20 R. Liptser and V. Spokoiny

5.4. AN UPPER BOUNDS FOR (j(1) AND (,(2)

Note that both ¢ ,(Ll), ¢ ,(12) are linear combinations of elements of the form
on [T U(XE)[a(Y{) — @) ds, where

- vy is any of vy p, vop;

- W(XE) s any of izt g (X?h—f”), k=012

- a(Yy) is any of f(2,Y7), fo(2,Yy), and @ = [a(y)p(y) dy, with
p(-) being the invariant density of the fast process.

Under the assumptions made, the function ¥(u) is bounded by 1 and
twice continuously differentiable: there exists a constant C such that

(U (u)| <1 and [¥(u)| + [¥(u)| < C V.
Next, on the set A it holds vih < pugpvan < prv%h and vy <

bB(Th)~!, so that, taking into account Th > 1, it suffices to bound
only

T
U?:A (X3 [a(Y7) - a) ds.

We apply a large deviation type estimate for the two scaled diffusion
model (1.1), (1.2) from Liptser and Spokoiny (1997) adapted to the
case considered.

PROPOSITION 5.1. Suppose (As) and (Af). If T =T, and lin% T.e =
E—
0, then for every positive z >0 and 0 < Kk < 1/2

. _ _ VA
where
vzémwwwmww

y
2 _
Iy) = m![a(u) — a]p(u) du.

COROLLARY 5.1. For ¢ small enough and k1 <1 — 2k

P (|Us-| > (eT%)%) < e~ T
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Applying this corollary with x < 1/2 and k; < 1 — 2k, we obtain
for €T small enough

P (\C;(f)\ > 2(5T)“> < 2exp <—(8;)m> . i=12 (58

5.5. PROOF OF THEOREM 3.1

Summing up the decomposition (5.3) and the bounds (5.6), (5.7), (5.8),
we get

P (|fule) - F(@)| > can(a@) + Aon(@) +2(T°)", Ay)

1 —x
< 4elog(4B?) <1 + 4r T tr >\2> e~ N2 4 ge—(T)7F1
Vi-p

This leads to the required bound from Theorem 3.1 for sufficiently small
eT.

5.6. PROOF OF THEOREM 4.1
Let hiq be a “good” bandwidth. We intend to show that
{[f@) = F@)] > @\ + 2)on, (@)}
c U {h@-Fe)>xne@}
n€M (hia)

where H(h) ={n e H: n < h}. This statement is equivalent to saying
that the inequality ‘f — f(= )‘ (2X\1 + X2)op,, (x) is impossible if

fo(z) = F(2)] < Moy(z), V0 € H(ha). (5.9)
Obviously
{|f@ = 1@)] > @3 + M) ()}

c {|f@ = F@)] > @+ X)ony (@) b > hia)
+ {hiq is rejected} .

We consider separately each event in the right side of this inequality.
It holds on the event {h > hig} in view of the definition of A

155, (2) = Fria (@) < Aion, (@) + Aoy, () < (A1 + Ao)on, (@)
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Next, by (5.9)
Frna(@) = F@)| < Mm@
Hence, {h > hig} and (5.9) imply
7@) ~ F@)| < 1,@) ~ T @] + e @) — Fla)
< (2M + X2)op,, (2).
Now we study the event {hjq is rejected} . By definition
{hiq is rejected }

- U U {‘fh(x) —an(x” >>\20h(x)+>\107,(x)}.

heH(hia) neH(h)
Condition (5.9) yields for every pair n < h € H(hiq)
|[fn(@) = fy(@)] < Ufulz) = F@)| + 1 fa(@) = F@)] < Mi(on(z) + oy(2))

so that the event {hiq is rejected} is impossible under (5.9) in view of
Ay > A1

It remains to bound the probability of the event in (5.9). With X, =
A — c¢Ay(z)/oy(x), it holds by Theorem 3.1

P (1fafe) = (@) > Moy(a))
=P (1f(2) = F@)] > Moy (2) + ey (2)) < ()
where a()) is from (3.6) and hence,

P <|fn(ac) — f(2)] < Moy(x), ¥y € H(hid)> >1- 3 a(y)

n€H (hiq)

This completes the proof of the theorem.

6. Appendix. Deviation probabilities for martingales

In the Appendix we present two general results for continuous martin-
gales. The first result describes some properties of real-valued martin-
gales, while the second one deals with martingales valued in R? .

6.1. THE SCALAR CASE

Let M; be a continuous martingale with My = 0 and with the pre-
dictable quadratic variation (M) .
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PROPOSITION 6.1. For everyT >0, 94 >0, S>1 and A >1

2
P (\MT| > MMz, 9 < /(M7 < 195) < 40/e (1 +logS) e F.
Proof. We use

P (1Mr| > WM, 9 < /(M) < 95)
<P (Mr > A\/(M)r, 9 </M)r < 05)
+P (MT < MMz, 9 < /(M7 < 198) .

We estimate separately each term in the right side of this inequality.

Given a > 1, introduce the geometric series 9, = ¥a* and define
the sequence of random events C, = {VJp < /(M)r < Vp41}, k =
0,1,.... Then clearly

P (MT > M (MYyr, 9 < /(Myr < 198) (6.1)
K
<> P (Mr>2/(M)r, 0 < /(M)r <98, C) .

k>0

where K is the integer part of log, S. We now bound each term in
this sum. Let, with v € R,

2

Z(y) = exp (M — L-(M),).

The random process Z;(y) is the continuous local martingale and, being
positive, it is the supermartingale (see Problem 1.4.4 in Liptser and
Shiryayev (1986)). Therefore for every T > 0,

EZr(y) <L (6.2)

For fixed k, we pick v = % and use (6.2) for the inequality

1> EZr ()] (MT > WM, ck)

which implies

E exp <1MT _ A—2(M>T> I (MT > WM, ck)
¢ ‘o
Eexp <— (M) (M)T> I (MT > A/(M)r, ck)

Oy, 20,

Eexp{ inf (AQU ﬁ)}I(MT>A\/W,ck).

B <v<tpyr \ Vg 219%

1

Y

IV

v
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24 R. Liptser and V. Spokoiny

It is easy to check that “infy, <y<y, ,” is attained at the point v =
Pp+1 = ady so that

P (MT > A\/W,ck) < exp {—AQ <a _ “;) }

Combining this bound with (6.1) and using K < log, S, we obtain

P(MT>A\/W,19§\/W§19$>
< (1+10gaS)eXp{—)\2 <a—“;>}

Since the left hand side of this inequality does not depend on a, we
may optimize the choice of ¢ to minimize its right side. This leads to
a=1+1/A. Then

2 2
N RN WIS PETLEE Y SRR N QU VI
A(a 2>—>\ {14—)\ 2<1+>\>}—2(>\ 1)
and, since log(1+1/X) > 1/(2X) for A > 1, we have log, S < 2Xlog S.
Hence

P (Mr > \/(M)r, 9 < /{M)r <9S) < 2v/eX (1 +log S) e

In the similar way we obtain

P (Mr < -\/(Mjz, 9 < /(M) < 95) < 2/eA(1 +log ) e >

and the assertion follows.

6.2. THE VECTOR CASE

Here, we consider continuous vector martingale M; valued in R? with
components My ; and M; ;. We denote

Voo = (Mo): Vig = (Mo, M)y, Vo = (M)
Let » be a random variable and

Ut2 = V(),t — QUVLt + U2V2’t.
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For a fixed time moment T and constants ¢4 >0, §>1, 8> 0 and
p € (0,1), introduce the event

¥ < o2 <98
Ar =1 Vip < pVorVar o (6.3)
ul < B

PROPOSITION 6.2. Let M; be a martingale with values in R? such
that Voo > Vo . Then, with Ar from (6.3), it holds for every A > /2,

P (|M0,T — UMI,T‘ > Mo, Ar)

2
< delog(49) (1 +48 Tr—ﬁ >\2> Xe™ T
\ 1-»

Proof. For fixed 3, p, and A define § such that

26(1+p)
l—p
and denote by D5 = {ax = k0 : k € N, |a| < f} the discrete grid with
the step ¢ in the interval [—f, f].

Let vy (respectively v_) be random variable valued in Ds which

is closest to u from above (respectively from below). Then clearly
vy —u| < 0. (6.5)
(Mo —uMyr| < max{|Mor —v-Mir|,|Mor —viMirl}. (6.6)

=\ (6.4)

Let now v be one of v_ and vy . Then by the construction |v—u| < 4.
Next we show that on the set A7 it holds

VO,T — QVVLT + 7/2V2’T

2
or

1-22< <14+ A2 (6.7)

Indeed
2

V. V. 2
U% = Voor —2uVir + UQVZ,T =Vor — Vl—’; +Var (u _ Vl—’§>
2, 2,

. YorVor = Viy
- Vor

>(1=pVr

and using Vo < V1, we get

V; Vo V-
\ 1éT\ < vV PVo,rVar < NG <(1-p L,
or (1—=p)Vor IL—p
Vor Vor _
2 = S(l—p) 1-
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Since on the set A it holds |u| <  and by construction v < 5 we
obtain, using the definition (6.4) of ¢,

Vor — 2uVir + Voo — (Voor — 20Vir + V2V2,T)‘
<2/Vir|ju — I/\ + Vo ‘u2 - V2‘
<25(1—p)~lod +2B(1 —p)~toF
= U%)\_Q

and (6.7) follows.
Since on the set A the value a% is between 9 and 95, we also
get for v = w4

(1 =229 <Vor —2wVir + 12 Vor < (1+2172)9S. (6.8)
We now derive from (6.6), (6.7) and (6.8)
{Mo — uby | > Ior, Ar}

. {MU’T_VMI’ﬂ Vi 1+>\2 v AT}
U Myt — >7 V; , A
{ 01 e V) T}
A
- My — aM >——\/V , A ,
c U {| o1 — ablyr| > —2 /T ,T}

a€Dg;

where

Vr(e) = Voo —2aVir + o’ Var,
Aar = {(1 =229 < Vp(a) < (1 +A172)9S}.
Now, for every a € Ds, the process My; — aM;; is the continuous
local martingale with (My—aM;)r = Vo r—2aVi 1+ Vg T Applying
Proposition 6.1 and using the inequalities A\> > 2 and > A\2(1 —
A72) = A2 — 1, we obtain

1-|->\ T+2—2

A
P <MU,T —aMy 1| > Niewy: Vr(a), Aa,T)

<4 A I+1lo L+ 275 e X + !
—_— —_—m X _— —_
T OVIH+ A2 =20 Pl2a0+x22) "2

2
< 4X <1+10g%> exp <—%+1>.

Since the number of different elements in Ds is at most 14+2386~! and
2
since ¢ from (6.4) fulfills 6! = %1:;5) we get

P (‘M[],T — UM17T| > o, A7)
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2
< e (1 + log %) (1+285~ ) xe

1 2
< 4elog(48) 1+ 48 %AQ Ae~ T

as required.
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