
On estimating a dynami funtion of a stohasti systemwith averagingRobert Liptser (liptser�eng.tau.a.il)Dept. Eletrial Engineering-Systems, Tel Aviv University, 69978 Tel Aviv, IsraelVladimir Spokoiny (spokoiny�wias-berlin.de)Weierstrass Institute for Applied Analysis and Stohastis, Mohrenstr. 39, 10117Berlin, GermanyAbstrat. We onsider a two-saled di�usion system, when drift and di�usionparameters of the \slow" omponent are ontaminated by the \ fast" unobservedomponent. The goal is to estimate the dynami funtion whih is de�ned by aver-aging the drift oeÆient of the \slow" omponent w.r.t. the stationary distributionof the \fast" one. We apply a loally linear smoother with a data-driven bandwidthhoie. The proedure is fully adaptive and nearly optimal up to a log log fator.Keywords: fast and slow omponents, drift and di�usion oeÆients, averagingpriniple, nonparametri estimation, bandwidth seletionAMS Subjlass 1991: Primary: 62G05; Seondary 62M991. IntrodutionIn this paper, we propose a proedure for adaptive estimation of \av-eraged" harateristis of a two saled di�usion system desribed bythe Itô equations (w.r.t. independent Wiener proesses wt, Wt) with asmall parameter ":dX"t = f(X"t ; Y "t ) dt+ g(X"t ; Y "t ) dwt; X"0 = x0; (1.1)"dY "t = F (Y "t ) +p"G(Y "t ) dWt; Y "0 = y0: (1.2)Hereafter, X"t and Y "t are referred as the \slow" and \fast" omponentsrespetively. All the funtions f; g; F;G, entering in (1.1) and (1.2), areunknown and only the slow omponent X" is observed. The goal is toreover from the observations X"t , 0 � t � T , some harateristis ofthe proess X" whih an be used for a further statistial analysis ofthis proess or foreasting.Examples of suh problems meet, for instane, in satellite imaging,where X"t desribes the observed signal and Y "t is used to desriberotation and vibration of the satellite. One more reasonable exampleis onneted to asset prie proesses in �nanial markets. A weekly(or monthly) observed asset prie proess X" an be interpreted as 2000 Kluwer Aademi Publishers. Printed in the Netherlands.
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2 R. Liptser and V. Spokoinythe \slow" omponent. If we are interested in some \global" (maro)harateristis of this proess, then the inuene of other omponentsof the market an be modeled via the \fast" proess Y "t . Some otherappliations of suh approah to the ontrol theory an be found inKushner (1990) or Liptser, Runggaldier, Taksar (1996).Equations of the form dXt = f(Xt+Yt) dt+ dwt are often used tomodel regression problems with errors in regressors. It is well known, seee.g. Carrol and Hall (1988), Fan and Truong (1993) that the presene ofthe \error" omponent Yt in the regressor variable makes the problemof estimating the regression funtion f muh more diÆult. Even ifthe distribution of Yt is known, the optimal rate of estimating thefuntion f is only logarithmi in the observation time. We do notassume speial additive struture for the arguments of the drift funtionf and no information about the distribution of the noisy omponent Yis available. Instead we only assume that Y " is a fast osillating proess.We shall see that this qualitative assumption allows for a reasonablequality of estimation of the \averaged" drift funtion �f whih desribesthe \maro" harateristis of the proess X" .It is well known from Khasminskii (1966) (see also Freidlin andWentzell (1984), Veretennikov (1991)) that, under some regularity on-ditions on the funtions F and G from (1.2), Y " is a fast osillatingergodi proess while the slow proess X" obeys, so alled, Bogolubov'saveraging priniple. This roughly means that the distribution of theslow omponent is lose to the distribution of the di�usion proess Xtde�ned by the Itô equationdXt = �f(Xt) dt+ �g(Xt) d �wt; (1.3)where �w is some Wiener proess and the drift and di�usion oeÆients�f; �g are de�ned by averaging the original oeÆients with respet tothe stationary density p of the fast proess:�f(x) = Z f(x; y) p(y) dy and �g(x) = �Z g2(x; y) p(y) dy�1=2 :In other words, the \maro behavior" of the proess X" is determinedonly by the averaged funtions �f and �g . This naturally leads to theproblem of statistial estimation of these funtions from observationsX"t , 0 � t � T , where T is the observation time.In this paper, we fous on estimating the dynami funtion �f(x) .We do not disuss here the problem of estimating the di�usion o-eÆient �g sine in the ase of ontinuous observations, the requiredinformation about the funtion g an be exatly reovered from thedata, Setion 3.5 below. We also restrit ourselves to the problem of
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On estimating a dynami funtion 3pointwise estimation, that is, given a point x , we estimate the value�f(x) . We refer to Lepski, Mammen and Spokoiny (1997) for a dis-ussion of the relation between pointwise and global estimation. Notethat the problem of the pointwise estimation of the drift funtion f islosely onneted to the problem of foreasting the proess X" . Indeed,if we observe the proess (X"t ) until the time-point T , and if we areinterested in a behavior of the proess in the nearest future after T ,then we have to estimate �f(x) for x = X"t .The estimation theory for di�usion type proesses is well developedunder the parametri modeling when underlying funtions (drift anddi�usion) are spei�ed up to a value of a �nite dimensional parameter(f. Kutoyants, 1984b, 1994) or Bhattaharya and G�otze (1995). Inontrast, nonparametri estimation is not studied in details. The knownresults onern only with statistial inferene for di�usion models witha small noise or for ergodi diÆsion and a large observation time T .Kutoyants (1984a) evaluated the minimax rate of estimation of thedrift oeÆient using a kernel type estimator. Genon-Catalot, Laredoand Piard (1992) applied wavelets. Loally polynomial estimators aredesribed in Fan and Gijbels (1996). Milstein and Nussbaum (1994)established the LeCam equivalene between the di�usion model andthe \white noise model". Some pertinent results for autoregressivemodels in disrete time an be found in Doukhan and Ghindes (1980),Collomb and Doukhan (1983), Doukhan and Tsybakov (1993), Delyonand Juditsky (1997), Neumann (1998). A series of papers disussessimultaneous estimation of the drift and di�usion funtions, amongthem Hall and Carroll (1989), H�ardle and Tsybakov (1997), Ruppertet al (1997), Fan and Yao (1988).In this paper, we assume neither ergodi properties of the slowomponent nor the large observation time T . This makes the problemmore ompliated. Additional diÆulties ome from the fat that theoeÆients of the slow proess are ontaminated by the unobserved fastone. To our knowledge, nonparametri statistial inferene for di�usionmodels (1.1), (1.2) with averaging has not yet been onsidered.We propose a loally linear estimator of �f(x) with a data-drivenbandwidth hoie and show that this method provides a nearly optimalrate of estimation up to a log log fator.The paper is organized as follows. The next setion ontains thedesription of the loally linear estimator. Its properties are disussed inSetion 3. The data-driven bandwidth hoie is presented in Setion 4.All proofs are olleted in Setions 5.
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4 R. Liptser and V. Spokoiny2. A loally linear estimatorFor �xed x, to estimate the value �f(x) we apply the loally linearsmoother (f. Katkovnik (1985), Tsybakov (1986), Fan and Gijbels(1996)).We begin with some heuristi explanations of the method. Imaginefor a moment that the observed proess Xt; 0 � t � T satis�es the Itôequation with respet to Wiener proess wt :dXt = f(Xt) dt+ g(Xt) dwt (2.1)with the linear funtion f : f(u) = �0 + �1 u�xh , depending on twoparameters �0; �1, where x and h > 0 are �xed. These parameters anbe estimated by the maximum likelihood method:(~�0; ~�1) = argmax�0;�1 �Z T0 ��0 + �1Xt � xh � dXt� 12 Z T0 ��0 + �1Xt � xh �2 dt�;that is, with �k = R T0 �Xt�xh �k dt; k = 0; 1; 2; we get~�0 = �2 TR0 dXt � �1 TR0 Xt�xh dXt�0�2 � �21 ;~�1 = ��1 TR0 dXt + �0 TR0 Xt�xh dXt�0�2 � �21 :Sine learly f(x) = �0 , the value ~�0 an be taken as the estimate off(x).The loally linear smoother is de�ned in a similar way. The onlydi�erene is that the funtion f is not assumed to be linear but it isapproximated by a linear funtion �0 + �1 u�xh in a small neighborhood[x�h; x+h℄ of the point x . Then the oeÆients �0; �1 of this funtionan be estimated from the observations of Xt falling into the interval[x � h; x + h℄ . For the formal desription, let us introdue the kernelfuntion K(u) whih is assumed to be smooth, non-negative, boundedby 1, and vanishing outside of [�1; 1℄ . Then the loally linear estimatewith the kernel K and a bandwidth h is de�ned as:~fh(x) = �2;h TR0 K �Xt�xh � dXt � �1;h TR0 Xt�xh K �Xt�xh � dXt�0;h�2;h � �21;h ; (2.2)
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On estimating a dynami funtion 5where �k;h = Z T0 �Xt � xh �kK �Xt � xh � dt; k = 0; 1; 2:Now we ome bak to the more ompliated two-saled model (1.1),(1.2). Here, due to the averaging priniple, the observed proess X"t islosed in the distribution sense to the \limit" proess Xt desribed bythe equation (1.3). Therefore, to de�ne our estimate ~fh(x) of �f(x) , wesimply replae in the expression (2.2) the \limit" proess Xt by ourobservations X"t :~fh(x) = �2;h TR0 K �X"t�xh � dX"t � �1;h TR0 X"t�xh K �X"t�xh � dX"t�0;h�2;h � �21;h ; (2.3)where now�k;h = Z T0 �X"t � xh �kK �X"t � xh � dt; k = 0; 1; 2: (2.4)The quality of estimate (2.3) essentially depends on the bandwidthh . Some useful properties of ~fh(x) for the �xed h are desribedin Setion 3. We disuss the adaptive hoie of the bandwidth h inSetion 4. 3. Auray of the loally linear estimateIn this setion we study some properties of the loally linear estimate~fh(x) from (2.3). We �rst formulate the required onditions on theoeÆients of the two-saled system (1.1), (1.2). Then we present theresult and disuss some its orollaries.3.1. ConditionsIn the sequel we suppose that the funtions f; g and F;G from (1.1)and (1.2) obey the following onditions:(As) Funtions f(x; y) and g(x; y) are Lipshitz ontinuous in x; y andf(x; y) is three times ontinuously di�erentiable in x . For somepositive onstants gmin � gmaxgmin � jg(x; y)j � gmax:
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6 R. Liptser and V. Spokoiny(Af ) 1. Funtions F (y) and G(y) are Lipshitz ontinuous in y andontinuously di�erentiable (F one, G twie) and their deriva-tives are ontinuous and bounded.2. There exist onstants � > 0 and C > 1 suh that for jyj > CyF (y) � ��jyj2;3. Funtion G is bounded and strongly positive, i.e. for any y0 < Gmin � jG(y)j � Gmax:Condition (Af ) guarantees the required ergodiity of the fast pro-ess Y "t and, moreover, this ondition an be viewed as the mathe-matial formulation of the ergodi property of the fast proess, seeVeretennikov (1991) for more detailed analysis. Under (Af ) the invari-ant density of the fast proess an be expliitly desribed (Khasminskii,1966) and it does not depend on ":p(y) = Const. exp�2 yR0 F (u)G2(u) du�G2(y) : (3.1)It is worth to mention that neither the onstants C; �;Gmin; Gmax , northe invariant density p are not assumed to be known and they do notenter into the desription of the proedure and into the formulation ofthe main results.3.2. Auray of the loally linear estimateTo state the result, we introdue some additional notations. With �k;hde�ned in (2.4), set Dh = �0;h�2;h � �21;h; (3.2)and�2h(x) = 1D2h Z T0 ��2;h � �1;hX"t � xh �2K2�X"t � xh � g2(X"t ; Y "t ) dt= v22;hV0;h � 2v1;hv2;hV1;h + v21;hV2;h (3.3)where vk;h = �k;hDh = �k;h�0;h�2;h � �21;h ; k = 1; 2;Vk;h = Z T0 �X"t � xh �kK2�X"t � xh � g2(X"t ; Y "t ) dt:
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On estimating a dynami funtion 7Although the expressions for Vk;h , k = 0; 1; 2 , use the unknown di�u-sion oeÆient g2(X"t ; Y "t ) and moreover, one of its arguments Y "tis not observed, these values an be omputed on the base of ourobservations (X"t ; 0 � t � T ) only, see Setion 3.5.The value �2h(x) is alled the onditional variane of the estimate~fh(x) . We use this terminology by analogy with the regression ase,where X"t is a deterministi design proess and �2h(x) is really thevariane of the least squares estimate ~fh(x) . Note that for the regres-sion setup, some design regularity is required to ensure that �2h(x) isnot too large.In our ase, X"t is the observed proess whih at the same time anbe viewed as the design proess. We therefore impose some onditionson the trajetories of the proess X"t whih are similar to that of usedto desribe the design regularity in the regression setting. Our resultsare also similar to that of usually obtained in the regression estimation.In partiular, we show that under the onditions imposed, the ondi-tional variane �2h(x) helps to ontrol the stohasti omponent of theestimate ~fh(x) .For some � � 0 , r > 0 , b > 0 and B � 1 we introdue the setAh = 8>><>>: bTh � v2;h � bBTh ; bTh � �2h(x) � bBTh ;�0;h � r�2;h ; V0;h � rV2;h ;�21;h � ��0;h�2;h ; V 21;h � �V0;hV2;h 9>>=>>; :Sine X"t is the random proess, the set Ah is random as well. In thesequel we study the properties of ~fh(x) restrited to the set Ah , seeSetion 3.3 for further disussion.The quality of the approximation of f(u; y) by a linear in u funtionin the neighborhood u 2 [x�h; x+h℄ is haraterized by the followingquantity�h(x) = supju�xj�h;y2R jf(u; y)� f(x; y)� (u� x)fx(x; y)j: (3.4)In the next theorem we desribe some useful properties of the estimate(2.3).THEOREM 3.1. Let (As) and (Af ) be ful�lled, and let the values "and "T be suÆiently small and Th � 1 . Then for every � � p2P ���� ~fh(x)� �f(x)��� > �h(x) + ��h(x); Ah� � �(�) (3.5)with �(�) = 4e log(4B3)�1 + 4rr1 + r1� � �2�� e��22 (3.6)
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8 R. Liptser and V. Spokoinyand  = (1� �)�1=2 .Informally the result of the theorem means that for suÆiently large� , the losses j ~fh(x)� �f(x)j of the estimate ~fh(x) , being restrited toAh , are bounded by the sum of two terms: �h(x) and ��h(x) . The�rst one mimis the auray of approximating the funtion f(u) by alinear in u funtion in the small viinity [x�h; x+h℄ of x . The seondterm is in proportion to the \stohasti standard deviation" �h(x) .3.3. Some remarks related to the random set AhThe result of Theorem 3.1 desribes the auray of the estimate ~fh(x)on the random set Ah only. Here we briey disuss some relatedquestions.3.3.1. Reason for restriting to AhIt was mentioned previously that restriting to Ah allows to eliminateirregular ases when, for instane, the trajetory X"[0;T ℄ does not passthrough the interval [x � h; x + h℄ and �0;h = �1;h = �2;h = Dh = 0 .Note that for typial appliations to foreasting, one has to estimate�f(x) with x = X"t , and the path X"[0;T ℄ obviously passes through x.3.3.2. Verifying the ondition X"[0;T ℄ 2 AhClearly the event Ah is ompletely determined by the known values�k;h and Vk;h , k = 0; 1; 2 . It is therefore always possible to hekwhether the observed trajetory X"[0;T ℄ belongs to Ah or not. If thetrajetory X"[0;T ℄ does not belong to Ah, we are not able to guaranteea reasonable quality for the estimate ~fh(x) .3.3.3. The onditions entering into the de�nition of AhThe onditions 0 � K(u) � 1 and K(u) = 0 for juj � 1 imply �2;h ��0;h and V2;h � V0;h . Further, by the Cauhy-Shwarz inequality, itholds �21;h � �0;h�2;h and V 21;h � V0;hV2;h . The onditions �0;h �r�2;h , V0;h � rV2;h , �21;h � ��0;h�2;h and V 21;h � �V0;hV2;h with � < 1and r � 1 ensure that the loal linear estimate is well de�ned. Notethat these onditions are not ompletely independent. In partiular, ifg(x) is a onstant funtion and if K(u) = 1(juj � 1) , then �k;h = Vk;hfor k = 0; 1; 2 and �2h(x) = v2;h = �2;h=(�0;h�2;h � �21;h) .
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On estimating a dynami funtion 93.3.4. The hoie of the onstants � , b , B , rThe hoie of onstants � , b , B , r , entering in the de�nition of theset Ah , is optional and they even may depend on T .For a regular design in the regression setup, it holds �1;h = V1;h = 0 .If, in addition, g(u) is onstant in the interval [x � h; x + h℄ , then�0;h = r(K)�2;h and V0;h = r(K)V2;h withr(K) = Z K(u) du�Z u2K(u) du��1 :Therefore, I reasonable hoie would be � = 1=2 and r = 2r(K) .Conerning the hoie of the parameters b;B , note that the upperbound (3.5) from Theorem 3.1 does not depends on b and it depends onB (whih determines the range of di�erent values for the onditionalvariane �2h(x) ) only via the log-fator log(4B3) . Simple heuristionsideration prompt a possible hoie b = hmin and B = T .3.3.5. Unonditional result under ergodiityIf the oeÆients f and g obey some additional onditions whihensure ergodiity of the proess X"t , see e.g. Veretennikov (1991),then, at least with growing T the normalized integrals (Th)�1�k;h and(Th)�1Vk;h ( k = 0; 1; 2 ) onverge to some �xed values whih dependonly on the stationary distribution of the proess X"t . Moreover, onean usually selet �xed onstants b;B and �; r in suh a way that1 � P (Ah) onverges to zero exponentially fast as T ! 1 . SineobviouslyP ���� ~fh(x)� �f(x)��� > �h(x) + ��h(x)�� P ���� ~fh(x)� �f(x)��� > �h(x) + ��h(x); Ah�+ P (Ah)we obtain in this situation an unonditional asymptoti bound for therisk of the estimate ~fh(x) .3.4. Quality of estimation under smoothness assumptionsDue to the assumptions (As) from Setion 3, the funtion f is twieontinuously di�erentiable with respet to the �rst argument. Assumealso that for every u from a small viinity of x and any �xed y�����2f(u; y)�u2 ���� � L: (3.7)Then the value �h(x) de�ned in (3.4), is bounded above by Lh2=2.On the other hand, on the set Ah the stohasti variane �2h(x) is of
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10 R. Liptser and V. Spokoinyorder (Th)�1 . Therefore, following to the standard approah in non-parametri estimation, the bandwidth h an be hosen by balaningthe auray of approximation and the stohasti error:Lh2 � 1pT h:This leads to the hoie h � (T L2)�1=5 and hene to the rate of theestimation L1=5T�2=5 whih is optimal in the minimax sense underthe smoothness assumptions (3.7), see e.g. Ibragimov and Khasmiskii(1981). Unfortunately this approah hardly applies in pratie, sinethe onstant L in (3.7) is typially unknown. An adaptive (data-driven)hoie of the bandwidth is disussed in the next setion.3.5. Computation of �2h(x)Reall that with �xed h, the value �2h(x) is de�ned by the formula�2h(x) = 1D2h Z T0 K2�X"t � xh ���2;h � �1;hX"t � xh �2 g2(X"t ; Y "t ) dt= v22;hV0;h � 2v1;hv2;hV1;h + v21;hV2;hwith �k;h = Z T0 �X"t � xh �kK �X"t � xh � dt;Dh = �0;h�2;h � �21;h;vk;h = �k;hDh = �k;h�0;h�2;h � �21;h ;Vk;h = Z T0 �X"t � xh �kK2�X"t � xh � g2(X"t ; Y "t ) dt;for k = 0; 1; 2 . The formula for �2h(x) inludes the unknown di�usionoeÆient g2(X"t ; Y "t ) and the unobserved proess Y "t as one of itsarguments. We now show that despite of this fat, the value �2h(x) anbe omputed via the trajetory X"[0;T ℄ only.Let us introdue two random proessesZ 0t = Z t0 K �X"s � xh � dX"s and Z 00t = Z t0 K �X"s � xh � X"s � xh dX"swhih are ompletely determined on the time interval [0; T ℄ by X"[0;T ℄.Applying the Itô formula we get(Z 0T )2 = 2Z T0 Z 0t dZ 0t + V0;h
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On estimating a dynami funtion 11(Z 00T )2 = 2Z T0 Z 00t dZ 00t + V2;hZ 0TZ 00T = Z T0 Z 0t dZ 00t + Z T0 Z 00t dZ 0t + V1;h:Hene V0;h = (Z 0T )2�2 TR0 Z 0t dZ 0t , so that V0;h is ompletely determinedby X"[0;T ℄. Similar arguments apply for V1;h and V2;h and hene for�2h(x) as required.4. Data-driven bandwidth seletionIn this setion we onsider the problem of bandwidth seletion for theloally linear estimator desribed in Setion 2. It is assumed here thatthe method of estimation, that is, the loally linear smoother with thekernel K , is �xed and only the bandwidth h has to be hosen. Belowwe disuss one adaptive (data driven) approah whih goes bak to theidea of pointwise adaptive estimation, see Lepski (1990), Lepski andSpokoiny (1997) and Spokoiny (1998).The idea of the method an be explained as follows. In the light ofTheorem 3.1, we would be interested to selet a bandwidth h whihleads to a possibly small sum of the form �h(x) + ��h(x) among allonsidered bandwidth values h . This sum is omprised of two terms.The �rst one (\bias") haraterizes the auray of loal approxima-tion of the underlying drift funtion f by the linear funtions andit typially inreases with h . The seond term is proportional to theonditional standard deviation �h(x) whih typially dereases with h .(Indeed, an inrease of h makes the estimation window [x� h; x+ h℄larger and hene more observations an be used for estimating theunderlying funtion f at the point x . This results in a smaller varianeof the estimate.) To simplify the exposition, we suppose that �2h(x)strongly dereases in h 2 H. (If this assumption is not ful�lled forthe original set H , i.e. if there is h0 < h 2 H with the property�2h(x) � �2h0(x) , then we simply exlude h from H.)Therefore, a \good" (or \ideal") hoie hid orresponds to a pos-sibly large bandwidth h (whih makes the stohasti omponent ofthe estimate small) still providing that the \bias" omponent �h(x)is not signi�antly larger than �h(x) . (We all hid an \ideal" band-width sine its de�nition relies on the unknown funtion �h(x) .) Thelatter property is learly ful�lled for all smaller bandwidths h � hid .Therefore, if hid is \good" and h < hid , then the two orrespondingestimates ~fhid(x) and ~fh(x) should not di�er signi�antly.
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12 R. Liptser and V. SpokoinyThe proposed proedure an be viewed as a family of tests whetherthe estimate ~fh(x) for a bandwidth-andidate h does not di�er signif-iantly from estimates ~f�(x) with smaller bandwidths � < h . Thelatter is done on the base of Theorem 3.1 whih allows to boundwith a large probability the di�erene j ~fh(x) � ~f�(x)j by ��h(x) +���(x) + �h(x) + ��(x) provided that � is suÆiently large. Theterms �h(x) and ��(x) in this sum are unknown but, if h is\good" that is, if �h(x)� �h(x) , then their ontribution is negligible.In opposite, a signi�ant deviation of j ~fh(x) � ~f�(x)j over the level��h(x) + ���(x) an be explained only by a large bias omponentindiating that h is not a \good" bandwidth. The proedure searhesfor the largest bandwidth h suh that the hypothesis ~fh(x) = ~f�(x)is not rejeted for all � < h .Now we present a formal desription. Suppose a family H of band-width-andidates h is �xed. For tehnial reasons, we assume that thisset is �nite and denote by H the number of its elements. Usually H istaken as a geometri grid:H = fh = hminak; k = 0; 1; 2; : : : : h � hmaxg;where hmin � hmax and a > 1 are some presribed onstants. As inSetion 3 we restrit ourselves only to those h from H for whih theobserved path X"[0;T ℄ belongs to Ah.With every bandwidth value h we assoiate the estimate ~fh(x)of �f(x) and the orresponding onditional standard deviations �h(x)whih an be preisely alulated as desribed in Setion 3.5.Now, with two onstants �1 and �2 , de�ne the adaptive hoie ofbandwidth by the following iterative proedure:Initialization Selet the smallest bandwidth in H .Iteration Selet the next larger bandwidth h in H and alulatethe orresponding estimate ~fh(x) and the onditional standarddeviation �h(x) .Testing Rejet h , if there exists one � 2 H with � < h suh thatj ~fh(x)� ~f�(x)j > �1 ��(x) + �2 �h(x): (4.1)Loop If h is not rejeted, then ontinue with iteration step by hoosinga larger bandwidth h in H . Otherwise, set ĥ = "the latest nonrejeted h".The proposed rule an be paked in the following form:ĥ = maxnh 2 H : j ~fh0(x)� ~f�(x)j � �1��(x) + �2 �h0(x) (4.2)
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On estimating a dynami funtion 138h0; � 2 H; � < h0 � ho:The hoie of the parameters �1; �2 and the set H is disussed inSetion 4.1.Finally, to de�ne our adaptive estimate, we plug the data-drivenbandwidth ĥ in the estimate ~fh(x) , that is, f̂(x) � ~fĥ(x) .In the next theorem we desribe some properties of the adaptiveestimate f̂(x) restrited to the setA� = \h2HAh:THEOREM 4.1. The estimate f̂(x) � ~fĥ(x) with ĥ from (4.2) and�2 � �1 ful�lls the following property:P ����f̂(x)� �f(x)��� > (2�1 + �2)�hid(x);A�� � X�2H : ��hid �(��) (4.3)where �(�) is de�ned in (3.6) and�� = �1 � ��(x)=��(x): (4.4)4.1. The hoie of parameters �1 , �2 , hmin , hmax and aDi�erent proposals for the hoie of the grid H is disussed in Lepski,Mammen and Spokoiny (1997) and in Lepski and Spokoiny (1997).One possible hoie for the grid H reads as follows: hmin = 1=T ,hmax = 1 , a = p2 , although these values an be hanged withoutessential inuene on the quality of the proedure.The hoie of parameters �1 , �2 , entering in (4.2), plays moreimportant role. We start with the following general remark: the upperbound for the risk from Theorem 4.1 is rather rough and should beused with are for the parameter seletion. However, it delivers someuseful qualitative information about this hoie whih an be usedfor a theoretial study. The bound in (4.3) shows that the probabil-ity for jf̂(x) � �f(x)j of being large is small, provided that the valueP�2H : ��hid �(��) is suÆiently small. Here we disuss shortly thespei� ase when the values ��(x) vanish. The general ase an berelatively easily redued to that one. Indeed, a \good"bandwidth hidan be de�ned by trade-o� arguments between the \bias" �hid(x) andthe onditional standard deviation �hid(x) , that is, hid is the maximalh from H with �h(x) � D�h(x) for some �xed value D . Taking Dsmall enough provides that ��(x)� ��(x) for all � � hid .
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14 R. Liptser and V. SpokoinyIf ��(x) vanishes for all suh � , then �� = �1 andX�2H : ��hid �(��) � H�(�1):Therefore, �1 should be seleted in a way to provide that H�(�1) issuÆiently small. This leads to the hoie�1 �p2 log(H) + �2with some �xed onstant � so thatHe��21=2 � e��2=2:If H is taken in the form of the geometri grid, then we get H �loga(hmax=hmin). Therefore, taking hmax � 1 and hmin � 1=T , wearrive at �1 �p2 log log T + �2:There is muh more degree of freedom in the hoie of �2 . The on-straint �2 � �1 from Theorem 4.1 is of tehnial matter and it isused only in theoretial investigations. In an be skipped in pratialappliations. Simulation results show a reasonable (and very similar)performane of the presented proedure with �1 � 2 and �2 = 1 ,or �1 = �2 = 1:5 in the most ases. We refer to the forthomingpaper by Merurio and Spokoiny (2000) for a more detailed disussionof pratial issues and for a proposal of a data-driven hoie of theparameters �1 and �2 in the ontext of appliations to �nane timeseries.4.2. Auray of adaptive estimationWe now ompare the auray of the adaptive proedure (4.2) with the\optimal" one designed for the ase of known smoothness properties ofthe underlying funtion f (see Setion 3.4).Assume jf 00(u)j � L , see (3.7). Then �h(x) � Lh2=2 and theonditions �2h(x) � (hT )�1 and the balane relation �h(x) � D�h(x)yield for hid : hid � �TL2��1=5so that �hid(x) � L1=5T�2=5 . Hene, the above-mentioned hoie �1 �p2 log log T and �2 = �1 leads due to Theorem 4.1 to the followingauray of the adaptive estimation:(2�1 + �2)�hid(x) � L1=5� log log TT �2=5 :
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On estimating a dynami funtion 15At the same time, the \ideal" hoie of the bandwidth leads to the rateL1=5T�2=5, see Setion 3.4. Thus, the auray of adaptive estimationis worse than the \ideal" one within a log log T -fator only.The origin of the log log T -fator in the rate of adaptive estimationan be easily explained. The total number H of onsidered estimatesis logarithmi in the observation time T and the adaptive hoie of thebandwidth leads to a worse auray by fator log(H) at some power.The notion of \payment for adaptation" is now well understood innonparametri estimation: if we have too many estimates to selet be-tween, we have to \pay" for the adaptive hoie some additional fatorin the risk of estimation. In partiular, it is shown in Lepski (1990)and Brown and Low (1996) (see also Lepski and Spokoiny (1997)) thatfor the problem of pointwise adaptive estimation, the optimal adaptiverate has to be worse than the optimal one by a log-fator.In our results a log log -fator appears. This fat is not in ontra-dition to earlier issues, sine the above-mentioned results orrespondto the ase of the power loss funtion `(x) = jxjp, p > 0 , while weonsider the bounded loss funtion. It an be also shown that the rateahieved by our estimate is optimal for pointwise adaptive estimationwith a bounded loss funtion (see Spokoiny (1997) for similar resultsin the adaptive testing problem).5. ProofsIn this setion we prove Theorems 3.1 and 4.1. For a generi positiveonstant the notation ``' will be used hereafter.5.1. Deomposition of ~fh(x)We use two obvious identities haraterizing the loal linear smoother:for v1;h = �1;hDh and v2;h = �2;hDhZ T0 K �X"s � xh ��v2;h � v1;hX"s � xh � ds = 1Z T0 K �X"s � xh ��v2;hX"s � xh � v1;h (X"s � x)2h2 � ds = 0and hene, with U "s;h = X"s�xh ,Z T0 K �U "s;h� �v2;h � v1;hU "s;h� �f(x) ds = �f(x) (5.1)Z T0 K �U "s;h� �v2;hU "s;h � v1;h(U "s;h)2� �fx(x) ds = 0: (5.2)
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16 R. Liptser and V. SpokoinyDue to (2.3) and (1.1), the estimate ~fh(x) an be represented as follows:~fh(x) = v2;h Z T0 K �U "s;h� dX"s� v1;h Z T0 K �U "s;h� U "s;h dX"s= Z T0 K �U "s;h��v2;h � v1;hX"s � xh � f(X"s ; Y "s ) ds+ v2;h Z T0 K �U "s;h� g(X"s ; Y "s ) dws� v1;h Z T0 K �U "s;h� U "s;h g(X"s ; Y "s ) dws:Now (5.1) and (5.2) imply the following deomposition~fh(x) = �f(x) + �h + rh + �(1)h + �(2)h (5.3)where, with Æ(X"s ; Y "s ; x) = f(X"s ; Y "s )� f(x; Y "s )� X"s�xh fx(x; Y "s ) ,rh = Z T0 K �U "s;h� �v2;h � v1;h U "s;h� Æ(X"s ; Y "s ; x) ds;�h = v2;h Z T0 K �U "s;h� g(X"s ; Y "s ) dws� v1;h Z T0 K �U "s;h� U "s;h g(X"s ; Y "s ) dws;�(1)h = v2;h Z T0 K �U "s;h� [f(x; Y "s )� �f(x)℄ ds� v1;h Z T0 K �U "s;h� [f(x; Y "s )� �f(x)℄U "s;h ds;�(2)h = v2;h Z T0 K �U "s;h� [fx(x; Y "s )� �fx(x)℄U "s;h ds� v1;h Z T0 K �U "s;h� [fx(x; Y "s )� �fx(x)℄ (X"s � x)2h2 ds:Below we evaluate separately eah term in this deomposition.
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On estimating a dynami funtion 175.2. An upper bound for jrhjSine K �u�xh � vanishes for any u 62 [x�h; x+h℄ and jÆ(X"s ; Y "s ; x)j ��h(x) for jX"s � xj � h , we getjrhj � Z T0 K �U "s;h� �v2;h � v1;h U "s;h� jÆ(X"s ; Y "s ; x)j ds� �h(x)Z T0 K �U "s;h� ����v2;h � v1;hX"s � xh ���� ds: (5.4)The properties jK(u)j � 1 and K(u) = 0; juj � 1 imply the inequality�2;h � �0;h . In addition we know that it holds on Ah�21;h � ��0;h�2;h: (5.5)We now show thatjrhj � (1� �)�1=2�h(x) on Ah: (5.6)The Cauhy-Shwarz inequality applied to (5.4) givesr2h � �2h(x)Z T0 K �U "s;h� dsZ T0 K �U "s;h� �v2;h � v1;hU "s;h�2 ds:Next, Z T0 K �U "s;h� ds = �0;h;and using vk;h = �k;h=Dh , with Dh = �2;h�0;h � �21;h , k = 0; 1; 2 , weget Z T0 K �U "s;h� �v2;h � v1;hU "s;h�2 ds= 1D2h Z T0 K �U "s;h� ��2;h � �1;hU "s;h�2 ds= �22;hD2h Z T0 K �U "s;h� ds+ �21;hD2h Z T0 K �U "s;h� (U "s;h)2 ds� 2�1;h�2;hD2h Z T0 K �U "s;h�U "s;h ds= �22;h�0;h � �2;h�21;hD2h= �2;h=Dh:
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18 R. Liptser and V. SpokoinyHene, in view of (5.5),r2h � �2h(x)�0;h �2;hDh = �2h(x) �0;h �2;h�0;h�2;h � �21;h � �2h(x) 11 � �as required.5.3. An upper bound for �hWe study here some properties of the \stohasti term"�h = v2;h Z T0 K �X"s � xh � g(X"s ; Y "s ) dws� v1;h Z T0 K �X"s � xh � X"s � xh g(X"s ; Y "s ) dws:Namely, we intend to show that the probability of the event f�h >��h(x)g with �h(x) from (3.3) is small provided that � is large enough.Set for t � TM0;t = Z t0 K �X"s � xh � g(X"s ; Y "t ) dws;M1;t = Z t0 K �X"s � xh � X"s � xh g(X"s ; Y "t ) dws:The Itô integrals M0;t and M1;t are ontinuous loal martingales withthe preditable quadrati variations (see e.g. Liptser and Shiryayev(1989)) hM0it = Z t0 K2�X"s � xh � g2(X"s ; Y "s ) ds;hM0;M1it = Z t0 K2�X"s � xh � X"s � xh g2(X"s ; Y "s ) ds;hM1it = Z t0 K2�X"s � xh � �X"s � xh �2 g2(X"s ; Y "s ) ds;so that hM0iT = V0;h , hM0;M1iT = V1;h and hM1iT = V2;h . Thisyields �h(x) = v2;hM0;T � v1;hM1;T ;�2h(x) = v22;hhM0iT � 2v1;hv2;hhM0;M1iT + v21;hhM1iT :Denote uh = v1;hv2;h = �1;h�2;h :
robertk.tex; 23/03/2000; 17:50; p.18



On estimating a dynami funtion 19Obviously P (j�hj > ��h(x);Ah)= P�jM0;T � uhM1;T j > �pVT (uh); Ah�:with VT (uh) = hM0iT � 2uhhM0;M1iT + u2hhM1iT . To evaluate fromabove the right side of this equality, we apply the general result fromProposition 6.2, see Appendix. First we hek the required onditions.The value juhj, being restrited to Ah , an be bounded as:juhj � ����p��0;h�2;h�2;h ���� � p�r:Note now that hM1iThM0iT � 2uhhM0;M1iT + u2hhM1iT= V2;hV0;h � 2uhV1;h + u2hV2;h= V 22;hV0;hV2;h � V 21;h + (V1;h � uhV2;h)2 ;and it holds on Ah in view of V2;h � V0;hhM1iThM0iT � 2uhhM0;M1iT + u2hhM1iT � V 22;h(1� �)V0;hV2;h � 11� �:In addition, the de�nition of Ah provides the following bounds for�2h(x) on this set �2h(x)Th v22;h = Th�2h(x)(Th v2;h)2 � bBb2 = Bb ;�2h(x)Th v22;h = Th�2h(x)(Th v2;h)2 � b(bB)2 = 1bB2 :Applying now Proposition 6.2 we getP (j�hj > ��h(x);Ah)� 4e log(4B3)�1 + 4rr1 + r1� � �2��e��22 : (5.7)
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20 R. Liptser and V. Spokoiny5.4. An upper bounds for �h(1) and �h(2)Note that both �(1)h , �(2)h are linear ombinations of elements of the formvh R T0 	(X"s )[a(Y "s )� �a℄ ds; where- vh is any of v1;h, v2;h;- 	(X"s ) is any of (X"s�x)khk K �X"s�xh �, k = 0; 1; 2;- a(Y "s ) is any of f(x; Y "s ), fx(x; Y "s ), and �a = R a(y) p(y) dy, withp(�) being the invariant density of the fast proess.Under the assumptions made, the funtion 	(u) is bounded by 1 andtwie ontinuously di�erentiable: there exists a onstant C1 suh thatj	(u)j � 1 and j _	(u)j + j�	(u)j � C1 8u:Next, on the set Ah it holds v21;h � �v0;hv2;h � �rv22;h and v2;h �bB(Th)�1 , so that, taking into aount Th � 1 , it suÆes to boundonly U "T = Z T0 	(X"s )[a(Y "s )� �a℄ ds:We apply a large deviation type estimate for the two saled di�usionmodel (1.1), (1.2) from Liptser and Spokoiny (1997) adapted to thease onsidered.PROPOSITION 5.1. Suppose (As) and (Af ). If T = T" and lim"!0 T"" =0, then for every positive z > 0 and 0 < � < 1=2lim"!0("T")1�2� logP �("T")��jU "T" j > z� � � z22 ;where  = ZR #2(y)G2(y) p(y) dy;#(y) = 2G2(y) p(y) yZ1 [a(u)� �a℄ p(u) du:COROLLARY 5.1. For " small enough and �1 < 1� 2�P (jU "T " j > ("T ")�) < e�("T )��1 :
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On estimating a dynami funtion 21Applying this orollary with � < 1=2 and �1 < 1 � 2�, we obtainfor "T small enoughP �j�(i)h j > 2("T )�� < 2 exp�� 1("T )�1� ; i = 1; 2: (5.8)5.5. Proof of Theorem 3.1Summing up the deomposition (5.3) and the bounds (5.6), (5.7), (5.8),we get P ���� ~fh(x)� �f(x)��� > �h(x) + ��h(x) + 2("T ")�; Ah�� 4e log(4B3)�1 + 4rr1 + r1� � �2��e��2=2 + 4e�("T )��1 :This leads to the required bound from Theorem 3.1 for suÆiently small"T .5.6. Proof of Theorem 4.1Let hid be a \good" bandwidth. We intend to show thatn���f̂(x)� �f(x)��� > (2�1 + �2)�hid(x)o� [�2H(hid) nj ~f�(x)� �f(x)j > �1��(x)owhere H(h) = f� 2 H : � � hg . This statement is equivalent to sayingthat the inequality ���f̂(x)� �f(x)��� > (2�1 + �2)�hid(x) is impossible ifj ~f�(x)� �f(x)j � �1��(x) ; 8� 2 H(hid): (5.9)Obviouslyn���f̂(x)� �f(x)��� > (2�1 + �2)�hid(x)o� n���f̂(x)� �f(x)��� > (2�1 + �2)�hid(x) ; ĥ > hido+ fhid is rejetedg :We onsider separately eah event in the right side of this inequality.It holds on the event fĥ > hidg in view of the de�nition of ĥj ~fĥ(x)� ~fhid(x)j � �1�hid(x) + �2�ĥ(x) � (�1 + �2)�hid(x):
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22 R. Liptser and V. SpokoinyNext, by (5.9) j ~fhid(x)� �f(x)j � �1�hid(x):Hene, fĥ > hidg and (5.9) imply���f̂(x)� �f(x)��� � j ~fĥ(x)� ~fhid(x)j + j ~fhid(x)� �f(x)j� (2�1 + �2)�hid(x):Now we study the event fhid is rejetedg . By de�nitionfhid is rejetedg= [h2H(hid) [�2H(h)nj ~fh(x)� ~f�(x)j > �2�h(x) + �1��(x)o :Condition (5.9) yields for every pair � < h 2 H(hid)j ~fh(x)� ~f�(x)j � j ~fh(x)� �f(x)j+ j ~f�(x)� �f(x)j � �1(�h(x) + ��(x))so that the event fhid is rejetedg is impossible under (5.9) in view of�2 � �1 .It remains to bound the probability of the event in (5.9). With �� =�1 � ��(x)=��(x) , it holds by Theorem 3.1P �j ~f�(x)� �f(x)j > �1��(x)�= P �j ~f�(x)� �f(x)j > ����(x) + ��(x)� � �(��)where �(�) is from (3.6) and hene,P �j ~f�(x)� �f(x)j � �1��(x); 8� 2 H(hid)� � 1� X�2H(hid)�(��)This ompletes the proof of the theorem.6. Appendix. Deviation probabilities for martingalesIn the Appendix we present two general results for ontinuous martin-gales. The �rst result desribes some properties of real-valued martin-gales, while the seond one deals with martingales valued in R2 .6.1. The salar aseLet Mt be a ontinuous martingale with M0 = 0 and with the pre-ditable quadrati variation hMit .
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On estimating a dynami funtion 23PROPOSITION 6.1. For every T > 0, # > 0 , S � 1 and � � 1P �jMT j > �phMiT ; # �phMiT � #S� � 4�pe (1 + logS) e��22 :Proof. We useP �jMT j > �phMiT ; # �phMiT � #S�� P �MT > �phMiT ; # �phMiT � #S�+P �MT < ��phMiT ; # �phMiT � #S� :We estimate separately eah term in the right side of this inequality.Given a > 1 , introdue the geometri series #k = #ak and de�nethe sequene of random events Ck = f#k � phMiT < #k+1g , k =0; 1; : : : . Then learlyP �MT > �phMiT ; # �phMiT � #S� (6.1)� KXk�0P �MT > �phMiT ; # �phMiT � #S; Ck� :where K is the integer part of loga S . We now bound eah term inthis sum. Let, with  2 R,Zt() = exp�Mt � 22 hMit�:The random proess Zt() is the ontinuous loal martingale and, beingpositive, it is the supermartingale (see Problem 1.4.4 in Liptser andShiryayev (1986)). Therefore for every T > 0,EZT () � 1: (6.2)For �xed k, we pik k = �#k and use (6.2) for the inequality1 � EZT (k)I�MT > �phMiT ; Ck�whih implies1 � Eexp� �#kMT � �22#k hMiT� I�MT > �phMiT ; Ck�� Eexp��2#kphMiT � �22#k hMiT� I�MT > �phMiT ; Ck�� Eexp� inf#k�v�#k+1��2v#k � �2v22#2k �� I�MT > �phMiT ; Ck� :
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24 R. Liptser and V. SpokoinyIt is easy to hek that \inf#k�v�#k+1" is attained at the point v =#k+1 = a#k so thatP �MT > �phMiT ; Ck� � exp���2�a� a22 �� :Combining this bound with (6.1) and using K � loga S, we obtainP �MT > �phMiT ; # �phMiT � #S�� (1 + loga S) exp���2�a� a22 �� :Sine the left hand side of this inequality does not depend on a, wemay optimize the hoie of a to minimize its right side. This leads toa = 1 + 1=�. Then�2�a� a22 � = �2(1 + 1� � 12 �1 + 1��2) = 12(�2 � 1)and, sine log(1+1=�) � 1=(2�) for � � 1 , we have loga S � 2� log S:HeneP �MT > �phMiT ; # �phMiT � #S� � 2pe� (1 + logS) e��22 :In the similar way we obtainP �MT < ��phMiT ; # �phMiT � #S� � 2pe� (1 + logS) e��22and the assertion follows.6.2. The vetor aseHere, we onsider ontinuous vetor martingale Mt valued in R2 withomponents M0;t and M1;t. We denoteV0;t = hM0it ; V1;t = hM0;M1it ; V2;t = hM1it :Let u be a random variable and�2t = V0;t � 2uV1;t + u2V2;t:
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On estimating a dynami funtion 25For a �xed time moment T and onstants # > 0 , S � 1 , � � 0 and� 2 (0; 1) , introdue the eventAT = 8><>: # � �2T � #SV 21;T � �V0;TV2;Tjuj � � 9>=>; : (6.3)PROPOSITION 6.2. Let Mt be a martingale with values in R2 suhthat V0;T � V2;T . Then, with AT from (6.3), it holds for every � � p2,P (jM0;T � uM1;T j > ��T ; AT )� 4e log(4S) 1 + 4�s1 + �1� � �2!�e��22 :Proof. For �xed �, �, and � de�ne Æ suh that2Æ(1 + �)1� � = ��2 (6.4)and denote by DÆ = f�k = kÆ : k 2 N; j�j � �g the disrete grid withthe step Æ in the interval [��; �℄ .Let �+ (respetively �� ) be random variable valued in DÆ whihis losest to u from above (respetively from below). Then learlyj�� � uj � Æ: (6.5)jM0;T � uM1;T j � max fjM0;T � ��M1;T j ; jM0;T � �+M1;T jg : (6.6)Let now � be one of �� and �+ . Then by the onstrution j��uj � Æ .Next we show that on the set AT it holds1� ��2 � V0;T � 2�V1;T + �2V2;T�2T � 1 + ��2 (6.7)Indeed�2T = V0;T � 2uV1;T + u2V2;T = V0;T � V 21;TV2;T + V2;T �u� V1;TV2;T �2� V0;TV2;T � V 21;TV2;T � (1� �)V0;Tand using V2;T � V0;T , we getjV1;T j�2T � p�V0;TV2;T(1� �)V0;T � p�1� � � (1� �)�1;V2;T�2T � V2;T(1� �)V0;T � (1� �)�1:
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26 R. Liptser and V. SpokoinySine on the set A it holds juj � � and by onstrution � � � weobtain, using the de�nition (6.4) of Æ ,��V0;T � 2uV1;T + u2V2;T � (V0;T � 2�V1;T + �2V2;T )��� 2jV1;T jju� �j+ V2;T ��u2 � �2��� 2Æ(1 � �)�1�2T + 2�Æ(1 � �)�1�2T= �2T��2and (6.7) follows.Sine on the set AT the value �2T is between # and #S , we alsoget for � = ��(1� ��2)# � V0;T � 2�V1;T + �2V2;T � (1 + ��2)#S: (6.8)We now derive from (6.6), (6.7) and (6.8)fM0;T � uM1;T j > ��T ; AT g� �M0;T � ��M1;T j > �p1 + �2pVT (��) ; AT�[�M0;T � �+M1;T j > �p1 + �2pVT (�+) ; AT�� [�2DÆ �jM0;T � �M1;T j > �p1 + �2pVT (�) ; A�;T� ;where VT (�) = V0;T � 2�V1;T + �2V2;T ;A�;T = �(1� ��2)# � VT (�) � (1 + ��2)#S	 :Now, for every � 2 DÆ , the proess M0;t � �M1;t is the ontinuousloal martingale with hM0��M1iT = V0;T�2�V1;T+�2V2;T . ApplyingProposition 6.1 and using the inequalities �2 � 2 and �21+��2 � �2(1���2) = �2 � 1; we obtainP �jM0;T � �M1;T j > �p1 + �2pVT (�) ; A�;T�� 4 �p1 + ��2 �1 + log (1 + ��2)#S(1� ��2)# � exp�� �22(1 + ��2) + 12�� 4��1 + log 3S2 � exp���22 + 1� :Sine the number of di�erent elements in DÆ is at most 1+2�Æ�1 andsine Æ from (6.4) ful�lls Æ�1 = 2�2(1+�)1�� we getP (jM0;T � uM1;T j > ��T ; AT )
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On estimating a dynami funtion 27� 4e�1 + log 3S2 ��1 + 2�Æ�1��e��22� 4e log(4S)  1 + 4�s1 + �1� � �2! �e��22as required.
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