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Abstract

Let a Holder continuousfunction f be observed with noise. In the present paper
we study the problem of nonparametric estimation of certain nonsmooth function-
als of f, specifically, L, norms || f|, of f. Known from the literature results on
functional estimation deal mostly with two extreme cases: estimating a smooth (dif-
ferentiable in L) functional or estimating a singular functional like the value of

f at certain point or the maximum of f. In the first case, the convergence rate

1/2

typically is n=+/%, n being the number of observations. In the second case, the

rate of convergence coincides with the one of estimating the function f itself in the
corresponding norm.

We show that the case of estimating ||f||- is in some sense intermediate between
the above extremes. The optimal rate of convergence is worse than n~/2 but is bet-
ter than the rate of convergence of nonparametric estimates of f. The results depend
on the value of 7. For r even integer, the rate occurs to be n=8/(8+1=1/7) where
B is the degree of smoothness. If r is not an even integer, then the nonparametric

rate n~9/(26+1) can be improved, but only by a logarithmic in n factor.

1 Introduction

The problem of estimating a functional is one of the basic problems in statistical infer-
ence. Below we consider this problem in the nonparametric set-up. Let a function f
be observed with noise, and our goal is to estimate a given real-valued functional F(f).
Clearly the quality of estimation heavily depends on smoothness properties of the func-
tional F'. The most developed theory here deals with linear functionals. The “hardest
single-parameter subfamily” arguments yield both linear estimators with the smallest, as
far as linear estimates are concerned, worst-case risk, and demonstrate that the resulting
risk coincides, within factor (1+0(1)) as n — oo, with the minimax risk, see Levit (1974,
1975), Koshevnik and Levit (1976), Ibragimov and Khasminski (1979, 1987) and Donoho
and Liu (1991).

Another well studied situation deals with the case of “smooth” functionals. Smooth-
ness is usually understood as differentiability of F' on Ls. It was shown in Levit (1978),
Khasminski and Ibragimov (1979), Ibragimov, Nemirovski and Khasminski (1986) that
if F' is smooth and the underlying function f is also smooth enough then F(f) can
be estimated with the parametric rate of convergence O(n~'/2), see also Ibragimov and

Khasminski (1991), Birgé and Massart (1995). The problem of estimation of quadratic



functionals is studied in details in Hall and Marron (1987), Bickel and Ritov (1988),
Donoho and Nussbaum (1990), Fan (1991), Efroimovich and Low (1996), Laurent (1996)
among others. Estimation of functionals of the type [ f3(¢)dt is discussed in Kerky-
acharian and Picard (1996).

The problem of estimation of non-smooth functionals is not well studied so far, and
there are very few results of this sort in the literature. Ibragimov and Khasminski (1980)
found the rate of convergence of estimating the maximum of f, Korostelev (1990) studied
the problem of estimating the L; norm of f. Korostelev and Tsybakov (1994) considered
some functional estimation problems in the image model, like estimating the area of an
image.

In this paper we are focusing on estimating L, norm |/f[/, with a given r > 1. It
is worth to mention that at least three cases of this problem — those with r = 1,2 and
oo — have very natural interpretation. The case of r = 0o corresponds to estimating the
maximum of f. Ibragimov and Khasminski (1980) have shown that the convergence rate
of estimating F'(f) = ||f|lcc coincides with the rate at which f itself can be recovered,
the accuracy being measured in the uniform norm, and one may therefore use the plug-in
estimator F = ||]/"\||OO where f is an optimal in order, with respect to the uniform norm
of the error, estimate of f.

Korostelev (1990) announced similar result for estimating the L; norm |[f[; =
[ 1f(t)|dt: the optimal rate of convergence is O(n~5/(26+1)) ' 3 being the order of smooth-
ness of f, so that already a plug-in estimator f|f(t)\dt associated with an optimal in
order, the accuracy being measured in the L; norm, non-parametric estimate fof f, s
optimal in order. However, the inspection of the proof shows a gap in establishing the
lower bound, and a more detailed analysis demonstrates that the result itself is incor-
rect: when estimating the L; norm, a rate of convergence “slightly better” (namely, by
a logarithmic in n factor) than O(n~?/(2#+1)) is achievable.

Another interesting phenomenon occurs when estimating L, norm for r > 1. It
turns out that both the optimal rates of convergence and the underlying estimators
heavily depend on whether r is or is not an even integer. When r is an even integer,

the optimal rate of convergence is n 8/(ZB+1-1/1) i e s “significantly” better than



the standard non-parametric rate n=#/(26+1) agsociated with the plug-in estimators; as
about the remaining values of r, the optimal rate of convergence is only by a logarithmic
in n factor better than the “plug-in” one.

It makes sense to compare the announced results with those related to a seemingly
very close problem of nonparametric hypotheses testing associated with the case when
the distance between the null hypothesis and the alternative set is measured in L, norm,
see Ingster (1982, 1993), Lepski and Spokoiny (1995) or Spokoiny (1996). A natural way
to solve the testing problem is to estimate the L, norm of the function in question
and then use the estimate as a test statistics. This approach is known to work well for
r =2 and r = co. However, comparing the optimal convergence rates in the problem of
nonparametric hypotheses testing and the one of estimating the L, norms, one can see
that the cases of r = 2 and r = 0o are the only ones in which the outlined simple recipe
works; for all other values of r, the convergence rates in the estimation and the testing
problems differ from each other.

The rest of the paper is organized as follows. In Section 2 we state our main results,
separately for r even integer and for the remaining cases. The estimation procedures for

r =1 and for even integer r are presented in Section 3. Section 4 contains the proofs.

2 Problem and main results

We start with formulating the problem. Consider the idealized “signal + white noise”
model of observations as follows: the observed data X (¢), ¢ € [0,1] is a trajectory of

the stochastic differential equation
dX (t) = f(t)dt +n~2dW (t) (2.1)

where f is the unknown function, W = (W (¢),t € [0, 1]) is the standard Wiener process,

and the parameter n plays the role of the

‘volume of observations” (cf. more realistic
models where we are given noisy observations of f at n equidistant or randomly generated
points). Our a priori knowledge on f is that it possesses some smoothness, namely,

belongs to Holder class (8, L) with known parameters 3, L > 0. Recall that the latter

means that f is m times continuously differentiable on R!, m being the largest integer



which is less than 8, and the m-th derivative f(™ of f is Holder continuous with the

exponentual § —m and constant L:
S — () < Lit— s, ts€ R

By technical reasons, we assume also that f is bounded in the uniform norm by a constant

o < 1, so that

feX B, L) ={f€Z(B.L): [fllc < o0}

Our goal is to estimate the L, norm of f
1 1r
I ={ [ 1rora)

We study our estimation problem in the standard asymptotic set-up, when the pa-

with a given r > 1.

rameter n tends to infinity. For an estimate f, of IIf]l- via observation (2.1), let

Rif) = swp e (Be(F-151r))

fEZQ(ﬁsL

be the worst, over f compatible with our a priori knowledge, risk of the estimate; here
£(-) is a loss function. The results to follow are valid for every homogeneous loss function
¢ satisfying the standard conditions, see, e.g., Ibragimov and Khasminski (1979, Section
2.3). However, in order to simplify presentation, we prefer to restrict ourselves with the

simplest case when £(z) = |z|, so that in what follows

~

R(fn) = sup FE|fp— Hf”r

fGZg(,B,L)

Let also

~

R*(n) =inf sup E|fo—|fl,

fn FE3,(B,L)

inf being taken over all estimates (i.e., measurable real-valued functions of observation
X ), be the associated minimax risk.

Our first result deals with the case of r = 1.

Theorem 2.1 Let v = 1. There exist estimators ﬁl and a positive C > 0 depending

on B only such that for all large enough values of n one has

R(fn) < CLY D) (n1og n)~A/(26+1), (2.2)



This result shows that the L; norm can be estimated better than with the standard
“nonparametric” convergence rate O(n~?/(28+1)) although the improvement is only by
a logarithmic factor. The next result states that a more substantial improvement is

impossible.

Theorem 2.2 Assume that r is not an even integer. Then for n large enough it holds
LY@ (n1og n) B/ 2BHIR*(n) > ¢/(logn)"

with some positive ¢ > 0 depending only on S and r.

The situation with estimating L, norm, r being an even integer, is as follows:

Theorem 2.3 Let v = 2k be an even integer. There exist positive constants c,C de-

pending on B, r only such that for n large enough one has

c< L—(l—l/r)/(?,@-l—l—l/r)nﬁ/(?ﬁ—l—l—l/r) R*(n) < C.

3 Estimation procedures

In this section we present two estimation procedures: one for estimating the L; norm,
and the other one for estimating the L, norm, r being an even integer.

We start with the case of » = 1. The idea behind the construction is as follows. The
function |¢| is not smooth at the origin. However, it can be approximated on [—1, 1] by

its truncated Fourier series:
N

[t~ > ey cos(nkt) (3.1)

k=1
within accuracy of order of N~!. Consequently, the functional [|f(t)|dt can be ap-

proximated by the finite sum
N 1
ch/ cos(mk f(t))dt (3.2)
k=1 "0

of smooth functionals which can be estimated with accuracy O(n_l/Q) each, e.g., by

the method proposed in Ibragimov, Nemirovski and Khasminski (1986). Let f(t) be a

proper nonparametric estimator of f(t), e.g. a kernel estimator, with the variance \.

Then the estimator of fol cos(mkf(t))dt can be taken in the form

R 1 - 1 -
= B /U cos(rk(F(£) +iXE))dt = /0 cos(nh F (1)) exp{n2k2A2/2}dt.
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Here ¢ is a A'(0,1) random variable independent of our observation X and E; is the
expectation w.r.t. £. It remains to choose N in a way which balances the approximation
error of (3.1) (which is the less the larger is N) and the “stochastic error” — the one of
estimating the smooth functional (3.2) via noisy observations (the latter error is the
larger the larger is N).

The outlined scheme can be implemented as follows. Let m be the largest integer
which is smaller than 8 and let K be a compactly supported kernel of order m i.e., K

is a continuous function satisfying the conditions

(K.1) K(t)=0 for |t| > 1;
(K.2) [ K(t)dt = 1;
(K.3) [tK({t)=0 for i=1,...,m.

We denote by || K| the Ly norm of K:

IK|| = /K?(t)dt. (3.3)

Let h € (0,1) be a “bandwidth” (a parameter of the construction to be specified later),

and let

ﬁ(t):%/JK(i“) X (1) (3.4)

be the standard kernel estimator of f associated with K,h. As always in the kernel
estimation, the kernel K should be corrected near the endpoints 0,1: for ¢ € [0,h]
we should replace K in the right hand side of (3.4) by a kernel K_ vanishing outside
[0, 1], while for ¢ € [1 — h, 1], K should be replaced with a kernel K| vanishing outside
[—1,0], the modified kernels satisfying the requirements (K.1) — (K.3). Without loss of
generality we may assume that all three kernels K, K. have the same Ly norm; with this
assumption, in the constructions/proofs to follow we may use, with no risk of confusion,
the same notation K for all three kernels, and we use this possibility in order to make

the presentation more readable.



Due to (2.1), the estimate f,(t) admits the usual decomposition into deterministic

and stochastic components:

Fn(t) = fult) + Mén(t), (3.5)

%/01K<t;“)f(u)du,
v e G (5

where

fu(t) =

1 ! <t — u) 1 1 < u)
t) = K 2dW (u AW (u).
&n(t) clearly is N(0,1) and hence
- - 2 )
Varfut) = B (Fu(t) - fu1) =X
Let us now set
h = (L’nlog n)il/(wﬂ) , (3.6)
N = |0L7YCB) (nlogn)f/GB+D) (3.7)
where
_ 1
C2n|K(|V2B+ T
Forall k=1,2,... ,N and XA >0, we define functions v »(-) as
Vg (t) = cos(mkt) exp{m?k?\?/2} (3.8)
and set
QNa(t) =co+ Z ckVk A (t (3.9)
where ¢j; are the Fourier coefficients of the function u(t) = |¢|:
(
1, k=0
1
ck = 2/ tcos(mkt)dt = 1 o, k=24,6,..., (3.10)
0
4(k) 2, k=135



Finally, we define the estimator F of IIfll1 as
Fa= [ QuaFutndt=cot [ 3 e, (e
0 0 1=

3.1 Estimating ||f||, for an even integer r

The difference between this case and the previous one comes from the fact that for
even integer r the function [¢|” is analytic. This fact will be essentially used in the
construction.

Let us first consider the functional ®,(f) = Fy(f):

r

1
o, (f) = |7 = / ().

This functional is smooth and it can be estimated (under some mild conditions on f)
from observations X with the convergence rate n="'/2.

Let fu(t) be the kernel estimator of f we have built. Applying the method from
Tbragimov, Nemirovski and Khasminski (1986), we get the following estimator ®,, of
@, (f):

~ L, r 1 T/Q .~ .
b= [ (o) +ing) = | S bhOr e @
j=
Here i is the imaginary unit, ¢ is an A/(0, 1) random variable independent of observation

X, and E¢ is the expectation w.r.t. £, so that
by = (1) e (3.12)
27
Now we set (cf. (3.6))
h = (L2n) " 70177 (3.13)
and define the estimator F, of ||f|, as

F, = (max{0,®,})"/".

Remark 3.1. Our estimate heavily exploits the fact that |f| is known not to exceed a
given quantity p < 1. Of course, applying the scaling f — constf, we can reduce to the

case in question also the case when we have an a priori known upper bound of |f|.



4 Proofs

Below we present complete proofs of Theorems 2.1, 2.2 and 2.3. In what follows, &
(possibly, with sub- or superscripts) denote positive quantities (not necessary the same

in independent proofs) depending on r, 5, K, K1 only.

4.1 Proof of the upper bound in Theorem 2.1

We start with several technical lemmas. Let vy \(t) = cos(mkt) exp{m?k?A?/2}, k > 1,

see (3.8).

Lemma 4.1 Let z € [-1,1], A >0 and let & be N(0,1) random variable. Then for all
E>1,

Evp\(z + X) = cos(nkz). (4.1)
If op\(t) is defined by
opa(t) = Varvg y = E v (2 + X&) — cos(nkz)|?
then
or(t) < ThXexp{m?k?\?/2}.

Proof. Let ¢(z) = (2r)~'/? exp{—2?/2} be the standard Gaussian density. Then

Evpa(z+ X)) = /oo vk (2 + Az)p(x)d

—0o0

= exp{m?k*)\?/2} /00 cos(mk(z + A\z))p(z)dx

= (2m)"'/?Re </oo exp{mk*N\?/2 + ink(z + \x) — 332/2}dzp>

oo

= Re <exp{i7rkz} (2m)~1/? / Ooexp{—(x—mk)\)Qﬂ}dx)

o

= cos(mkz)

and (4.1) follows.

10



Similarly,

o0

a,%’)\(t) (Ve (2 4+ A\z) — cos(mkz))?@(x)dz

Il
T

88

= vE(z + \z)p(z)de — cos?(nkz)

8

o<
= exp{kaQ)\Q}/ 0.5{1 + cos(2mkz + 2wkAz)}o(x)dz — cos? (mkz)
o<
= 0.5exp{n’k*\?} [1 + cos(2mkz) exp{—27m°k*\*}] — 0.5 [1 + cos(27kz)]
= 0.5 [exp{m®k’N\?} — cos(27kz)] - [1 — exp{—7?k*\?}]

< k22 exp{m?k2N?Y.

Lemma 4.2 Let A > 0 be fized and let Qn,x be defined by (3.9). Then for every
z € [-1,1]

N

EQNA(z+ X)) = co+ ch cos(mkz),
k=1

VarQua(z + X)) < &I 2exp{n®N*\*}log?(N +1).

with k1 <2/7.

Proof. The first statement follows from the definition of Qx \ by Lemma 4.1. Now,

N
VarQua(z + AO]? < 3 e [Varva(z + 2)]2,

k=1
so that by Lemma 4.1
N
[VarQna(z + A2 < Z cpmkXexp{m?k*)\? )2}
k=1
N
< mrexp{n®N2\?/2} Y " key,
k=1
< 227 lexp{m?N?)\2?/2} log(N + 1),
as claimed. |

11



Lemma 4.3 Let ¢,k = 0,1,... be given by (3.10). Then for every N > 1 and all
z € [—1,1] one has

N
|z| —co — ch cos(mkz)| < ko N1
k=1

with ko = 21 2.

Proof. By origin of ¢, we have for |z] <1

o
z| =¢co+ Z ¢, cos(mkz)

k=1
and therefore
ul > 1 4
|z| — o — ch cos(mkz)| < Z ek < 3 Z )2 <o ’N-!
k=1 k=N+1 k=N+1
as required. [

We are ready to prove the upper bound from Theorem 2.1. Consider decomposition
(3.5) of the kernel estimate f,(f) with h given by (3.6). Note first that the inclusion
f € %(B, L) by standard reasons (see, e.g., Ibragimov and Khasminski (1979), Section

4.4, p. 317) implies that

fu(t) = f ()] < Kz LB (4.2)

with k3 depending on B and the kernels K, K1 only. Since h is small for large n, from
(4.2) combined with the fact that ||f|cc < 0 <1 we conclude that for all large values of
n for all f € £,(8,L) one has |f,(t)] <1. In what follows we assume that n is so large
that the latter assumption is satisfied.

Let

Yn(t) = Qo (a(t)

so that F, = fol Yn(t)dt. In view of decomposition (3.5) and by Lemma 4.2 as applied
with z = fp,(¢) it holds

N

Eyn(t) =co+ Y _ cp cos(nkfa(t)).
k=1

12



Applying Lemma 4.3 with z = f;,(¢) and A = A, and taking into account (4.2), we get
[Eya(t) = f(B)] < 1E(t) = fr()] + [fa(t) = f(£)] < w2N~" + iz Lh°
and hence

1 1
‘E/’m©ﬁ—WW1§/E%@%ﬁﬁﬂémN4+m¢W.
0 0

Now let us bound the variance of the estimator ﬁn .

The definition of f,(£) and the condition (K.1) yield that fu(t) and f,(t') are
independent random variables when |t — /| > 2h. Let Cové¢’ means the covariance
E( — E&)(¢ — E¢') between two random variables &,¢'. Using the Cauchy-Schwarz

inequality, we get

Cov(Tn(t), () < [Vary,(t)Vary, ()] 1(|t — /] < 2h)

< 0.5 (Vary,(t) 4+ Vary, (') 1(jt — | < 2h).

This gives

1
VarF,, = Var </ fyn(t)dt>
0

1 1
= / / Cov(yn(t), va(t"))dt dt'
0 0

IN

0.5/01 /01 (Vary, (t) 4+ Vary, (') 1(|t — ¢'| < 2h) dt dt’
< 4h/01 Vary, (t)dt. (4.3)
Applying further Lemma 4.2 and recalling the origin of A\, we get
VarF, < 14| K|*n~" exp{r*N’||K||*/(nh)} log*(N +1).
Now,

F,—-EF,
j|1/2

E

F=lflh] < E|BE.-Iflh]+B

IN

ELEﬁ;—Hfm\+[wnﬁl

< koN '+ k3LhP

(4.4)

2N2 K 2
g + 1) e { DI,

2nh

13



Substituting h, N given by (3.6), (3.7) respectively, we see that for all n > k4 it holds

TN K|?

<
ol < alogn

with certain constant o < 1/(48 + 2). Therefore for all large enough values of n the

exponent in (4.4) can be bounded as
exp{mN?(|K|*/(2nh)} < n'/(49+2);
with this bound, (4.4) implies (2.2).

4.2 Proof of the upper bound in Theorem 2.3
First we study the behavior of the estimator ®, of D,.(f), see (3.11).
Lemma 4.4 Let fy(t) be given by (3.6). Then
N 1
o= [ it = A
Var®, < ran~ max{\)"~%, | fall3 25

where k4 depends only on r and the kernel K .

Proof. Observe first that for every two pair of independent A(0, \?) random variables

¢, ¢ and for every polynomial p(-) on the complex plane C one has
E(p(z + & +if') = p(2), z € C, (4.5)

1 being the imaginary unit. Indeed, our expectation can be rewritten as the mean value,
over certain probability distribution on the ray {R > 0}, of the means % OQWp(z +
Rexp{i¢}) do; all latter means are equal to p(z) (the Cauchy Theorem on the integral

representation of an analytic function).

Combining (4.5) and decomposition (3.5) of the kernel estimate f,(t) we get

N 1 1
B =B [ Belin(®) + Mn(t) + ing) di = [ (o (46)

which is the first assertion of Lemma.

Let

Yo (t) = Be(fn(t) + i)

14



by (4.6) we have Ev,(t) = |fn(t)|". Using (3.5) once more, we get

() = Evn(t) = Ee(fn(t) + Mén(t) +iXn)" — | fu(t)]”

=Y (;) T (4N Ee (nén(t) + idn€)
j=1
whence

Vary, (¢ <)\22a] N~ 2 |2T 2

with some positive numbers a; depending on r only (we have used the fact that for
two independent A(0,1) random variables ¢, ¢” one has E [(¢' +i€")7 (€' +i€")*] =0
when j # k, Z being the complex conjugate of z; to get this relation, it suffices to pass
to integration in the polar coordinates, cf. (4.5)).

By exactly the same reasons which led us to (4.3) we have
N 1
Var®,, < 4h/ Vary, (t)dt,
0

whence

Vard, < 4h>\22 / aj NI 2| () P d

IN

_ 252 2r—275
4| K|*n lzaj/\hj 1fnllor =57
=1

which clearly implies the second assertion of Lemma.

Lemma 4.5 There exists a constant ks depending only on r and on the kernels K, K4

such that

1fall5r =5 < msh ™ YA A

Proof. Applying the Minkovski inequality, we get

0 K (t_“> du N
K/ " du) (175 [ o t_u))wjdu)T]

T Vi

r—1

fr@)

IN

15



where k5 depends on r and the kernels K, K1 only. Consequently,

1
Il 2 = / (6P 2dt

1
S [ WV ACT
0
< rsh T I Al
the concluding < being given by the Jensen inequality. |

Now we are ready to complete the proof of the theorem. Denote

1-1/r _ B
on = L7FF1-17r " BH1-1/7 (4.7)

Then p, is exactly the convergence rate mentioned in the theorem; note that by (3.13)
one has g, = Lh?.

Recall that the Holder smoothness constraint implies the bound

Hf - fh”r < "53Lh/8 = K30n, (4.8)

whence || fullr < ||fllr + x30n. Consider separately the cases of ||f]|, < 2k30, and of

[fllr > 26300 . I [|f]l; < 230, then

E|E, = |fll.| < E|F,|+ 2ks0n

< (E®2)YE) 4 2k30,
< [VarEI;n +(E $n)2]1/(21~) + 2K30n
< (Vard,)'/C") 4 (E®,)Y" + 2k30n.

It is easily seen that for n > k4 one has g, < A\? = ||K|?/(nh). Using Lemma 4.4, we

come to the bound

BlFn = Iflrl < (rsn” XY ED £l + 20300

IN

(5= X220 4[| ], + s u] + 2300

< (wsnTINETH ) 4 kg0,

Substituting A, = (nh) /2 in the expression for h from (3.13), and using the bound
(4.8), we get the desired risk bound.

16



It remains to consider the case of | f|l; > 2x30, . In this case from (4.8) it follows

that ||fnllr > || fll» — kK30n > K30, Whence

E|Fn - Hf”r‘ < E‘Fn - ||thr‘ + K30n
or r
< E‘Fn J|_.f;h||r‘ + K30n
| fn I
E|®, - Ed
< ‘n—r,1n| + K30n
| frll7
Var®,,)!/2
< W) D on.
| fnll7

Combining Lemma 4.4 and (4.8), we get
(Vard,) /2 < ngnfl/Q()\zfl 4R DI@) | p =1y
and we end up with
BlEy = [ flls] < mon (O 0" 4 b)Y 4 g0,

Recalling that A\, = ||K||?/(nh) and substituting the expression for h, we come to the

desired risk bound.

4.3 Proof of the lower bound in Theorem 2.3

The problem under consideration is rather special, and the standard techniques for es-
tablishing lower bounds in the problems of estimating the value of a functional (e.g.,
the one of “the hardest single-parametric subfamily”) seemingly do not work. The rea-
son is that the functional ||f||,,  being an even integer, is “nearly smooth” — it looses
smoothness at the unique point f = 0. Note that the value of an “actually smooth”
functional can be estimated with the parametric convergence rate O(n~'/2), while our
goal is to establish a kind of nonparametric lower bound. To this end we intend to build a
pair of “high-dimensional” distributions concentrated each near its own small “r-sphere”
{f € 35(8,L) | |Ifllr = R}, R = Ri, Ry, in such a way that the Kullback distance
between the distributions is small, so that they cannot be distinguished reliably from the
observations. Ensuring this property, we can use the standard arguments to demonstrate

that the minimax risk in our problem of estimating || - ||, is (at least) O(|R; — Ral).
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Our first step is to replace the nonparametric set ¥,(8, L) with its properly chosen
parametric subset where the aforementioned distributions will be concentrated. Let us
fix a function g € ¥(,1) vanishing outside the interval [0,1] and such that ||g||?(¢)dt =
[ g? > 0. Note that by evident reasons all functions of the form Lb=?g(a+bt) with b > 1
belong to ¥,(8, L), provided that b is greater than a constant depending on p only.

Let us set

N
N o= (@), o)
h = N—L
note that our new values of N, h differ from those used in the construction of the esti-
mators ﬁn

Now let T = {I;,i=1,...,N} be the partition of the interval [0,1] into N = h~!
subintervals Iy, ..., Ix of length h each, and let ¢; be the left endpoint of subinterval I;.
With a point § = (6y,...,0y) from the N-dimensional cube By = [—1,1]" we associate
the function

N
folt) = LS. 0P g((t — 1) /)

i=1

Assuming n large enough, for all # € By we have fy € ¥,(8,L) and

rg Br al r =1
L' " 164 9\
i=1 i
) N 1/r
F.(0) = <ﬁ20ﬂ> . (4.11)
=1

V=¥ - Hg\II@E [ o(52) axo

where X? is observation (2.1) associated with f = fy. We clearly have

I foll at = (Llglh°F,(0))"  (4.10)

where

For i=1,... ,N let

Y = a(N)6; + &, 1=1,...,N, (4.12)
where

a(N) = Llg|n'?h**1? = L|jg|ln'? NP1, (4.13)

& = Wﬂi9<t;ti>dW(t).
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Clearly & = (&1,...,&n) is a collection of independent A'(0, 1) random variables. Tt is
also straightforward to see that the set of statistics Y;,i = 1,... ,n is sufficient for the
parametric submodel (with f € SV = {fy, § € By}). Therefore, when restricting f
to belong to XV and setting s; = a(N)6;, i = 1,...,N, the original “signal + white

noise” model (2.1) becomes the “sequence space” model

Vi=si+&, i=1,... N, (4.14)

N)

with s = (s1,...,sny) from the cube Sy = Bf\‘,( = [~a(N),a(N)]V. With this

transformation, the original estimation problem (reduced to £/) becomes the problem

of estimating the quantity

. N 1/r
Fi(s) = (N > |sz~|’")
i=1

(cf. (4.11)) via observations (4.14). Let Rs(N) be the corresponding minimax risk:

Rs(N) = inf sup E,|F — F.(s)],
F seSy

the infimum being taken over all Borel functions F = ﬁ(y) on RN and E; being the
expectation over the observations (4.14) associated with a given s. Comparing (4.11)

and the definition of F,(s) and taking into account (4.10), we get
R*(n) > Llgl-h’a™ (N)Rs(N) = rg/N/nRs(N) (4.15)

where g = |gll-/llgll -
Now we are going to establish the following
Proposition 4.1 For all large enough values of N one has
Rs(N) > k7a(N) (4.16)
with k7 depending on r, 3 only.

Note that the statement of Theorem 2.3 is an immediate consequence of Proposition

4.1. Indeed, combining (4.16), (4.9), (4.15) and (4.13), we get

1-1/r _ B
R*(n) > krkig/N/na(N) = kzkyL|g||N P = kg L7FF1=177 = 28 F1-177
with kg depending on r, 8 only, as claimed in Theorem 2.3.
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Proof of Proposition 4.1 is based on the following idea. We introduce two prior measures
pn,0 and gy on the parameter set Sy and denote by Py and Py ; the corresponding

marginal measures on RV,
Pyj=png* L, §=0,1

here L is the distribution of the observation noises ¢ in (4.14). Let also K(Pn,o, Pn.1)

be the Kullback distance between Py and Py

dP
K(Pn,,Pni) = /log <dP§’1> dPy 1.

We will bound the minimax risk from below by the maximum of two Bayesian risks
corresponding to the distributions pyo and py,; on the space Sy of “signals” s. To
this end we need the following statement (which can be obtained from the Fano inequality;

we, however, prefer to present a direct proof).

Lemma 4.6 Let prior measures pno and pn,1 be such that the Kullback distance
K(Pnyo,Pn1) satisfies the condition

K(Pn,Pnji) <Q (4.17)

with some positive 2. Let ® be a function on the parametric set Sy, and let

vy = [ B, (418)
dhy = (@)= ow)Puxs(ds) (4.19)

for 7=0,1. One has
R(N) = inf sup E,|® — ®(s)| > 0.25|vx0 — on.1le™ — max{dno,dn1},  (4.20)

d seSy

the infimum being taken over all estimators of ®(s) via observations (4.14).

Proof. First note that for an arbitrary prior measure p and every estimator d of D(s)
via observations (4.14) one has

sup B, — ®(s)| > En,|® — 3(s)|
SESN

> Eny|® — En,®(s)| — Enu|®(s) — En,,(s)]

> Eng|® — En,®(s)| — dyy
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It follows that
R(N) 2 0.5iIA1f{EN’g|$ — Q)N,0| — dN’g + EN,1|$ — UN,l‘ — dN,l}
)
> 0.50f { Eol® — vnol + Exal® — vnal b - max{dyo,dya}. (421)
3

Now let us use the well known fact (see e.g. Borovkov (1984, Theorem 2.1, Chapter 3))
that the maximum likelihood test TA“N = 1(dPn,1/dPno > 1) is optimal for testing the
hypothesis Hy : P = Py versus the alternative H; : P = Py (P is the distribution
of observations (4.14)) in the sense that it minimizes the sum of probabilities of errors:

for an arbitrary test T,

PN,O(TN = 1) + PN,l(TN = 0) > PN,O(fN = 1) + PN,l(,fN = 0) (422)

Let Zy = dPn,/dPn,i. Then Ty = 1(Zny < 1) and, since the function log(z) is

concave, using Jensen’s inequality we get

log (PN,O(TN =1)+ PN,I(TN = 0))
> log PN’()(ZN < 1)

= log/ZNl(ZN S 1)dPN’1

> /log(ZN)l(log(ZN) < 0)dPn,

> —K(Pyg,dPy1) > —. (4.23)
Let now ® be an estimator of ®(s). Consider the following test
Ty = 1(® — v > Ay)
where
An = (vn,1 —UNy)/2
(we assume that vx; > vn). Applying (4.22) and (4.23), we get

PN,U(TN = 1) + PNyl(TN = 0) > eiQ
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or

PN,O($ —UN,0 > AN) + PN’1($ —un,1 < —AN) > e_Q.

Since
Eno|® — vno| + Exng|® — vy
> (PN,U(&) —ono > AN) 4+ Py (@ — oy < —AN)> AN
> 0.5|’UN’1 — ’UN’0|679,
(4.21) implies (4.20). |

We shall apply Lemma 4.6 to the function ®(s) = N~!(s] +... + s%) and a pair of

prior measures py,o and py;; with the product structure:

N
MUNO = Mo,
pNg = pp

We shall build the measures pg, p1 on [—a(N),a(N)] in such a way that (4.17) holds
with some fixed €2, while and the difference |vy1 —vn | is “large”.

First we note that, for j =0,1,

N
1
UN,j = ﬁ/Z [sil" pn,j(ds) = / |s|" 1 (ds) = v; (4.24)
i=1

and similarly

N
1 - —
By = w7 [ S =0 ny(ds) = N7 [ (5P = o) = N7
i=1

where

o= [l <)

& = /SZTuj(ds)—v?SaZ’"(N). (4.25)

To bound the Kullback distance between the marginal measures Py and Py i, note

that the product structure of model (4.14) and of the priors pun, N1 altogether imply
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that

K(Pxg, Pyi) = N / Log(Pro (4)/Pres ()P o (4l (4.26)

where, for a finitely supported measure p on the axis,
Puly) =/<p(y—t)u(dt),

o(y) = (2m) " exp{—y?/2}

being the standard Gaussian density on the axis.

Assuming that the priors puyo = pd’, pn1 = p and an Q > 0 satisfy (4.17) and
applying Lemma 4.6, we get the following lower bound on the risk of an arbitrary estimate
® of D(s):

sup E,|® — ®(s)| > 0.25v; — vgle ? — o’ (N)N /2 (4.27)
seESN
(see 4.25).

Now let us derive from the latter bound a lower bound for the risk Rs(N) of esti-
mating F,(s). Let F be an estimate of F,(s), s € Sy. When bounding from below the
risk of ¥ on Sy, we may assume without loss of generality that |ﬁ()\ < a(N). Indeed,
since |F,(s)| < a(N) for s € Sy, we only decrease the risk of F at s € Sy when passing

from F to the “projected” estimate (F(-)), where

Let ® = F" be the estimate of ®(s) = F](s) induced by F. Since |ﬁ\ < a(N), we have
Ey|® — ®(s)| = E,|[F" — F'(s)| < ra/ " (N)E,|F — F,(s)|.

Applying (4.27), we get

Re(N) > (ra""(N))~'(0.25/v1 — vole™® — a" (N)N~1/?)

= r'a(N)(0.2507" (N)|vy — vole™? — N71/2), (4.28)
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It is time now to specify our choice of the measures pug, 1. Let 0 be the distance
(in the uniform norm on [—1,1]) from the function ¢" to the space L, 5 of polynomials
of degree < r — 2. We claim that there exists a measure p on [—1,1] of variation 2
such that [#'u(dt) = 0 for I = 0,1,...,r — 2, while [#"u(dt) = 25. The justification
of our claim is quite standard. Consider the space C(—1,1) of continuous real-valued
functions on [—1,1] (equipped with the uniform norm) along with its finite-dimensional
subspace L spanned by L,_s and the polynomial t". L is a finite-dimensional linear space
equipped with the norm || - || inherited from C(—1,1), and L,_5 is a linear subspace in
L of codimension 1. Let the linear functional ¢(-) on L be defined by the requirements
that ¢ vanishes on L,_o and is equal to § at t". Observe that the norm of our functional
is 1:

19l = max{4(q()) | q() € L, flqf <1} = 1.

Indeed, if ¢(-) is the closest to " element of L,_o, then 1(t" —q(-)) =6 = ||t" — q(*)]], so
that |||« > 1. On the other hand, assuming that ||4||. > 1, we are able to find d € L
with ||d|| = 1 and ¢(d) = ||1«]| > 1; the vector t" — (6/|¢||«)d € L belongs to L,_s (since
the value of ¢ at this vector is 0) and is at a smaller than ¢ || - [|-distance from ¢", which
is impossible.

By the Hahn-Banach Theorem, we can extend the linear functional ¢ from L on the
entire C'(—1,1) not increasing the norm of the functional, and by the Riesz Theorem, the
resulting linear functional 12)\(9) on C(—1,1) can be represented as

N 1
i) = [ atave)
for a Borel (not necessarily nonnegative) measure v with variation equal to the norm of
z/p\, i.e., to 1.
Setting p = 2v, we get a measure on [—1, 1] of variation 2 such that
1 1
/ltlu(dt) =0, [=0,1,..,r —2, /ltm(dt) = 20.
Note that if u possesses the indicated properties, so is the “reflected” measure p* (u*(A) =
pu(—A)) and hence the measure (pu+ p*)/2; therefore p may be assumed to be symmetric.

Let py,—p— be the positive and the negative components of u, respectively. Since p
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is symmetric with variation 2 and f_llu(dt) = f_ll t%(dt) = 0, both p, and p_ are

symmetric probability distributions on [—1, 1] such that

1

1
/tlu+(dt) = /tlu_(dt),lz(),l,...,r—2; (4.29)

1 1

/1 "y (dt) = /1 t"p_(dt) + 24.

1 1

Let g, 1 be obtained from py by “expanding” associated with the similarity trans-
formation which maps [—1,1] onto [—a(N),a(N)]: uo(A) = py(a='(N)A), p1(A) =
p_(a"Y(N)A), A C [-a(N),a(N)]. The quantities vy, v; associated with our pg, 1 (see

(4.24)) clearly satisfy the relation

1

vg —v; = ' (N) / 1 it|" p(dt) = 200" (N)

and the associated bound (4.28) is

Ry(N) >r'a(N) (e — N~/?), (4.30)

1 being the Kullback distance between the marginal distributions Py, Py, given by
the priors p)’, uV. All we need is to evaluate €.
Let us associate with a symmetric probability distribution v on [—1,1] and a real «

the distribution F¥ on the axis with the density

1 1
play) = / oty = at)odt) = o(y) / ch(oty) exp{—o22/2}w(dr),  (431)

so that

Puo(¥) = puy (@(N),y),  puy(y) = pu_(a(N),y). (4.32)

Note that (4.31) defines function p,(«,y) for an arbitrary (not necessarily nonnegative)
symmetric measure v on [—1,1].

Let

K = | " log (P, (o) /D (00))Pps (00 )y (4.33)

be the Kullback distance from p,_ (a,-) to p,_(c,-). Note that by (4.26) and (4.32) it
holds

Q= K(Py0, Px1) = NK (Do) = NK(a(N)). (4.34)
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Lemma 4.7 The function K(a) is C*° smooth and it has a zero of order at least 2r at

the point o = 0.

Proof. It is clearly seen that one may differentiate K(«) arbitrarily many times and that
> Puy (@ y)
KO (o :/ _[10 <#+7’ a, d
() L 3a |\ (@) Puy (o, y)| dy
for all . Note that

Puy (@) = pu_ (o, y) + pula, y).
Let us first demonstrate that for all z

8lpu(01, y)

o =0, 1=0,1,..,r—1. (4.35)
«

a=0

Indeed, one has

'pu(a,y)
oal -

~ v [ 11

1
= /tl(ao+a1y+---+alyl)ﬂ(t):0
-1

() (2ot (7 )

1=

a=0

(we have used (4.29)), as required in (4.35).

According to (4.35), pu(c,y) can be represented in the form

pulasy) = o w(a,y)

with smooth function w(-,-) (which, as it is easily seen, is a summable function of y).
Since [*_pu(a,y)dy = 0 for all e, it also is the case for w(e, y):

o0

/ w(a,y)dy =0, Vo

— 00

Now we have
T T
log <pu (Ot, y)) — log <1 _ «Q w(a,y)> — _a w(aay) o O[QT’U(O[,y),
pu+ (04, y) pu+ (Of,y) pu+ (Of,y)

v being a smooth function of y, . Hence

Kla) = - /OO log (M> Puy (@, y)dy

o pu+(a,y)
— ar/ w(a, y)dy+a2’"/ v(a,y)puy (o, y)dy

— 00

[ee]
= 02’"/ v(a,y)pu, (o, y)dy
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and the assertion of Lemma follows.

The result of Lemma 4.7 says that for small positive « one has
K(a) < kiga®. (4.36)

In particular, for all large enough values of n (and thus — of N) we have

Q = NK(a(N)) [by (4.34)]
< k1oNa® (N) [by (4.36)]
< kuN(Ln'2N-B-1/2)2r [see (4.13)]
< Ko [see (4.9)]

Applying (4.30), we see that for n large enough it holds
RS(N) > Kl?)a(N)a
as required in Proposition 4.1.

4.4 Proof of the lower bound in Theorem 2.2

Here we establish the lower bound from Theorem 2.2 for the case when r is not an even
integer. We follow the line of the proof of the lower bound from Theorem 2.3; the only
difference is in construction of the priors po and puq .

We start with translating the problem into the “sequence space” model in exactly the

same manner as in Section 4.3, with the only difference that now we set
N = [(200L]|g]))*> 4D (nlogn)'/(*F+1) | (4.37)
Note that with this setup for all large enough values of n one has (see (4.13))

g 0.01
a(N) = L|jg|v/nN~° 12 < W.

Relation (4.15) for R*(n) remains valid for our new setup as well, and the required

(4.38)

result is obtained from this relation and a lower bound on the worst case, over s €
Sn, risk of recovering the functional F,.(s) = (N~'(s] + ...+ s))'/" via observations
(4.14). The latter bound is given by the following statement (which now plays the role

of Proposition 4.1):
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Proposition 4.2 For all large enough values of N one has

Rs(N) = inf sup E,|F — Fu(s)| > kg(log N) " a(N) (4.39)
F seSn

where kg > 0 depends on r and B only.

Postponing for the moment proof of Proposition, let us derive from this statement

Theorem 2.2. Indeed, we have

Rm) > g/ NJnR,(N) by (4.15)]
> kgkgy/N/n(logN)™"a(N) [by (4.39)]
> wioLllg|N~%(log N) " [by (4.13)]

> ki LY@ (nlogn) A28+ (logn) " [by (4.37)]
with k11 depending on 3,7 only, as required in Theorem 2.2.

Proof of Proposition 4.2 differs from the one of Proposition 4.1 only in how we
define the measures p4. Let Py be the space of polynomials of degree < k, and let §(k)
be the distance (in the uniform norm on [—1, 1]) from the function |¢|" to the space Po .
It is known (see, e.g., Timan A.F., Theory of approximation of functions of real variable,

Moscow, 1960, p.430) that if k is a nonnegative integer, then
6(k) > Kok ",

with k19 > 0 depending on r only. Let us set
B(N) = [log N,

with N given by (4.37); we assume n to be so large that N > 3. Same as in the proof of
Proposition 4.1, for our N there exists a symmetric measure py on [—1,1] with variation
2 such that
1
/ltlmv(dt) = 0,1=0,1,...,2k(N), (4.40)

1
/1 t"pn(dt) = 2§(k(N)) > 2k10k™"(N),
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and the positive and the negative components, gy, p— (puny = py —p— ) are symmetric
probability distributions on [—1,1].
Same as in Section 4.3, we define the measures po and p; on [—a(N),a(N)] “ex-

panding” the measures p+, thus coming to a pair of symmetric probability distributions

o, 1 on [—a(N), a(N)] satisfying the relations

a(N) a(N)
[ i = [, 1=0,1 2b(0V)

—a(N) —a(N)

a(N) a(N)
[t = [ e + 20 e (), (4.41)

—a(N) —a(N

Setting un,o = ,U*(J)Va UN1 = ,u{v and denoting by Py, Py,1 the marginal distributions of
observations (4.14) associated with the priors pin o, tn,1, we, same as in the proof of the

lower bound in Theorem 2.3, come to the inequality (cf. (4.30))
Ry(N) > r~La(N) (0.256(k(N))e’Q - N*1/2) , (4.42)

where ) is the Kullback distance between the distributions Py, Pn,1:

Q = K(Pyp,Pn1)=NK(a(N)),

Kl = [ toglo. ) puc @9 (@), (4.43)

with p, (e, -) given by (4.31).

For T' > 0, let us set

Kr() = / log Py, (0 4) /Dy (00))Py (v )y, (4.44)
ly|<T

Lemma 4.8 For every T > 0

dl ICT(Ot)
do!

Proof. We have

a) = ' 0 7pu(a,y) o
K ( )—/_Tl g<1+pu(a’y)>pu( ,y)dy,

and the result is readily given by (4.35) (in view of the first relation in (4.41), equality
(4.35) is now valid for | =0,1,...,2k(N), see the proof of (4.35)).

The remaining part of the required information on Kr(-) is given by
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Lemma 4.9 For every T > 20 and all a € [-1,1], one has
K(a) < exp{—(T — 1)?/2} + Kr(a). (4.45)

The function Kr(a) can be extended analytically into the circle |a| < (10T)~!, and in

this circle

Kr(a)|] <2/3.
Proof. We clearly have

K(e) = Kr(a)+ Rr(py,p-),

Rr(n.)) = / log(py (0, y) /P (e, 9))po (00, y)dy,
ly|>T

v,V being probability distributions on [—1,1]. Now, Ry (v,v') is a convex functional of
probability distributions v, v/'; therefore its supremum, over all pairs (even non-symmetric)
probability distributions on [—1, 1] is the same as its supremum over the set P? of pairs
of distributions on the same segment with singleton supports. Indeed, every probabil-
ity distribution v on [—1,1] can be approximated by a sequence {v;} of discrete dis-
tributions with finite supports in the sense that [ g(z)v;(dz) — [ g(z)v(dz) for every
continuous on [—1, 1] function g. From this observation and the fact that Rp, as it is
easily seen, is lower semicontinuous (in fact even continuous) with respect to the weak
topology on the set P? of pairs of probability distributions on [~1,1] we conclude that
sup(,,ep2 Rr(v,v') = SUD(y,1)¢ P2 Rr(v,v'), P? being the set of pairs of discrete prob-
ability distributions on [—1,1] with finite supports. Finally, every pair (v,v') € P} is
a convex combination of pairs from P2?; since Ry is convex, its supremum over Pd2 is
the same as the one over P2, whence sup(y,ep2 Rr(v, V') = supg, ,nep2 Rr(v, V'), as
claimed.

Now consider a pair of distributions (v;,v_) € P2; let 14 be concentrated at a point
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t and v_ be concentrated at a point 7 (¢,7 € [—1,1]). In this case we have
(y —ot)®  (y—ar)? (y—at)®, 1
Rr(v,v') = / [— + exp{— } dy
ly>T 2 2 2 Vo

[a(t — 1)y + a?(t — 7)%/2] p(y)dy

/{y<Tat}u{y>Tat}
at —7)(2r) 2 [exp{—(T — at)?/2} — exp{—(T + at)?/2}]

+22m) 2% (t — 7)2(T — 1)~ exp{—(T — 1)%/2}

VAN

2m)~'2(2 4+ 8(T — 1)~ ") exp{—(T — 1)?/2}

exp{—(T - 1)*/2}

IN

(we have taken into account that 7' > 20). Thus,
8113121) Rr(v,V) = 8113132p Rr(v,v) < exp{—(T —1)?/2},
and (4.45) follows.

Let us now look at the function 7. Let y be a real with |y| < T, and let ¢
be a real with |¢| < 1. The absolute value of the derivative of the function g(a) =
exp{—a?t?/2}ch(aty) in the circle |a| < z < 1 clearly does not exceed (T + 1) exp{zT +
22/2}, and therefore |g(a) — 1| = |g(a) — g(0)| < (2T + 2) exp{zT + 2%/2} in this circle.

It follows that in the circle || < z = (10T) ! we have

/_11 eXp{—a2t2/2}ch(aty)y(dt) 1

< (2T 4 2) exp{2T + 2%/2} < 1/5exp{0.105} < 1/4,

both for v = py and for v = p_. Consequently, for the indicated z and |a| < z we have

Pu(@y) <1/3.
pu, (04, y)

We see that if y is real and |y| < T', then the function log(p,, (. y)/pu_ (a,y)), regarded
as a function of a, can be extended analytically from the segment |a| < dp = (10T) !
of the real axis onto the circle || < dr in the complex plane, and the absolute value of

the extended function in this circle does not exceed the quantity
o) m
1 /1
— | = =1 2).
> — ( 3> 0g(3/2)
m=1
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By the same reasons, for real y with |y| < T and every « from the circle |a| < dr we have
|Puy ()] < 5/4p(y), and we see that K7 is an analytic function in the circle |a| < dp
with absolute value in the circle not exceeding 5/4log 3/2 < 2/3.

According to Lemma 4.9, Kr(«) is an analytic function of a in the circle |o| <
dr = (10T)~! which is bounded in absolute value in this circle by 2/3; according to
Lemma 4.7, Kr(«) has zero of order at least 2k(N) + 1 at the origin, and since the
function is even, the order of this zero is at least 2k(N) + 2. Consequently, the function

J2EN+2 ¢

pa T(a)a—Qk(N)—Q

is analytic in the circle |a| < dr and therefore the maximum of
its absolute value in the circle is equal to the one on the boundary of the circle, i.e., it

does not exceed 2/3. We conclude that
—dr < a <dr. (4.46)

Now let us set
T=T(N)=1+/2logN

and let us look what (4.46) with this 7" implies for & = a(N). In view of (4.38) for large

enough values of n we have

a(N)
T(N)

=10T(N)a(N) < 0.2 < exp{—1},
so that (4.46) indeed is applicable to & = a(N) and results in
Kz (@(N)) < exp{—2k(N) =2} < N2
(see (4.4)). Applying (4.45) with o = a(N), T = T(N), we therefore get
K(a(N)) < N7 +exp{—(T(N) —1)*/2} <N+ N7,

so that (see (4.43))
Q=NK(N)) <1+N .

The latter relation, in view of (4.42), (4.4) and the lower bound for §(k(N)) from (4.41),

implies (4.39). Proposition 4.2 is proved.
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