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Abstra
tLet a H�older 
ontinuousfun
tion f be observed with noise. In the present paperwe study the problem of nonparametri
 estimation of 
ertain nonsmooth fun
tion-als of f , spe
i�
ally, Lr norms kfkr of f . Known from the literature results onfun
tional estimation deal mostly with two extreme 
ases: estimating a smooth (dif-ferentiable in L2 ) fun
tional or estimating a singular fun
tional like the value off at 
ertain point or the maximum of f . In the �rst 
ase, the 
onvergen
e ratetypi
ally is n�1=2 , n being the number of observations. In the se
ond 
ase, therate of 
onvergen
e 
oin
ides with the one of estimating the fun
tion f itself in the
orresponding norm.We show that the 
ase of estimating kfkr is in some sense intermediate betweenthe above extremes. The optimal rate of 
onvergen
e is worse than n�1=2 but is bet-ter than the rate of 
onvergen
e of nonparametri
 estimates of f . The results dependon the value of r . For r even integer, the rate o

urs to be n��=(2�+1�1=r) where� is the degree of smoothness. If r is not an even integer, then the nonparametri
rate n��=(2�+1) 
an be improved, but only by a logarithmi
 in n fa
tor.1 Introdu
tionThe problem of estimating a fun
tional is one of the basi
 problems in statisti
al infer-en
e. Below we 
onsider this problem in the nonparametri
 set-up. Let a fun
tion fbe observed with noise, and our goal is to estimate a given real-valued fun
tional F (f) .Clearly the quality of estimation heavily depends on smoothness properties of the fun
-tional F . The most developed theory here deals with linear fun
tionals. The \hardestsingle-parameter subfamily" arguments yield both linear estimators with the smallest, asfar as linear estimates are 
on
erned, worst-
ase risk, and demonstrate that the resultingrisk 
oin
ides, within fa
tor (1+o(1)) as n!1, with the minimax risk, see Levit (1974,1975), Koshevnik and Levit (1976), Ibragimov and Khasminski (1979, 1987) and Donohoand Liu (1991).Another well studied situation deals with the 
ase of \smooth" fun
tionals. Smooth-ness is usually understood as di�erentiability of F on L2 . It was shown in Levit (1978),Khasminski and Ibragimov (1979), Ibragimov, Nemirovski and Khasminski (1986) thatif F is smooth and the underlying fun
tion f is also smooth enough then F (f) 
anbe estimated with the parametri
 rate of 
onvergen
e O(n�1=2) , see also Ibragimov andKhasminski (1991), Birg�e and Massart (1995). The problem of estimation of quadrati
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fun
tionals is studied in details in Hall and Marron (1987), Bi
kel and Ritov (1988),Donoho and Nussbaum (1990), Fan (1991), Efroimovi
h and Low (1996), Laurent (1996)among others. Estimation of fun
tionals of the type R f3(t)dt is dis
ussed in Kerky-a
harian and Pi
ard (1996).The problem of estimation of non-smooth fun
tionals is not well studied so far, andthere are very few results of this sort in the literature. Ibragimov and Khasminski (1980)found the rate of 
onvergen
e of estimating the maximum of f , Korostelev (1990) studiedthe problem of estimating the L1 norm of f . Korostelev and Tsybakov (1994) 
onsideredsome fun
tional estimation problems in the image model, like estimating the area of animage.In this paper we are fo
using on estimating Lr norm kfkr with a given r � 1 . Itis worth to mention that at least three 
ases of this problem { those with r = 1; 2 and1 { have very natural interpretation. The 
ase of r =1 
orresponds to estimating themaximum of f . Ibragimov and Khasminski (1980) have shown that the 
onvergen
e rateof estimating F (f) = kfk1 
oin
ides with the rate at whi
h f itself 
an be re
overed,the a

ura
y being measured in the uniform norm, and one may therefore use the plug-inestimator bF = k bfk1 where bf is an optimal in order, with respe
t to the uniform normof the error, estimate of f .Korostelev (1990) announ
ed similar result for estimating the L1 norm kfk1 =R jf(t)jdt : the optimal rate of 
onvergen
e is O(n��=(2�+1)) , � being the order of smooth-ness of f , so that already a plug-in estimator R j bf(t)jdt asso
iated with an optimal inorder, the a

ura
y being measured in the L1 norm, non-parametri
 estimate bf of f , isoptimal in order. However, the inspe
tion of the proof shows a gap in establishing thelower bound, and a more detailed analysis demonstrates that the result itself is in
or-re
t: when estimating the L1 norm, a rate of 
onvergen
e \slightly better" (namely, bya logarithmi
 in n fa
tor) than O(n��=(2�+1)) is a
hievable.Another interesting phenomenon o

urs when estimating Lr norm for r > 1 . Itturns out that both the optimal rates of 
onvergen
e and the underlying estimatorsheavily depend on whether r is or is not an even integer. When r is an even integer,the optimal rate of 
onvergen
e is n��=(2�+1�1=r) , i.e., is \signi�
antly" better than3



the standard non-parametri
 rate n��=(2�+1) asso
iated with the plug-in estimators; asabout the remaining values of r, the optimal rate of 
onvergen
e is only by a logarithmi
in n fa
tor better than the \plug-in" one.It makes sense to 
ompare the announ
ed results with those related to a seeminglyvery 
lose problem of nonparametri
 hypotheses testing asso
iated with the 
ase whenthe distan
e between the null hypothesis and the alternative set is measured in Lr norm,see Ingster (1982, 1993), Lepski and Spokoiny (1995) or Spokoiny (1996). A natural wayto solve the testing problem is to estimate the Lr norm of the fun
tion in questionand then use the estimate as a test statisti
s. This approa
h is known to work well forr = 2 and r =1 . However, 
omparing the optimal 
onvergen
e rates in the problem ofnonparametri
 hypotheses testing and the one of estimating the Lr norms, one 
an seethat the 
ases of r = 2 and r =1 are the only ones in whi
h the outlined simple re
ipeworks; for all other values of r, the 
onvergen
e rates in the estimation and the testingproblems di�er from ea
h other.The rest of the paper is organized as follows. In Se
tion 2 we state our main results,separately for r even integer and for the remaining 
ases. The estimation pro
edures forr = 1 and for even integer r are presented in Se
tion 3. Se
tion 4 
ontains the proofs.2 Problem and main resultsWe start with formulating the problem. Consider the idealized \signal + white noise"model of observations as follows: the observed data X(t) , t 2 [0; 1℄ is a traje
tory ofthe sto
hasti
 di�erential equationdX(t) = f(t)dt+ n�1=2dW (t) (2.1)where f is the unknown fun
tion, W = (W (t); t 2 [0; 1℄) is the standard Wiener pro
ess,and the parameter n plays the role of the \volume of observations" (
f. more realisti
models where we are given noisy observations of f at n equidistant or randomly generatedpoints). Our a priori knowledge on f is that it possesses some smoothness, namely,belongs to H�older 
lass �(�;L) with known parameters �;L > 0 . Re
all that the lattermeans that f is m times 
ontinuously di�erentiable on R1, m being the largest integer4



whi
h is less than �, and the m-th derivative f (m) of f is H�older 
ontinuous with theexponentual � �m and 
onstant L:jf (m)(t)� f (m)(s)j � Ljt� sj��m; t; s 2 R1:By te
hni
al reasons, we assume also that f is bounded in the uniform norm by a 
onstant% < 1, so that f 2 �%(�;L) = ff 2 �(�;L) : kfk1 � %g:Our goal is to estimate the Lr norm of fkfkr = �Z 10 jf(t)jrdt�1=r ;with a given r � 1.We study our estimation problem in the standard asymptoti
 set-up, when the pa-rameter n tends to in�nity. For an estimate bfn of kfkr via observation (2.1), letR( bfn) = supf2�%(�;L) `�1 �E `� bfn � kfkr��be the worst, over f 
ompatible with our a priori knowledge, risk of the estimate; here`(�) is a loss fun
tion. The results to follow are valid for every homogeneous loss fun
tion` satisfying the standard 
onditions, see, e.g., Ibragimov and Khasminski (1979, Se
tion2.3). However, in order to simplify presentation, we prefer to restri
t ourselves with thesimplest 
ase when `(z) = jzj , so that in what followsR( bfn) = supf2�%(�;L)E ��� bfn � kfkr��� :Let also R�(n) = infbfn supf2�%(�;L)E ��� bfn � kfkr; ���inf being taken over all estimates (i.e., measurable real-valued fun
tions of observationX ), be the asso
iated minimax risk.Our �rst result deals with the 
ase of r = 1 .Theorem 2.1 Let r = 1 . There exist estimators bfn and a positive C > 0 dependingon � only su
h that for all large enough values of n one hasR( bfn) � CL1=(2�+1)(n log n)��=(2�+1): (2.2)5



This result shows that the L1 norm 
an be estimated better than with the standard\nonparametri
" 
onvergen
e rate O(n��=(2�+1)) , although the improvement is only bya logarithmi
 fa
tor. The next result states that a more substantial improvement isimpossible.Theorem 2.2 Assume that r is not an even integer. Then for n large enough it holdsL�1=(2�+1)(n log n)�=(2�+1)R�(n) � 
=(log n)rwith some positive 
 > 0 depending only on � and r.The situation with estimating Lr norm, r being an even integer, is as follows:Theorem 2.3 Let r = 2k be an even integer. There exist positive 
onstants 
; C de-pending on � , r only su
h that for n large enough one has
 � L�(1�1=r)=(2�+1�1=r)n�=(2�+1�1=r)R�(n) � C:3 Estimation pro
eduresIn this se
tion we present two estimation pro
edures: one for estimating the L1 norm,and the other one for estimating the Lr norm, r being an even integer.We start with the 
ase of r = 1 . The idea behind the 
onstru
tion is as follows. Thefun
tion jtj is not smooth at the origin. However, it 
an be approximated on [�1; 1℄ byits trun
ated Fourier series: jtj � NXk=1 
k 
os(�kt) (3.1)within a

ura
y of order of N�1 . Consequently, the fun
tional R jf(t)jdt 
an be ap-proximated by the �nite sum NXk=1 
k Z 10 
os(�kf(t))dt (3.2)of smooth fun
tionals whi
h 
an be estimated with a

ura
y O(n�1=2) ea
h, e.g., bythe method proposed in Ibragimov, Nemirovski and Khasminski (1986). Let ef(t) be aproper nonparametri
 estimator of f(t) , e.g. a kernel estimator, with the varian
e � .Then the estimator of R 10 
os(�kf(t))dt 
an be taken in the formbFk = E� Z 10 
os(�k( ef(t) + i��))dt = Z 10 
os(�k ef(t)) expf�2k2�2=2gdt:6



Here � is a N (0; 1) random variable independent of our observation X and E� is theexpe
tation w.r.t. � . It remains to 
hoose N in a way whi
h balan
es the approximationerror of (3.1) (whi
h is the less the larger is N) and the \sto
hasti
 error" { the one ofestimating the smooth fun
tional (3.2) via noisy observations (the latter error is thelarger the larger is N).The outlined s
heme 
an be implemented as follows. Let m be the largest integerwhi
h is smaller than � and let K be a 
ompa
tly supported kernel of order m i.e., Kis a 
ontinuous fun
tion satisfying the 
onditions(K:1) K(t) = 0 for jtj > 1 ;(K:2) R K(t)dt = 1;(K:3) R tiK(t) = 0 for i = 1; : : : ;m .We denote by kKk the L2 norm of K :kKk =sZ K2(t)dt: (3.3)Let h 2 (0; 1) be a \bandwidth" (a parameter of the 
onstru
tion to be spe
i�ed later),and let efh(t) = 1h Z 10 K � t� uh � dX(u) (3.4)be the standard kernel estimator of f asso
iated with K;h. As always in the kernelestimation, the kernel K should be 
orre
ted near the endpoints 0; 1 : for t 2 [0; h℄we should repla
e K in the right hand side of (3.4) by a kernel K� vanishing outside[0; 1℄, while for t 2 [1 � h; 1℄, K should be repla
ed with a kernel K+ vanishing outside[�1; 0℄, the modi�ed kernels satisfying the requirements (K.1) { (K.3). Without loss ofgenerality we may assume that all three kernels K;K� have the same L2 norm; with thisassumption, in the 
onstru
tions/proofs to follow we may use, with no risk of 
onfusion,the same notation K for all three kernels, and we use this possibility in order to makethe presentation more readable.
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Due to (2.1), the estimate efh(t) admits the usual de
omposition into deterministi
and sto
hasti
 
omponents: efh(t) = fh(t) + �h�h(t); (3.5)wherefh(t) = 1h Z 10 K �t� uh � f(u)du;�h = vuutE(� 1h Z 10 K � t� uh �n�1=2dW (u)�2) = kKkpnh;�h(t) = 1h�h Z 10 K � t� uh �n�1=2dW (u) = 1kKkph Z 10 K � t� uh � dW (u):�h(t) 
learly is N (0; 1) and hen
eE efh(t) = fh(t);Var efh(t) � E � efh(t)� fh(t)�2 = �2h:Let us now set h = �L2n log n��1=(2�+1) ; (3.6)N = b�L�1=(2�+1)(n logn)�=(2�+1)
; (3.7)where � = 12�kKkp2� + 1 :For all k = 1; 2; : : : ; N and � > 0 , we de�ne fun
tions �k;�(�) as�k;�(t) = 
os(�kt) expf�2k2�2=2g (3.8)and set QN;�(t) = 
0 + NXk=1 
k�k;�(t) (3.9)where 
k are the Fourier 
oeÆ
ients of the fun
tion �(t) = jtj :
k = 2Z 10 t 
os(�kt)dt = 8>>>>>><>>>>>>:1; k = 00; k = 2; 4; 6; : : : ;4(�k)�2; k = 1; 3; 5; : : : : (3.10)
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Finally, we de�ne the estimator bF of kfk1 asbFn = Z 10 QN;�h( efh(t))dt = 
0 + Z 10 NXk=1 
k�k;�h( efh(t))dt:3.1 Estimating kfkr for an even integer rThe di�eren
e between this 
ase and the previous one 
omes from the fa
t that foreven integer r the fun
tion jtjr is analyti
. This fa
t will be essentially used in the
onstru
tion.Let us �rst 
onsider the fun
tional �r(f) = F rr (f) :�r(f) = kfkrr = Z 10 f r(t)dt:This fun
tional is smooth and it 
an be estimated (under some mild 
onditions on f)from observations X with the 
onvergen
e rate n�1=2 .Let efh(t) be the kernel estimator of f we have built. Applying the method fromIbragimov, Nemirovski and Khasminski (1986), we get the following estimator b�n of�r(f) : b�n = E� Z 10 � efh(t) + i�h��r dt = Z 10 r=2Xj=0 b2j�2jh j efh(t)jr�2jdt: (3.11)Here i is the imaginary unit, � is an N (0; 1) random variable independent of observationX , and E� is the expe
tation w.r.t. � , so thatb2j = (�1)j� r2j�E��2j : (3.12)Now we set (
f. (3.6)) h = (L2n)� 12�+1�1=r (3.13)and de�ne the estimator bFn of kfkr asbFn = (maxf0; b�ng)1=r:Remark 3.1. Our estimate heavily exploits the fa
t that jf j is known not to ex
eed agiven quantity � < 1. Of 
ourse, applying the s
aling f 7! 
onstf , we 
an redu
e to the
ase in question also the 
ase when we have an a priori known upper bound of jf j.9



4 ProofsBelow we present 
omplete proofs of Theorems 2.1, 2.2 and 2.3. In what follows, �(possibly, with sub- or supers
ripts) denote positive quantities (not ne
essary the samein independent proofs) depending on r; �;K;K� only.4.1 Proof of the upper bound in Theorem 2.1We start with several te
hni
al lemmas. Let �k;�(t) = 
os(�kt) expf�2k2�2=2g , k � 1 ,see (3.8).Lemma 4.1 Let z 2 [�1; 1℄ , � > 0 and let � be N (0; 1) random variable. Then for allk � 1 , E �k;�(z + ��) = 
os(�kz): (4.1)If �k;�(t) is de�ned by�2k;�(t) � Var�k;� = E j�k;�(z + ��)� 
os(�kz)j2 ;then �k;�(t) � �k� expf�2k2�2=2g:Proof. Let '(x) = (2�)�1=2 expf�x2=2g be the standard Gaussian density. ThenE �k;�(z + ��) = Z 1�1 �k;�(z + �x)'(x)dx= expf�2k2�2=2gZ 11 
os(�k(z + �x))'(x)dx= (2�)�1=2Re�Z 11 expf�2k2�2=2 + i�k(z + �x)� x2=2gdx�= Re�expfi�kzg (2�)�1=2 Z 11 expf�(x� i�k�)2=2gdx�= 
os(�kz)and (4.1) follows.
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Similarly,�2k;�(t) � Z 11 (�k(z + �x)� 
os(�kz))2'(x)dx= Z 11 �2k(z + �x)'(x)dx� 
os2(�kz)= expf�2k2�2gZ 11 0:5f1 + 
os(2�kz + 2�k�x)g'(x)dx � 
os2(�kz)= 0:5 expf�2k2�2g �1 + 
os(2�kz) expf�2�2k2�2g�� 0:5 [1 + 
os(2�kz)℄= 0:5 �expf�2k2�2g � 
os(2�kz)� � [1� expf��2k2�2g℄� �2k2�2 expf�2k2�2g:
Lemma 4.2 Let � > 0 be �xed and let QN;� be de�ned by (3.9). Then for everyz 2 [�1; 1℄ EQN;�(z + ��) = 
0 + NXk=1 
k 
os(�kz);VarQN;�(z + ��) � �21�2 expf�2N2�2g log2(N + 1):with �1 � 2=� .Proof. The �rst statement follows from the de�nition of QN;� by Lemma 4.1. Now,[VarQN;�(z + ��)℄1=2 � NXk=1 
k [Var�k;�(z + ��)℄1=2 ;so that by Lemma 4.1[VarQN;�(z + ��)℄1=2 � NXk=1 
k�k� expf�2k2�2=2g� �� expf�2N2�2=2g NXk=1 k
k� 2���1 expf�2N2�2=2g log(N + 1);as 
laimed.
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Lemma 4.3 Let 
k; k = 0; 1; : : : be given by (3.10). Then for every N � 1 and allz 2 [�1; 1℄ one has �����jzj � 
0 � NXk=1 
k 
os(�kz)����� � �2N�1with �2 = 2��2 .Proof. By origin of 
k , we have for jzj � 1jzj = 
0 + 1Xk=1 
k 
os(�kz)and therefore�����jzj � 
0 � NXk=1 
k 
os(�kz)����� � 1Xk=N+1 
k � 12 1Xk=N+1 4(�k)2 � 2��2N�1as required.We are ready to prove the upper bound from Theorem 2.1. Consider de
omposition(3.5) of the kernel estimate efh(t) with h given by (3.6). Note �rst that the in
lusionf 2 �(�;L) by standard reasons (see, e.g., Ibragimov and Khasminski (1979), Se
tion4.4, p. 317) implies that jfh(t)� f(t)j � �3Lh� (4.2)with �3 depending on � and the kernels K;K� only. Sin
e h is small for large n, from(4.2) 
ombined with the fa
t that kfk1 � % < 1 we 
on
lude that for all large values ofn for all f 2 �%(�;L) one has jfh(t)j � 1 . In what follows we assume that n is so largethat the latter assumption is satis�ed.Let 
n(t) = QN;�h( efh(t))so that bFn = R 10 
n(t)dt . In view of de
omposition (3.5) and by Lemma 4.2 as appliedwith z = fh(t) it holds E 
n(t) = 
0 + NXk=1 
k 
os(�kfh(t)):12



Applying Lemma 4.3 with z = fh(t) and � = �h and taking into a

ount (4.2), we getjE 
n(t)� f(t)j � jE 
n(t)� fh(t)j+ jfh(t)� f(t)j � �2N�1 + �3Lh�and hen
e ����E Z 10 
n(t)dt� kfk1���� � Z 10 jE 
n(t)� f(t)j � �2N�1 + �3Lh�:Now let us bound the varian
e of the estimator bFn .The de�nition of efh(t) and the 
ondition (K:1) yield that efh(t) and efh(t0) areindependent random variables when jt � t0j � 2h . Let Cov��0 means the 
ovarian
eE(� � E �)(�0 � E�0) between two random variables �; �0 . Using the Cau
hy-S
hwarzinequality, we getCov(
n(t); 
n(t0)) � �Var
n(t)Var
n(t0)�1=2 1(jt� t0j � 2h)� 0:5 �Var
n(t) + Var
n(t0)� 1(jt� t0j � 2h):This gives Var bFn = Var�Z 10 
n(t)dt�= Z 10 Z 10 Cov(
n(t); 
n(t0))dt dt0� 0:5Z 10 Z 10 �Var
n(t) + Var
n(t0)�1(jt� t0j � 2h) dt dt0� 4hZ 10 Var
n(t)dt: (4.3)Applying further Lemma 4.2 and re
alling the origin of �h, we getVar bFn � �214kKk2n�1 expf�2N2kKk2=(nh)g log2(N + 1):Now, E ��� bFn � kfk1��� � E ���E bFn � kfk1���+E ��� bFn �E bFn���� E ���E bFn � kfk1���+ hVar bFni1=2� �2N�1 + �3Lh�+2�1kKkn�1=2 log(N + 1) exp��2N2kKk22nh � : (4.4)13



Substituting h;N given by (3.6), (3.7) respe
tively, we see that for all n � �4 it holds�2N2kKk22nh � � lognwith 
ertain 
onstant � < 1=(4� + 2). Therefore for all large enough values of n theexponent in (4.4) 
an be bounded asexpf�2N2kKk2=(2nh)g � n1=(4�+2);with this bound, (4.4) implies (2.2).4.2 Proof of the upper bound in Theorem 2.3First we study the behavior of the estimator b�n of �r(f) , see (3.11).Lemma 4.4 Let fh(t) be given by (3.6). ThenE b�n = Z 10 f rh(t)dt = kfhkrr;Varb�n � �4n�1maxf�2r�2h ; kfhk2r�22r�2gwhere �4 depends only on r and the kernel K .Proof. Observe �rst that for every two pair of independent N (0; �2) random variables� , �0 and for every polynomial p(�) on the 
omplex plane C one hasE(p(z + � + i�0)) = p(z); z 2 C; (4.5)i being the imaginary unit. Indeed, our expe
tation 
an be rewritten as the mean value,over 
ertain probability distribution on the ray fR � 0g, of the means 12� R 2�0 p(z +R expfi�g) d�; all latter means are equal to p(z) (the Cau
hy Theorem on the integralrepresentation of an analyti
 fun
tion).Combining (4.5) and de
omposition (3.5) of the kernel estimate eft(t) we getE b�n = E Z 10 E� (fh(t) + �h�h(t) + i�h�)r dt = Z 10 f rh(t)dt; (4.6)whi
h is the �rst assertion of Lemma.Let 
n(t) = E�( efh(t) + i�h�)r;14



by (4.6) we have E
n(t) = jfh(t)jr . Using (3.5) on
e more, we get
n(t)�E 
n(t) = E� (fh(t) + �h�h(t) + i�h�)r � jfh(t)jr= rXj=1�rj�f r�jh (t)�jhE� (�h�h(t) + i�h�)j ;when
e Var
n(t) � �2h rXj=1 aj�2j�2h jfh(t)j2r�2jwith some positive numbers aj depending on r only (we have used the fa
t that fortwo independent N (0; 1) random variables �0; �00 one has E �(�0 + i�00)j (�0 + i�00)k� = 0when j 6= k, z being the 
omplex 
onjugate of z; to get this relation, it suÆ
es to passto integration in the polar 
oordinates, 
f. (4.5)).By exa
tly the same reasons whi
h led us to (4.3) we haveVarb�n � 4hZ 10 Var
n(t)dt;when
e Varb�n � 4h�2h rXj=1 Z 10 aj�2j�2h jfh(t)j2r�2jdt� 4kKk2n�1 rXj=1 aj�2j�2h kfhk2r�2j2r�2 ;whi
h 
learly implies the se
ond assertion of Lemma.Lemma 4.5 There exists a 
onstant �5 depending only on r and on the kernels K;K�su
h that kfhk2r�22r�2 � �5h�1+1=rkfkr�1r kfhkr�1r :Proof. Applying the Minkovski inequality, we getjfh(t)jr�1 = ����Z 10 f(u)h�1K � t� uh � du����r�1� "�Z 10 jf(u)jrdu� 1r �h� rr�1 Z 10 jK�h�1(t� u)�j rr�1du� r�1r #r�1= �5h�1+1=rkfkr�1r 15



where �5 depends on r and the kernels K;K� only. Consequently,kfhk2r�22r�2 = Z 10 jfh(t)j2r�2dt� �5h�1+1=rkfkr�1r Z 10 jfh(t)jr�1dt� �5h�1+1=rkfkr�1r kfhkr�1r ;the 
on
luding � being given by the Jensen inequality.Now we are ready to 
omplete the proof of the theorem. Denote%n = L 1�1=r2�+1�1=rn� �2�+1�1=r : (4.7)Then %n is exa
tly the 
onvergen
e rate mentioned in the theorem; note that by (3.13)one has %n = Lh� .Re
all that the H�older smoothness 
onstraint implies the boundkf � fhkr � �3Lh� = �3%n; (4.8)when
e kfhkr � kfkr + �3%n . Consider separately the 
ases of kfkr � 2�3%n and ofkfkr > 2�3%n . If kfkr � 2�3%n , thenEj bFn � kfkrj � Ej bFnj+ 2�3%n� (E b�2n)1=(2r) + 2�3%n� [Varb�n + (E b�n)2℄1=(2r) + 2�3%n� (Varb�n)1=(2r) + (E b�n)1=r + 2�3%n:It is easily seen that for n � �4 one has %n < �2h = kKk2=(nh) . Using Lemma 4.4, we
ome to the boundEj bFn � kfkrj � (�5n�1�2r�2h )1=(2r) + kfhkr + 2�3%n� (�5n�1�2r�2h )1=(2r) + [kfkr + �3%n℄ + 2�3%n� (�5n�1�2r�2h )1=(2r) + �6%n:Substituting �h = (nh)�1=2 in the expression for h from (3.13), and using the bound(4.8), we get the desired risk bound. 16



It remains to 
onsider the 
ase of kfkr > 2�3%n . In this 
ase from (4.8) it followsthat kfhkr � kfkr � �3%n � �3%n when
eEj bFn � kfkrj � Ej bFn � kfhkrj+ �3%n� Ej bF rn � kfhkrrjkfhkr�1r + �3%n� Ejb�n �E b�njkfhkr�1r + �3%n� (Varb�n)1=2kfhkr�1r + �3%n:Combining Lemma 4.4 and (4.8), we get(Varb�n)1=2 � �6n�1=2(�r�1h + h�(r�1)=(2r)kfhkr�1r )and we end up withEj bFn � kfkrj � �6n�1=2(�r�1h %�r+1n + h�(r�1)=(2r)) + �3%n:Re
alling that �h = kKk2=(nh) and substituting the expression for h, we 
ome to thedesired risk bound.4.3 Proof of the lower bound in Theorem 2.3The problem under 
onsideration is rather spe
ial, and the standard te
hniques for es-tablishing lower bounds in the problems of estimating the value of a fun
tional (e.g.,the one of \the hardest single-parametri
 subfamily") seemingly do not work. The rea-son is that the fun
tional kfkr, r being an even integer, is \nearly smooth" { it loosessmoothness at the unique point f = 0. Note that the value of an \a
tually smooth"fun
tional 
an be estimated with the parametri
 
onvergen
e rate O(n�1=2), while ourgoal is to establish a kind of nonparametri
 lower bound. To this end we intend to build apair of \high-dimensional" distributions 
on
entrated ea
h near its own small \r-sphere"ff 2 �%(�;L) j kfkr = Rg, R = R1; R2, in su
h a way that the Kullba
k distan
ebetween the distributions is small, so that they 
annot be distinguished reliably from theobservations. Ensuring this property, we 
an use the standard arguments to demonstratethat the minimax risk in our problem of estimating k � kr is (at least) O(jR1 �R2j).17



Our �rst step is to repla
e the nonparametri
 set �%(�;L) with its properly 
hosenparametri
 subset where the aforementioned distributions will be 
on
entrated. Let us�x a fun
tion g 2 �(�; 1) vanishing outside the interval [0; 1℄ and su
h that kgk2(t)dt =R g2 > 0 . Note that by evident reasons all fun
tions of the form Lb��g(a+bt) with b � 1belong to �%(�;L), provided that b is greater than a 
onstant depending on % only.Let us set N = b(L2n) 12�+1�1=r 
;h = N�1; (4.9)note that our new values of N;h di�er from those used in the 
onstru
tion of the esti-mators bFn.Now let I = fIi; i = 1; : : : ; Ng be the partition of the interval [0; 1℄ into N = h�1subintervals I1; :::; IN of length h ea
h, and let ti be the left endpoint of subinterval Ii .With a point � = (�1; : : : ; �N ) from the N -dimensional 
ube BN = [�1; 1℄N we asso
iatethe fun
tion f�(t) = L NXi=1 �ih�g((t� ti)=h)Assuming n large enough, for all � 2 BN we have f� 2 �%(�;L) andkf�krr = Lrh�r NXi=1 j�ijr ZIi ����g� t� tih �����r dt = �Lkgkrh�Fr(�)�r (4.10)where Fr(�) =  1N NXi=1 j�ijr!1=r : (4.11)For i = 1; : : : ; N let Yi = Y �i = pnkgkph ZIi g� t� tih � dX�(t);where X� is observation (2.1) asso
iated with f = f�. We 
learly haveYi = �(N)�i + �i; i = 1; : : : ; N; (4.12)where �(N) = Lkgkn1=2h�+1=2 = Lkgkn1=2N���1=2; (4.13)�i = 1kgkph ZIi g� t� tih � dW (t):18



Clearly � = (�1; : : : ; �N ) is a 
olle
tion of independent N (0; 1) random variables. It isalso straightforward to see that the set of statisti
s Yi; i = 1; : : : ; n is suÆ
ient for theparametri
 submodel (with f 2 �N = ff�; � 2 BNg ). Therefore, when restri
ting fto belong to �N and setting si = �(N)�i , i = 1; : : : ; N , the original \signal + whitenoise" model (2.1) be
omes the \sequen
e spa
e" modelYi = si + �i; i = 1; : : : ; N; (4.14)with s = (s1; : : : ; sN ) from the 
ube SN = B�(N)N = [��(N); �(N)℄N . With thistransformation, the original estimation problem (redu
ed to �N ) be
omes the problemof estimating the quantity Fr(s) =  1N NXi=1 jsijr!1=r(
f. (4.11)) via observations (4.14). Let Rs(N) be the 
orresponding minimax risk:Rs(N) = infbF sups2SN Esj bF � Fr(s)j;the in�mum being taken over all Borel fun
tions bF = bF (y) on RN and Es being theexpe
tation over the observations (4.14) asso
iated with a given s . Comparing (4.11)and the de�nition of Fr(s) and taking into a

ount (4.10), we getR�(n) � Lkgkrh���1(N)Rs(N) = �gpN=nRs(N) (4.15)where �g = kgkr=kgk .Now we are going to establish the followingProposition 4.1 For all large enough values of N one hasRs(N) � �7�(N) (4.16)with �7 depending on r; � only.Note that the statement of Theorem 2.3 is an immediate 
onsequen
e of Proposition4.1. Indeed, 
ombining (4.16), (4.9), (4.15) and (4.13), we getR�(n) � �7�gpN=n�(N) = �7�gLkgkN�� = �8L 1�1=r2�+1�1=rn� �2�+1�1=rwith �8 depending on r; � only, as 
laimed in Theorem 2.3.19



Proof of Proposition 4.1 is based on the following idea. We introdu
e two prior measures�N;0 and �N;1 on the parameter set SN and denote by PN;0 and PN;1 the 
orrespondingmarginal measures on RN , PN;j = �N;j � L; j = 0; 1;here L is the distribution of the observation noises � in (4.14). Let also K(PN;0; PN;1)be the Kullba
k distan
e between PN;0 and PN;1K(PN;0; PN;1) = Z log�dPN;1dPN;0� dPN;1:We will bound the minimax risk from below by the maximum of two Bayesian risks
orresponding to the distributions �N;0 and �N;1 on the spa
e SN of \signals" s. Tothis end we need the following statement (whi
h 
an be obtained from the Fano inequality;we, however, prefer to present a dire
t proof).Lemma 4.6 Let prior measures �N;0 and �N;1 be su
h that the Kullba
k distan
eK(PN;0; PN;1) satis�es the 
onditionK(PN;0; PN;1) � 
 (4.17)with some positive 
 . Let � be a fun
tion on the parametri
 set SN , and letvN;j = Z �(s)�N;j(ds); (4.18)d2N;j = Z (�(s)� vN;j)2�N;j(ds); (4.19)for j = 0; 1 . One hasR(N) � infb� sups2SN Esjb�� �(s)j � 0:25jvN;0 � vN;1je�
 �maxfdN;0; dN;1g; (4.20)the in�mum being taken over all estimators of �(s) via observations (4.14).Proof. First note that for an arbitrary prior measure � and every estimator b� of �(s)via observations (4.14) one hassups2SN Esjb�� �(s)j � EN;�jb���(s)j� EN;�jb��EN;��(s)j �EN;�j�(s)�EN;��(s)j� EN;�jb��EN;��(s)j � dN;�:20



It follows thatR(N) � 0:5 infb� nEN;0jb�� vN;0j � dN;0 +EN;1jb�� vN;1j � dN;1o� 0:5 infb� nEN;0jb�� vN;0j+EN;1jb�� vN;1jo�maxfdN;0; dN;1g: (4.21)Now let us use the well known fa
t (see e.g. Borovkov (1984, Theorem 2.1, Chapter 3))that the maximum likelihood test bTN = 1(dPN;1=dPN;0 > 1) is optimal for testing thehypothesis H0 : P = PN;0 versus the alternative H1 : P = PN;1 (P is the distributionof observations (4.14)) in the sense that it minimizes the sum of probabilities of errors:for an arbitrary test TN ,PN;0(TN = 1) + PN;1(TN = 0) � PN;0(bTN = 1) + PN;1( bTN = 0): (4.22)Let ZN = dPN;0=dPN;1 . Then bTN = 1(ZN � 1) and, sin
e the fun
tion log(z) is
on
ave, using Jensen's inequality we getlog�PN;0( bTN = 1) + PN;1(bTN = 0)�� logPN;0(ZN � 1)= log Z ZN1(ZN � 1)dPN;1� Z log(ZN )1(log(ZN ) � 0)dPN;1� �K(PN;0; dPN;1) � �
: (4.23)Let now b� be an estimator of �(s) . Consider the following testTN = 1(b�� v�;0 > �N )where �N = (vN;1 � vN;0)=2(we assume that vN;1 > vN;0). Applying (4.22) and (4.23), we getPN;0(TN = 1) + PN;1(TN = 0) � e�
21



or PN;0(b�� vN;0 > �N ) + PN;1(b�� vN;1 < ��N ) � e�
:Sin
e EN;0jb�� vN;0j+EN;1jb�� vN;1j� �PN;0(b�� vN;0 > �N ) + PN;1(b�� vN;1 < ��N)� j�N j� 0:5jvN;1 � vN;0je�
;(4.21) implies (4.20).We shall apply Lemma 4.6 to the fun
tion �(s) = N�1(sr1 + : : :+ srN ) and a pair ofprior measures �N;0 and �N;1 with the produ
t stru
ture:�N;0 = �N0 ;�N;1 = �N1 :We shall build the measures �0; �1 on [��(N); �(N)℄ in su
h a way that (4.17) holdswith some �xed 
 , while and the di�eren
e jvN;1 � vN;0j is \large".First we note that, for j = 0; 1 ,vN;j = 1N Z NXi=1 jsijr�N;j(ds) = Z jsjr�j(ds) = vj (4.24)and similarlyd2N;j = 1N2 Z NXi=1(jsij2r � v2j )�N;j(ds) = N�1 Z (jsj2r � v2j )�j(ds) = N�1d2jwhere vj = Z jsjr�j(ds) � �r(N)d2j = Z jsj2r�j(ds)� v2j � �2r(N): (4.25)To bound the Kullba
k distan
e between the marginal measures PN;0 and PN;1 , notethat the produ
t stru
ture of model (4.14) and of the priors �N;0; �N;1 altogether imply22



that K(PN;0; PN;1) = N Z log(p�0(y)=p�1(y))p�0(y)dy (4.26)where, for a �nitely supported measure � on the axis,p�(y) = Z '(y � t)�(dt);'(y) = (2�)�1 expf�y2=2gbeing the standard Gaussian density on the axis.Assuming that the priors �N;0 = �N0 , �N;1 = �N1 and an 
 > 0 satisfy (4.17) andapplying Lemma 4.6, we get the following lower bound on the risk of an arbitrary estimateb� of �(s) : sups2SN Esjb�� �(s)j � 0:25jv1 � v0je�
 � �r(N)N�1=2 (4.27)(see 4.25).Now let us derive from the latter bound a lower bound for the risk Rs(N) of esti-mating Fr(s) . Let bF be an estimate of Fr(s) , s 2 SN . When bounding from below therisk of bF on SN , we may assume without loss of generality that j bF (�)j � �(N). Indeed,sin
e jFr(s)j � �(N) for s 2 SN , we only de
rease the risk of bF at s 2 SN when passingfrom bF to the \proje
ted" estimate  ( bF (�)), where (t) = 8>>>>>><>>>>>>:��(N); t � ��(N);t; ��(N) � t � �(N);�(N); t � �(N):Let b� = bF r be the estimate of �(s) = F rr (s) indu
ed by bF . Sin
e j bF j � �(N) , we haveEsjb�� �(s)j = Esj bF r � F rr (s)j � r�r�1(N)Esj bF � Fr(s)j:Applying (4.27), we getRs(N) � (r�r�1(N))�1(0:25jv1 � v0je�
 � �r(N)N�1=2)= r�1�(N)(0:25��r(N)jv1 � v0je�
 �N�1=2): (4.28)23



It is time now to spe
ify our 
hoi
e of the measures �0; �1 . Let Æ be the distan
e(in the uniform norm on [�1; 1℄) from the fun
tion tr to the spa
e Lr�2 of polynomialsof degree � r � 2. We 
laim that there exists a measure � on [�1; 1℄ of variation 2su
h that R tl�(dt) = 0 for l = 0; 1; :::; r � 2, while R tr�(dt) = 2Æ. The justi�
ationof our 
laim is quite standard. Consider the spa
e C(�1; 1) of 
ontinuous real-valuedfun
tions on [�1; 1℄ (equipped with the uniform norm) along with its �nite-dimensionalsubspa
e L spanned by Lr�2 and the polynomial tr. L is a �nite-dimensional linear spa
eequipped with the norm k � k inherited from C(�1; 1), and Lr�2 is a linear subspa
e inL of 
odimension 1. Let the linear fun
tional  (�) on L be de�ned by the requirementsthat  vanishes on Lr�2 and is equal to Æ at tr. Observe that the norm of our fun
tionalis 1: k k� � maxf (q(�)) j q(�) 2 L; kqk � 1g = 1:Indeed, if q(�) is the 
losest to tr element of Lr�2, then  (tr � q(�)) = Æ = ktr � q(�)k, sothat k k� � 1. On the other hand, assuming that k k� > 1, we are able to �nd d 2 Lwith kdk = 1 and  (d) = k �k > 1; the ve
tor tr� (Æ=k k�)d 2 L belongs to Lr�2 (sin
ethe value of  at this ve
tor is 0) and is at a smaller than Æ k � k-distan
e from tr, whi
his impossible.By the Hahn-Bana
h Theorem, we 
an extend the linear fun
tional  from L on theentire C(�1; 1) not in
reasing the norm of the fun
tional, and by the Riesz Theorem, theresulting linear fun
tional b (g) on C(�1; 1) 
an be represented asb (g) = Z 1�1 g(t)d�(t)for a Borel (not ne
essarily nonnegative) measure � with variation equal to the norm ofb , i.e., to 1.Setting � = 2�, we get a measure on [�1; 1℄ of variation 2 su
h thatZ 1�1 tl�(dt) = 0; l = 0; 1; :::; r � 2; Z 1�1 tr�(dt) = 2Æ:Note that if � possesses the indi
ated properties, so is the \re
e
ted" measure �� (��(A) =�(�A)) and hen
e the measure (�+��)=2; therefore � may be assumed to be symmetri
.Let �+;��� be the positive and the negative 
omponents of �, respe
tively. Sin
e �24



is symmetri
 with variation 2 and R 1�1 �(dt) = R 1�1 t0�(dt) = 0, both �+ and �� aresymmetri
 probability distributions on [�1; 1℄ su
h thatZ 1�1 tl�+(dt) = Z 1�1 tl��(dt); l = 0; 1; :::; r � 2; (4.29)Z 1�1 tr�+(dt) = Z 1�1 tr��(dt) + 2Æ:Let �0; �1 be obtained from �� by \expanding" asso
iated with the similarity trans-formation whi
h maps [�1; 1℄ onto [��(N); �(N)℄: �0(A) = �+(��1(N)A), �1(A) =��(��1(N)A), A � [��(N); �(N)℄. The quantities v0; v1 asso
iated with our �0; �1 (see(4.24)) 
learly satisfy the relationv0 � v1 = �r(N)Z 1�1 jtjr�(dt) = 2Æ�r(N)and the asso
iated bound (4.28) isRs(N) � r�1�(N)(Æe�
 �N�1=2); (4.30)
 being the Kullba
k distan
e between the marginal distributions PN;0; PN;1 given bythe priors �N0 ; �N1 . All we need is to evaluate 
.Let us asso
iate with a symmetri
 probability distribution � on [�1; 1℄ and a real �the distribution F�� on the axis with the densityp�(�; y) = Z 1�1 '(y � �t)�(dt) = '(y)Z 1�1 
h(�ty) expf��2t2=2g�(dt); (4.31)so that p�0(y) = p�+(�(N); y); p�1(y) = p��(�(N); y): (4.32)Note that (4.31) de�nes fun
tion p�(�; y) for an arbitrary (not ne
essarily nonnegative)symmetri
 measure � on [�1; 1℄.Let K(�) = Z 1�1 log(p�+(�; y)=p�� (�; y))p�+(�; y)dy (4.33)be the Kullba
k distan
e from p�+(�; �) to p��(�; �). Note that by (4.26) and (4.32) itholds 
 = K(PN;0; PN;1) = NK(p�0 ; p�1) = NK(�(N)): (4.34)25



Lemma 4.7 The fun
tion K(�) is C1 smooth and it has a zero of order at least 2r atthe point � = 0.Proof. It is 
learly seen that one may di�erentiate K(�) arbitrarily many times and thatK(l)(�) = Z 1�1 �l��l �log�p�+(�; y)p��(�; y)� p�+(�; y)� dyfor all l. Note that p�+(�; y) = p��(�; y) + p�(�; y):Let us �rst demonstrate that for all x�lp�(�; y)��l �����=0 = 0; l = 0; 1; :::; r � 1: (4.35)Indeed, one has�lp�(�; y)��l �����=0= '(x)Z 1�1 " lXi=0 �li���i expf��2t2=2g��i ���l�i
h(�ty)��l�i �#�(dt)������=0= Z 1�1 tl(a0 + a1y + : : :+ alyl)�(t) = 0(we have used (4.29)), as required in (4.35).A

ording to (4.35), p�(�; y) 
an be represented in the formp�(�; y) = �rw(�; y)with smooth fun
tion w(�; �) (whi
h, as it is easily seen, is a summable fun
tion of y).Sin
e R1�1 p�(�; y)dy = 0 for all �, it also is the 
ase for w(�; y) :Z 1�1w(�; y)dy = 0; 8�:Now we havelog�p��(�; y)p�+(�; y)� = log�1� �rw(�; y)p�+(�; y) � = ��rw(�; y)p�+(�; y) � �2rv(�; y);v being a smooth fun
tion of y; �. Hen
eK(�) = �Z 1�1 log�p��(�; y)p�+(�; y)� p�+(�; y)dy= �r Z 1�1w(�; y)dy + �2r Z 1�1 v(�; y)p�+(�; y)dy= �2r Z 1�1 v(�; y)p�+(�; y)dy26



and the assertion of Lemma follows.The result of Lemma 4.7 says that for small positive � one hasK(�) � �10�2r: (4.36)In parti
ular, for all large enough values of n (and thus { of N) we have
 = NK(�(N)) [by (4.34)℄� �10N�2r(N) [by (4.36)℄� �11N(Ln1=2N���1=2)2r [see (4.13)℄� �12 [see (4.9)℄Applying (4.30), we see that for n large enough it holdsRs(N) � �13�(N);as required in Proposition 4.1.4.4 Proof of the lower bound in Theorem 2.2Here we establish the lower bound from Theorem 2.2 for the 
ase when r is not an eveninteger. We follow the line of the proof of the lower bound from Theorem 2.3; the onlydi�eren
e is in 
onstru
tion of the priors �0 and �1 .We start with translating the problem into the \sequen
e spa
e" model in exa
tly thesame manner as in Se
tion 4.3, with the only di�eren
e that now we setN = b(200Lkgk)2=(2�+1)(n log n)1=(2�+1)
: (4.37)Note that with this setup for all large enough values of n one has (see (4.13))�(N) � LkgkpnN���1=2 � 0:01plogN : (4.38)Relation (4.15) for R�(n) remains valid for our new setup as well, and the requiredresult is obtained from this relation and a lower bound on the worst 
ase, over s 2SN , risk of re
overing the fun
tional Fr(s) = (N�1(sr1 + : : : + srN))1=r via observations(4.14). The latter bound is given by the following statement (whi
h now plays the roleof Proposition 4.1): 27



Proposition 4.2 For all large enough values of N one hasRs(N) � infbF sups2SN Esj bF � Fr(s)j � �9(logN)�r�(N) (4.39)where �9 > 0 depends on r and � only.Postponing for the moment proof of Proposition, let us derive from this statementTheorem 2.2. Indeed, we haveR�(n) � �gpN=nRs(N) [by (4.15)℄� �9�gpN=n(logN)�r�(N) [by (4.39)℄� �10LkgkN��(logN)�r [by (4.13)℄� �11L1=(2��1)(n log n)��=(2�+1)(log n)�r [by (4.37)℄with �11 depending on �; r only, as required in Theorem 2.2.Proof of Proposition 4.2 di�ers from the one of Proposition 4.1 only in how wede�ne the measures ��. Let Pk be the spa
e of polynomials of degree � k , and let Æ(k)be the distan
e (in the uniform norm on [�1; 1℄) from the fun
tion jtjr to the spa
e P2k .It is known (see, e.g., Timan A.F., Theory of approximation of fun
tions of real variable,Mos
ow, 1960, p.430) that if k is a nonnegative integer, thenÆ(k) � �10k�r;with �10 > 0 depending on r only. Let us setk(N) = blogN
;with N given by (4.37); we assume n to be so large that N � 3. Same as in the proof ofProposition 4.1, for our N there exists a symmetri
 measure �N on [�1; 1℄ with variation2 su
h that Z 1�1 tl�N (dt) = 0; l = 0; 1; :::; 2k(N); (4.40)Z 1�1 jtjr�N (dt) = 2Æ(k(N)) � 2�10k�r(N);28



and the positive and the negative 
omponents, �+ , �� (�N = �+��� ) are symmetri
probability distributions on [�1; 1℄.Same as in Se
tion 4.3, we de�ne the measures �0 and �1 on [��(N); �(N)℄ \ex-panding" the measures ��, thus 
oming to a pair of symmetri
 probability distributions�0; �1 on [��(N); �(N)℄ satisfying the relationsZ �(N)��(N) tl�0(dt) = Z �(N)��(N) tl�1(dt); l = 0; 1; :::; 2k(N);Z �(N)��(N) jtjr�0(dt) � Z �(N)��(N) jtjr�1(dt) + 2Æ(k(N))�r(N): (4.41)Setting �N;0 = �N0 , �N;1 = �N1 and denoting by PN;0; PN;1 the marginal distributions ofobservations (4.14) asso
iated with the priors �N;0; �N;1, we, same as in the proof of thelower bound in Theorem 2.3, 
ome to the inequality (
f. (4.30))Rs(N) � r�1�(N)�0:25Æ(k(N))e�
 �N�1=2� ; (4.42)where 
 is the Kullba
k distan
e between the distributions PN;0; PN;1:
 = K(PN;0; PN;1) = NK(�(N));K(�) = Z 1�1 log(p�+(�; y)=p��(�; y))p�+(�; y)dy; (4.43)with p�(�; �) given by (4.31).For T > 0, let us setKT (�) = Zjyj�T log(p�+(�; y)=p��(�; y))p�+(�; y)dy: (4.44)Lemma 4.8 For every T > 0dlKT (�)d�l �����=0 = 0; l = 0; :::; 2k(N):Proof. We have KT (�) = Z T�T log�1 + p�(�; y)p��(�; y)� p��(�; y)dy;and the result is readily given by (4.35) (in view of the �rst relation in (4.41), equality(4.35) is now valid for l = 0; 1; :::; 2k(N), see the proof of (4.35)).The remaining part of the required information on KT (�) is given by29



Lemma 4.9 For every T � 20 and all � 2 [�1; 1℄, one hasK(�) � expf�(T � 1)2=2g +KT (�): (4.45)The fun
tion KT (�) 
an be extended analyti
ally into the 
ir
le j�j � (10T )�1, and inthis 
ir
le jKT (�)j � 2=3:Proof. We 
learly haveK(�) = KT (�) +RT (�+; ��);RT (�; � 0) = Zjyj>T log(p�(�; y)=p�0(�; y))p�(�; y)dy;�; � 0 being probability distributions on [�1; 1℄. Now, RT (�; � 0) is a 
onvex fun
tional ofprobability distributions �; � 0; therefore its supremum, over all pairs (even non-symmetri
)probability distributions on [�1; 1℄ is the same as its supremum over the set P 2s of pairsof distributions on the same segment with singleton supports. Indeed, every probabil-ity distribution � on [�1; 1℄ 
an be approximated by a sequen
e f�ig of dis
rete dis-tributions with �nite supports in the sense that R g(x)�i(dx) ! R g(x)�(dx) for every
ontinuous on [�1; 1℄ fun
tion g. From this observation and the fa
t that RT , as it iseasily seen, is lower semi
ontinuous (in fa
t even 
ontinuous) with respe
t to the weaktopology on the set P 2 of pairs of probability distributions on [�1; 1℄ we 
on
lude thatsup(�;�0)2P 2 RT (�; � 0) = sup(�;�0)2P 2d RT (�; � 0), P 2d being the set of pairs of dis
rete prob-ability distributions on [�1; 1℄ with �nite supports. Finally, every pair (�; � 0) 2 P 2d isa 
onvex 
ombination of pairs from P 2s ; sin
e RT is 
onvex, its supremum over P 2d isthe same as the one over P 2s , when
e sup(�;�0)2P 2 RT (�; � 0) = sup(�;�0)2P 2s RT (�; � 0), as
laimed.Now 
onsider a pair of distributions (�+; ��) 2 P 2s ; let �+ be 
on
entrated at a point
30



t and �� be 
on
entrated at a point � (t; � 2 [�1; 1℄). In this 
ase we haveRT (�; � 0) = Zjyj>T ��(y � �t)22 + (y � ��)22 � expf�(y � �t)22 g 1p2�dy= Zfy��T��tg[fy�T��tg ��(t� �)y + �2(t� �)2=2�'(y)dy= �(t� �)(2�)�1=2 �expf�(T � �t)2=2g � expf�(T + �t)2=2g�+2(2�)�1=2�2(t� �)2(T � 1)�1 expf�(T � 1)2=2g� (2�)�1=2(2 + 8(T � 1)�1) expf�(T � 1)2=2g� expf�(T � 1)2=2g(we have taken into a

ount that T � 20). Thus,supP 2 RT (�; � 0) = supP 2s RT (�; � 0) � expf�(T � 1)2=2g;and (4.45) follows.Let us now look at the fun
tion KT . Let y be a real with jyj < T , and let tbe a real with jtj � 1. The absolute value of the derivative of the fun
tion g(�) =expf��2t2=2g
h(�ty) in the 
ir
le j�j � z � 1 
learly does not ex
eed (T + 1) expfzT +z2=2g, and therefore jg(�) � 1j = jg(�) � g(0)j � (zT + z) expfzT + z2=2g in this 
ir
le.It follows that in the 
ir
le j�j � z � (10T )�1 we have����Z 1�1 expf��2t2=2g
h(�ty)�(dt) � 1����� (zT + z) expfzT + z2=2g � 1=5 expf0:105g � 1=4;both for � = �+ and for � = ��. Consequently, for the indi
ated z and j�j � z we have����p�+(�; y)p��(�; y) � 1���� � 1=3:We see that if y is real and jyj � T , then the fun
tion log(p�+(�; y)=p�� (�; y)), regardedas a fun
tion of �, 
an be extended analyti
ally from the segment j�j � dT = (10T )�1of the real axis onto the 
ir
le j�j � dT in the 
omplex plane, and the absolute value ofthe extended fun
tion in this 
ir
le does not ex
eed the quantity1Xm=1 1m �13�m = log(3=2):31



By the same reasons, for real y with jyj � T and every � from the 
ir
le j�j � dT we havejp�+(�; y)j � 5=4'(y), and we see that KT is an analyti
 fun
tion in the 
ir
le j�j � dTwith absolute value in the 
ir
le not ex
eeding 5=4 log 3=2 � 2=3.A

ording to Lemma 4.9, KT (�) is an analyti
 fun
tion of � in the 
ir
le j�j �dT = (10T )�1 whi
h is bounded in absolute value in this 
ir
le by 2=3; a

ording toLemma 4.7, KT (�) has zero of order at least 2k(N) + 1 at the origin, and sin
e thefun
tion is even, the order of this zero is at least 2k(N) + 2. Consequently, the fun
tiond2k(N)+2T KT (�)��2k(N)�2 is analyti
 in the 
ir
le j�j � dT and therefore the maximum ofits absolute value in the 
ir
le is equal to the one on the boundary of the 
ir
le, i.e., itdoes not ex
eed 2=3. We 
on
lude thatKT (�) � 23 �2k(N)+2d2k(N)+2T ; �dT � � � dT : (4.46)Now let us set T = T (N) = 1 +p2 logNand let us look what (4.46) with this T implies for � = �(N). In view of (4.38) for largeenough values of n we have�(N)dT (N) = 10T (N)�(N) � 0:2 < expf�1g;so that (4.46) indeed is appli
able to � = �(N) and results inKT (N)(�(N)) � expf�2k(N) � 2g � N�2(see (4.4)). Applying (4.45) with � = �(N), T = T (N), we therefore getK(�(N)) � N�2 + expf�(T (N)� 1)2=2g � N�2 +N�1;so that (see (4.43)) 
 = NK(�(N)) � 1 +N�1:The latter relation, in view of (4.42), (4.4) and the lower bound for Æ(k(N)) from (4.41),implies (4.39). Proposition 4.2 is proved.
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