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AbstratLet a H�older ontinuousfuntion f be observed with noise. In the present paperwe study the problem of nonparametri estimation of ertain nonsmooth funtion-als of f , spei�ally, Lr norms kfkr of f . Known from the literature results onfuntional estimation deal mostly with two extreme ases: estimating a smooth (dif-ferentiable in L2 ) funtional or estimating a singular funtional like the value off at ertain point or the maximum of f . In the �rst ase, the onvergene ratetypially is n�1=2 , n being the number of observations. In the seond ase, therate of onvergene oinides with the one of estimating the funtion f itself in theorresponding norm.We show that the ase of estimating kfkr is in some sense intermediate betweenthe above extremes. The optimal rate of onvergene is worse than n�1=2 but is bet-ter than the rate of onvergene of nonparametri estimates of f . The results dependon the value of r . For r even integer, the rate ours to be n��=(2�+1�1=r) where� is the degree of smoothness. If r is not an even integer, then the nonparametrirate n��=(2�+1) an be improved, but only by a logarithmi in n fator.1 IntrodutionThe problem of estimating a funtional is one of the basi problems in statistial infer-ene. Below we onsider this problem in the nonparametri set-up. Let a funtion fbe observed with noise, and our goal is to estimate a given real-valued funtional F (f) .Clearly the quality of estimation heavily depends on smoothness properties of the fun-tional F . The most developed theory here deals with linear funtionals. The \hardestsingle-parameter subfamily" arguments yield both linear estimators with the smallest, asfar as linear estimates are onerned, worst-ase risk, and demonstrate that the resultingrisk oinides, within fator (1+o(1)) as n!1, with the minimax risk, see Levit (1974,1975), Koshevnik and Levit (1976), Ibragimov and Khasminski (1979, 1987) and Donohoand Liu (1991).Another well studied situation deals with the ase of \smooth" funtionals. Smooth-ness is usually understood as di�erentiability of F on L2 . It was shown in Levit (1978),Khasminski and Ibragimov (1979), Ibragimov, Nemirovski and Khasminski (1986) thatif F is smooth and the underlying funtion f is also smooth enough then F (f) anbe estimated with the parametri rate of onvergene O(n�1=2) , see also Ibragimov andKhasminski (1991), Birg�e and Massart (1995). The problem of estimation of quadrati2



funtionals is studied in details in Hall and Marron (1987), Bikel and Ritov (1988),Donoho and Nussbaum (1990), Fan (1991), Efroimovih and Low (1996), Laurent (1996)among others. Estimation of funtionals of the type R f3(t)dt is disussed in Kerky-aharian and Piard (1996).The problem of estimation of non-smooth funtionals is not well studied so far, andthere are very few results of this sort in the literature. Ibragimov and Khasminski (1980)found the rate of onvergene of estimating the maximum of f , Korostelev (1990) studiedthe problem of estimating the L1 norm of f . Korostelev and Tsybakov (1994) onsideredsome funtional estimation problems in the image model, like estimating the area of animage.In this paper we are fousing on estimating Lr norm kfkr with a given r � 1 . Itis worth to mention that at least three ases of this problem { those with r = 1; 2 and1 { have very natural interpretation. The ase of r =1 orresponds to estimating themaximum of f . Ibragimov and Khasminski (1980) have shown that the onvergene rateof estimating F (f) = kfk1 oinides with the rate at whih f itself an be reovered,the auray being measured in the uniform norm, and one may therefore use the plug-inestimator bF = k bfk1 where bf is an optimal in order, with respet to the uniform normof the error, estimate of f .Korostelev (1990) announed similar result for estimating the L1 norm kfk1 =R jf(t)jdt : the optimal rate of onvergene is O(n��=(2�+1)) , � being the order of smooth-ness of f , so that already a plug-in estimator R j bf(t)jdt assoiated with an optimal inorder, the auray being measured in the L1 norm, non-parametri estimate bf of f , isoptimal in order. However, the inspetion of the proof shows a gap in establishing thelower bound, and a more detailed analysis demonstrates that the result itself is inor-ret: when estimating the L1 norm, a rate of onvergene \slightly better" (namely, bya logarithmi in n fator) than O(n��=(2�+1)) is ahievable.Another interesting phenomenon ours when estimating Lr norm for r > 1 . Itturns out that both the optimal rates of onvergene and the underlying estimatorsheavily depend on whether r is or is not an even integer. When r is an even integer,the optimal rate of onvergene is n��=(2�+1�1=r) , i.e., is \signi�antly" better than3



the standard non-parametri rate n��=(2�+1) assoiated with the plug-in estimators; asabout the remaining values of r, the optimal rate of onvergene is only by a logarithmiin n fator better than the \plug-in" one.It makes sense to ompare the announed results with those related to a seeminglyvery lose problem of nonparametri hypotheses testing assoiated with the ase whenthe distane between the null hypothesis and the alternative set is measured in Lr norm,see Ingster (1982, 1993), Lepski and Spokoiny (1995) or Spokoiny (1996). A natural wayto solve the testing problem is to estimate the Lr norm of the funtion in questionand then use the estimate as a test statistis. This approah is known to work well forr = 2 and r =1 . However, omparing the optimal onvergene rates in the problem ofnonparametri hypotheses testing and the one of estimating the Lr norms, one an seethat the ases of r = 2 and r =1 are the only ones in whih the outlined simple reipeworks; for all other values of r, the onvergene rates in the estimation and the testingproblems di�er from eah other.The rest of the paper is organized as follows. In Setion 2 we state our main results,separately for r even integer and for the remaining ases. The estimation proedures forr = 1 and for even integer r are presented in Setion 3. Setion 4 ontains the proofs.2 Problem and main resultsWe start with formulating the problem. Consider the idealized \signal + white noise"model of observations as follows: the observed data X(t) , t 2 [0; 1℄ is a trajetory ofthe stohasti di�erential equationdX(t) = f(t)dt+ n�1=2dW (t) (2.1)where f is the unknown funtion, W = (W (t); t 2 [0; 1℄) is the standard Wiener proess,and the parameter n plays the role of the \volume of observations" (f. more realistimodels where we are given noisy observations of f at n equidistant or randomly generatedpoints). Our a priori knowledge on f is that it possesses some smoothness, namely,belongs to H�older lass �(�;L) with known parameters �;L > 0 . Reall that the lattermeans that f is m times ontinuously di�erentiable on R1, m being the largest integer4



whih is less than �, and the m-th derivative f (m) of f is H�older ontinuous with theexponentual � �m and onstant L:jf (m)(t)� f (m)(s)j � Ljt� sj��m; t; s 2 R1:By tehnial reasons, we assume also that f is bounded in the uniform norm by a onstant% < 1, so that f 2 �%(�;L) = ff 2 �(�;L) : kfk1 � %g:Our goal is to estimate the Lr norm of fkfkr = �Z 10 jf(t)jrdt�1=r ;with a given r � 1.We study our estimation problem in the standard asymptoti set-up, when the pa-rameter n tends to in�nity. For an estimate bfn of kfkr via observation (2.1), letR( bfn) = supf2�%(�;L) `�1 �E `� bfn � kfkr��be the worst, over f ompatible with our a priori knowledge, risk of the estimate; here`(�) is a loss funtion. The results to follow are valid for every homogeneous loss funtion` satisfying the standard onditions, see, e.g., Ibragimov and Khasminski (1979, Setion2.3). However, in order to simplify presentation, we prefer to restrit ourselves with thesimplest ase when `(z) = jzj , so that in what followsR( bfn) = supf2�%(�;L)E ��� bfn � kfkr��� :Let also R�(n) = infbfn supf2�%(�;L)E ��� bfn � kfkr; ���inf being taken over all estimates (i.e., measurable real-valued funtions of observationX ), be the assoiated minimax risk.Our �rst result deals with the ase of r = 1 .Theorem 2.1 Let r = 1 . There exist estimators bfn and a positive C > 0 dependingon � only suh that for all large enough values of n one hasR( bfn) � CL1=(2�+1)(n log n)��=(2�+1): (2.2)5



This result shows that the L1 norm an be estimated better than with the standard\nonparametri" onvergene rate O(n��=(2�+1)) , although the improvement is only bya logarithmi fator. The next result states that a more substantial improvement isimpossible.Theorem 2.2 Assume that r is not an even integer. Then for n large enough it holdsL�1=(2�+1)(n log n)�=(2�+1)R�(n) � =(log n)rwith some positive  > 0 depending only on � and r.The situation with estimating Lr norm, r being an even integer, is as follows:Theorem 2.3 Let r = 2k be an even integer. There exist positive onstants ; C de-pending on � , r only suh that for n large enough one has � L�(1�1=r)=(2�+1�1=r)n�=(2�+1�1=r)R�(n) � C:3 Estimation proeduresIn this setion we present two estimation proedures: one for estimating the L1 norm,and the other one for estimating the Lr norm, r being an even integer.We start with the ase of r = 1 . The idea behind the onstrution is as follows. Thefuntion jtj is not smooth at the origin. However, it an be approximated on [�1; 1℄ byits trunated Fourier series: jtj � NXk=1 k os(�kt) (3.1)within auray of order of N�1 . Consequently, the funtional R jf(t)jdt an be ap-proximated by the �nite sum NXk=1 k Z 10 os(�kf(t))dt (3.2)of smooth funtionals whih an be estimated with auray O(n�1=2) eah, e.g., bythe method proposed in Ibragimov, Nemirovski and Khasminski (1986). Let ef(t) be aproper nonparametri estimator of f(t) , e.g. a kernel estimator, with the variane � .Then the estimator of R 10 os(�kf(t))dt an be taken in the formbFk = E� Z 10 os(�k( ef(t) + i��))dt = Z 10 os(�k ef(t)) expf�2k2�2=2gdt:6



Here � is a N (0; 1) random variable independent of our observation X and E� is theexpetation w.r.t. � . It remains to hoose N in a way whih balanes the approximationerror of (3.1) (whih is the less the larger is N) and the \stohasti error" { the one ofestimating the smooth funtional (3.2) via noisy observations (the latter error is thelarger the larger is N).The outlined sheme an be implemented as follows. Let m be the largest integerwhih is smaller than � and let K be a ompatly supported kernel of order m i.e., Kis a ontinuous funtion satisfying the onditions(K:1) K(t) = 0 for jtj > 1 ;(K:2) R K(t)dt = 1;(K:3) R tiK(t) = 0 for i = 1; : : : ;m .We denote by kKk the L2 norm of K :kKk =sZ K2(t)dt: (3.3)Let h 2 (0; 1) be a \bandwidth" (a parameter of the onstrution to be spei�ed later),and let efh(t) = 1h Z 10 K � t� uh � dX(u) (3.4)be the standard kernel estimator of f assoiated with K;h. As always in the kernelestimation, the kernel K should be orreted near the endpoints 0; 1 : for t 2 [0; h℄we should replae K in the right hand side of (3.4) by a kernel K� vanishing outside[0; 1℄, while for t 2 [1 � h; 1℄, K should be replaed with a kernel K+ vanishing outside[�1; 0℄, the modi�ed kernels satisfying the requirements (K.1) { (K.3). Without loss ofgenerality we may assume that all three kernels K;K� have the same L2 norm; with thisassumption, in the onstrutions/proofs to follow we may use, with no risk of onfusion,the same notation K for all three kernels, and we use this possibility in order to makethe presentation more readable.
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Due to (2.1), the estimate efh(t) admits the usual deomposition into deterministiand stohasti omponents: efh(t) = fh(t) + �h�h(t); (3.5)wherefh(t) = 1h Z 10 K �t� uh � f(u)du;�h = vuutE(� 1h Z 10 K � t� uh �n�1=2dW (u)�2) = kKkpnh;�h(t) = 1h�h Z 10 K � t� uh �n�1=2dW (u) = 1kKkph Z 10 K � t� uh � dW (u):�h(t) learly is N (0; 1) and heneE efh(t) = fh(t);Var efh(t) � E � efh(t)� fh(t)�2 = �2h:Let us now set h = �L2n log n��1=(2�+1) ; (3.6)N = b�L�1=(2�+1)(n logn)�=(2�+1); (3.7)where � = 12�kKkp2� + 1 :For all k = 1; 2; : : : ; N and � > 0 , we de�ne funtions �k;�(�) as�k;�(t) = os(�kt) expf�2k2�2=2g (3.8)and set QN;�(t) = 0 + NXk=1 k�k;�(t) (3.9)where k are the Fourier oeÆients of the funtion �(t) = jtj :k = 2Z 10 t os(�kt)dt = 8>>>>>><>>>>>>:1; k = 00; k = 2; 4; 6; : : : ;4(�k)�2; k = 1; 3; 5; : : : : (3.10)
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Finally, we de�ne the estimator bF of kfk1 asbFn = Z 10 QN;�h( efh(t))dt = 0 + Z 10 NXk=1 k�k;�h( efh(t))dt:3.1 Estimating kfkr for an even integer rThe di�erene between this ase and the previous one omes from the fat that foreven integer r the funtion jtjr is analyti. This fat will be essentially used in theonstrution.Let us �rst onsider the funtional �r(f) = F rr (f) :�r(f) = kfkrr = Z 10 f r(t)dt:This funtional is smooth and it an be estimated (under some mild onditions on f)from observations X with the onvergene rate n�1=2 .Let efh(t) be the kernel estimator of f we have built. Applying the method fromIbragimov, Nemirovski and Khasminski (1986), we get the following estimator b�n of�r(f) : b�n = E� Z 10 � efh(t) + i�h��r dt = Z 10 r=2Xj=0 b2j�2jh j efh(t)jr�2jdt: (3.11)Here i is the imaginary unit, � is an N (0; 1) random variable independent of observationX , and E� is the expetation w.r.t. � , so thatb2j = (�1)j� r2j�E��2j : (3.12)Now we set (f. (3.6)) h = (L2n)� 12�+1�1=r (3.13)and de�ne the estimator bFn of kfkr asbFn = (maxf0; b�ng)1=r:Remark 3.1. Our estimate heavily exploits the fat that jf j is known not to exeed agiven quantity � < 1. Of ourse, applying the saling f 7! onstf , we an redue to thease in question also the ase when we have an a priori known upper bound of jf j.9



4 ProofsBelow we present omplete proofs of Theorems 2.1, 2.2 and 2.3. In what follows, �(possibly, with sub- or supersripts) denote positive quantities (not neessary the samein independent proofs) depending on r; �;K;K� only.4.1 Proof of the upper bound in Theorem 2.1We start with several tehnial lemmas. Let �k;�(t) = os(�kt) expf�2k2�2=2g , k � 1 ,see (3.8).Lemma 4.1 Let z 2 [�1; 1℄ , � > 0 and let � be N (0; 1) random variable. Then for allk � 1 , E �k;�(z + ��) = os(�kz): (4.1)If �k;�(t) is de�ned by�2k;�(t) � Var�k;� = E j�k;�(z + ��)� os(�kz)j2 ;then �k;�(t) � �k� expf�2k2�2=2g:Proof. Let '(x) = (2�)�1=2 expf�x2=2g be the standard Gaussian density. ThenE �k;�(z + ��) = Z 1�1 �k;�(z + �x)'(x)dx= expf�2k2�2=2gZ 11 os(�k(z + �x))'(x)dx= (2�)�1=2Re�Z 11 expf�2k2�2=2 + i�k(z + �x)� x2=2gdx�= Re�expfi�kzg (2�)�1=2 Z 11 expf�(x� i�k�)2=2gdx�= os(�kz)and (4.1) follows.
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Similarly,�2k;�(t) � Z 11 (�k(z + �x)� os(�kz))2'(x)dx= Z 11 �2k(z + �x)'(x)dx� os2(�kz)= expf�2k2�2gZ 11 0:5f1 + os(2�kz + 2�k�x)g'(x)dx � os2(�kz)= 0:5 expf�2k2�2g �1 + os(2�kz) expf�2�2k2�2g�� 0:5 [1 + os(2�kz)℄= 0:5 �expf�2k2�2g � os(2�kz)� � [1� expf��2k2�2g℄� �2k2�2 expf�2k2�2g:
Lemma 4.2 Let � > 0 be �xed and let QN;� be de�ned by (3.9). Then for everyz 2 [�1; 1℄ EQN;�(z + ��) = 0 + NXk=1 k os(�kz);VarQN;�(z + ��) � �21�2 expf�2N2�2g log2(N + 1):with �1 � 2=� .Proof. The �rst statement follows from the de�nition of QN;� by Lemma 4.1. Now,[VarQN;�(z + ��)℄1=2 � NXk=1 k [Var�k;�(z + ��)℄1=2 ;so that by Lemma 4.1[VarQN;�(z + ��)℄1=2 � NXk=1 k�k� expf�2k2�2=2g� �� expf�2N2�2=2g NXk=1 kk� 2���1 expf�2N2�2=2g log(N + 1);as laimed.
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Lemma 4.3 Let k; k = 0; 1; : : : be given by (3.10). Then for every N � 1 and allz 2 [�1; 1℄ one has �����jzj � 0 � NXk=1 k os(�kz)����� � �2N�1with �2 = 2��2 .Proof. By origin of k , we have for jzj � 1jzj = 0 + 1Xk=1 k os(�kz)and therefore�����jzj � 0 � NXk=1 k os(�kz)����� � 1Xk=N+1 k � 12 1Xk=N+1 4(�k)2 � 2��2N�1as required.We are ready to prove the upper bound from Theorem 2.1. Consider deomposition(3.5) of the kernel estimate efh(t) with h given by (3.6). Note �rst that the inlusionf 2 �(�;L) by standard reasons (see, e.g., Ibragimov and Khasminski (1979), Setion4.4, p. 317) implies that jfh(t)� f(t)j � �3Lh� (4.2)with �3 depending on � and the kernels K;K� only. Sine h is small for large n, from(4.2) ombined with the fat that kfk1 � % < 1 we onlude that for all large values ofn for all f 2 �%(�;L) one has jfh(t)j � 1 . In what follows we assume that n is so largethat the latter assumption is satis�ed.Let n(t) = QN;�h( efh(t))so that bFn = R 10 n(t)dt . In view of deomposition (3.5) and by Lemma 4.2 as appliedwith z = fh(t) it holds E n(t) = 0 + NXk=1 k os(�kfh(t)):12



Applying Lemma 4.3 with z = fh(t) and � = �h and taking into aount (4.2), we getjE n(t)� f(t)j � jE n(t)� fh(t)j+ jfh(t)� f(t)j � �2N�1 + �3Lh�and hene ����E Z 10 n(t)dt� kfk1���� � Z 10 jE n(t)� f(t)j � �2N�1 + �3Lh�:Now let us bound the variane of the estimator bFn .The de�nition of efh(t) and the ondition (K:1) yield that efh(t) and efh(t0) areindependent random variables when jt � t0j � 2h . Let Cov��0 means the ovarianeE(� � E �)(�0 � E�0) between two random variables �; �0 . Using the Cauhy-Shwarzinequality, we getCov(n(t); n(t0)) � �Varn(t)Varn(t0)�1=2 1(jt� t0j � 2h)� 0:5 �Varn(t) + Varn(t0)� 1(jt� t0j � 2h):This gives Var bFn = Var�Z 10 n(t)dt�= Z 10 Z 10 Cov(n(t); n(t0))dt dt0� 0:5Z 10 Z 10 �Varn(t) + Varn(t0)�1(jt� t0j � 2h) dt dt0� 4hZ 10 Varn(t)dt: (4.3)Applying further Lemma 4.2 and realling the origin of �h, we getVar bFn � �214kKk2n�1 expf�2N2kKk2=(nh)g log2(N + 1):Now, E ��� bFn � kfk1��� � E ���E bFn � kfk1���+E ��� bFn �E bFn���� E ���E bFn � kfk1���+ hVar bFni1=2� �2N�1 + �3Lh�+2�1kKkn�1=2 log(N + 1) exp��2N2kKk22nh � : (4.4)13



Substituting h;N given by (3.6), (3.7) respetively, we see that for all n � �4 it holds�2N2kKk22nh � � lognwith ertain onstant � < 1=(4� + 2). Therefore for all large enough values of n theexponent in (4.4) an be bounded asexpf�2N2kKk2=(2nh)g � n1=(4�+2);with this bound, (4.4) implies (2.2).4.2 Proof of the upper bound in Theorem 2.3First we study the behavior of the estimator b�n of �r(f) , see (3.11).Lemma 4.4 Let fh(t) be given by (3.6). ThenE b�n = Z 10 f rh(t)dt = kfhkrr;Varb�n � �4n�1maxf�2r�2h ; kfhk2r�22r�2gwhere �4 depends only on r and the kernel K .Proof. Observe �rst that for every two pair of independent N (0; �2) random variables� , �0 and for every polynomial p(�) on the omplex plane C one hasE(p(z + � + i�0)) = p(z); z 2 C; (4.5)i being the imaginary unit. Indeed, our expetation an be rewritten as the mean value,over ertain probability distribution on the ray fR � 0g, of the means 12� R 2�0 p(z +R expfi�g) d�; all latter means are equal to p(z) (the Cauhy Theorem on the integralrepresentation of an analyti funtion).Combining (4.5) and deomposition (3.5) of the kernel estimate eft(t) we getE b�n = E Z 10 E� (fh(t) + �h�h(t) + i�h�)r dt = Z 10 f rh(t)dt; (4.6)whih is the �rst assertion of Lemma.Let n(t) = E�( efh(t) + i�h�)r;14



by (4.6) we have En(t) = jfh(t)jr . Using (3.5) one more, we getn(t)�E n(t) = E� (fh(t) + �h�h(t) + i�h�)r � jfh(t)jr= rXj=1�rj�f r�jh (t)�jhE� (�h�h(t) + i�h�)j ;whene Varn(t) � �2h rXj=1 aj�2j�2h jfh(t)j2r�2jwith some positive numbers aj depending on r only (we have used the fat that fortwo independent N (0; 1) random variables �0; �00 one has E �(�0 + i�00)j (�0 + i�00)k� = 0when j 6= k, z being the omplex onjugate of z; to get this relation, it suÆes to passto integration in the polar oordinates, f. (4.5)).By exatly the same reasons whih led us to (4.3) we haveVarb�n � 4hZ 10 Varn(t)dt;whene Varb�n � 4h�2h rXj=1 Z 10 aj�2j�2h jfh(t)j2r�2jdt� 4kKk2n�1 rXj=1 aj�2j�2h kfhk2r�2j2r�2 ;whih learly implies the seond assertion of Lemma.Lemma 4.5 There exists a onstant �5 depending only on r and on the kernels K;K�suh that kfhk2r�22r�2 � �5h�1+1=rkfkr�1r kfhkr�1r :Proof. Applying the Minkovski inequality, we getjfh(t)jr�1 = ����Z 10 f(u)h�1K � t� uh � du����r�1� "�Z 10 jf(u)jrdu� 1r �h� rr�1 Z 10 jK�h�1(t� u)�j rr�1du� r�1r #r�1= �5h�1+1=rkfkr�1r 15



where �5 depends on r and the kernels K;K� only. Consequently,kfhk2r�22r�2 = Z 10 jfh(t)j2r�2dt� �5h�1+1=rkfkr�1r Z 10 jfh(t)jr�1dt� �5h�1+1=rkfkr�1r kfhkr�1r ;the onluding � being given by the Jensen inequality.Now we are ready to omplete the proof of the theorem. Denote%n = L 1�1=r2�+1�1=rn� �2�+1�1=r : (4.7)Then %n is exatly the onvergene rate mentioned in the theorem; note that by (3.13)one has %n = Lh� .Reall that the H�older smoothness onstraint implies the boundkf � fhkr � �3Lh� = �3%n; (4.8)whene kfhkr � kfkr + �3%n . Consider separately the ases of kfkr � 2�3%n and ofkfkr > 2�3%n . If kfkr � 2�3%n , thenEj bFn � kfkrj � Ej bFnj+ 2�3%n� (E b�2n)1=(2r) + 2�3%n� [Varb�n + (E b�n)2℄1=(2r) + 2�3%n� (Varb�n)1=(2r) + (E b�n)1=r + 2�3%n:It is easily seen that for n � �4 one has %n < �2h = kKk2=(nh) . Using Lemma 4.4, weome to the boundEj bFn � kfkrj � (�5n�1�2r�2h )1=(2r) + kfhkr + 2�3%n� (�5n�1�2r�2h )1=(2r) + [kfkr + �3%n℄ + 2�3%n� (�5n�1�2r�2h )1=(2r) + �6%n:Substituting �h = (nh)�1=2 in the expression for h from (3.13), and using the bound(4.8), we get the desired risk bound. 16



It remains to onsider the ase of kfkr > 2�3%n . In this ase from (4.8) it followsthat kfhkr � kfkr � �3%n � �3%n wheneEj bFn � kfkrj � Ej bFn � kfhkrj+ �3%n� Ej bF rn � kfhkrrjkfhkr�1r + �3%n� Ejb�n �E b�njkfhkr�1r + �3%n� (Varb�n)1=2kfhkr�1r + �3%n:Combining Lemma 4.4 and (4.8), we get(Varb�n)1=2 � �6n�1=2(�r�1h + h�(r�1)=(2r)kfhkr�1r )and we end up withEj bFn � kfkrj � �6n�1=2(�r�1h %�r+1n + h�(r�1)=(2r)) + �3%n:Realling that �h = kKk2=(nh) and substituting the expression for h, we ome to thedesired risk bound.4.3 Proof of the lower bound in Theorem 2.3The problem under onsideration is rather speial, and the standard tehniques for es-tablishing lower bounds in the problems of estimating the value of a funtional (e.g.,the one of \the hardest single-parametri subfamily") seemingly do not work. The rea-son is that the funtional kfkr, r being an even integer, is \nearly smooth" { it loosessmoothness at the unique point f = 0. Note that the value of an \atually smooth"funtional an be estimated with the parametri onvergene rate O(n�1=2), while ourgoal is to establish a kind of nonparametri lower bound. To this end we intend to build apair of \high-dimensional" distributions onentrated eah near its own small \r-sphere"ff 2 �%(�;L) j kfkr = Rg, R = R1; R2, in suh a way that the Kullbak distanebetween the distributions is small, so that they annot be distinguished reliably from theobservations. Ensuring this property, we an use the standard arguments to demonstratethat the minimax risk in our problem of estimating k � kr is (at least) O(jR1 �R2j).17



Our �rst step is to replae the nonparametri set �%(�;L) with its properly hosenparametri subset where the aforementioned distributions will be onentrated. Let us�x a funtion g 2 �(�; 1) vanishing outside the interval [0; 1℄ and suh that kgk2(t)dt =R g2 > 0 . Note that by evident reasons all funtions of the form Lb��g(a+bt) with b � 1belong to �%(�;L), provided that b is greater than a onstant depending on % only.Let us set N = b(L2n) 12�+1�1=r ;h = N�1; (4.9)note that our new values of N;h di�er from those used in the onstrution of the esti-mators bFn.Now let I = fIi; i = 1; : : : ; Ng be the partition of the interval [0; 1℄ into N = h�1subintervals I1; :::; IN of length h eah, and let ti be the left endpoint of subinterval Ii .With a point � = (�1; : : : ; �N ) from the N -dimensional ube BN = [�1; 1℄N we assoiatethe funtion f�(t) = L NXi=1 �ih�g((t� ti)=h)Assuming n large enough, for all � 2 BN we have f� 2 �%(�;L) andkf�krr = Lrh�r NXi=1 j�ijr ZIi ����g� t� tih �����r dt = �Lkgkrh�Fr(�)�r (4.10)where Fr(�) =  1N NXi=1 j�ijr!1=r : (4.11)For i = 1; : : : ; N let Yi = Y �i = pnkgkph ZIi g� t� tih � dX�(t);where X� is observation (2.1) assoiated with f = f�. We learly haveYi = �(N)�i + �i; i = 1; : : : ; N; (4.12)where �(N) = Lkgkn1=2h�+1=2 = Lkgkn1=2N���1=2; (4.13)�i = 1kgkph ZIi g� t� tih � dW (t):18



Clearly � = (�1; : : : ; �N ) is a olletion of independent N (0; 1) random variables. It isalso straightforward to see that the set of statistis Yi; i = 1; : : : ; n is suÆient for theparametri submodel (with f 2 �N = ff�; � 2 BNg ). Therefore, when restriting fto belong to �N and setting si = �(N)�i , i = 1; : : : ; N , the original \signal + whitenoise" model (2.1) beomes the \sequene spae" modelYi = si + �i; i = 1; : : : ; N; (4.14)with s = (s1; : : : ; sN ) from the ube SN = B�(N)N = [��(N); �(N)℄N . With thistransformation, the original estimation problem (redued to �N ) beomes the problemof estimating the quantity Fr(s) =  1N NXi=1 jsijr!1=r(f. (4.11)) via observations (4.14). Let Rs(N) be the orresponding minimax risk:Rs(N) = infbF sups2SN Esj bF � Fr(s)j;the in�mum being taken over all Borel funtions bF = bF (y) on RN and Es being theexpetation over the observations (4.14) assoiated with a given s . Comparing (4.11)and the de�nition of Fr(s) and taking into aount (4.10), we getR�(n) � Lkgkrh���1(N)Rs(N) = �gpN=nRs(N) (4.15)where �g = kgkr=kgk .Now we are going to establish the followingProposition 4.1 For all large enough values of N one hasRs(N) � �7�(N) (4.16)with �7 depending on r; � only.Note that the statement of Theorem 2.3 is an immediate onsequene of Proposition4.1. Indeed, ombining (4.16), (4.9), (4.15) and (4.13), we getR�(n) � �7�gpN=n�(N) = �7�gLkgkN�� = �8L 1�1=r2�+1�1=rn� �2�+1�1=rwith �8 depending on r; � only, as laimed in Theorem 2.3.19



Proof of Proposition 4.1 is based on the following idea. We introdue two prior measures�N;0 and �N;1 on the parameter set SN and denote by PN;0 and PN;1 the orrespondingmarginal measures on RN , PN;j = �N;j � L; j = 0; 1;here L is the distribution of the observation noises � in (4.14). Let also K(PN;0; PN;1)be the Kullbak distane between PN;0 and PN;1K(PN;0; PN;1) = Z log�dPN;1dPN;0� dPN;1:We will bound the minimax risk from below by the maximum of two Bayesian risksorresponding to the distributions �N;0 and �N;1 on the spae SN of \signals" s. Tothis end we need the following statement (whih an be obtained from the Fano inequality;we, however, prefer to present a diret proof).Lemma 4.6 Let prior measures �N;0 and �N;1 be suh that the Kullbak distaneK(PN;0; PN;1) satis�es the onditionK(PN;0; PN;1) � 
 (4.17)with some positive 
 . Let � be a funtion on the parametri set SN , and letvN;j = Z �(s)�N;j(ds); (4.18)d2N;j = Z (�(s)� vN;j)2�N;j(ds); (4.19)for j = 0; 1 . One hasR(N) � infb� sups2SN Esjb�� �(s)j � 0:25jvN;0 � vN;1je�
 �maxfdN;0; dN;1g; (4.20)the in�mum being taken over all estimators of �(s) via observations (4.14).Proof. First note that for an arbitrary prior measure � and every estimator b� of �(s)via observations (4.14) one hassups2SN Esjb�� �(s)j � EN;�jb���(s)j� EN;�jb��EN;��(s)j �EN;�j�(s)�EN;��(s)j� EN;�jb��EN;��(s)j � dN;�:20



It follows thatR(N) � 0:5 infb� nEN;0jb�� vN;0j � dN;0 +EN;1jb�� vN;1j � dN;1o� 0:5 infb� nEN;0jb�� vN;0j+EN;1jb�� vN;1jo�maxfdN;0; dN;1g: (4.21)Now let us use the well known fat (see e.g. Borovkov (1984, Theorem 2.1, Chapter 3))that the maximum likelihood test bTN = 1(dPN;1=dPN;0 > 1) is optimal for testing thehypothesis H0 : P = PN;0 versus the alternative H1 : P = PN;1 (P is the distributionof observations (4.14)) in the sense that it minimizes the sum of probabilities of errors:for an arbitrary test TN ,PN;0(TN = 1) + PN;1(TN = 0) � PN;0(bTN = 1) + PN;1( bTN = 0): (4.22)Let ZN = dPN;0=dPN;1 . Then bTN = 1(ZN � 1) and, sine the funtion log(z) isonave, using Jensen's inequality we getlog�PN;0( bTN = 1) + PN;1(bTN = 0)�� logPN;0(ZN � 1)= log Z ZN1(ZN � 1)dPN;1� Z log(ZN )1(log(ZN ) � 0)dPN;1� �K(PN;0; dPN;1) � �
: (4.23)Let now b� be an estimator of �(s) . Consider the following testTN = 1(b�� v�;0 > �N )where �N = (vN;1 � vN;0)=2(we assume that vN;1 > vN;0). Applying (4.22) and (4.23), we getPN;0(TN = 1) + PN;1(TN = 0) � e�
21



or PN;0(b�� vN;0 > �N ) + PN;1(b�� vN;1 < ��N ) � e�
:Sine EN;0jb�� vN;0j+EN;1jb�� vN;1j� �PN;0(b�� vN;0 > �N ) + PN;1(b�� vN;1 < ��N)� j�N j� 0:5jvN;1 � vN;0je�
;(4.21) implies (4.20).We shall apply Lemma 4.6 to the funtion �(s) = N�1(sr1 + : : :+ srN ) and a pair ofprior measures �N;0 and �N;1 with the produt struture:�N;0 = �N0 ;�N;1 = �N1 :We shall build the measures �0; �1 on [��(N); �(N)℄ in suh a way that (4.17) holdswith some �xed 
 , while and the di�erene jvN;1 � vN;0j is \large".First we note that, for j = 0; 1 ,vN;j = 1N Z NXi=1 jsijr�N;j(ds) = Z jsjr�j(ds) = vj (4.24)and similarlyd2N;j = 1N2 Z NXi=1(jsij2r � v2j )�N;j(ds) = N�1 Z (jsj2r � v2j )�j(ds) = N�1d2jwhere vj = Z jsjr�j(ds) � �r(N)d2j = Z jsj2r�j(ds)� v2j � �2r(N): (4.25)To bound the Kullbak distane between the marginal measures PN;0 and PN;1 , notethat the produt struture of model (4.14) and of the priors �N;0; �N;1 altogether imply22



that K(PN;0; PN;1) = N Z log(p�0(y)=p�1(y))p�0(y)dy (4.26)where, for a �nitely supported measure � on the axis,p�(y) = Z '(y � t)�(dt);'(y) = (2�)�1 expf�y2=2gbeing the standard Gaussian density on the axis.Assuming that the priors �N;0 = �N0 , �N;1 = �N1 and an 
 > 0 satisfy (4.17) andapplying Lemma 4.6, we get the following lower bound on the risk of an arbitrary estimateb� of �(s) : sups2SN Esjb�� �(s)j � 0:25jv1 � v0je�
 � �r(N)N�1=2 (4.27)(see 4.25).Now let us derive from the latter bound a lower bound for the risk Rs(N) of esti-mating Fr(s) . Let bF be an estimate of Fr(s) , s 2 SN . When bounding from below therisk of bF on SN , we may assume without loss of generality that j bF (�)j � �(N). Indeed,sine jFr(s)j � �(N) for s 2 SN , we only derease the risk of bF at s 2 SN when passingfrom bF to the \projeted" estimate  ( bF (�)), where (t) = 8>>>>>><>>>>>>:��(N); t � ��(N);t; ��(N) � t � �(N);�(N); t � �(N):Let b� = bF r be the estimate of �(s) = F rr (s) indued by bF . Sine j bF j � �(N) , we haveEsjb�� �(s)j = Esj bF r � F rr (s)j � r�r�1(N)Esj bF � Fr(s)j:Applying (4.27), we getRs(N) � (r�r�1(N))�1(0:25jv1 � v0je�
 � �r(N)N�1=2)= r�1�(N)(0:25��r(N)jv1 � v0je�
 �N�1=2): (4.28)23



It is time now to speify our hoie of the measures �0; �1 . Let Æ be the distane(in the uniform norm on [�1; 1℄) from the funtion tr to the spae Lr�2 of polynomialsof degree � r � 2. We laim that there exists a measure � on [�1; 1℄ of variation 2suh that R tl�(dt) = 0 for l = 0; 1; :::; r � 2, while R tr�(dt) = 2Æ. The justi�ationof our laim is quite standard. Consider the spae C(�1; 1) of ontinuous real-valuedfuntions on [�1; 1℄ (equipped with the uniform norm) along with its �nite-dimensionalsubspae L spanned by Lr�2 and the polynomial tr. L is a �nite-dimensional linear spaeequipped with the norm k � k inherited from C(�1; 1), and Lr�2 is a linear subspae inL of odimension 1. Let the linear funtional  (�) on L be de�ned by the requirementsthat  vanishes on Lr�2 and is equal to Æ at tr. Observe that the norm of our funtionalis 1: k k� � maxf (q(�)) j q(�) 2 L; kqk � 1g = 1:Indeed, if q(�) is the losest to tr element of Lr�2, then  (tr � q(�)) = Æ = ktr � q(�)k, sothat k k� � 1. On the other hand, assuming that k k� > 1, we are able to �nd d 2 Lwith kdk = 1 and  (d) = k �k > 1; the vetor tr� (Æ=k k�)d 2 L belongs to Lr�2 (sinethe value of  at this vetor is 0) and is at a smaller than Æ k � k-distane from tr, whihis impossible.By the Hahn-Banah Theorem, we an extend the linear funtional  from L on theentire C(�1; 1) not inreasing the norm of the funtional, and by the Riesz Theorem, theresulting linear funtional b (g) on C(�1; 1) an be represented asb (g) = Z 1�1 g(t)d�(t)for a Borel (not neessarily nonnegative) measure � with variation equal to the norm ofb , i.e., to 1.Setting � = 2�, we get a measure on [�1; 1℄ of variation 2 suh thatZ 1�1 tl�(dt) = 0; l = 0; 1; :::; r � 2; Z 1�1 tr�(dt) = 2Æ:Note that if � possesses the indiated properties, so is the \reeted" measure �� (��(A) =�(�A)) and hene the measure (�+��)=2; therefore � may be assumed to be symmetri.Let �+;��� be the positive and the negative omponents of �, respetively. Sine �24



is symmetri with variation 2 and R 1�1 �(dt) = R 1�1 t0�(dt) = 0, both �+ and �� aresymmetri probability distributions on [�1; 1℄ suh thatZ 1�1 tl�+(dt) = Z 1�1 tl��(dt); l = 0; 1; :::; r � 2; (4.29)Z 1�1 tr�+(dt) = Z 1�1 tr��(dt) + 2Æ:Let �0; �1 be obtained from �� by \expanding" assoiated with the similarity trans-formation whih maps [�1; 1℄ onto [��(N); �(N)℄: �0(A) = �+(��1(N)A), �1(A) =��(��1(N)A), A � [��(N); �(N)℄. The quantities v0; v1 assoiated with our �0; �1 (see(4.24)) learly satisfy the relationv0 � v1 = �r(N)Z 1�1 jtjr�(dt) = 2Æ�r(N)and the assoiated bound (4.28) isRs(N) � r�1�(N)(Æe�
 �N�1=2); (4.30)
 being the Kullbak distane between the marginal distributions PN;0; PN;1 given bythe priors �N0 ; �N1 . All we need is to evaluate 
.Let us assoiate with a symmetri probability distribution � on [�1; 1℄ and a real �the distribution F�� on the axis with the densityp�(�; y) = Z 1�1 '(y � �t)�(dt) = '(y)Z 1�1 h(�ty) expf��2t2=2g�(dt); (4.31)so that p�0(y) = p�+(�(N); y); p�1(y) = p��(�(N); y): (4.32)Note that (4.31) de�nes funtion p�(�; y) for an arbitrary (not neessarily nonnegative)symmetri measure � on [�1; 1℄.Let K(�) = Z 1�1 log(p�+(�; y)=p�� (�; y))p�+(�; y)dy (4.33)be the Kullbak distane from p�+(�; �) to p��(�; �). Note that by (4.26) and (4.32) itholds 
 = K(PN;0; PN;1) = NK(p�0 ; p�1) = NK(�(N)): (4.34)25



Lemma 4.7 The funtion K(�) is C1 smooth and it has a zero of order at least 2r atthe point � = 0.Proof. It is learly seen that one may di�erentiate K(�) arbitrarily many times and thatK(l)(�) = Z 1�1 �l��l �log�p�+(�; y)p��(�; y)� p�+(�; y)� dyfor all l. Note that p�+(�; y) = p��(�; y) + p�(�; y):Let us �rst demonstrate that for all x�lp�(�; y)��l �����=0 = 0; l = 0; 1; :::; r � 1: (4.35)Indeed, one has�lp�(�; y)��l �����=0= '(x)Z 1�1 " lXi=0 �li���i expf��2t2=2g��i ���l�ih(�ty)��l�i �#�(dt)������=0= Z 1�1 tl(a0 + a1y + : : :+ alyl)�(t) = 0(we have used (4.29)), as required in (4.35).Aording to (4.35), p�(�; y) an be represented in the formp�(�; y) = �rw(�; y)with smooth funtion w(�; �) (whih, as it is easily seen, is a summable funtion of y).Sine R1�1 p�(�; y)dy = 0 for all �, it also is the ase for w(�; y) :Z 1�1w(�; y)dy = 0; 8�:Now we havelog�p��(�; y)p�+(�; y)� = log�1� �rw(�; y)p�+(�; y) � = ��rw(�; y)p�+(�; y) � �2rv(�; y);v being a smooth funtion of y; �. HeneK(�) = �Z 1�1 log�p��(�; y)p�+(�; y)� p�+(�; y)dy= �r Z 1�1w(�; y)dy + �2r Z 1�1 v(�; y)p�+(�; y)dy= �2r Z 1�1 v(�; y)p�+(�; y)dy26



and the assertion of Lemma follows.The result of Lemma 4.7 says that for small positive � one hasK(�) � �10�2r: (4.36)In partiular, for all large enough values of n (and thus { of N) we have
 = NK(�(N)) [by (4.34)℄� �10N�2r(N) [by (4.36)℄� �11N(Ln1=2N���1=2)2r [see (4.13)℄� �12 [see (4.9)℄Applying (4.30), we see that for n large enough it holdsRs(N) � �13�(N);as required in Proposition 4.1.4.4 Proof of the lower bound in Theorem 2.2Here we establish the lower bound from Theorem 2.2 for the ase when r is not an eveninteger. We follow the line of the proof of the lower bound from Theorem 2.3; the onlydi�erene is in onstrution of the priors �0 and �1 .We start with translating the problem into the \sequene spae" model in exatly thesame manner as in Setion 4.3, with the only di�erene that now we setN = b(200Lkgk)2=(2�+1)(n log n)1=(2�+1): (4.37)Note that with this setup for all large enough values of n one has (see (4.13))�(N) � LkgkpnN���1=2 � 0:01plogN : (4.38)Relation (4.15) for R�(n) remains valid for our new setup as well, and the requiredresult is obtained from this relation and a lower bound on the worst ase, over s 2SN , risk of reovering the funtional Fr(s) = (N�1(sr1 + : : : + srN))1=r via observations(4.14). The latter bound is given by the following statement (whih now plays the roleof Proposition 4.1): 27



Proposition 4.2 For all large enough values of N one hasRs(N) � infbF sups2SN Esj bF � Fr(s)j � �9(logN)�r�(N) (4.39)where �9 > 0 depends on r and � only.Postponing for the moment proof of Proposition, let us derive from this statementTheorem 2.2. Indeed, we haveR�(n) � �gpN=nRs(N) [by (4.15)℄� �9�gpN=n(logN)�r�(N) [by (4.39)℄� �10LkgkN��(logN)�r [by (4.13)℄� �11L1=(2��1)(n log n)��=(2�+1)(log n)�r [by (4.37)℄with �11 depending on �; r only, as required in Theorem 2.2.Proof of Proposition 4.2 di�ers from the one of Proposition 4.1 only in how wede�ne the measures ��. Let Pk be the spae of polynomials of degree � k , and let Æ(k)be the distane (in the uniform norm on [�1; 1℄) from the funtion jtjr to the spae P2k .It is known (see, e.g., Timan A.F., Theory of approximation of funtions of real variable,Mosow, 1960, p.430) that if k is a nonnegative integer, thenÆ(k) � �10k�r;with �10 > 0 depending on r only. Let us setk(N) = blogN;with N given by (4.37); we assume n to be so large that N � 3. Same as in the proof ofProposition 4.1, for our N there exists a symmetri measure �N on [�1; 1℄ with variation2 suh that Z 1�1 tl�N (dt) = 0; l = 0; 1; :::; 2k(N); (4.40)Z 1�1 jtjr�N (dt) = 2Æ(k(N)) � 2�10k�r(N);28



and the positive and the negative omponents, �+ , �� (�N = �+��� ) are symmetriprobability distributions on [�1; 1℄.Same as in Setion 4.3, we de�ne the measures �0 and �1 on [��(N); �(N)℄ \ex-panding" the measures ��, thus oming to a pair of symmetri probability distributions�0; �1 on [��(N); �(N)℄ satisfying the relationsZ �(N)��(N) tl�0(dt) = Z �(N)��(N) tl�1(dt); l = 0; 1; :::; 2k(N);Z �(N)��(N) jtjr�0(dt) � Z �(N)��(N) jtjr�1(dt) + 2Æ(k(N))�r(N): (4.41)Setting �N;0 = �N0 , �N;1 = �N1 and denoting by PN;0; PN;1 the marginal distributions ofobservations (4.14) assoiated with the priors �N;0; �N;1, we, same as in the proof of thelower bound in Theorem 2.3, ome to the inequality (f. (4.30))Rs(N) � r�1�(N)�0:25Æ(k(N))e�
 �N�1=2� ; (4.42)where 
 is the Kullbak distane between the distributions PN;0; PN;1:
 = K(PN;0; PN;1) = NK(�(N));K(�) = Z 1�1 log(p�+(�; y)=p��(�; y))p�+(�; y)dy; (4.43)with p�(�; �) given by (4.31).For T > 0, let us setKT (�) = Zjyj�T log(p�+(�; y)=p��(�; y))p�+(�; y)dy: (4.44)Lemma 4.8 For every T > 0dlKT (�)d�l �����=0 = 0; l = 0; :::; 2k(N):Proof. We have KT (�) = Z T�T log�1 + p�(�; y)p��(�; y)� p��(�; y)dy;and the result is readily given by (4.35) (in view of the �rst relation in (4.41), equality(4.35) is now valid for l = 0; 1; :::; 2k(N), see the proof of (4.35)).The remaining part of the required information on KT (�) is given by29



Lemma 4.9 For every T � 20 and all � 2 [�1; 1℄, one hasK(�) � expf�(T � 1)2=2g +KT (�): (4.45)The funtion KT (�) an be extended analytially into the irle j�j � (10T )�1, and inthis irle jKT (�)j � 2=3:Proof. We learly haveK(�) = KT (�) +RT (�+; ��);RT (�; � 0) = Zjyj>T log(p�(�; y)=p�0(�; y))p�(�; y)dy;�; � 0 being probability distributions on [�1; 1℄. Now, RT (�; � 0) is a onvex funtional ofprobability distributions �; � 0; therefore its supremum, over all pairs (even non-symmetri)probability distributions on [�1; 1℄ is the same as its supremum over the set P 2s of pairsof distributions on the same segment with singleton supports. Indeed, every probabil-ity distribution � on [�1; 1℄ an be approximated by a sequene f�ig of disrete dis-tributions with �nite supports in the sense that R g(x)�i(dx) ! R g(x)�(dx) for everyontinuous on [�1; 1℄ funtion g. From this observation and the fat that RT , as it iseasily seen, is lower semiontinuous (in fat even ontinuous) with respet to the weaktopology on the set P 2 of pairs of probability distributions on [�1; 1℄ we onlude thatsup(�;�0)2P 2 RT (�; � 0) = sup(�;�0)2P 2d RT (�; � 0), P 2d being the set of pairs of disrete prob-ability distributions on [�1; 1℄ with �nite supports. Finally, every pair (�; � 0) 2 P 2d isa onvex ombination of pairs from P 2s ; sine RT is onvex, its supremum over P 2d isthe same as the one over P 2s , whene sup(�;�0)2P 2 RT (�; � 0) = sup(�;�0)2P 2s RT (�; � 0), aslaimed.Now onsider a pair of distributions (�+; ��) 2 P 2s ; let �+ be onentrated at a point
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t and �� be onentrated at a point � (t; � 2 [�1; 1℄). In this ase we haveRT (�; � 0) = Zjyj>T ��(y � �t)22 + (y � ��)22 � expf�(y � �t)22 g 1p2�dy= Zfy��T��tg[fy�T��tg ��(t� �)y + �2(t� �)2=2�'(y)dy= �(t� �)(2�)�1=2 �expf�(T � �t)2=2g � expf�(T + �t)2=2g�+2(2�)�1=2�2(t� �)2(T � 1)�1 expf�(T � 1)2=2g� (2�)�1=2(2 + 8(T � 1)�1) expf�(T � 1)2=2g� expf�(T � 1)2=2g(we have taken into aount that T � 20). Thus,supP 2 RT (�; � 0) = supP 2s RT (�; � 0) � expf�(T � 1)2=2g;and (4.45) follows.Let us now look at the funtion KT . Let y be a real with jyj < T , and let tbe a real with jtj � 1. The absolute value of the derivative of the funtion g(�) =expf��2t2=2gh(�ty) in the irle j�j � z � 1 learly does not exeed (T + 1) expfzT +z2=2g, and therefore jg(�) � 1j = jg(�) � g(0)j � (zT + z) expfzT + z2=2g in this irle.It follows that in the irle j�j � z � (10T )�1 we have����Z 1�1 expf��2t2=2gh(�ty)�(dt) � 1����� (zT + z) expfzT + z2=2g � 1=5 expf0:105g � 1=4;both for � = �+ and for � = ��. Consequently, for the indiated z and j�j � z we have����p�+(�; y)p��(�; y) � 1���� � 1=3:We see that if y is real and jyj � T , then the funtion log(p�+(�; y)=p�� (�; y)), regardedas a funtion of �, an be extended analytially from the segment j�j � dT = (10T )�1of the real axis onto the irle j�j � dT in the omplex plane, and the absolute value ofthe extended funtion in this irle does not exeed the quantity1Xm=1 1m �13�m = log(3=2):31



By the same reasons, for real y with jyj � T and every � from the irle j�j � dT we havejp�+(�; y)j � 5=4'(y), and we see that KT is an analyti funtion in the irle j�j � dTwith absolute value in the irle not exeeding 5=4 log 3=2 � 2=3.Aording to Lemma 4.9, KT (�) is an analyti funtion of � in the irle j�j �dT = (10T )�1 whih is bounded in absolute value in this irle by 2=3; aording toLemma 4.7, KT (�) has zero of order at least 2k(N) + 1 at the origin, and sine thefuntion is even, the order of this zero is at least 2k(N) + 2. Consequently, the funtiond2k(N)+2T KT (�)��2k(N)�2 is analyti in the irle j�j � dT and therefore the maximum ofits absolute value in the irle is equal to the one on the boundary of the irle, i.e., itdoes not exeed 2=3. We onlude thatKT (�) � 23 �2k(N)+2d2k(N)+2T ; �dT � � � dT : (4.46)Now let us set T = T (N) = 1 +p2 logNand let us look what (4.46) with this T implies for � = �(N). In view of (4.38) for largeenough values of n we have�(N)dT (N) = 10T (N)�(N) � 0:2 < expf�1g;so that (4.46) indeed is appliable to � = �(N) and results inKT (N)(�(N)) � expf�2k(N) � 2g � N�2(see (4.4)). Applying (4.45) with � = �(N), T = T (N), we therefore getK(�(N)) � N�2 + expf�(T (N)� 1)2=2g � N�2 +N�1;so that (see (4.43)) 
 = NK(�(N)) � 1 +N�1:The latter relation, in view of (4.42), (4.4) and the lower bound for Æ(k(N)) from (4.41),implies (4.39). Proposition 4.2 is proved.
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