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1 Introduction

Consider a nonparametric regression model with observations

Yin = f

(
i

n

)
+ ξin , i = . . . ,−1, 0, 1, . . . ; n = 1, 2, . . . . (1)

The regression function f(t), t ∈ R1, belongs a priori to a class of the Lipschitz
functions, i.e. f ∈ Σ(L),

Σ(L) = {f : |f(t1)− f(t2)| ≤ L|t1 − t2|}

where L is a given positive. For each n the random variables ξin are i.i.d. with
a known probability density p(x). Our goal is to estimate the value f(0) of the
regression function at the origin from the observations Yin in (1). Let f̂n be
an estimator, i.e. an arbitrary function of the observation Yin in (1). We want

to find an estimator which minimizes the probability Pf

(
|f̂n − f(0)| > c

)
for

a fixed positive c. Here Pf = P
(n)
f denotes the probability of the observations

Yin corresponding to the true regression f . Further on we omit the superscript
n for the sake of brevity.

We follow Bahadur(1960,1967) whose approach is modified in the spirit of
the minimax theory (see Ibragimov and Khasminskii, 1981, Ch.1). Introduce
the minimax Bahadur-type risk by

βn(c) = inf
f̂n

sup
f∈Σ(L)

1

n
log Pf

(
|f̂n − f(0)| > c

)
. (2)

Assumption 1. The density p(x) is such that the function

H(x) = − log p(x)

is strictly convex and finite for any x, x ∈ R1.

Define the following function

G(θ, s) = log

[∫ ∞

−∞
ps(x− θ) p1−s(x + θ) dx

]
, θ ∈ R1, 0 ≤ s ≤ 1,

and introduce the logarithm of the Chernoff function (see Chernoff, 1952, Siev-
ers, 1978)

S(θ) = min
0≤s≤1

G(θ, s), θ ∈ R1. (3)

Under Assumption 1 the function G(θ, s) is strictly convex in s, and G(θ, 0) =
G(θ, 1) = 0 which implies that the definition (3) is correct and S(θ) is negative
for any θ 6= 0. Note that S(θ) and G(θ, s) are symmetric in θ. It is easy to
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show that in the case of the symmetric density when p(x) = p(−x) the infimum
in (3) attains at s = 1/2 and S(θ) = G(θ, 1/2) = log

∫ √
p(x− θ) p(x + θ) dx.

The main result of this paper is in the explicit representation of the limiting
performance of βn(c):

lim
n→∞

βn(c) = min
0≤s≤1

2

L

∫ c

0

G(θ, s) dθ. (4)

Example 1. If ξin are (0, σ2)-Gaussian, then G(θ, s) = 2s(s− 1)θ2/σ2 and
S(θ) = −θ2/(2σ2). In this case

lim
n→∞

βn(c) =
2

L

∫ c

0

G(θ, 1/2) dθ = − c3

3Lσ2
.

This coincides with Korostelev, 1993.

In parallel to (1) consider a location parameter model with a sample of
i.i.d. observations X1, . . . , Xn corresponding to the density p(x− θ), θ ∈ R1.
Let θ̂n = θ̂n(X1, . . . , Xn) be an arbitrary estimator of the location parameter
θ.

Introduce the minimax Bahadur-type risk

rn(c) = inf
θ̂n

sup
θ∈R1

1

n
log Pθ

(
|θ̂n − θ| > c

)
, c > 0,

where Pθ = P
(n)
θ is the probability of X1, . . . , Xn.

Let θ∗n be the Pitman estimator of θ corresponding to the loss function
I(|θ∗n − θ| > c) where I(·) denotes the indicator function. Under Assumption 1
this estimator can be defined as the unique solution of the equation

n∑
i=1

[H(Xi − θ∗n − c)−H(Xi − θ∗n + c)] = 0.

The Pitman estimator of the location parameter is minimax and

lim
n→∞

rn(c) = lim
n→∞

1

n
log P0 (|θ∗n| > c) = S(c)

(see Chernoff,1952, Lehmann, 1959, Sievers,1978, Ibragimov and Khasminskii,
1981, Rubin and Rukhin, 1983).

An estimator θ∗n which attains this limiting constant is called asymptotically
efficient in the sense of Bahadur.

The efficiency in the sense of Bahadur is tightly linked with the theory of
large deviations in estimation and hypothesis testing. It worthy mentioning
that the maximum likelihood estimators were studied intensively from this
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point of view both for the moderate deviations (Ibragimov and Radavichyus,
1981, Radavichyus, 1983) and for the large deviations (Borovkov and Mogul-
skii, 1992). But the maximum likelihood estimator is not, generally speaking,
efficient in the sense of Bahadur.

In Section 2 we give a direct proof of the lower bound in (5). Then we
extend it to the case of Lipschitz regression. The asymptotics in (5) is well-
known (see Sievers, 1978) and our proof of the lower bound serves to illustrate
the main idea which is similar in the parametric and nonparametric case.
Section 3 presents the construction of an efficient estimator for the Lipschitz
regression at a point. Some technical results are postponed to Section 4.

2 Lower Bounds

Proposition 1. If Assumption 1 holds, then the following lower bound is true
for any c > 0:

rn(c) ≥ S(c). (5)

Proof Let ε be an arbitrary small positive. Consider the following two values
of θ: θ = ±c. Note that

sup
θ

Pθ

(
|θ̂n − θ| > c− ε

)
≥

≥ 1

2
Pc

(
|θ̂n − c| > c− ε

)
+

1

2
P−c

(
|θ̂n + c| > c− ε

)
=

=
1

2
E(π)

[
dPc

dP (π)
I

(
|θ̂n − c| > c− ε

)
+

dP−c

dP (π)
I

(
|θ̂n + c| > c− ε

)]

where the probability P (π) corresponds to some density π = π(x); E(π) is the
expectation w.r.t. P (π).

Let for θ = c the minimal value of the right-hand side of (3) attain at
s = α = α(c) which is unique under Assumption 1, 0 < α < 1, and satisfies

∫ ∞

−∞
pα
− p1−α

+ (log p− − log p+) dx = 0

where
p± = p±(x) = p(x± c).

Choose
π = exp (−S(c)) pα

− p1−α
+
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and note that under this choice

E(π)

[
log

(
p+(Xi)

π(Xi)

)]
=

∫
π log

p+

π
=

= S(c) + α exp (−S(c))

∫
pα
− p1−α

+ (log p− − log p+) =

= S(c).

Similarly,

E(π)

[
log

(
p−(Xi)

π(Xi)

)]
= S(c).

Denote by

∆± =
n∑

i=1

(
log

p±(Xi)

π(Xi)
− S(c)

)
.

Due to the LLN the random event An = {|∆+| < εn} ∩ {|∆−| < εn} satisfies

P (π) (An) → 1 as n →∞. (6)

The triangular inequality guarantees that

P (π)
({
|θ̂n − c| > c− ε

}
∪

{
|θ̂n + c| > c− ε

})
= 1.

Thus we finally have

sup
θ∈R1

Pθ

(
|θ̂n − θ| > c− ε

)
≥

≥ 1

2
exp (nS(c)) E(π)

[
exp(∆+)I

(
|θ̂n − c| > c− ε

)
+

+ exp(∆−)I
(
|θ̂n + c| > c− ε

)]

≥ 1

2
exp (n (S(c)− ε)) P (π)

({
An, |θ̂n − c| > c− ε

}
∪

∪
{
An, |θ̂n + c| > c− ε

})

≥ 1

2
exp (n (S(c)− ε)) P (π) (An) .

It follows that for any θ̂n the inequality is true

sup
θ∈R1

1

n
log Pθ

(
|θ̂n − θ| > c− ε

)
≥ (S(c)− ε) +

1

n
log

(
1

2
P (π) (An)

)
.
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Hence applying (6) we come to the inequality

lim inf
n→∞

sup
θ∈R1

1

n
log Pθ

(
|θ̂n − θ| > c− ε

)
≥ S(c)− ε

and the inequality (5) follows. ¶

Remark The density π in the proof of Proposition 1 which is the ”least
equidistant” from p+ and p− does not belong in general to the family p(· − θ),
θ ∈ R1. The Gaussian case in Example 1 is an exception: here π(x) = p(x).

Now we turn to the equality (4). As traditional in the minimax theory, we
split this result into the two parts, starting with the lower bound

lim inf
n→∞

βn(c) ≥ min
0≤s≤1

2

L

∫ c

0

G(θ, s) dθ. (7)

Theorem 1. If Assumption 1 is satisfied then the lower bound (7) holds for
the minimax Bahadur risk (2).

Proof Note that for any estimator f̂n and for an arbitrary small ε > 0

sup
f∈Σ(L)

Pf

(
|f̂n − f(0)| > c− ε

)
≥

≥ 1

2
Pf+

(
|f̂n − c| > c− ε

)
+

1

2
Pf−

(
|f̂n + c| > c− ε

)

where

f± = f±(t) =

{ ±c(1− L|t|/c) if |t| ≤ c/L
0 otherwise

.

Let the minimal value in s, 0 ≤ s ≤ 1, of the sum
∑∞

i=−∞ G (f+(i/n), s)
attain at s = αn. Note that there are finitely many non-zero summands in this
sum. Let Yin’s be independent and Yin have the density

πi(x) = exp (−G (f+(i/n), αn)) pαn (x− f+(i/n)) p1−αn (x− f−(i/n)) .

Denote by P (π) the joint distribution of Yin’s. As in the proof of Proposition
1 we obtain the inequality

sup
f∈Σ(L)

1

n
log Pf

(
|f̂n − f(0)| > c− ε

)
≥

≥ 1

2
exp

{ ∞∑
i=−∞

G (f+(i/n), αn)− nε

}
P (π) {An}

where
An = {|∆+| < εn} ∩ {|∆−| < εn}
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with the random events defined by the following zero-mean random variables
w.r.t. P (π):

∆± =
∞∑

i=−∞

[
log

(
p (Yin − f±(i/n))

πi(Yin)

)
−G (f+ (i/n) , αn)

]
.

To complete the proof it suffices to note that the sum 1
n

∑∞
i=−∞ G (f+(i/n), s)

converges to
∫∞
−∞ G(f+(t), s) dt uniformly in s, 0 ≤ s ≤ 1, which implies that

∞∑
i=−∞

G (f+(i/n), αn) = n(1 + o(1)) min
0≤s≤1

∫ c/L

−c/L

G

(
c

(
1− L|t|

c

)
, s

)
dt =

= n(1 + o(1)) min
0≤s≤1

2

L

∫ c

0

G(θ, s) dθ

where o(1) → 0 as n →∞. ¶

3 Efficient Estimator for Lipschitz regression

The Pitman estimator θ∗n = θ∗n(X1, . . . , Xn) of the location parameter θ which
is efficient in the sense of Bahadur can be defined as the center of the interval

{
θ :

1

n

n∑
i=1

H(Xi − θ) ≤ λ∗

}

where λ∗ = λ∗(c) is chosen such that the length of this interval equals 2c. Thus
in this case θ∗n might be called interval-median estimator.

Now we extend this definition to the case of the Lipschitz regression.
Put N = [cn/L] and define the log-likelihood function LN(ϑ) of (2N + 1)-
dimensional argument ϑ = (ϑ−N , . . . ϑ0, . . . ϑN) by

LN(ϑ) = − 1

2N + 1

N∑
i=−N

log p(Yin − ϑi) =
1

2N + 1

N∑
i=−N

H(Yin − ϑi).

Define a set B0 ⊂ R2N+1 as ”traces of the Lipschitz functions”:

B0 = {ϑ : |ϑi − ϑj| ≤ L|i− j|/n, |i|, |j| ≤ N}.
Let

B(λ) = {ϑ : LN(ϑ) ≤ λ} ∩B0 , λ ∈ R1,

and let
b+(λ) = max

ϑ∈B(λ)
ϑ0 , b−(λ) = min

ϑ∈B(λ)
ϑ0 .
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This definition is correct since B(λ) is a convex set (if it is non-empty). As
in the case of location parameter, choose λ = λ∗ = λ∗(c) such that b+(λ∗) −
b−(λ∗) = 2c, and define the interval-median estimator

f ∗n =
1

2
[b+(λ∗) + b−(λ∗)] .

Assumption 2. The function H(x) is continuously differentiable and

lim
x→∞

H ′(x)

H(x)
= 0.

Lemma 1. If Assumption 1 and 2 are fulfilled, then for an arbitrary large
constant S0 > 0 there exists A = A(S0) such that the following inequality holds
for all n large enough

sup
f∈Σ(L)

Pf (|f ∗n − f(0)| > A) ≤ exp(−nS0). (8)

Denote by wN(δ, ϑ) the modulus of continuity

wN(δ, ϑ) = max
ϑ′: |ϑi−ϑ′i|≤δ, |i|≤N

|LN(ϑ′)− LN(ϑ)|

where δ is a fixed positive.

Lemma 2. Under the assumptions of Lemma 1 for any S0 > 0, A0 > 0 there
exists C0 = C0(S0, A0) such that for all n large enough the inequality holds

sup
f∈Σ(L)

Pf (wN(δ, ϑ) > δC0) ≤ exp(−nS0) (9)

uniformly in ϑ such that |ϑ0 − f(0)| ≤ A0.

The proofs of these lemmas are postponed to the next section.

Theorem 2. If Assumptions 1 and 2 are satisfied then the following upper
bound is true uniformly in f ∈ Σ(L):

lim sup
n→∞

1

n
log Pf (|f ∗n − f(0)| > c) ≤ min

0≤s≤1

2

L

∫ c

0

G(θ, s) dθ.

Proof Take S0 = 1 + 2
L

∫ c

0
S(θ) dθ and choose A = A(S0) due to Lemma 1.

Assume that f ∗n > f(0) + c. This means that

λ∗ − LN

(
f

(
−N

n

)
, . . . , f

(
N

n

))
≤ 0.
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By definition, there exists a random point ϑ̃ = (ϑ̃−N , . . . , ϑ̃N) such that ϑ̃ ∈ B0,
ϑ̃0 = b+(λ∗), and LN(ϑ̃) = λ∗ , i.e.

LN(ϑ̃)− LN

(
f

(
−N

n

)
, . . . , f

(
N

n

))
≤ 0.

Unfortunately, the random point ϑ̃ cannot be substituted in this inequality by
a deterministic one. For this reason we approximate ϑ̃ by a point from a finite
set of deterministic points. Let the random event {|f ∗n − f(0)| ≤ A} hold. In
this case ϑ̃ ∈ B1 where

B1 = B0 ∩ {ϑ : |ϑ0 − f(0)| ≤ A + c} .

Let δ be a small positive. Choose a finite set Ψ = Ψ(δ) of points ψ(k) =(
ψ

(k)
−N , . . . , ψ

(k)
N

)
, k = 1, . . . ,M , such that
∣∣∣ψ(k)

i − ψ
(k)
j

∣∣∣ ≤ δ + L|i− j|/n, |i|, |j| ≤ N.

For any ϑ ∈ B1 there exists ψ(k) = ψ(k)(ϑ) ∈ Ψ satisfying∣∣∣ψ(k)
i − ϑi

∣∣∣ ≤ δ, |i| ≤ N,

and the cardinality card Ψ = M = M(δ) is independent of n and f ∈ Σ(L).
The set Ψ can be obtained from the discrete piecewise approximation of

the Lipschitz functions ψ(t) with |ψ(0)− f(0)| ≤ A + c.
Since ϑ̃ ∈ B1, there exists ψ̃ ∈ Ψ such that∣∣∣ϑ̃i − ψ̃i

∣∣∣ ≤ δ for |i| ≤ N.

Hence

ψ̃0 ≥ ϑ̃0 − δ = b+(λ∗)− δ = b−(λ∗) + 2c− δ > f(0) + 2c− δ,

i.e.
ψ̃0 − f(0) > 2c− δ.

Put A0 = A+2c and choose C0 = C0(S0, A0) in accordance with Lemma 2.
The inequalities (8) and (9) guarantee that uniformly in f ∈ Σ(L) for all n
large enough we have

Pf (f ∗n > f(0) + c) ≤
≤ Pf

(
f ∗n > f(0) + c; |f ∗n − f(0)| ≤ A; wN(δ, ψ(k)) ≤ δC0

)
+

+(M + 1) exp(−nS0) ≤
≤

∑

k: |ψ(k)
0 −f(0)|>2c−δ

Pf

{
LN

(
ψ

(k)
−N , . . . , ψ

(k)
N

)
− LN

(
f

(
−N

n

)
, . . . , f

(
N

n

))
≤ δC0

}
+

+ (M + 1) exp(−nS0). (10)
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For each summand in the latter sum the following inequality holds (Wentzell,
Ch.3, 1990, Freidlin and Wentzell, Sec.5.1, 1983):

1

n
log Pf

{
LN

(
ψ

(k)
−N , . . . , ψ

(k)
N

)
− LN

(
f

(
−N

n

)
, . . . , f

(
N

n

))
≤ δC0

}
≤

≤ 1

n
min

0≤s≤1

N∑
i=−N

G

(
1

2

(
ψ

(k)
i − f(i/n)

)
, s

)
+ h (11)

where h is an arbitrary positive; n and 1/δ are large enough. Some comments
are pertinent concerning the inequality (11). The probability in the left-hand

side is close to Pf

(∑N
i=−N ηin ≤ 0

)
with the random variables ηin = H(Yin −

φ
(k)
i )−H(Yin − f(i/n)) = H(ξin − (ψ

(k)
i − f(i/n)))−H(ξin) satisfying

log Ef [exp(sηin)] = G

(
1

2

(
ψ

(k)
i − f(i/n)

)
, s

)
.

Let max0≤s≤1

[
us−∑N

i=−N G
(

1
2

(
ψ

(k)
i − f(i/n)

)
, s

)]
be the Legendre trans-

form of the latter sum in s. Its value at the origin u = 0 is equal to

max
0≤s≤1

[
−

N∑
i=−N

G

(
1

2

(
ψ

(k)
i − f(i/n)

)
, s

)]
=

− min
0≤s≤1

N∑
i=−N

G

(
1

2

(
ψ

(k)
i − f(i/n)

)
, s

)
.

This quantity governs the log-asymptotics of the probability Pf

(
N∑

i=−N

ηin ≤ 0

)

as indicated in (11).

Since ψ
(k)
0 − f(0) > 2c− δ we have for any i with |i| ≤ N

1

2

(
ψ

(k)
i − f(

i

n
)

)
≥ 1

2

(
ψ

(k)
0 − f(0)− |ψ(k)

i − ψ
(k)
0 | − |f(i/n)− f(0)|

)
≥

≥ 1

2
(2c− δ − (L|i/n|+ δ)− L|i/n|) =

= c− δ − L|i/n|.

The function G(θ, s) is decreasing in θ for each s. Hence

lim
n→∞

1

n

N∑
i=−N

G

(
1

2

(
ψ

(k)
i − f(

i

n
)

)
, s

)
≤

∫ c/L

−c/L

G(c− δ − L|t|, s) dt =

9



=
2

L

∫ c−δ

0

G(θ, s) dθ. (12)

The number of summands in the right-hand side of (10) does not increase with
n; δ and h are arbitrary small. Therefore (10)-(12) imply the inequality

lim sup
n→∞

1

n
log Pf (f ∗n > f(0) + c) ≤

min
0≤s≤1

2

L

∫ c

0

G(θ, s) dθ

uniformly in f ∈ Σ(L) . The similar inequality can be obtained for the prob-
ability Pf (f ∗n < f(0)− c) following the same lines. ¶

4 Proof of Lemmas

Proof of Lemma 1. To prove this lemma we verify that with probability
exponentially close to 1 the function LN(ϑ) is smaller than some constant λ0

on the cube
K0 = {ϑ : |ϑi − f(0)| ≤ 2c}

and the minimal values of this function over the cubes K± = {ϑ : |ϑi− f(0)∓
A1| ≤ 2c} exceed 2λ0 for A1 large enough. It means that λ∗(c) ≤ λ0 and
|b±(λ∗)− f(0)| ≤ A1 + 2c which implies the lemma with A = A1 + 3c. To do
this, we first check the values of LN(ϑ) along the diagonal ϑ−N = . . . = ϑN = θ
at the point θ = f(0) and θ = f(0) ± A1. Then we use convexity of H(x) to
show that the oscillation of LN(ϑ) on the cubes K0 and K± is finite.

Suppose without loss of generality that H(x) > 0 (otherwise a constant
can be added to H without any influence on f ∗n). We can also assume without
loss of generality that Eξin = 0. Note that for |i| ≤ N the mean values of
H(Yin − f(0)) are bounded uniformly in f ∈ Σ(L), i.e.

sup
f∈Σ(L)

Ef H(Yin − f(0)) ≤ µ1 < +∞.

The same is true for the variance:

sup
f∈Σ(L)

Varf H(Yin − f(0)) ≤ σ2
0 < +∞.

Applying the Chernoff bound, we have for a fixed small z that for each f ∈
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Σ(L)

Pf (LN(f(0), . . . , f(0)) > λ1) =

= Pf

(
1

2N + 1

N∑
i=−N

H(Yin − f(0)) > λ1

)
≤

≤ Pf

(
N∑

i=−N

[H(Yin − f(0))− Ef H(Yin − f(0))] > (2N + 1)(λ1 − µ1)

)
≤

≤ exp
(−(2N + 1)z(λ1 − µ1) + (2N + 1)σ2

0z
2
) ≤

≤ exp(−4nS0).

Here the obvious relations are used for z small enough

Ef (exp(zξ)) = 1 +
z2

2
Var(ξ) + o(z2) ≤ 1 + z2Var(ξ) ≤ exp

(
z2Var(ξ)

)

where ξ is the zero-mean random variable

ξ =
N∑

i=−N

[H(Yin − f(0))− Ef H(Yin − f(0))]

with the finite moment generating function Ef (exp(zξ)) in a neighborhood of
the origin z = 0. If we take

λ1 =
4n

z(2N + 1)
S0 + σ0z + µ1

in the latter expression, we arrive at

sup
f∈Σ(L)

Pf (LN(f(0), . . . , f(0)) > λ1) ≤ exp(−4nS0). (13)

Since H(x) is convex, the following inequalities are true for any f ∈ Σ(L), any
|i| ≤ N , and A1 large enough :

Ef [H(Yin − f(0)− A1)] ≥ H (f(i/n)− f(0)− A1) ≥ H(c− A1).

This implies that µf (A1) →∞ as A1 →∞ where

µf (A1) = Ef [LN(f(0) + A1, . . . , f(0) + A1)]

and µf (A1) ≥ H(c− A1) > 8λ1 for A1 large enough uniformly in f ∈ Σ(L).
On the other hand, Assumption 2 guarantees that for any θ fixed

lim
x→∞

H(x + θ)−H(x)

H(x)
= 0. (14)
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Indeed, assume for the definiteness that x → +∞. Since H ′(x) is monotone
we have for θ < 0 and large x that

H(x + θ)−H(x)

H(x)
=

θH ′(x̃)

H(x)
≤ θ

H ′(x)

H(x)

where x + θ < x̃ < x, and Assumption 2 applies directly. If θ > 0, one has

H(x + θ)−H(x)

H(x)
=

θH ′(x̃)

H(x + θ)− θH ′(x̃)

≤ θ
H ′(x + θ)

H(x + θ)

(
1− θ

H ′(x + θ)

H(x + θ)

)−1

,

and (19) follows. This equality yields the relation

lim
A1→∞

Varf H(Yin − f(0)− A1)

(Ef H(Yin − f(0)− A1))
2 = 0 (15)

uniformly in f ∈ Σ(L) and |i| ≤ N . Again, applying the Chernoff bound, we
obtain from (15) that

sup
f∈Σ(L)

Pf

(
LN(f(0) + A1, . . . , f(0) + A1) ≤ 1

2
µf (A1)

)
≤ exp(−4nS0)

if A1 = A1(S0) is large enough. Thus LN(ϑ) is greater than 4λ1 at the center
of the cube K+ with probability exponentially close to 1. The same is true at
the center of the cube K−. Finally, the equality (14) and convexity of H(x)
entail the following property: for any fixed d > 0 and for any x ∈ R1

max
|u|≤d

|H(x + u)−H(x)| ≤ h0 + H(x) (16)

with some constant h0 = h0(d). The inequality (16) implies that the random
function LN(ϑ) satisfies

max
ϑ∈K0

LN(ϑ) ≤ h0(c) +
5

4
LN(f(0), . . . , f(0))

with Pf -probability 1. This together with (13) gives us the following inequality:

sup
f∈Σ(L)

Pf

(
max
ϑ∈K0

LN(ϑ) > h0(c) +
5

4
λ1

)
≤ exp(−4nS0).

Applying (16) once again, we get Pf -almost surely that

min
ϑ∈K+

LN(ϑ) ≥ 3

4
LN(f(0) + A1, . . . , f(0) + A1)− h0(c)

and

sup
f∈Σ(L)

Pf

(
min
ϑ∈K+

LN(ϑ) ≤ 1

4
µf (A1)

)
≤ exp(−4nS0)

if A1 is large enough. The analogous inequality for the cube K− proves the
lemma.
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4.1 Proof of Lemma 2

Assumption 2 guarantees that |H ′(x)| ≤ h1 + H(x) with some constant h1 for
any x ∈ R1. Thus, one gets that wN(δ, ϑ) ≤ δ (h1 + LN(ϑ)) and

sup
f∈Σ(L)

Pf (wN(δ, ϑ′) > δC0) ≤ sup
f∈Σ(L)

Pf (h1 + LN(ϑ′) > C0) ≤ exp(−4nS0)

if C0 is large enough.
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