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Abstract

This paper offers a new procedure for estimation and forecasting of uni-

variate and multivariate time series with applications to volatility mod-

eling for financial data. The approach is based on the assumption of

local homogeneity: for every time point there exists a historical interval

of homogeneity, in which the volatility parameter can be well approxi-

mated by a constant. The procedure recovers this interval from the data

using the local change point analysis (LCP). Afterwards the estimate

of the volatility can be simply obtained by local averaging. We investi-

gate the performance of the procedure both from the theoretical point

of view and through Monte Carlo simulations. Then the new procedure

is applied to some data sets and a comparison with the LAVE procedure

from Mercurio and Spokoiny (2004) and with a standard GARCH model

is also provided. Finally we discuss applications of the new method to

the Value at Risk problem. The numerical results demonstrate a very

reasonable performance of the new method.
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1 Introduction

Since the seminal papers of Engle (1982) and Bollerslev (1986), modeling the dynamic

features of the variance of financial time series has become one of the most active fields

of research in econometrics. New models, different applications and extensions have

been proposed as it can be seen by consulting, for example, the monographs of Engle

(1995) and of Gouriéroux (1997). The main idea behind this strain of research is that

the volatility clustering effect that is displayed by stock or exchange rate returns can

be modeled globally by a stationary process. This approach is somehow restrictive and

it does not fit some characteristics of the data, in particular the fact that the volatility

process appears to be “almost integrated” as it can be seen by usual estimation results

and by the very slow decay of the autocorrelations of squared returns. Other global

parametric approaches have been proposed by Engle and Bollerslev (1986) and by Baillie

et al. (1996) in order to include these features in the model. Furthermore, continuous

time models, and in particular diffusions and jump diffusions, have also been considered;

see for example Andersen et al. (2002) and Duffie et al. (2000).

However, Mikosch and Starica (2000b) showed that long memory effects of finan-

cial time series can be artificially generated by structural breaks in the parameters. This

motivates another modeling approach which borrows its philosophy mainly from the non-

parametric statistics. The main idea consists in describing the volatility clustering effect

only by a locally stationary process. Therefore, only the most recent data are considered

and weighting schemes, which can be themselves either global or local and data driven,

are suggested in order to decrease the dependence of the estimate on the older observa-

tions. Some examples of this approach can be found in Fan and Gu (2003), in Dahlhaus

and Rao (2003) and in Cheng et al. (2003). Furthermore, Mercurio and Spokoiny (2004)

(referred to as MS2004 in what follows) proposes a new local adaptive volatility estima-

tion (LAVE) of the unknown volatility from the conditionally heteroskedastic returns.

The method is based on pointwise data-driven selection of the interval of homogeneity

for every time point. The numerical results demonstrate a reasonable performance of the

new method. In particular, it usually outperforms the standard GARCH(1,1) approach.

Härdle et al. (2003) extend this method to estimating the volatility matrix of the mul-

tiple returns and Mercurio and Torricelli (2003) apply the same idea in the context of a

regression problem.

The aim of the present paper is to develop another procedure which, however, applies

a similar idea of pointwise adaptive choice of the interval of homogeneity. The main
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differences between the LAVE approach from MS2004 and the new procedure is in the

way of testing the homogeneity of the interval candidate. In this paper we systematically

apply the approach based on the local multiscale change point analysis. This means that

a growing sequence of historical time intervals is considered and every interval is tested on

homogeneity against a change point alternative. If the hypothesis is not rejected, a larger

interval candidate is taken. The modified procedure allows to improve the sensitivity of

the method to changes of volatility by using the more powerful likelihood ratio test

statistic with the careful choice of the critical level. Finally, the interpretation of the

procedure as a multiple test against a change point alternative leads to a very natural

method of tuning the parameters of the procedure.

The change point detection problem for financial time series was considered in Mikosch

and Starica (2000a) but they focused on asymptotical properties of the test if only one

change point is present. Kitagawa (1987) applied non-Gaussian random walk modeling

with heavy tails as the prior for the piecewise constant mean for one-step-ahead prediction

of nonstationary time series. However, the mentioned modeling approaches require some

essential amount of prior information about the frequency of change points and their

size. The new approach proposed in this article does not assume smooth or piecewise

constant structure of the underlying process and does not require any prior information.

The procedure proposed below in Section 3 focuses on adaptive choice of the interval of

homogeneity that allows to proceed in a unified way with smoothly varying coefficient

models and change point models.

Another important feature of the proposed procedure is that it can be easily extended

to multiple volatility modeling, cf. Härdle et al. (2003). Suppose that a number of finan-

cial time series is observed and the goal is to estimate the corresponding time depending

volatility matrix. We again assume that the volatility matrix is nearly constant within

some historical time interval which we identify from the data. The volatility matrix is

estimated in a usual way from the observations which belong to the detected interval.

The theoretical study given in Sections 2 and 4 focuses on two important features of

the proposed procedure: stability in the homogeneous situation and sensitivity to spon-

taneous changes of the model parameter(s). We particularly show that the procedure

provides the optimal sensitivity to changes for the prescribed “false alarm” probability.

Our main estimation result in Theorem 4.5 claims that the procedure delivers the esti-

mation accuracy corresponding to the largest historical interval of homogeneity as if this

interval were known.

The paper is organized as follows. Section 2 describes the local parametric approach



4 multiscale local change point analysis

for the volatility modeling and presents some results about the accuracy of the local

constant volatility estimate in the univariate and multivariate case. Section 3 introduces

the adaptive modeling procedure, first in the univariate case then extending it to the

multivariate situation. Theoretical properties of the procedure are discussed in the gen-

eral situation and for two particular cases: a change point model with piecewise constant

volatility and the case of a volatility function smoothly varying in time in Section 4. Sec-

tion 5 illustrates the performances of the new methodology by means of some simulated

examples and applications to real data sets. First we address the problem of selecting

the smoothing parameters and propose one solution which is systematically applied for

all the examples. Section 5.1 presents some numerical results for a change point model.

In Section 5.3 we study forecasting ability of the new method by mean of a comparative

study with the GARCH(1,1) method. Sections 5.6 and 5.7 discuss applications of the

new method to the Value at Risk problem. Finally, Section 6 collects the proofs of the

main results.

2 Volatility modeling. Local parametric approach

Let St be an observed asset process in discrete time, t = 1, 2, . . . , while Rt defines

the corresponding return process: Rt = log(St/St−1) . We model this process via the

conditional heteroskedasticity assumption:

Rt = σtεt , (2.1)

where εt , t ≥ 1 , is a sequence of independent standard Gaussian random variables and

σt is the volatility process which is in general a predictable random process, that is, σt

is measurable with respect to Ft−1 with Ft−1 = σ(R1, . . . , Rt−1) (σ -field generated by

the first t− 1 observations).

In this paper, similarly to MS2004 we focus on the problem of filtering the parameter

f(t) = σ2
t from the past observations R1, . . . , Rt−1 . This problem naturally arises as an

important building block for many tasks of financial engineering like Value at Risk or

Portfolio Optimization.

2.1 Parametric modeling

A time-homogeneous (time-homoskedastic) model means that σt is a constant. The

process St is then a Geometric Brownian motion observed at discrete time moments.

For the homogeneous model σ2
t ≡ θ with t ∈ I , the squared returns Yt = R2

t follow the
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equation Yt = θε2
t and the parameter θ can be estimated using the maximum likelihood

method:

θ̃I = argmax
θ≥0

LI(θ) = argmax
θ≥0

∑

t∈I

`(Yt, θ)

where `(y, θ) = −(1/2) log(2πθ) − y/(2θ) is the log-density of the normal distribution

with the parameters (0, θ) . This yields

LI(θ) = −(NI/2) log(2πθ)− SI/(2θ) (2.2)

where NI denotes the number of time points in I and SI =
∑

t∈I Yt .

The volatility model is a particular case of an exponential family, so that a closed form

representation for the maximum likelihood estimate θ̃I and for the corresponding fitted

log-likelihood LI(θ̃I) are available, see Polzehl and Spokoiny (2006) for more details.

Theorem 2.1. For every interval I

θ̃I = SI/NI = N−1
I

∑

t∈I

Yt.

Moreover, for every θ > 0 the fitted likelihood ratio LI(θ̃, θ) = maxθ′ LI(θ′, θ) with

LI(θ′, θ) = LI(θ′)− LI(θ) satisfies

LI(θ̃I , θ) = NIK(θ̃I , θ) (2.3)

where

K(θ′, θ) = −0.5
{
log(θ′/θ) + 1− θ′/θ

}

is the Kullback-Leibler information for the two normal distributions with variances θ′

and θ .

Proof. The both results follow by simple algebra from (2.2).

Remark 2.1. The assumption of normality for the innovations εt is often criticized in

the financial literature. Our empirical examples in Section 5.3 below also indicate that

the tails of estimated innovations are heavier than the normality would imply. However,

the estimate θ̃I remains meaningful even for the non-normal innovations, it is just a

quasi-likelihood approach.
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2.2 Some properties of the (quasi) MLE θ̃I in the homogeneous situa-

tion

This section collects some useful properties of the (quasi) MLE θ̃I and of the fitted

log-likelihood LI(θ̃I , θ
∗) in the homogeneous situation f(t) = θ∗ for t ∈ I .

Theorem 2.2 (Polzehl and Spokoiny, 2005). Let f(t) = θ∗ for t ∈ I . If the innovations

εt are i.i.d. standard normal, then for any z > 0

IPθ∗(LI(θ̃I , θ
∗) > z) = IPθ∗

(
NIK(θ̃I , θ

∗) > z
)
≤ 2e−z.

The Kullback-Leibler divergence K fulfills K(θ′, θ∗) ≤ I∗|θ′ − θ∗|2 for any point θ′

in a neighborhood of θ∗ , where I∗ is the maximum of the Fisher information over this

neighborhood. Therefore, the result of Theorem 2.2 guarantees that |θ̃I − θ∗| ≤ CN
−1/2
I

with a high probability. Theorem 2.2 can be used for constructing the confidence intervals

for the parameter θ∗ .

Theorem 2.3. If zα satisfies 2e−zα ≤ α , then

Eα = {θ : NIK
(
θ̃I , θ

) ≤ zα}
is an α -confidence set for the parameter θ∗ .

Theorem 2.2 claims that the estimation loss measured by K(θ̃I , θ
∗) is with high

probability bounded by z/NI provided that z is sufficiently large. Similarly, one can

establish a risk bound for a power loss function.

Theorem 2.4. Let Rt be i.i.d. from N(0, θ) . Then for any r > 0

IEθ∗
∣∣LI(θ̃I , θ

∗)
∣∣r ≡ IEθ∗

∣∣NIK(θ̃I , θ
∗)

∣∣r ≤ rr .

where rr = 2r
∫
z≥0 zr−1e−zdz = 2rΓ (r) . Moreover, for every λ < 1

IEθ∗ exp
{
λLI(θ̃I , θ

∗)
} ≡ IEθ∗ exp

{
λNIK(θ̃I , θ

∗)
} ≤ 2(1− λ)−1.

Proof. By Theorem 2.2

IEθ∗
∣∣LI(θ̃I , θ

∗)
∣∣r ≤ −

∫

z≥0
zrdIPθ∗(L(θ̃I , θ

∗) > z)

≤ r

∫

z≥0
zr−1IPθ∗(LI(θ̃I , θ

∗) > z)dz ≤ 2r

∫

z≥0
zr−1e−zdz

and the first assertion is fulfilled. The last assertion is proved similarly.

Remark 2.2. The results of Theorems 2.2 and 2.4 can be extended to the case of non-

Gaussian innovations εt under some conditions on the exponential moments of the εt ,

see Golubev and Spokoiny (2006).
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2.3 Risk of estimation in nonparametric situation. “Small modeling

bias” condition

This section extends the bound of Theorem 2.4 to the nonparametric model R2
t = f(t)ε2

t

when the function f(·) is not any longer constant even in a vicinity of the reference point

t¦ . We, however, suppose that the function f(·) can be well approximated by a constant

θ at all points t ∈ I .

Let Zθ = dIP/dIPθ be the likelihood ratio of the underlying measure IP w.r.t. the

parametric measure IPθ corresponding to the constant parameter f(·) ≡ θ . Then

log Zθ =
∑

t

log
p(Yt, f(t))
p(Yt, θ)

.

If we restrict our analysis to an interval I and denote by IPI resp. IPI,θ the measure

corresponding to the observations Yt for t ∈ I , then in a similar way

log ZI,θ := log
dIPI

dIPI,θ
=

∑

t∈I

log
p(Yt, f(t))
p(Yt, θ)

.

To measure the quality of the approximation of the underlying measure IPI by the

parametric measure IPI,θ , define

∆I(θ) =
∑

t∈I

K
(
f(t), θ

)
, (2.4)

where K
(
f(t), θ

)
means the Kullback-Leibler distance between two parameter values

f(t) and θ .

Let %(θ̃I , θ) be a loss function for an estimate θ̃I constructed from the observations

Yt for t ∈ I . Define also the corresponding risk under the parametric measure IPθ :

R(θ̃I , θ) = IEθ%(θ̃I , θ).

The next result explains how the risk bounds can be translated from the parametric to

the nonparametric situations.

Theorem 2.5. Let for some θ ∈ Θ and some ∆ ≥ 0

IE∆I(θ) ≤ ∆. (2.5)

Then it holds for any estimate θ̃ measurable w.r.t. FI

IE log
(
1 + %(θ̃, θ)/R(θ̃, θ)

) ≤ ∆ + 1.
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Proof. The proof is based on the following general result.

Lemma 2.6. Let IP and IP0 be two measures such that the Kullback-leibler divergence

IE log(dIP/dIP0) , satisfies

IE log(dIP/dIP0) ≤ ∆ < ∞.

Then for any random variable ζ with IE0ζ < ∞

IE log
(
1 + ζ

) ≤ ∆ + IE0ζ.

Proof. By simple algebra one can check that for any fixed y the maximum of the function

f(x) = xy−x log x+x is attained at x = ey leading to the inequality xy ≤ x log x−x+ey .

Using this inequality and the representation IE log
(
1 + ζ

)
= IE0

{
Z log

(
1 + ζ

)}
with

Z = dIP/dIP0 we obtain

IE log
(
1 + ζ

)
= IE0

{
Z log

(
1 + ζ

)}

≤ IE0

(
Z log Z − Z

)
+ IE0(1 + ζ)

= IE0

(
Z log Z

)
+ IE0ζ − IE0Z + 1.

It remains to note that IE0Z = 1 and IE0

(
Z log Z

)
= IE log Z .

We now apply this lemma with ζ = %(θ̃, θ)/R(θ̃, θ) and utilize that IE0ζ = IEθ%(θ̃, θ)/R(θ̃, θ) =

1 . This yields

IEθ

(
ZI,θ log ZI,θ

)
= IE log ZI,θ = IE

∑

t∈I

log
p(Yt, f(t))
p(Yt, θ)

= IE
∑

t∈I

IE
{

log
p(Yt, f(t))
p(Yt, θ)

∣∣∣Ft−1

}
= IE∆I(θ)

This result implies that the bound for the risk of estimation IELr
I(θ̃I , θ) ≡ N r

I IEKr(θ̃I , θ)

under the parametric hypothesis can be extended to the nonparametric situation provided

that the value ∆I(θ) is sufficiently small.

Define for r > 0

%(θ̃I , θ) =
∣∣NIK(θ̃I , θ)

∣∣r.

By Theorem 2.4 R(θ̃I , θ) = IEθ%(θ̃I , θ) ≤ rr .
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Corollary 2.7. Let (2.5) hold for some θ . For any r > 0

IE log
(
1 +

∣∣NIK(θ̃I , θ)
∣∣r/rr

)
≤ ∆ + 1.

This result means that in the nonparametric situation under the condition (2.5) with

some fixed ∆ the losses
∣∣NIK(θ̃I , θ)

∣∣r are stochastically bounded. Note that this re-

sult applies even if ∆ is large, however the bound is proportional to e∆+1 and grows

exponentially with ∆ .

2.4 “Small modeling bias” condition and rate of estimation

This section briefly comment on relations between the results of Section 2.3 and the usual

rate results under smoothness conditions on the function f(·) .

Let n be the parameter meaning length of the largest considered historical interval.

More precisely, we assume that the function f(·) is smooth in the sense that for θ∗ =

f(t¦) and any t ≥ t¦ − n

K1/2
(
f(t), θ∗

) ≤ (t¦ − t)/n. (2.6)

In view of the inequality K(θ, θ′) ³ |θ/θ′ − 1|2 this condition is equivalent to the usual

Lipschitz property of the rescaled function f(t/n) . This condition bounds the bias of

approximating the underlying function f(t) by a constant f(t¦) by (t¦ − t)/n . The

variance of the estimate θ̃I for I = [t, t¦[ is proportional to 1/(t¦− t) . The usual “bias-

variance trade-off” means the relation “ bias2 ³ variance ”, leading to (t¦ − t)3 ³ n2 .

Now note that (2.5) and (2.6) implies

∆I(θ∗) ≤ N3
I /n2.

Therefore, the “small modeling bias” condition ∆I(θ) ≤ ∆ is essentially equivalent

to “bias-variance trade-off”. Moreover, combined with the result of Corollary 2.7 this

condition lead to the following classical rate results.

Theorem 2.8. Assume (2.6). Select I such that NI = cn2/3 for some c > 0 . Then

(2.5) holds with ∆ = c3 and for any r > 0

log
(
1 +

∣∣NIK(θ̃I , θ)
∣∣r/rr

)
≤ c3 + 1.

This corresponds to the classical accuracy of nonparametric estimation for the Lips-

chitz functions, cf. Fan, Farmen and Gijbels (1998).
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2.5 Extension to multiple volatility modeling

In this section we discuss how the approach local parametric can be extended to mod-

eling of multiple time series. Let St ∈ IRd be a vector of observed asset processes in

discrete time, t = 1, 2, . . . and Rt is the vector of the corresponding returns: Rt,m =

log(St,m/St−1,m) , m = 1, . . . , d . The conditional heteroscedasticity assumption reads in

this case as

Rt = Σ
1/2
t εt , (2.7)

where εt , t ≥ 1 , is a sequence of independent standard Gaussian random vectors and Σt

is a symmetric d× d volatility matrix which is in general a predictable random process,

that is, Σt is measurable with respect to Ft−1 with Ft−1 = σ(R1, . . . , Rt−1) ( σ -field

generated by the first t− 1 observations).

A time-homogeneous (time-homoscedastic) model means that the matrix Σt is a

constant. For the homogeneous model Rt = Σ1/2εt with t ∈ I , the parameter Σ can

be estimated from the observations Rt , t ∈ I by maximizing the log-likelihood

LI(Σ) =
∑

t∈I

`(Rt, Σ)

where `(y, Σ) = −(1/2) log(detΣ) − y>Σ−1y/2 for y ∈ IRd corresponds to the log-

density of the normal distribution with the parameters (0, Σ) . (We skip the unimportant

constant term −(d/2) log(2π) in the expression of the density.) The simple algebra yields

LI(Σ) = −NI

2
log(detΣ)− 1

2

∑

t∈I

R>
t Σ−1Rt = −NI

2
log(detΣ)− NI

2
tr

(
Σ−1Σ̃I

)

where Σ̃I be the empirical covariance matrix:

Σ̃I = N−1
I

∑

t∈I

RtR
>
t .

Theorem 2.9. For every interval I , it holds

Σ̃I = argmax
Σ

LI(Σ)

LI(Σ̃I) = −NI

2
log(det Σ̃I)− d

2
(2.8)

Moreover, for every Σ ∈ Θ the fitted likelihood ratio LI(Σ̃,Σ) = maxΣ′∈Θ LI(Σ′, Σ)

with LI(Σ′, Σ) = LI(Σ′)− LI(Σ) satisfies

LI(Σ̃I , Σ) = NIK(Σ̃I , Σ) (2.9)
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where

K(Σ, Σ0) = −0.5
{
log(detΣ/detΣ0)− tr

(
ΣΣ−1

0 − Id

)}

is the Kullback-Leibler information for the two normal distributions with covariance ma-

trices Σ and Σ0 , see Kullback (1959).

Proof. The first assertion is can be proved by differentiating the expression LI(Σ) w.r.t.

Σ . The other results follow by simple algebra.

The important deviation result of Theorem 2.4 extends to the multiple case as well

under some technical condition on the set Θ of volatility matrices Σ .

(Θ) for some constant a with 0 < a ≤ 1 , any two matrices Σ,Σ0 ∈ Θ satisfy

a2 ≤ Σ−1/2Σ0Σ
−1/2 ≤ a−2.

In the univariate case this condition means that the volatility parameter has a finite

range:

a2 ≤ θ0/θ ≤ a−2

Theorem 2.10. Assume (Θ) . Let Rt be i.i.d. from N(0, Σ∗) for Σ∗ ∈ Θ . Then for

any r > 0

IE
∣∣LI(Σ̃I , Σ

∗)
∣∣r ≡ IE

∣∣NIK(Σ̃I , Σ
∗)

∣∣r ≤ Rr ,

where constant Rr depends on the dimension d and the constant a from (Θ) only.

In the nonparametric situation when the volatility matrix Σt is not constant any

more, we again again apply the approach based on the local parametric approximation

and small modeling bias condition. This condition means that the underlying volatility

process Σt can be well approximated within the interval I by a constant matrix Σ

where the quality of approximation is measured by the quantity

∆I(Σ) =
∑

t∈I

K
(
Σt, Σ

)
.

Similarly to the univariate case, ∆I(Σ) is a random variable and the “small modeling

bias” condition should bound it in a stochastic sense.
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Theorem 2.11. Assume (Θ) . Let for some fixed matrix Σ and a constant ∆

IE∆I(Σ) ≤ ∆.

Then for every r > 0

IE log
(
1 +

∣∣NIK(Σ̃I , Σ
∗)

∣∣r/Rr

) ≤ ∆ + 1.

This result, as in the univariate situation, yields the usual nonparametric quality of

estimation for the local MLE Σ̃I .

3 Adaptive volatility estimation

The assumption of time homogeneity is too restrictive in practical applications and it

does not allow to fit well real data. In this paper we consider an approach based on the

assumption of local time-homogeneity which means that for every time moment t¦ there

exists a historic time interval [t¦ − m, t¦[ in which the volatility process σt is nearly

constant. Under such a modeling, the main intention is both to describe the interval of

homogeneity and to estimate the corresponding value σt¦ .

3.1 Choice of the interval of homogeneity by local change point analysis

Our approach is based on the adaptive choice of the interval of homogeneity for the

fixed end point t¦ . This choice is made by the local (multiscale) change point detection

(LCP) algorithm described below. The procedure attempts to find this interval from

the data by successive testing the hypothesis of homogeneity. Let a growing sequence

of numbers m1 < m2 < . . . < mK be fixed. Each mk means the scale parameter

describing the length of the historical time interval screened at the step k . Define

a family {Ik , k = 1, . . . ,K} of nested intervals of the form Ik = [t¦ − mk, t¦[ with

the right edge at t¦ . The procedure starts from the smallest interval I1 by testing the

hypothesis of homogeneity within I1 against a change point alternative. If the hypothesis

is not rejected then we take the next larger interval Ik and test for a change point. We

continue this way until we detect a change point or the largest considered interval IK

is accepted. If the hypothesis of homogeneity within some interval Ik is rejected and a

change point is detected at a point τ̂ ∈ Ik , then the estimated interval of homogeneity

is defined as the latest accepted interval, that is, Î = Ik−1 = [t¦ −mk−1, t
¦[ , otherwise

we take Î = IK . Finally, we define the estimate f̂(t¦) = θ̂ of the volatility parameter

f(t¦) = σ2
t¦ as f̂(t¦) = θ̃

Î
.
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The main ingredient of this procedure is the homogeneity test for every interval Ik ,

which is described in the next section.

3.2 Test of homogeneity against a change point alternative

Let J be a tested interval which has to be checked on a possible change point. For carry-

ing out the test, we also introduce be a larger testing interval I = [t′, t′′[ . The hypothesis

of homogeneity for J means that the observations Rt follow the parametric model with

the parameter θ for J itself and for the larger interval I . This hypothesis leads to

the log-likelihood LI(θ) for the observations Rt ∈ I . We want to test this hypothesis

against a change point alternative that the parameter θ spontaneously changes in some

internal point τ of the interval J . Every point τ ∈ J splits the interval I = [t′, t′′[

onto two subintervals I ′′ = [τ, t′′[ and I ′ = I \ I ′′ = [t′, τ [ . The change point alternative

means that f(t) = θ′′ for t ∈ I ′′ and f(t) = θ′ for t ∈ I ′′ for some θ′′ 6= θ′ . This

corresponds to the log-likelihood LI′′(θ′′)+LI′(θ′) . The likelihood ratio test statistic for

the change point alternative with the change point location at the point τ is of the form

TI,τ = max
θ′′,θ′

{
LI′′(θ′′) + LI′(θ′)

}−max
θ

LI(θ)

= LI′′(θ̃I′′) + LI′(θ̃I′)− LI(θ̃I).

For the considered volatility model, this test statistic can be represented in the form

TI,τ = min
θ

{
NI′′K(θ̃I′′ , θ) + NI′K(θ̃I′ , θ)

}
= NI′′K(θ̃I′′ , θ̃I) + NI′K(θ̃I′ , θ̃I), (3.1)

see (2.3).

The change point test for the interval J is defined as the maximum of such defined

test statistics over τ ∈ J :

TI = max
τ∈J

TI,τ . (3.2)

The change point test compares this statistic with the critical value z which may depend

on the intervals J and I . The hypothesis of homogeneity is rejected if TI ≥ z , in this

case the estimator of the change point location is defined as τ̂ = argmaxτ∈JI
TI,τ .

In the multivariate case, the corresponding test is very similar. The null hypothesis

for J means that the observations Rt for t ∈ I follow the parametric model with

the volatility matrix Σ . This hypothesis leads to the log-likelihood LI(Σ) . We want

to test this hypothesis against a change point alternative that the volatility matrix Σ

spontaneously changes in some internal point τ of the interval J , so that Σt = Σ′ for
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t ∈ I ′ and Σt = Σ′′ for t ∈ I ′′ . Similarly to the univariate case, the corresponding

likelihood ratio test statistic is of the form

TI,τ = max
Σ′,Σ′′

{
LI′(Σ′) + LI′′(Σ′′)

}−max
Σ

LI(Σ)

= LI′(Σ̃I′) + LI′′(Σ̃I′′)− LI(Σ̃I).

For the considered volatility model, due to (2.9), this test statistic can be represented as

TI,τ = NI′K(Σ̃I′ , Σ̃I) + NI′′K(Σ̃I′′ , Σ̃I)

where K(Σ, Σ0) = 0.5
{
tr(ΣΣ0

−1 − Id)− log(detΣ/det Σ0)
}

is the Kullback-Leibler

divergence for the two normal distributions with variances Σ and Σ0 .

Remark 3.1. The change point alternative suggested above is only one of possibilities

to test the homogeneity assumptions. One can apply many other tests, e.g. omnibus

tests against polynomials or trigonometric functions, see e.g. Hart (1998). Our choice is

motivated by several reasons. First of all, it is simple to implement and does not require

a special model estimation under alternative because the alternative reduces to the null

hypothesis for two smaller intervals. Secondly, it has a natural interpretation and delivers

an additional information about the location of the change and the length of the interval

of homogeneity. Finally, it was shown in Ingster (1986), see also Horowitz and Spokoiny

(2001) that a test based on the local constant alternative is powerful against smooth

alternatives as well.

3.3 The procedure

This section describes the LCP procedure for the univariate case. The procedure is

sequential and consists of K steps corresponding to the given growing sequence of

numbers m0 < m1 < . . . < mK . This sequence determines the sequence of nested

intervals I0 ⊂ I1 ⊂ . . . ⊂ IK with the right edge at the point of estimation t¦ :

Ik = [t¦k, t
¦[= [t¦ − mk, t

¦[ . This set of intervals leads to the set of estimates θ̃Ik
,

k = 0, 1, . . . , K . For conciseness of notation, we write θ̃k in place of θ̃Ik
and Nk in

place of NIk
= mk .

The proposed adaptive method chooses an index k̂ of equivalently, the estimate

θ̃
k̂

from this set. The procedure is sequential and it successively checked the intervals

I0, I1, . . . , Ik, on change points.

The interval I0 is always accepted and the procedure starts with k = 1 . At every

step k , the interval Jk = Ik \Ik−1 is tested against a change point using a larger interval



spokoiny, v. and chen, y. 15

Ik = Ik+1 . Ik is accepted if the previous interval Ik−1 was accepted and the test statistic

Tk = TIk+1
defined by (3.2) does not exceed the critical value zk . In this case we set

κk = k . The event {Ik is rejected} means that Tl > zl for some l ≤ k and hence,

a change point has been detected in the first k steps of the procedure. In this case

κk = κk−1 . For every k , we define a current estimate θ̂k = θ̃κk
. The final estimate is

defined as θ̂ = θ̂K and it corresponds to the largest found interval of homogeneity. The

formal definition reads as follows:

κ = max{k ≤ K : Tl ≤ zl, l = 1, . . . , k}, θ̂ = θ̃Iκ .

The way of choosing the critical value as well as the other parameters of the procedure

like the intervals Ik is discussed in the next section.

3.4 Parameters of the LCP procedure

This section discusses the parameters of the LCP procedure and some implementation

details.

3.4.1 Choice of the parameters zk

The “critical values” zk define the level of significance for the test statistics Tk = TIk
.

A proper choice of these parameters is crucial for the performance of the procedure.

We propose in this section one general approach for selecting them which is similar to

the bootstrap idea in the hypothesis testing problem. Namely, we select these values to

provide the prescribed performance of the procedure in the parametric situation (under

the null hypothesis). An important and helpful property of the volatility parametric

model f(·) ≡ θ∗ is that the distribution of the test statistics TI,τ and TI does not

depend on the parameter value θ∗ . This is a simple corollary of the fact that volatility

is a scale parameter of the corresponding parametric family. However, in view of its

importance for our study we state it in a separate lemma.

Lemma 3.1. Let the return Rt follow the parametric model with the constant volatility

parameter θ∗ , that is, R2
t = θ∗ε2

t . Then the distribution of the test statistics Tk under

IPθ∗ is the same for all θ∗ > 0 .

Proof. It suffices to notice that for every interval I the estimate θ̃I can be represented

under IPθ∗ as

θ̃I = N−1
I

∑

t∈I

Y 2
t = θ∗N−1

I

∑

t∈I

ε2
t
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and for each two intervals I, I ′ , the Kullback-Leibler divergence K(θ̃I , θ̃I′) is a function

of the ratio θ̃I/θ̃I′ .

The result of Lemma 3.1 allows to reduce the parametric null situation to the case of

a simple null consisting of one point θ∗ , e.g. θ∗ = 1 . The corresponding distribution of

the observation under this measure will be denoted by IPθ∗ .

For every step k , we require that in the parametric situation f(·) ≡ θ∗ the estimate

θ̂k is sufficiently close to the “oracle” estimate θ̃k in the sense that

IEθ∗
∣∣NkK

(
θ̃k, θ̂k

)∣∣r ≤ αrr (3.3)

for all k = 1, . . . , K with rr from Theorem 2.4.

Note that the θ̂k differs from θ̃k only if a change point is detected at the first k

steps. The usual condition to any change point detector is that such “false alarms” occur

with a small probability. Our condition (3.3) has the same flavor but it is a bit stronger.

Namely, a false alarm at an early stage of the procedure is more crucial because it results

in selecting an estimate with a high variability. Therefore, such events have to be stronger

penalized than the false alarms in the final steps of the algorithm.

The values α and r in (3.3) are two global parameters. The role of α is similar to

the level of the test in the hypothesis testing problem while r describes the power of the

loss function. A specific choice is subjective and depends on the particular application

at hand. Taking a large r and small α would result in an increase of the critical values

and therefore, improves the performance of the method in the parametric situation at

cost of some loss of sensitivity to parameter changes. Theorem 4.1 presents some upper

bounds for the critical values zk as functions of α and r in the form a0 + a1 log α−1 +

a2r log(NK/Nk) + a3r log(Nk) with some coefficients a0 , a1 , a2 and a3 . We see that

these bounds linearly depend on r and on log α−1 . For our applications to volatility

estimation, we apply a relatively small value r = 1/2 which makes the procedure more

stable and robust against outliers. We also apply α = 1 although the other values in the

range [0.5, 1] lead to very similar results.

The set of conditions (3.3) do not directly define the critical values zk . We present

below one constructive method for selecting zk to provide the conditions (3.3).

3.4.2 The sequential choice

Here we present a proposal for a sequential choice of the zk ’s. Consider the situation

after the first k steps of the algorithm. We distinguish between two cases: a change point
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has been detected at some step l ≤ k and the other case of no change point detected.

In the first case we denote by Bl the event meaning the rejection at the step l , that is,

Bl = {T1 ≤ z1, . . . , Tl−1 ≤ zl−1, Tl > zl}

and θ̂k = θ̃Il−1
on Bl , l = 1, . . . , k . The sequential choice of the critical values zk is

based on the decomposition

∣∣K(
θ̃k, θ̂k

)∣∣r =
k∑

l=1

∣∣K(
θ̃k, θ̃l−1

)∣∣r1(
Bl

)
(3.4)

for every k ≤ K . Now we utilize that the event Bl only depends on z1, . . . , zl . In

particular, the event B1 means that T1 > z1 and θ̂j = θ̃0 for all j ≥ 1 . We select z1

as the minimal value providing that

max
j=1,...,K

IEθ∗
∣∣NjK

(
θ̃j , θ̃0

)∣∣r1(
T1 > z1

) ≤ αrr/K. (3.5)

Similarly, for every k ≥ 2 , select zk by considering the event Bk = {κk = k} meaning

that the false alarm occurs at the step k and θ̂j = θ̃k−1 for all j > k . If z1, . . . , zk−1

have been already fixed, the event Bk is only controlled by zk leading to the following

condition on zk : this is the minimal value that provides

max
j≥k

IEθ∗
∣∣NjK

(
θ̃j , θ̃k−1

)∣∣r1(
Bk

)
= αrr/K. (3.6)

It is straightforward to check that such defined zk fulfill (3.3) in view of the decomposition

(3.4).

3.5 Examples of choosing the intervals Ik

To start the procedure running, one has to specify the set of intervals I1, . . . , IK . Note,

however, that this choice is not a part of the LCP procedure. The method applies

whatever intervals Ik are selected under condition (MD) , see Section 4. This section

presents one example which is at the same time the default choice for our simulation

study and applications.

The set m1, . . . , mK is defined geometrically by the rule mk = [m0a
k] for some fixed

value m0 and the growth rate a > 1 . It is straightforward to see that such a proposal

provides (MD) . Note also that the sets Jk do not intersect for different k and every

point τ ∈ [t¦ −mk, t
¦ −m0] is tested as a possible location of the change point at some

of the first k steps of the procedure.
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Our numerical results (not reported here) indicate that the procedure is quite stable

w.r.t. the choice of the parameters like m0 and a . We apply a = 1.25 . The other values

of a in the range 1.1 to 1.3 lead to very similar results. We also apply m0 = 5 or 10

which is motivated by our applications to risk management in financial engineering.

3.6 The procedure for multiple case

This section briefly comments on the extension of the method to the case of multiple

volatility modeling. The procedure reads exactly as in the univariate case. One only has

to adjust the definition of the test statistics TIk,τ :

TIk,τ = LI′′(Σ̃I′′) + LI′(Σ̃I′)− LI(Σ̃Ik
) = NI′′K(Σ̃I′′ , Σ̃Ik

) + NI′K(Σ̃I′ , Σ̃Ik
).

The important result of Lemma 3.1 about pivotality of the test statistics Tk extends

by the same arguments from univariate to multivariate volatility modeling and the dis-

tribution of all the test statistics Tk does not depend on the underlying volatility matrix

Σ∗ in the parametric situation. To see this, it suffices to replace the observations Rt

by the standardized returns (Σ∗)−1/2Rt . Then the volatility matrix Σ∗ cancels in the

expression for the log-likelihood and for the risk. Unfortunately, in the multivariate case

there is no closed form expression for the risk bound Rr . However, this bound can be

computed by Monte-Carlo simulations using any particular Σ∗ , e.g. Σ∗ = Id : draw

Monte-Carlo samples from the simple model with i.i.d. standard normal Rt = εt , then

compute estimate Σ̃k for all considered intervals Ik and define Rr as the maximum of

the corresponding estimated risk IE
∣∣NkK(Σ̃k, Id)

∣∣r over k = 1, . . . , K , where Σ̃k means

Σ̃Ik
.

Similarly, the critical value zk can be selected by Monte-Carlo simulations from the

homogeneous model with Σ∗ = Id and Rt = εt to provide the condition

IEΣ∗
∣∣NkK

(
Σ̃k, Σ̂k

)∣∣r ≤ αRr (3.7)

for all k = 1, . . . , K where Σ̂k is the adaptive estimate after k steps of the algorithm

and Rr is shown in Theorem 2.10. The sequential choice of the zk ’s can be applied for

finding the critical values zk similarly to the univariate case.

4 Theoretical properties

This section discusses some useful theoretical properties of the adaptively selected interval

of homogeneity Î and then of the adaptive volatility estimate θ̂ that corresponds to the
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selected interval Î , that is, θ̂ = θ̃
Î
. We state the most of our results for the case of one

time series. However, all the results can be extended in a straightforward way to the case

of multiple volatility modeling using the results from Theorems 2.9, 2.10 and 2.11.

Our main “oracle” result claims that the final estimate θ̂ delivers essentially the same

quality of estimation as the estimate with the “optimal” (“ideal”) choice of the interval

Ik∗ for estimating the volatility parameter θ = f(t¦) . As shown in Section 2.3 this

automatically ensures the optimal estimation rate under usual smoothness conditions on

the function f(·) .

The “oracle” result is in its turn a corollary of two important properties of the proce-

dure: “propagation” under homogeneity and “stability”. The first one means that in the

nearly homogeneous situation the procedure would not terminate (no “false alarm”) with

a high probability. In the other words, if the parametric (constant) approximation well

applies in the interval Ik then this interval will be accepted with a high probability. The

“stability” property ensures that the estimation quality will not essentially deteriorate in

the steps “after propagation” when the local constant approximation is not sufficiently

accurate. Typically the procedure just stops in such situations.

The results require some regularity conditions on the growth of the intervals Ik and

the choice of testing intervals Ik . Namely, we require that the length mk of Ik grows

exponentially with k , and change point detection for every Jk = Ik \ Ik−1 is restricted

to the interior of Ik .

(MD) for some constants u0, u with 0 < u0 ≤ u < 1 , the values m1, . . . , mK satisfy

u0 ≤ mk−1/mk ≤ u.

In addition we assume that the parameter set Θ satisfies the condition (Θ) from

Section 2.5. In the univariate case this condition means that the relative variation of

volatility is bounded by a constant a2 .

We start by discussing the behavior of the procedure in the time homogeneous situa-

tion with the constant volatility parameter θ∗ . In this case the properties of the resulting

estimate θ̂ are guaranteed by the condition (3.3). Our first results claims a possibility

of selecting the critical values zk to provide (3.3) and states some upper bounds for the

zk ’. Similar result can be stated in the local parametric situation when the homogeneity

condition f(t) = θ∗ is only fulfilled for some time interval I .
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4.1 Behaviour under (local) homogeneity

First we consider the homogeneous situation with the constant parameter value f(x) =

θ∗ . Our first result claims that in this situation under the condition (MD) the parame-

ters zk can be chosen in the form zk = zK + ι(K − k) to fulfill the condition (3.3). The

proof is given in the Appendix.

Theorem 4.1. Assume (MD) . Let f(t) = θ∗ for all t ∈ IK . Then there are three

constants a0, a1 , a2 and a3 depending on r and u0 , u only such that the choice

zk = a0 + a1 log α−1 + a2r log(NK/Nk) + a3r log Nk

ensures (3.3) for all k ≤ K . Particularly, IEθ∗
∣∣NKK

(
θ̃K , θ̂

)∣∣r ≤ αrr.

Remark 4.1. Using the general bounds on the minimum contrast, see e.g. Golubev

and Spokoiny (2006), this result can be improved by removing the term a3r log Nk .

However, a careful check of the related conditions would result in a significant increase

of the paper size. We, therefore, present a more simple bound whose proof is postponed

until Section 6.

4.2 Behaviour under “small modelling bias” condition

Now we extend the previous result to the situation when the parametric assumption is not

fulfilled any more but the deviation from the parametric structure within the considered

local model is sufficiently small. At the step k the procedure operates with the interval

Ik = Ik+1 used for testing a change point within Ik . Therefore, the deviation from the

parametric situation can be measured for the step k by ∆Ik+1
(θ) from (2.4).

We suppose that there is a number k∗ such that the modeling bias ∆k(θ) = ∆Ik+1
(θ)

is small for some θ and all k ≤ k∗ . Consider the corresponding estimate θ̂k∗ obtained

after the first k∗ steps of the algorithm. Theorem 2.5 implies in this situation the

following result.

Theorem 4.2. Assume (MD) . Let θ and k∗ be such that

max
k≤k∗

IE∆k(θ) ≤ ∆ (4.1)

for some ∆ ≥ 0 . Then

IE log
(

1 +
N r

k∗K
r
(
θ̃k∗ , θ̂k∗

)

αrr

)
≤ 1 + ∆,

IE log
(

1 +
N r

k∗K
r
(
θ̃k∗ , θ

)

rr

)
≤ 1 + ∆.
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4.3 “Stability after propagation” and “oracle” results

Due to the “propagation” result, the procedure performs well as long as the “small

modeling bias” condition ∆k(θ) ≤ ∆ is fulfilled. To establish the accuracy result for the

final estimate θ̂ , we have to check that the aggregated estimate θ̂k does not vary much

at the steps “after propagation” when the divergence ∆k(θ) from the parametric model

becomes large.

Theorem 4.3. Suppose (MD) and (Θ) . Let, for some k ≤ K , the interval Ik be

accepted by the procedure and hence, θ̂k = θ̃k . Then it holds

NkK
(
θ̂k, θ̂k+1

) ≤ zk. (4.2)

Moreover, under (MD) , it holds for every k′ with k < k′ ≤ K

NkK
(
θ̂k, θ̂k′

) ≤ a2c2
u zk (4.3)

with cu = (u−1/2 − 1)−1 and zk = maxl≥k zl .

Remark 4.2. An interesting feature of this result is that it is fulfilled with probability

one, that is, the control of stability “works” not only with a high probability, it always

applies. This property follows directly from the construction of the procedure.

Proof. If Ik+1 is rejected then θ̂k+1 = θ̂k and the assertion (4.2) trivially follows. Now

we consider the case when Ik+1 is accepted yielding θ̂k = θ̃k and θ̂k+1 = θ̃k+1 . The

acceptance of Ik implies by definition of the procedure that TIk
≤ zk and, in particular,

TIk,τ ≤ zk with τ = t¦ −mk being the left edge of Ik . This yields, see (3.1), that

NkK
(
θ̃k, θ̃k+1

) ≤ zk .

and the assertion (4.2) is proved.

Now, Assumption (Θ) and Lemma 6.1 yield

K1/2
(
θ̂k, θ̂k′

) ≤ a

k
′−1∑

j=k

K1/2
(
θ̂j , θ̂j+1

) ≤ a

k
′−1∑

j=k

(
zj/Nj

)1/2
.

The use of Assumption (MD) leads to the bound

K1/2
(
θ̂k, θ̂k′

) ≤ a
(
zk/Nk

)1/2
k
′−1∑

j=k

u(j−k)/2 ≤ a(1−√u)−1
(
zk/Nk

)1/2

which proves (4.3).
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Combination of the “propagation” and “stability” statements implies the main result

concerning the properties of the adaptive estimate θ̂ .

Theorem 4.4 (“Oracle” property). Let IE∆k(θ) ≤ ∆ for some θ ∈ Θ and k ≤ k∗ .

Then θ̂ is close to the “oracle” estimate θ̃k∗ in the sense that

IE log
(

1 +

∣∣Nk∗K
(
θ̃k∗ , θ̂k∗

)∣∣r
αrr

)
≤ 1 + ∆,

Nk∗K
(
θ̂k∗ , θ̂

) ≤ a2c2
u zk∗ .

The result claims the “oracle” accuracy N−1
k∗ for the loss K(θ̂, θ) up to the log factor

zk∗ . We state on corollary of the “oracle” result for r = 1/2 . An extension to an

arbitrary r > 0 is obvious.

Theorem 4.5. Assume (MD) and (4.1) for some k∗ , θ and ∆ . Then

IE log
(

1 +
N

1/2
k∗ K1/2

(
θ̂, θ

)

ar1/2

)
≤ log

(
1 +

cu

√
zk∗

r1/2

)
+ ∆ + α + 1

where cu is the constant from Theorem 4.3.

Proof. By Lemma 6.1 similarly to the proof of Theorem 4.3

a−1
∣∣Nk∗K

(
θ̂, θ

)∣∣1/2 ≤ ∣∣Nk∗K
(
θ̂k∗ , θ̂

)∣∣1/2 +
∣∣Nk∗K

(
θ̃k∗ , θ̂k∗

)∣∣1/2 +
∣∣Nk∗K

(
θ̃k∗ , θ

)∣∣1/2

≤ cu

√
zk∗ +

∣∣Nk∗K
(
θ̃k∗ , θ̂k∗

)∣∣1/2 +
∣∣Nk∗K

(
θ̃k∗ , θ

)∣∣1/2
.

This, the elementary inequality log(1 + a + b) ≤ log(1 + a) + log(1 + b) for all a, b ≥ 0 ,

Lemma 2.6, Theorem 2.4, and (3.3) yield

IE log
(
1 + (ar1/2)

−1N
1/2
k∗ K1/2

(
θ̂, θ

))

≤ log
(
1 +

cu

√
zk∗

r1/2

)
+ IE log

(
1 +

N
1/2
k∗ K1/2

(
θ̃k∗ , θ̂k∗

)

r1/2
+

N
1/2
k∗ K1/2

(
θ̃k∗ , θ

)

r1/2

)

≤ log
(
1 +

cu

√
zk∗

r1/2

)
+ ∆ + α + 1

as required.

Remark 4.3. Recall that by Theorem 4.2, the “oracle” choice k∗ leads to the risk

bound for the loss
∣∣Nk∗K

(
θ̃k∗ , θ

∗)∣∣1/2 of the corresponding estimate θ̃k∗ . The adaptive

choice states a similar bound but for the loss
∣∣Nk∗K

(
θ̂, θ∗

)∣∣1/2
/z

1/2
k∗ . This means that the

accuracy of the adaptive estimate θ̂ is worse by factor
√

zk∗ which can be considered
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as the payment for adaptation. Due to Theorem 4.1, zk∗ is bounded from above by

a0 + a1 log(α−1) + a2r log(NK/Nk∗) + a3r log Nk∗ . Therefore, the risk of the aggregated

estimate corresponds to the best possible risk among the family {θ̃k} for the choice

k = k∗ up to a logarithmic factor in the sample size. Lepski, Mammen and Spokoiny

(1997) established a similar result in the regression setup for the pointwise adaptive

Lepski procedure. Combining the result of Theorem 4.5 with Theorem 2.8 yields the rate

of adaptive estimation
(
n−1 log n

)1/(2+d) under Lipschitz smoothness of the function f

and the usual design regularity, see Polzehl and Spokoiny (2005) for more details. It was

shown by Lepski (1990) that in the problem of pointwise adaptive estimation this rate

is optimal and cannot be improved by any estimation method. This gives an indirect

proof of the optimality of our procedure: the factor zk∗ in the accuracy of estimation

cannot be removed or reduced in the rate because otherwise the similar improvement

would appear in the rate of estimation.

4.4 Switching regime model

A switching regime model is described by a sequence ν1 < ν2 < . . . of Markov mo-

ments with respect to the filtration Ft and by values θ1, θ2, . . . where each θj is Fνj -

measurable. By definition σ2
t = f(t) = θj for νj ≤ t < νj+1 and σt is constant for

t < ν1 . This is an important special case of the model (2.1). It is worth mentioning

that any volatility process σt can be approximated by such a switching regime model.

For this special case, the above procedure has a very natural interpretation: when esti-

mating at the point t¦ we search for a largest interval of the form [t¦ −m, t¦[ does not

containing a change point. More precisely, with a giving sequence of interval-candidates

Ik = [t¦ −mk, t
¦[ , we are looking for the largest among them which does not contain a

change point. This is done via successive testing for a change point within the intervals

Ik = [t¦ −mk, t
¦[ .

The construction of the procedure automatically provides the prescribed risk level

associated with the first kind error (a “false alarm”). In this section we aim to show

that the procedure delivers a near optimal quality of change point detection. The quality

(sensitivity) of a change point procedure is usually measured by the mean delay between

the occurrence of the change points and its detection. To study this property of the

proposed method, we consider the case of estimation at a point t¦ next after a change

point ν . The “ideal” choice Ik∗ among I1, . . . , IK is obviously the largest one does not

containing ν . Theorem 4.5 claims that the procedure accepts with a high probability all
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the intervals Ik for which the testing interval Ik = Ik+1 does not contain the point of

change ν . This particularly implies that the quality of estimation of θt¦ by our adaptive

procedure is essentially the same as if we knew the latest change point ν a priori. Now

we show that in addition the procedure rejects with a high probability the first interval

Ik∗+1 which contains the point of change ν provided that the magnitude of the change

is sufficiently large. This fact can be treated as the sensitivity of the procedure to the

changes of regime.

In our study we assume that the changes occur not too often, and there is exactly

one change within Ik∗+1 and moreover, within the larger interval Ik∗+1 = Ik∗+2 which

is used for testing Ik∗+1 . Let θ′ be the value of the parameter before the change and

θ′′ after it. The point τ splits Ik∗+2 into two homogeneous intervals: f(t) = θ′′ for

t ∈ I ′′ = [τ, t¦[ while f(t) = θ` within the complementary interval t ∈ Ik∗+1 \ I ′′ . Define

c1 = mk∗/mk∗+2 , c2 = mk∗+1/mk∗+2 . By condition (MD) , c1 ≥ u2
0 and c2/c1 ≥ u−1 .

The length t¦−τ of the interval [τ, t¦[ fulfills c1 ≤ (t¦−τ)/mk∗+2 ≤ c2 . Based on these

considerations, define the following measure of change from θ′ to θ′′ :

d2(θ′, θ′′) = inf
θ

inf
c∈[c1,c2]

{
(1− c)K(θ′, θ) + cK(θ′′, θ)

}
. (4.4)

The following simple bound can be useful for bounding the distance d2(θ′, θ′′) .

Lemma 4.6. There is a constant b > 0 depending on c1 and c2 only such that

d2(θ′, θ′′) ≥ b
(
θ′/θ′′ − θ′′/θ′

)2
.

Proof. For every fixed θ′, θ′′, θ , the expression (1 − c)K(θ′, θ) + cK(θ′′, θ) is a linear

function of c . Therefore, its minimum w.r.t. c is attained in one of the edge points

c1 , c2 , and it suffices to check the assertion only for these two values of c . Now the

assertion follows directly from the definition of the Kullback-Leibler distance K(θ′, θ) as

a smooth function of the ratio θ′/θ with K(θ, θ) ≡ 0 .

We aim to show that if the contrast d(θ′, θ′′) is sufficiently large then the test statistic

Tk∗+1 will be large as well yielding that the interval Ik∗+1 will be rejected with a high

probability.

Theorem 4.7. Let f(t) = θ′ before the change point at ν and f(t) = θ′′ after it. If

for some z > 0 ,

d2(θ′, θ′′) ≥ 2a2

mk∗+2
(zk∗+1 + z) (4.5)
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then

IP (Ik∗+1 is not rejected) ≤ 4e−z .

The proof of this result is given in Section 6. The result of Theorem 4.7 delivers some

additional information about the sensitivity of the proposed procedure to changes in the

volatility parameter. One possible question is about the minimal delay m∗ between the

change point ν and the first moment t¦ when the procedure starts to detect this change.

Due to Theorem 4.7, the change will be “detected” with a high probability if (4.5) meets.

With fixed θ′ 6= θ′′ , condition (4.5) is fulfilled if m∗ is larger than a prescribed constant,

that is, we need only a finite number of observations to detect a change point. In general,

m∗ should be of order d−2(θ′, θ′′) ³ |θ′ − θ′′|−2 , if the size of the change becomes small.

All these issues are in agreement with the theory of change point detection, see, e.g.

Pollak (1985) and Brodskij and Darkhovskij (1993), and with our numerical results from

Section 5.

5 Simulated results and applications

This section illustrates the performance of the proposed local change point detection

(LCP) procedure by means of some simulated data sets and applications to real data. We

aim to show that the theoretical properties of the method derived in the previous section

are confirmed by the numerical results. We focus especially on the two main features of

the method: stability under homogeneity and sensitivity to changes of volatility.

5.1 Some simulated examples. Univariate case

Three different jump processes are simulated, whose relative jump magnitude is 3.00,

2.00 and 1.75 respectively. Each process is simulated and estimated 1000 times and the

median and the quartiles of the estimates are plotted in Figure 5.1. We show the results

for the final estimate θ̂ and for the length of the selected interval Î . One can see that

if the size of the change is large enough, the procedure performs as if the location of the

change were known. As one can expect, the sensitivity of the change point detection

decreases when the magnitude of the jump becomes smaller. However, the accuracy of

estimate of the volatility remains rather good even for small jumps that corresponds to

our theoretical results.

The algorithm proposed in this paper is compared with the LAVE procedure from

MS2004 with the optimized tuning parameters γ = 0.5 , M = 40 , z = 2.40 . Figure 5.2
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Figure 5.1: Pointwise median (solid line) and quartiles (dashed lines) for the estimates θ̂t (top

row) and the length of the selected interval Ît for three jump processes with jumps of different

magnitudes. The results are obtained with parameters c = 1.5 and α = 0.05 .
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shows the quartiles of estimation for the two approaches for the model with the rela-

tive jump magnitude 3. One can see that the new procedure outperforms LAVE both

with respect to the variance and to the bias of the estimator, especially for the points

immediately after the changes.

Our simulation study has been done for the conditional normal model (2.1). We

mentioned in Section 2.1 that this assumption is questionable as far as the real financial

data is considered. To gain an impression about the robustness of the method against

violation of the normality assumption we also simulated using i.i.d. innovations from the

t5 -distribution with five degree of freedoms. The results are shown in Figure 5.3. As one

can expect they are slightly worse than in the case of normal innovations, however, the

procedure continues to work in a quite reasonable way. The sensitivity of the procedure

remains as good as with normal innovations but a probability to reject a homogeneous

interval became larger. This results in a higher variability of the estimated volatility.
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Figure 5.2: Comparison of the proposed estimator with the one from MS2004 for change point

model with θ/θ′ = 3 . Quartiles of θ̂ for the LCP method (solid lines) and for the LAVE method

from MS2004 (dotted lines); simulated trajectory of the volatility (thick line).
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Figure 5.3: Estimation results with respect to jump processes with jumps of different magnitudes.

The results are obtained with tuning parameters c = 1.5 and α = 0.05 . The conditional

distribution is scaled student t5 with 5 degrees of freedom.
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5.2 Some simulated examples. Multivariate case

The implementation of the estimator in the multivariate case is similar to the univariate

case. In particular, for obtaining the critical values we again exploit the fact that the

distribution of the likelihood ratio statistic under the hypothesis of homogeneity does

not depend on the value of the covariance matrix, and therefore the critical values can

be easily obtained by simulation.

In our implementation we again select m0 = 30 and c = 1.5 . Figure 5.4 shows the

critical values as a function of the log interval length for a univariate, a bivariate and a

trivariate system at a 5% level. Note that the curves indicate an approximately linear

relationship and are almost parallel. This fact can be used to extrapolate critical values

for larger intervals and for systems of a larger dimension.

Figure 5.4: Critical values computed by simulation for c = 1.5 and α = 5% for systems of

different dimension. From the top: trivariate, bivariate and univariate.
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The log length of the interval is regressed on the simulated critical values, and as

suggested by Figure 5.4 we allow for three different intercepts but only one slope co-

efficient. The results of the regression are displayed in Table 5.1 and they suggest the

Table 5.1: Linear approximation of the critical values

slope intercept

univariate bivariate trivariate

10% 5% 10% 5% 10% 5%

0.3095 2.6103 3.3923 5.2463 6.3323 8.8363 9.9403

use of the following linear rule for selecting critical values which keep the type-1-error

approximately at a 5% and depend on the dimension of the system d and on the length
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of the currently tested interval |I| :

z(d, |I|) = 3.3d + 0.31 log |I|. (5.1)

Using the critical values given by (5.1) we apply the estimation procedure on simulated

data.

We consider the following bivariate example. The correlation is set to zero and the

volatilities are jump processes:

σ1t = 1 + 2I{t∈[101,200]} + I{t∈[301,400]} +
3
4
I{t∈[501,600]}

σ2t = 1− 2
3
I{t∈[101,200]} −

1
2
I{t∈[301,400]} −

3
7
I{t∈[501,600]}.

Figure 5.5: Simulation results for a diagonal bivariate process with jumps of different magnitude.

Upper plot: pointwise median over 500 simulations for the two diagonal elements of the volatility

matrix. Lower plot: median estimate of the interval of time homogeneity and quartiles.
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This system is simulated and estimated five hundred times and the average estimates

of the volatilities, the median and the quartiles of the estimated interval of time homo-

geneity are plotted in Figure 5.5. As expected, the performance is very similar to the

univariate case. The jump detection is quick and it is more accurate for larger jumps.

5.3 Volatility estimation for different exchange rate data sets

The volatility estimation is performed on a set of nine exchange rates, which are available

from the web page of the US Federal Reserve. The data sets represent daily exchange
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rates of the US Dollar (USD) against the following currencies: Australian Dollar (AUD),

British Pound (BPD) Canadian Dollar (CAD), Danish Krone (DKR), Japanese Yen

(JPY), Norwegian Krone (NKR), New Zeeland Dollar (NZD), Swiss Franc (SFR) and

Swedish Krone (SKR). The period under consideration goes from January 1st, 1990 to

April 7th, 2000. For each time series we have 2583 observations. All selected time series

display excess kurtosis and volatility clustering.

Figure 5.6 and Figure 5.7 show the BPD/USD and JPY/USD exchange rate returns

together with the volatility estimated with the parameters: α = 0.95 , c = 1.5 and

m0 = 60 . The choice of m0 (which exceeds one used in the simulation) is made to

improve the stability of the procedure against large shocks in the real data. The results

of the estimation are in accordance with the data and the procedure seems to recognize

changes in the underlying volatility process quickly.

Figure 5.6: Returns and estimated volatility for the BPD/USD exchange rate.
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The assumption of local homogeneity leads to the constant forecast σ̂2
t of the volatility

σt+h for a small or moderate time horizon h . This results in the following forecast of

the conditional variance of the aggregated returns R2
t+1 + . . . + Rt+h :

V LCP
t,h := hσ̂2

t ,

with h being the forecast horizon.
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Figure 5.7: Returns and estimated volatility for the JPY/USD exchange rate.
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In order to assess the performance of the proposed algorithm we compare its fore-

casting ability with the one of the GARCH(1,1) model, which represents one of the

most popular parameterizations of the volatility process of financial time series. The

GARCH(1,1) model is described by the following equations:

Rt = σtεt, σ2
t = ω + αR2

t−1 + βσ2
t−1,

α > 0, β > 0, α + β < 1, εt ∼ N(0, 1) ∀t.

The h -step ahead variance forecast of the GARCH(1,1) is given by:

σ2,GARCH
t+h|t := IEtR

2
t+h = σ2 + (α + β)h(σ2

t − σ2),

where σ represents the unconditional volatility and IEtξ means IE(ξ|Ft) , see Mikosch

and Starica (2000a). Since the returns are conditionally uncorrelated, the conditional

variance of the aggregated returns is given by the sum of the conditional variances:

V GARCH
t,h := IEt(Rt+1 + . . . + Rt+h)2 =

h∑

k=1

IEtR
2
t+k =

h∑

k=1

σ2,GARCH
t+h|t .

The assumption of constant parameters for a GARCH(1,1) model over a time interval

of the considered length of about 2500 time points can be too restrictive. We therefore
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considered a scrolling estimate, that is, for every date the preceding 1000 observations

are used for estimation of the GARCH parameters and then the estimated parameters

are used to forecast the variance at different horizons. This method is nonadaptive in

the choice of the observation window but it takes advantage of a more flexible GARCH-

modeling. The LCP algorithm suggested in this paper applies a very simple local constant

modeling but benefits from a data-driven choice of the interval of homogeneity.

The quality of forecasting is measured by comparing the forecasts V LCP
t,h resp. V GARCH

t,h

with the realized volatility

V t,h := R2
t+1 + . . . + R2

t+h.

We apply the following mean square root error criterion (MSqE) for a time interval I :

MSqEI =
∑

t∈I

|V LCP
t,h − V t,h|1/2

/∑

t∈I

|V GARCH
t,h − V t,h|1/2.

The MSqE is considered instead of the more common MSE for robustness reasons. Actu-

ally, in this way outliers are prevented from having a strong influence on the results. The

MSqE is computed for six nonoverlapping intervals of 250 observations and the results

are shown in Table 5.2. One can observe that both methods are comparable and that

the relative performance depends on the particular situation at hand. For periods with

stable volatility the LCP forecast is clearly better, but for periods with high volatility

variation the GARCH method is slightly preferable.

In order to assess the performance of the new algorithm we compare its forecasting

ability with the ones for the LCP procedure from MS200 and the GARCH(1,1) procedure.

The following criteria are used:

ECP
p =

N∑

k=100

|R2
k/σ̂2

k−1 − 1|p and ẼCP
p =

N∑

k=100

|R2
k − σ̂2

k−1|p

for p = 0.5 , 1 and 2 . Similar quantities EGARCH
p were computed for the GARCH

procedure. The ratios ECP
p /EGARCH

p and ẼCP
p /ẼGARCH

p are shown in Table 5.3. One

can observe that the both methods are comparable and the relative performance depends

on the particular situation at hand.

5.4 Analysis of standardized returns

Our model (2.1) assumes the standard normal innovations εt . Many empirical researches

argued that this assumption is too strong and often violated, see e.g. McNeil and
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Table 5.2: Relative forecasting performance MSqE on six consecutive time periods of 250

observations each.

h = 1 0.9616 0.9734 0.8756 1.0978 1.1531 1.0203

AUD h = 5 0.9834 1.0795 0.8346 1.1055 1.0956 0.9968

h = 10 1.0095 1.0964 0.8586 1.1611 1.0958 0.9824

h = 1 1.1397 1.0894 0.7473 1.0332 1.1142 1.1177

CAD h = 5 1.137 1.1169 0.6268 1.0405 1.0822 1.1535

h = 10 1.1552 1.1212 0.5316 1.0218 1.0651 1.1669

h = 1 0.7394 0.8475 0.6479 1.0641 0.9831 1.0223

BPD h = 5 0.6666 0.8585 0.6006 1.11 1.0033 1.0104

h = 10 0.6123 0.8441 0.5542 1.125 1.0185 1.0379

h = 1 0.8756 0.9980 0.7686 1.022 1.0231 1.0273

DKR h = 5 0.8695 1.0358 0.6374 1.0469 1.0456 1.0195

h = 10 0.9001 1.0102 0.5933 1.0557 0.9994 1.0358

h = 1 1.1092 1.1611 0.9721 1.1673 1.1583 1.0327

JPY h = 5 1.0628 1.1241 0.8539 1.1042 1.168 1.0608

h = 10 1.0877 1.044 0.8016 1.1873 1.1691 1.0607

h = 1 0.8776 1.0048 0.8810 1.1078 1.2186 0.9419

NKR h = 5 0.8677 1.017 0.8511 1.1061 1.2956 0.9354

h = 10 0.9028 1.0138 0.7903 1.1404 1.3232 0.9571

h = 1 0.9341 0.9932 0.9249 1.1106 1.2433 1.1385

NZD h = 5 0.9264 1.0052 0.8824 1.1463 1.1587 1.1939

h = 10 0.8208 1.0432 0.8854 1.179 1.165 1.2139

h = 1 0.9329 1.0504 0.8419 0.9564 0.9897 1.0328

SFR h = 5 0.9605 1.0874 0.8275 0.9464 0.9721 1.1187

h = 10 0.9220 1.0316 0.7543 0.9641 0.9435 1.1938

h = 1 0.9434 0.8526 0.7953 1.0213 1.1042 0.9481

SKR h = 5 0.9438 0.8576 0.69 1.0189 1.1097 0.9487

h = 10 0.9532 0.8999 0.6219 1.0704 1.1836 0.9307

Frey (2000). Here we briefly discuss this issue by looking at the standardized returns

ξ̂t = Rt/σ̂t . The first observation is that even after standardization by the estimated

variance, the density of standardized returns ξ̂t still displays tails which are fatter than

the normal. We illustrate this effect in Figure 5.8 where the kernel estimate of the den-

sity of standardized returns Rt/σ̂t is plotted against the normal density and the scaled

student t5 density with 5 degrees of freedom. One can observe that the t -distribution

delivers a much better approximation to the empirical density of returns.

The volatility clustering effect, though, disappears after standardization and auto-
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Table 5.3: Forecasting performance relative to GARCH(1,1)

ECP
p /EGARCH

p ẼCP
p /ẼGARCH

p

p = 0.5 p = 1.0 p = 2.0 p = 0.5 p = 1.0 p = 2.0

AUD 1.0032 1.0108 0.98093 1.0079 1.0227 0.94511

CAD 1.0281 1.0515 1.0249 0.99626 1.0028 1.1148

BPD 1.0137 1.0585 1.0694 1.0165 1.0761 1.4696

DKR 1.0064 1.0219 1.0382 1.0059 1.0328 1.3042

JPY 1.0235 1.0582 0.99125 1.0021 1.0093 1.1626

NKR 0.994 1.0052 0.97641 1.0158 1.053 1.3243

NZD 0.99301 1.1138 1.0551 1.0293 1.1058 1.2533

SFR 1.0151 1.032 0.98532 0.98715 0.95887 0.72988

SKR 0.97004 0.96783 0.94407 1.02 1.0502 0.92539

Figure 5.8: Kernel density estimate of exchange rate returns (solid line), normal density (x-line)

and scaled student t5 density with 5 degrees of freedom (dotted line) with fitted parameters for

two exchange rate datasets.
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correlations of squared returns are not significant any more, see Figure 5.9 for the case

of BPD/USD returns. The other exchange rate examples deliver similar results. A short

conclusion of this empirical study is that the standardized returns can be treated as i.i.d.

random variables with a distribution whose tails are fatter than the ones of the normal

distribution.
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Figure 5.9: ACF of the absolute BPD/USD returns (upper plot) and of the standardized absolute

BPD/USD returns (lower plot). Dotted straight line - the 95% significance level.
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5.5 Multiple volatility estimation for exchange rate datasets

Figure 5.10: Adaptive estimate of the diagonal elements of the covariance matrix of nine ex-

change rate data sets. The scale is annualized volatility, i.e. we plot
√

250Σ̂ii .
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Now we apply the multiple LCP procedure to the same set of nine exchange rates.

Figure 5.10 shows the estimated diagonal elements of the covariance matrix. The upper
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plot shows the values estimated by the procedure described in Section 3. Similarly to the

univariate case, these estimates have been constructed only from past observations and

therefore be used for forecasting and other practical applications such as Value at Risk.

Common movements, especially in the second part of the sample, can clearly be

recognized, hinting that the volatilities of these processes are probably driven by some

low dimensional common factor.

Figure 5.11: ACF for the absolute returns of NZD and AUD.
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Figure 5.11 shows the multivariate autocorrelation function of the absolute returns

for two exchange rate time series, New-Zealand Dollar and Australian Dollar, while, Fig-

ure 5.12 presents the multivariate autocorrelation function of the absolute standardized

returns. Again, the standardized returns do not indicate significant correlations and au-

tocorrelations. Note, that the autocorrelation of the absolute residuals has been almost

completely smoothed away after standardizing by the estimated volatility matrix. The

same conclusion holds for the other considered time series.

5.6 Application to Value at Risk. Univariate case

The Value at Risk (VaR) measures the extreme loss of a portfolio over a predetermined

holding period with a prescribed confidence level 1−α . This problem can be reduced to

computing the quantiles of the distribution of aggregated returns, see e.g. Fan and Gu

(2003) for a recent overview of this topic.
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Figure 5.12: ACF for the absolute standardized returns of NZD and AUD.

0 50 100
−0.2

−0.1

0

0.1

0.2

0 50 100
−0.2

−0.1

0

0.1

0.2

0 50 100
−0.2

−0.1

0

0.1

0.2

0 50 100

−0.2

−0.1

0

0.1

0.2

Our modeling approach can easily be adapted to the VaR problem. Namely, one may

forecast the 1% and 5% quantile of the next return Rt+1 and of the aggregated returns

Rt+1 + . . . + Rt+h = log(St+h/St) for each date t in the following way. The volatility

parameter σ̂t is estimated from the historical data Rs for s ≤ t and one can consider

different distributions for the innovations εt . In our study we compare the Gaussian, the

scaled student t5 -distribution with 5 degrees of freedom and the empirical distribution

F̂t of the past empirical innovations ξ̂s for s ≤ t , that is:

Rt+h = σ̂tξt+h with ξt+h ∼ N(0, 1), or
√

5/3ξt+h ∼ t5, or ξt+h ∼ F̂t .

Similar approaches have been applied in McNeil and Frey (2000) with the use of the

GARCH(1,1) model for estimating the volatility and extreme value theory for evaluating

the distribution of returns, while Eberlein and Prause (2002) assume the Generalized

Hyperbolic Distribution for the innovations.

In order to better interpret the results, we notice that the scaled t5 distribution has

higher 5% -quantiles than the ones of the Gaussian at any of the considered horizons

and lower 1% -quantiles. Therefore the Gaussian distribution of innovations is more

conservative for 5%-quantiles while the opposite is true for 1%-quantiles.

We apply the procedure to the set of nine exchange rates considered in Section 5.5

with about 2500 observations in each one. The frequency of overshooting the predicted

quantile for the given realizations of the returns is given in Table 5.4. The first 500
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observations in every time series are taken as presample for estimating the parameters.

Notice, that for the five and ten day horizon overlapping intervals of data are used as in

Fan and Gu (2003).

According to the requirement of the regulators (BIS, 1996), a bank has to determine

its capital requirements in order to cover from market risk proportionally to the 1%

quantile of the distribution of the portfolio losses over a ten day horizon. Internal models

calculating this quantile are regularly monitored. The coefficient of proportionality is set

to 3 for models whose performance is satisfactory (green zone) and it can be increased up

to 4 by a discretionary judgment of the regulators for models which appear to estimate

the quantile imprecisely (yellow zone). While, if the model performance is considered

very poor, the coefficient is automatically increased to 4 (red zone).

The official criterion for the evaluation of an internal model is the statistical signifi-

cance of the 1% quantile estimates of the portfolio loss distribution over a one day horizon.

The prescribed procedure, called backtesting, checks, whether the observed frequency of

days out of the last 250, for which the losses were larger than the value computed by

the prescribed VaR procedure does not significantly deviates from the nominal level 0.01,

see Deutsch (2001). Every procedure is classified as green, yellow and red. The green

zone means that the empirical frequency is in agreement with the nominal probability

0.01. The yellow zone begins at the point such that the probability of exceptions for

the tested VaR procedure exceeds the value 0.01 with 95% confidence interval. One can

easily verify that such probability corresponds to 5 or more exceptions out of 250 days,

that is, the frequency of exceptions equals 2%. Similarly, the red zone corresponds to the

99.99% level evidence that the tested procedure does not provide the required probability

of exceptions. For a sample of 250 observations, this corresponds to 10 exceptions, or

equivalently, 4% frequency of overshooting the VaR value.

The comparison of these requirements with our results presented in Table 5.4 shows

that on average none of the procedures we tried is in the red zone, and that the procedure

using e.d.f. for the residuals is always in the green zone. The use of the student t5

distribution also allows to get the green zone results for most of the examples, while the

procedure with Gaussian innovations is often in the yellow zone.

We conclude that the use of the t5 distribution for the innovations slightly improve

the results and the VaR quality is acceptable for both Gaussian and scaled student

quantiles, while the application of the empirical distribution of the residuals leads to

almost perfect fit of the prescribed quantiles for all considered time horizons.
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Table 5.4: Percentage of overshooting the prescribed VaR level for nine series of exchange rates

for nominal quantile levels 1% and 5%, three different distributions of innovations and time

horizon h = 1, 5, 10 .

1% quantile 5% quantile

Gaussian student t5 e.d.f. Gaussian student t5 e.d.f.

h 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

AUD 2.3 2.7 2.2 1.9 2.4 2.1 0.7 0.2 0.7 5.5 5.9 6.3 6.3 6.0 6.4 3.9 3.1 2.8

CAD 1.7 1.6 0.9 1.0 1.2 0.8 1.5 1.7 1.9 4.7 5.3 4.5 5.2 5.6 4.7 5.6 7.2 6.6

BPD 2.4 2.5 2.4 1.6 2.3 2.1 1.0 0.9 0.9 5.3 7.1 6.5 6.0 7.4 6.7 4.2 4.2 3.2

DKR 2.4 2.2 1.9 1.7 1.6 1.6 0.9 1.5 1.6 5.8 6.5 6.5 6.5 6.5 6.6 4.7 5.3 5.7

JPY 2.7 3.3 3.5 1.9 3.1 3.2 1.0 1.4 1.3 5.5 7.5 8.5 6.0 7.7 8.5 4.4 4.9 4.8

NKR 2.0 1.9 1.4 1.3 1.5 1.2 0.8 1.4 1.3 5.5 5.7 6.0 6.3 6.0 6.1 4.8 4.4 5.0

NZD 2.8 2.7 3.1 2.1 2.5 2.7 0.7 0.7 1.0 5.1 6.1 6.7 5.5 6.2 6.9 4.0 4.7 4.1

SFR 1.8 2.0 2.5 1.2 1.4 2.3 1.0 1.3 1.6 5.8 6.0 6.0 6.4 6.0 6.1 4.5 5.0 5.8

SKR 1.7 1.3 1.0 1.2 1.1 0.8 0.7 1.2 1.4 6.2 5.7 4.9 6.7 6.2 5.1 4.3 4.4 4.8

Table 5.5: 5% VaR

5% quantile

Gaussian student t5

h = 1 h = 5 h = 10 h = 1 h = 5 h = 10

AUD 5.5 5.9 6.3 6.3 6.0 6.4

CAD 4.7 5.3 4.5 5.2 5.6 4.7

BPD 5.3 7.1 6.5 6.0 7.4 6.7

DKR 5.8 6.5 6.5 6.5 6.5 6.6

JPY 5.5 7.5 8.5 6.0 7.7 8.5

NKR 5.5 5.7 6.0 6.3 6.0 6.1

NZD 5.1 6.1 6.7 5.5 6.2 6.9

SFR 5.8 6.0 6.0 6.4 6.0 6.1

SKR 6.2 5.7 4.9 6.7 6.2 5.1
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5.7 Value at Risk for multiple time series

Here we illustrate the same approach for the portfolio containing several assets. Suppose

the portfolio consists of N assets with the vector of allocations ψ ∈ IRN . The allocations

are usually time dependent, that is, at time t we have ψi = ψi(t) units of the assets i

in the portfolio, i = 1, . . . , N .

The goal is to estimate the Value at Risk for the whole portfolio. The estimated

covariance matrix Σ̂ is one of the most important input for this problem. We present

two possible approaches for computing VaR. One is based on the assumption that the

joint distribution of the returns is multivariate normal, while the other estimates the

quantiles from the empirical distribution of the returns standardized by the estimated

covariance matrix and therefore can be interpreted as a version of the historical simulation

approach.

Formally, for a given fixed allocation ψ , the VaR for an h day horizon and a prob-

ability level α of the portfolio ψ>St , is defined as the α -quantile of the distribution of

the changes in the portfolio value:

P (ψ>(St+h − St) < VaR|St) = α.

For a given St , the estimation of the VaR of the portfolio changes can be obtained if one

is able to determine the conditional distribution of the sum of the returns:

N∑

i=1

ψi

(
St+h,i − St,i

St,i

)
.

For small h the above expression can be conveniently approximated by the sum of the

log-returns:

N∑

i=1

ψi(log(St+h,i)− log(St,i)) =
N∑

i=1

ψi(Rt+1,i + . . . + Rt+h,i) =
h∑

u=1

ψ>Rt+u ,

so that for the computation of the VaR we can exploit the properties of the log-returns.

In particular, if we assume that the returns are normally distributed with the covariance

matrix Σt , then

ψ>(Rt+1 + . . . + Rt+h) ∼ N(0, hψ>Σtψ).

This suggests to compute the VaR using the quantiles of the N(0, hψ>Σ̂tψ) .

Similar to the univariate case, the normal distribution assumption is not very ac-

curate for modeling the tails of the distribution of financial returns. One possibility to
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cope with this problem consists in fitting to the returns a distribution, which can better

approximate the tail behavior of the data as in Eberlein and Prause (2002). We consider

however another strategy, which consists in estimating the quantiles from the empirical

distribution function of the standardized returns. Indeed, as shown in the previous Sec-

tion, the standardized returns ε̂t := Σ̂
−1/2
t−1 Rt are approximately independent, therefore

the quantile of the distribution of ψ>
∑h

u=1 Rt+u can be estimated by the quantile of

the empirical distribution function of ψ>Σ̂
1
2
t (ξ̂t+1 + . . . + ξ̂t+h) .

The estimation of VaR is performed on a data set of nine exchange rates with 2583

daily observations. The first 82 observation are used to perform the first estimation of

the covariance matrix and the following 500 observations are used to perform the first

estimation of the empirical distribution function. On the last 2000 observations VaR is

computed every day using all the past standardized residuals for the estimation of the

empirical distribution function. For the sake of comparison, VaR is also computed under

Gaussian assumption on the last 2000 observations. Table 5.6 reports the frequency

with which the realization of the portfolio return is lower than the estimated quantile.

We consider the values of α = 0.05 and 0.01 and the horizons of 1, 5 and 10 trading

days for two different portfolios. One portfolio has equal weights for each asset for the

whole period, while the other portfolio has randomly generated weights from an uniform

distribution on [0, 1]9 for each day.

Table 5.6: Value at risk for two portfolios with 9 possible exchange rate allocations

1% quantile 5% quantile

Gaussian e.d.f. Gaussian e.d.f.

horizon 1 5 10 1 5 10 1 5 10 1 5 10

equally weighted portfolio 2.3 2.0 1.9 1.0 0.8 0.5 6.0 5.8 5.5 4.0 3.5 3.3

random uniform portfolio 2.1 2.2 2.1 0.9 0.7 0.7 6.3 6.4 5.7 4.1 3.5 3.2

As expected the Gaussian model slightly overestimates the quantiles (yellow zone)

and the method which relies on the estimation of the empirical distribution function

performs remarkably well in particular for the 1% quantile (green zone). For the 5%

quantile the method seems to be slightly conservative.

6 Appendix

In this section we present the proofs of the results stated in the previous sections.
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6.1 Proof of Theorem 4.1

With the given constants zk , define for k > 1 the random sets

Ak = {TIk
≤ zk}, A(k) = A2 ∩ . . . ∩Ak ,

Obviously θ̂k = θ̃k on A(k) for all k ≤ K .

Therefore, it remains to bound the risk of θ̂k on the complement A
(k)

of Ak . Define

Bk = A(k−1)\A(k) . On the event Bk , the index k is the first one for which the condition

TIk
≤ zk is violated. It is obvious that A

(k)
=

⋃
l<k Bl .

First we bound the probability IPθ∗
(
Bk

)
. The definition of TIk,τ and (3.1) yield for

every k and every τ ∈ Jk = Ik \ Ik−1

TIk,τ ≤ NI′′k
K(θ̃I′′ , θ

∗) + NI′k
K(θ̃I′ , θ

∗).

Therefore, by Theorem 2.2,

IPθ∗
(
TIk,τ > zk

) ≤ 4e−zk/2,

and hence,

IPθ∗
(
Bk

) ≤
∑

τ∈Jk

IPθ∗
(
TIk,τ > zk

) ≤ 4|Jk|e−zk/2 ≤ 4mke−zk/2.

Next, for every l < k and any r > 0 , by Lemma 6.1 and the elementary inequality

(a + b)2r ≤ 22r(a ∨ b)2r with any a, b ≥ 0

IEθ∗K
r
(
θ̃k, θ̃l

) ≤ (2a)2r
{
IEθ∗K

r
(
θ̃k, θ

∗) + IEθ∗K
r
(
θ̃l, θ

∗)} ≤ (2a)2rrrm
−r
l .

This and Theorem 2.4 imply for every r and l < k ≤ K

mr
kIEθ∗K

r
(
θ̃k, θ̂k

) ≤ mr
k(2a)2rIEθ∗

k∑

l=1

Kr(θ̃k, θ̃l)1
(
Bl

)

≤ mr
k(2a)2r

k∑

l=1

IE
1/2
θ∗ K2r(θ̃k, θ̃l)IP

1/2
θ∗

(
Bl

)

≤ (2a)2rr
1/2
2r

k∑

l=1

(mk

ml

)r
4m

1/2
l e−zl/4.

It remains to check that the choice zk = a0+a1 log α−1+a2r log(mK/mk)+a3 log mk with

properly selected a0, a1, a2 and a3 provide the required bound IEθ∗
∣∣mkK

(
θ̃k, θ̂k

)∣∣r ≤
αrr .
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6.2 Proof of Theorem 4.7

Let ν be the location of the change within Ik∗+1 . It suffices to show that under the

conditions of the theorem the corresponding test statistic TIk∗+1,ν exceeds with a high

probability the value zk∗+1 . This would ensure that the interval Ik∗+1 is rejected. The

point ν splits the testing interval Ik∗+1 = Ik∗+2 into two subintervals I ′ and I ′′ , and

within each of intervals I ′ and I ′′ the function f(t) is constant: f(t) ≡ θ′ for t ∈ I ′

and f(t) ≡ θ′′ for t ∈ I ′′ . Let a value z > 0 be fixed. Introduce the event

A(z) = 1
{
NI′K

(
θ̃I′ , θ

′) ≤ z, NI′′K
(
θ̃I′′ , θ

′′) ≤ z
}
.

By Theorem 2.2,

IP
(
A(z)

) ≥ 1− 4e−z.

We now consider z such that (4.5) holds and show that TIk∗+1,ν > zk∗+1 on A(z) . By

definition, it holds on the set A(z) that NI′K
(
θ̃I′ , θ

′) ≤ z and NI′′K
(
θ̃I′′ , θ

′′) ≤ z .

By Lemma 6.1

K1/2
(
θ′, θ̃Ik∗+1

) ≤ aK1/2
(
θ̃I′ , θ

′) + aK1/2
(
θ̃I′ , θ̃Ik∗+1

)

≤ a(z/NI′)1/2 + aK1/2
(
θ̃I′ , θ̃Ik∗+1

)

Hence,

K
(
θ′, θ̃Ik∗+1

) ≤ 2a2z/NI′ + 2a2K
(
θ̃I′ , θ̃Ik∗+1

)

and

K
(
θ̃I′ , θ̃Ik∗+1

) ≥ (2a2)−1K1/2
(
θ′, θ̃Ik∗+1

)− z/NI′ .

Similarly

K
(
θ̃I′′ , θ̃Ik∗+1

) ≥ (2a2)−1K1/2
(
θ′′, θ̃Ik∗+1

)− z/NI′′ .

Now by definition of TIk∗+1,ν , see (3.1),

TIk∗+1,ν = NI′K
(
θ̃I′ , θ̃Ik∗+1

)
+ NI′′K

(
θ̃I′′ , θ̃Ik∗+1

)

≥ (2a2)−1
{
NI′K

(
θ′, θ̃Ik∗+1

)
+ NI′′K

(
θ′′, θ̃Ik∗+1

)}− z

= (2a2)−1mk∗+2

{
cK

(
θ′, θ̃Ik∗+1

)
+ (1− c)K

(
θ′′, θ̃Ik∗+1

)}− z

with c = NI′/mk∗+2 . This and the definition of d(θ′, θ′′) , see (4.4), yields on A(z)

TIk∗+1,ν ≥ mk∗+2

(2a2)
d2(θ′, θ′′)− z

and the theorem assertion follows.
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Lemma 6.1 (Polzehl and Spokoiny, 2005, Lemma 5.2). Under condition (Θ) it holds

for every sequence θ0, θ1, . . . , θm ∈ Θ that

K1/2(θ1, θ2) ≤ a
{
K1/2(θ1, θ0) + K1/2(θ2, θ0)

}
,

K1/2(θ0, θm) ≤ a
{
K1/2(θ0, θ1) + . . . + K1/2(θm−1, θm)

}
.

This lemma extends to the multivariate case

Lemma 6.2. Under condition (Θ) it holds for every sequence Σ0, Σ1, . . . , Σm ∈ Θ that

K1/2(Σ1, Σ2) ≤ a
{
K1/2(Σ1, Σ0) + K1/2(Σ2, Σ0)

}
,

K1/2(Σ0, Σm) ≤ a
{
K1/2(Σ0, Σ1) + . . . + K1/2(Σm−1, Σm)

}
.

The proof is quite straightforward is left to the reader.
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