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Abstract

The statistical problem of estimating the effective dimension-reduction (EDR) subspace in
the multi-index regression model with deterministic design and additive noise is considered.
A new procedure for recovering the directions of the EDR subspace is proposed. Under
mild assumptions,

√
n-consistency of the proposed procedure is proved (up to a logarithmic

factor) in the case when the structural dimension is not larger than 4.The empirical behavior
of the algorithm is studied through numerical simulations.

Keywords: dimension-reduction, multi-index regression model, structure-adaptive ap-
proach, central subspace, average derivative estimator

1. Introduction

One of the most challenging problems in modern statistics is to find efficient methods for
treating high-dimensional data sets. In various practical situations the problem of predicting
or explaining a scalar response variable Y by d scalar predictors X (1), . . . , X(d) arises. For
solving this problem one should first specify an appropriate mathematical model and then
find an algorithm for estimating that model based on the observed data. In the absence of a
priori information on the relationship between Y and X = (X (1), . . . , X(d)), complex models
are to be preferred. Unfortunately, the accuracy of estimation is in general a decreasing
function of the model complexity. For example, in the regression model with additive noise
and two-times continuously differentiable regression function f : R

d → R, the most accurate
estimators of f based on a sample of size n have a quadratic risk decreasing as n−4/(4+d)

when n becomes large. This rate deteriorates very rapidly with increasing d leading to
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unsatisfactory accuracy of estimation for moderate sample sizes. This phenomenon is called
“curse of dimensionality”, the latter term being coined by Bellman (1961).

To overcome the “curse of dimensionality”, additional restrictions on the candidates f
for describing the relationship between Y and X are necessary. One popular approach is
to consider the multi-index model with m∗ indices: for some linearly independent vectors
ϑ1, . . ., ϑm∗ and for some function g : R

m∗ → R, the relation f(x) = g(ϑ>1 x, . . . , ϑ
>
m∗x)

holds for every x ∈ R
d. Here and in the sequel the vectors are understood as one column

matrices and M> denotes the transpose of the matrix M . Of course, such a restriction
is useful only if m∗ < d and the main argument in favor of using the multi-index model
is that for most data sets the underlying structural dimension m∗ is substantially smaller
than d. Therefore, if the vectors ϑ1, . . ., ϑm∗ are known, the estimation of f reduces to the
estimation of g, which can be performed much better because of lower dimensionality of the
function g compared to that of f .

Another advantage of the multi-index model is that it assesses that only few linear com-
binations of the predictors may suffice for “explaining” the response Y . Considering these
combinations as new predictors leads to a much simpler model (due to its low dimension-
ality), which can be successfully analyzed by graphical methods, see (Cook and Weisberg,
1999; Cook, 1998) for more details.

Throughout this work we assume that we are given n observations (Y1, X1), . . . , (Yn, Xn)
from the model

Yi = f(Xi) + εi = g(ϑ>1 Xi, . . . , ϑ
>
m∗Xi) + εi, (1)

where ε1, . . . , εn are unobserved errors assumed to be mutually independent zero mean
random variables, independent of the design {Xi, i ≤ n}.

Since it is unrealistic to assume that ϑ1, . . . , ϑm∗ are known, estimation of these vectors
from the data is of high practical interest. When the function g is unspecified, only the
linear subspace Sϑ spanned by these vectors may be identified from the sample. This
subspace is usually called index space or dimension-reduction (DR) subspace. Clearly, there
are many DR subspaces for a fixed model f . Even if f is observed without error, only
the smallest DR subspace, henceforth denoted by S, can be consistently identified. This
smallest DR subspace, which is the intersection of all DR subspaces, is called effective
dimension-reduction (EDR) subspace (Li, 1991) or central mean subspace (Cook and Li,
2002). We adopt in this paper the former term, in order to be consistent with (Hristache
et al., 2001a) and (Xia et al., 2002), which are the closest references to our work.

The present work is devoted to studying a new algorithm for estimating the EDR sub-
space.We call it structural adaption via maximum minimization (SAMM). It can be re-
garded as a branch of the structure-adaptive (SA) approach introduced in (Hristache et al.,
2001b,a).

Note that a closely related problem is the estimation of the central subspace (CS), see
(Cook and Weisberg, 1999) for its definition. For model (1) with i.i.d. predictors, the CS
coincides with the EDR subspace. Hence, all the methods developed for estimating the CS
can potentially be applied in our set-up. We refer to (Cook and Li, 2002) for background on
the difference between the CS and the central mean subspace and to (Cook and Ni, 2005)
for a discussion of the relationship between different algorithms estimating these subspaces.

There are a number of methods providing an estimator of the EDR subspace in our
set-up. These include ordinary least square (Li and Duan, 1989), sliced inverse regression

2



Estimation of the dimension-reduction subspace

(Li, 1991), sliced inverse variance estimation (Cook and Weisberg, 1991), principal Hessian
directions (Li, 1992), graphical regression (Cook, 1998), parametric inverse regression (Bura
and Cook, 2001), SA approach (Hristache et al., 2001a), iterative Hessian transformation
(Cook and Li, 2002), minimum average variance estimation (MAVE) (Xia et al., 2002) and
minimum discrepancy approach (Cook and Ni, 2005).

All these methods, except SA approach and MAVE, rely on the principle of inverse
regression (IR). Therefore they inherit its well known limitations. First, they require a
hypothesis on the probabilistic structure of the predictors usually called linearity condition.
Second, there is no theoretical justification guaranteeing that these methods estimate the
whole EDR subspace and not just a part thereof (cf. (Cook and Li, 2004, Section 3.1) and
the comments on the third example in (Hristache et al., 2001a, Section 4)). In the same
time, they have the advantage of being simple for implementation and for inference.

The two other methods mentioned above – SA approach and MAVE – have much wider
applicability including even time series analysis. The inference for these methods is more
involved than that of IR based methods, but SA approach and MAVE are recognized to
provide more accurate estimates of the EDR subspace.

These arguments, combined with the empirical experience, indicate the complementar-
ity of different methods designed to estimate the EDR subspace. It turns out that there
is no procedure among those cited above that outperforms all the others in plausible set-
tings. Therefore, a reasonable strategy for estimating the EDR subspace is to execute
different procedures and to take a decision after comparing the obtained results. In the
case of strong contradictions, collecting additional data or using extra-statistical arguments
is recommended.

The algorithm SAMM we introduce here exploits the fact that the gradient ∇f of the
regression function f evaluated at any point x ∈ R

d belongs to the EDR subspace. The
estimation of the gradient being an ill-posed inverse problem, it is better to estimate some
linear combinations of ∇f(X1), . . . ,∇f(Xn), which still belong to the EDR subspace.

Let L be a positive integer. The main idea leading to the algorithm proposed in (Hris-
tache et al., 2001a) is to iteratively estimate L linear combinations β1, . . . , βL of vectors
∇f(X1), . . . ,∇f(Xn) and then to recover the EDR subspace from the vectors β` by run-
ning a principal component analysis (PCA). The resulting estimator is proved to be

√
n-

consistent provided that L is chosen independently on the sample size n. Unfortunately,
if L is small with respect to n, the subspace spanned by the vectors β1, . . . , βL may cover
only a part of the EDR subspace. Therefore, the empirical experience advocates for large
values of L, even if the desirable feature of

√
n-consistency fails in this case.

The estimator proposed in the present work is designed to provide a remedy for this
dissension between the theory and the empirical experience. This goal is achieved by intro-
ducing a new method of extracting the EDR subspace from the estimators of the vectors
β1, . . . , βL. If we think of PCA as the solution to a minimization problem involving a sum
over L terms (see (5) in the next section) then, to some extent, our proposal is to replace
the sum by the maximum. This motivates the term structural adaptation via maximum
minimization. The main advantage of SAMM is that it allows us to deal with the case
when L increases polynomially in n and yields an estimator of the EDR subspace which
is consistent under a very weak identifiability assumption. In addition, SAMM provides a√
n-consistent estimator (up to a logarithmic factor) of the EDR subspace when m∗ ≤ 4.
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If m∗ = 1, the corresponding model is referred to as single-index regression. There
are many methods for estimating the EDR subspace in this case (see Yin and Cook (2005);
Delecroix et al. (2006) and the references therein). Note also that the methods for estimating
the EDR subspace have often their counterparts in the partially linear regression analysis,
see for example (Samarov et al., 2005) and (Chan et al., 2004).

Some aspects of the application of dimension reduction techniques in bioinformatics are
studied in (Antoniadis et al., 2003) and (Bura and Pfeiffer, 2003).

The rest of the paper is organized as follows. We review the structure-adaptive ap-
proach and introduce the SAMM procedure in Section 2. Theoretical features including√
n-consistency of the procedure are stated in Section 3. Section 4 contains an empirical

study of the proposed procedure through Monte Carlo simulations. The technical proofs
are deferred to Section 5.

2. Structural adaptation and SAMM

Introduced in (Hristache et al., 2001b), the structure-adaptive approach is based on two ob-
servations. First, knowing the structural information helps better estimate the model func-
tion. Second, improved model estimation contributes to recovering more accurate structural
information about the model. These advocate for the following iterative procedure. Start
with the null structural information, then iterate the above-mentioned two steps (estimation
of the model and extraction of the structure) several times improving the quality of model
estimation and increasing the accuracy of structural information during the iteration.

2.1 Purely nonparametric local linear estimation

When no structural information is available, one can only proceed in a fully nonparametric
way. A proper estimation method is based on local linear smoothing (cf. (Fan and Gijbels,
1996) for more details): estimators of the function f and its gradient ∇f at a point Xi are
given by

(
f̂(Xi)

∇̂f(Xi)

)
= arg min

(a,c)>

n∑

j=1

(
Yj − a− c>Xij

)2
K
(
|Xij |2/b2

)

=

{ n∑

j=1

(
1
Xij

)(
1
Xij

)>
K

( |Xij |2
b2

)}−1 n∑

j=1

Yj

(
1
Xij

)
K

( |Xij |2
b2

)
,

where Xij = Xj −Xi, b is a bandwidth and K(·) is a univariate kernel supported on [0, 1].
The bandwidth b should be selected so that the ball with the radius b and the center at
the point of estimation Xi contains at least d + 1 design points. For large value of d this
leads to a bandwidth of order one and to a large estimation bias. The goal of the structural
adaptation is to diminish this bias using an iterative procedure exploiting the available
estimated structural information.

In order to transform these general observations to a concrete procedure, let us describe
in the rest of this section how the knowledge of the structure can help to improve the quality
of the estimation and how the structural information can be obtained when the function or
its estimator is given.
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2.2 Model estimation when an estimator of S is available

Let us start with the case of known S. The function f has the same smoothness as g in
the directions of the EDR subspace S spanned by the vectors ϑ1, . . . , ϑm∗ , whereas it is
constant (and therefore, infinitely smooth) in all the orthogonal directions. This suggests
to apply an anisotropic bandwidth for estimating the model function and its gradient. The
corresponding local-linear estimator can be defined by

(
f̂(Xi)

∇̂f(Xi)

)
=

{ n∑

j=1

(
1
Xij

)(
1
Xij

)>
w∗

ij

}−1 n∑

j=1

Yj

(
1
Xij

)
w∗

ij , (2)

with the weights w∗
ij = K(|Π∗Xij |2/h2), where h is some positive real number and Π∗

is the orthogonal projector onto the EDR subspace S.This choice of weights amounts to
using infinite bandwidth in the directions lying in the orthogonal complement of the EDR
subspace.

If only an estimator Ŝ of S is available, the orthogonal projector Π̂ onto the subspace Ŝ
may replace Π∗ in the expression (2). This rule of defining the local neighborhoods is too
stringent, since it definitely discards the directions belonging to Ŝ⊥. Being not sure that
our information about the structure is exact, it is preferable to define the neighborhoods in
a softer way. This is done by setting wij = K(X>

ij (I + ρ−2Π̂)Xij/h
2) and by redefining

(
f̂(Xi)

∇̂f(Xi)

)
=

{ n∑

j=1

(
1
Xij

)(
1
Xij

)>
wij

}−1 n∑

j=1

Yj

(
1
Xij

)
wij . (3)

Here, ρ is a real number from the interval [0, 1] measuring the importance attributed to the
estimator Π̂. If we are very confident in our estimator Π̂, we should choose ρ close to zero.

2.3 Recovering the EDR subspace from an estimator of ∇f
Suppose first that the values of the function ∇f at the points Xi are known.Then S is
the linear subspace of R

d spanned by the vectors ∇f(Xi), i = 1, . . . , n. For classifying the
directions of R

d according to the variability of f in each direction and, as a by-product
identifying S, the principal component analysis (PCA) can be used.

Recall that the PCA method is based on the orthogonal decomposition of the matrix
M = n−1

∑n
i=1 ∇f(Xi)∇f(Xi)

>: M = OΛOT with an orthogonal matrix O and a diagonal
matrix Λ with diagonal entries λ1 ≥ λ2 ≥ . . . ≥ λd. Clearly, for the multi-index model with
m∗-indices, only the first m∗ eigenvalues of M are positive. The first m∗ eigenvectors of
M (or, equivalently, the first m∗ columns of the matrix O) define an orthonormal basis in
the EDR subspace.

Let L be a positive integer. In (Hristache et al., 2001a), a “truncated” matrixML is
considered, which coincides with M if L equals n. Let {ψ`, ` = 1, . . . , L} be a system of
functions on R

d satisfying the conditions n−1
∑n

i=1 ψ`(Xi)ψ`′(Xi) = δ`,`′ for every `, `′ ∈
{1, . . . , L}, with δ`,`′ being the Kronecker symbol. Define

β` = n−1
n∑

i=1

∇f(Xi)ψ`(Xi) (4)
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andML =
∑L

`=1 β`β
>
` . By the Bessel inequality, it holds ML ≤ M . Moreover, since

MML = MLM , any eigenvector of M is an eigenvector of ML. Finally, by the Parseval
equality, ML = M if L = n.

The reason of considering the matrix ML instead of M is that ML can be estimated
much better than M . In fact, estimators of M have poor performance for samples of
moderate size because of the sparsity of high dimensional data, ill-posedness of the gradient
estimation and the non-linear dependence of M on ∇f . On the other hand, estimation of
ML reduces to the estimation of L linear functionals of ∇f and may be done with a better
accuracy. The obvious limitation of this approach is that it recovers the EDR subspace
entirely only if the rank of ML coincides with the rank of M , which is equal to m∗. To
enhance our chances of seeing the condition rank(ML) = m∗ fulfilled, we have to choose L
sufficiently large. In practice, L is chosen of the same order as n.

In the case when only an estimator of ∇f is available, the above described method
of recovering the EDR directions from an estimator of ML have a risk of order

√
L/n

(see (Hristache et al., 2001a, Theorem 5.1)). This fact advocates against using very large
values of L. We desire nevertheless to use many linear combinations in order to increase
our chances of capturing the whole EDR subspace. To this end, we modify the method of
extracting the structural information from the estimators β̂` of vectors β`.

Let m ≥ m∗ be an integer. Observe that the estimator Π̃m of the projector Π∗ based
on the PCA solves the following quadratic optimization problem:

minimize
∑

`

β̂>` (I − Π)β̂` subject to Π2 = Π, tr Π ≤ m, (5)

where the minimization is carried over the set of all symmetric (d× d)-matrices. The value
m∗ can be estimated by looking how many eigenvalues of Π̃m are significant. Let Am be
the set of (d× d)-matrices defined as follows:

Am = {Π : Π = Π>, 0 � Π � I, tr Π ≤ m}.

From now on, for two symmetric matrices A and B, A � B means that B−A is semidefinite
positive. Define Π̂m as a minimizer of the maximum of the β̂>` (I − Π)β̂`’s instead of their
sum:

Π̂m ∈ arg min
Π∈Am

max
`
β̂>` (I − Π)β̂`. (6)

This is a convex optimization problem that can be effectively solved even for a large d
although a closed form solution is not known. Moreover, as we will show below, the in-
corporation of (6) in the structural adaptation yields an algorithm having good theoretical
and empirical performance.

3. Theoretical features of SAMM

Throughout this section the true dimension m∗ of the EDR subspace is assumed to be
known. Thus, we are given n observations (Y1, X1), . . . , (Yn, Xn) from the model

Yi = f(Xi) + εi = g(ϑ>1 Xi, . . . , ϑ
>
m∗Xi) + εi,
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where ε1, . . . , εn are independent centered random variables. The vectors ϑj are assumed
to form an orthonormal basis of the EDR subspace entailing thus the representation Π∗ =∑m∗

j=1 ϑjϑ
>
j . In what follows, we mainly consider deterministic design. Nevertheless, the

results hold in the case of random design as well, provided that the errors are independent
of X1, . . . , Xn. Henceforth, without loss of generality we assume that |Xi| < 1 for any
i = 1, . . . , n, where |v| denotes the Euclidian norm of the vector v.

3.1 Description of the algorithm

The structure-adaptive algorithm with maximum minimization consists of following steps.

a) Specify positive real numbers aρ, ah, ρ1 and h1. Choose an integer L and select a set
{ψ`, ` ≤ L} of vectors from R

n verifying |ψ`|2 = n. Set k = 1.

b) Initialize the parameters h = h1, ρ = ρ1 and Π̂0 = 0.

c) Define the estimators ∇̂f(Xi) for i = 1, . . . , n by formula (3) with the current values
of h, ρ and Π̂. Set

β̂` =
1

n

n∑

i=1

∇̂f(Xi)ψ`,i, ` = 1, . . . , L, (7)

where ψ`,i is the ith coordinate of ψ`.

d) Define the new value Π̂k as the solution to (6).

e) Set ρk+1 = aρ · ρk, hk+1 = ah · hk and increase k by one.

f) Stop if ρ < ρmin or h > hmax, otherwise continue with the step c).

Let k(n) be the total number of iterations. The matrix Π̂k(n) is the desired estimator of

the projector Π∗. We denote by Π̂n the orthogonal projection onto the space spanned by
the eigenvectors of Π̂k(n) corresponding to the m∗ largest eigenvalues. The estimator of the

EDR subspace is then the image of Π̂n. Equivalently, Π̂n is the estimator of the projector
onto S.

The described algorithm requires the specification of the parameters ρ1, h1, aρ and ah,
as well as the choice of the set of vectors {ψ`}. In what follows we use the values

ρ1 = 1, ρmin = n−1/(3∨m∗), aρ = e−1/2(3∨m∗),

h1 = C0n
−1/(4∨d), hmax = 2

√
d, ah = e1/2(4∨d).

This choice of input parameters is up to some minor modifications the same as in (Hristache
et al., 2001b), (Hristache et al., 2001a) and (Samarov et al., 2005), and is based on the
trade-off between the bias and the variance of estimation. It also takes into account the
fact that the local neighborhoods used in (2) should contain enough design points to entail
the consistency of the estimator. The choice of L and that of vectors ψ` will be discussed
in Section 4.
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3.2 Assumptions

Prior to stating rigorous theoretical results we need to introduce a set of assumptions. From
now on, we use the notation I for the identity matrix of dimension d, ‖A‖2 for the largest
eigenvalue of A> ·A and ‖A‖2

2 for the sum of squares of all elements of the matrix A.

(A1) There exists a positive real Cg such that |∇g(x)| ≤ Cg and |g(x) − g(x′) − (x −
x′)>∇g(x)| ≤ Cg|x− x′|2 for every x, x′ ∈ R

m∗

.

Unlike the smoothness assumption, the assumptions on the identifiability of the model
and the regularity of design are more involved and specific for each algorithm. The formal
statements read as follows.

(A2) Let the vectors β` ∈ R
d be defined by (4) and let B∗ =

{
β̄ =

∑L
`=1 c`β` :

∑L
`=1 |c`| ≤

1
}
. There exist vectors β̄1, . . . , β̄m∗ ∈ B∗ and constants µ1, . . . , µm∗ such that

Π∗ �
m∗∑

k=1

µkβ̄kβ̄
>
k . (8)

We denote µ∗ = µ1 + . . .+ µk.

Remark 1 Assumption (A2) implies that the subspace S = Im(Π∗) is the smallest DR
subspace, therefore it is the EDR subspace. Indeed, for any DR subspace S ′, the gradient
∇f(Xi) belongs to S ′ for every i. Therefore β` ∈ S ′ for every ` ≤ L and B∗ ⊂ S ′. Thus,
for every β◦ from the orthogonal complement S ′⊥, it holds |Π∗β◦|2 ≤ ∑

k µk|β̄>k β◦|2 = 0.

Therefore S ′⊥ ⊂ S⊥ implying thus the inclusion S ⊂ S ′.

Lemma 2 If the family {ψ`} spans R
n, then assumption (A2) is always satisfied with some

µk (that may depend on n).

Proof Set Ψ = (ψ1, . . . , ψL) ∈ R
n×L, ∇f = (∇f(X1), . . . ,∇f(Xn)) ∈ R

d×n and write the
d× L matrix B = (β1, . . . , βL) in the form ∇f · Ψ. Recall that if M1,M2 are two matrices
such that M1 ·M2 is well defined and the rank of M2 coincides with the number of lines
in M2, then rank(M1 ·M2) = rank(M1). This implies that rank(B) = m∗ provided that
rank(Ψ) = n, which amounts to span({ψ`}) = R

n.

Let now β̃1, . . . , β̃m∗ be a linearly independent subfamily of {β`, ` ≤ L}. Then the m∗th
largest eigenvalue λm∗(M̃ ) of the matrix M̃ =

∑m∗

k=1 β̃kβ̃
>
k is strictly positive. Moreover,

if v1, . . . , vm∗ are the eigenvectors of M̃ corresponding to the eigenvalues λ1(M̃ ) ≥ . . . ≥
λm∗(M̃ ) > 0, then

Π∗ =
m∗∑

k=1

vkv
>
k � 1

λm∗

m∗∑

k=1

λkvkv
>
k = λ−1

m∗M̃ = λ−1
m∗

m∗∑

k=1

β̃kβ̃
>
k .

Hence, inequality (8) is fulfilled with µk = 1/λm∗(M̃ ) for every k = 1, . . . ,m∗.
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These arguments show that the identifiability assumption (A2) is not too stringent. In
fact, since we always choose {ψ`} so that span({ψ`}) = R

n, (A2) amounts to requiring that
the value µ∗ remains bounded when n increases.

Let us proceed with the assumption on the design regularity. Define P ∗
k = (I+ρ−2

k Π∗)1/2,

Z
(k)
ij = (hkP

∗
k )−1Xij and for any d×d matrix U set w

(k)
ij (U) = K

(
(Z

(k)
ij )>UZ(k)

ij

)
, w̄

(k)
ij (U) =

K ′((Z(k)
ij )>UZ(k)

ij

)
, N

(k)
i (U) =

∑
j w

(k)
ij (U) and

Ṽ
(k)
i (U) =

n∑

j=1

(
1

Z
(k)
ij

)(
1

Z
(k)
ij

)>
w

(k)
ij (U).

(A3) For some positive constants CV , CK , CK′ , Cw and for some α ∈]0, 1/2], the inequalities

‖Ṽ (k)
i (U)−1‖N (k)

i (U) ≤ CV , i = 1, . . . , n, (9)
n∑

i=1

w
(k)
ij (U)/N

(k)
i (U) ≤ CK , j = 1, . . . , n, (10)

n∑

i=1

|w̄(k)
ij (U)|/N (k)

i (U) ≤ CK′ , j = 1, . . . , n, (11)

n∑

j=1

|w̄(k)
ij (U)|/N (k)

i (U) ≤ Cw i = 1, . . . , n, (12)

hold for every k ≤ k(n) and for every d× d matrix U verifying ‖U − I‖2 ≤ α.

(A4) The errors {εi, i ≤ n} are centered Gaussian with variance σ2.

3.3 Main result

We assume that the kernel K used in (3) is chosen to be continuous, positive and vanishing
outside the interval [0, 1]. The vectors ψ` are assumed to verify

max
`=1,...,L

max
i=1,...,n

|ψ`,i| < ψ̄, (13)

for some constant ψ̄ independent of n. In the sequel, we denote by C,C1, . . . some constants
depending only on m∗, µ∗, Cg, CV , CK , CK′ , Cw and ψ̄.

Theorem 3 Assume that assumptions (A1)-(A4) are fulfilled. There exists a constant
C > 0 such that for any z ∈]0, 2

√
log(nL)] and for sufficiently large values of n, it holds

P

(√
tr(I − Π̂n)Π∗ > Cn−

2

3∨m∗ t2n +
2zc0

√
µ∗σ√

n(1 − ζn)

)
≤ Lze−

z2
−1

2 +
3k(n) − 5

n
,

where c0 = ψ̄
√
dCKCV , tn = O(

√
log(Ln)) and ζn = O(tn n

− 1

6∨m∗ ).
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Corollary 4 Under the assumptions of Theorem 3, for sufficiently large n, it holds

P

(
‖Π̂n − Π∗‖2 > Cn−

2

3∨m∗ t2n +
2
√

2µ∗zc0σ√
n(1 − ζn)

)
≤ Lze−

z2
−1

2 +
3k(n) − 5

n

E(‖Π̂n − Π∗‖2) ≤ C

(
n−2/(3∨m∗)t2n +

√
log nL√
n

)
+

√
2m∗(3k(n) − 5)

n
.

Proof Easy algebra yields

‖Π̂n − Π∗‖2
2 = tr(Π̂n − Π∗)2 = tr Π̂2

n − 2 tr Π̂nΠ∗ + tr Π∗

≤ tr Π̂n +m∗ − 2 tr Π̂nΠ∗ ≤ 2m∗ − 2 tr Π̂nΠ∗.

The equality tr Π∗ = m∗ and the linearity of the trace operator complete the proof of the
first inequality. The second inequality can be derived from the first one by standard argu-
ments in view of the inequality ‖Π̂n − Π∗‖2

2 ≤ 2m∗.

These results assess that for m∗ ≤ 4, the estimator of S provided by the SAMM proce-
dure is

√
n-consistent up to a logarithmic factor. This rate of convergence is known to be

optimal for a broad class of semiparametric problems, see (Bickel et al., 1998) for a detailed
account on the subject.

Remark 5 The inspection of the proof of Theorem 3 shows that the factor t2n multiplying
the “bias” term n−2/(3∨m∗) disappears when m∗ > 3.

Remark 6 The same rate of convergence remains valid in the case when the errors are
not necessarily identically distributed Gaussian random variables, but have (uniformly in n)
a bounded exponential moment. This can be proved along the lines of Proposition 14, see
Section 5.

Remark 7 Note that in (A3) we implicitly assumed that the matrices Ṽ
(k)
i are invertible,

which may be true only if any neighborhood E(k)(Xi) = {x : |(I+ρ−2
k Π∗)−1/2(Xi−x)| ≤ hk}

contains at least d design points different from Xi. The parameters h1, ρ1, aρ and ah are
chosen so that the volume of ellipsoids E(k)(Xi) is a non-decreasing function of k and
V ol(E(1)(Xi)) = C0/n. Therefore, from theoretical point of view, if the design is random
with positive density on [0, 1]d, it is easy to check that for a properly chosen constant C0,
assumption (A3) is satisfied with a probability close to one. In applications, we define h1

as the smallest real such that mini=1,...,n #E(1)(Xi) = d+ 1 and add to Ṽi a small full-rank
matrix to be sure that the resulting matrix is invertible, see Section 4.

Remark 8 In the case when m = n1/d is integer, an example of deterministic design
satisfying (A3) is as follows. Choose d functions hk : [0, 1] → [0,∞[ such that inf [0,1] hk(x) >
0 and sup[0,1] hk(x) <∞. Define the design points

Xi =
(∫ 1+i1/m

i1/m
h1(x) dx, . . .

∫ 1+id/m

id/m
hd(x) dx

)
,

10
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where i1, . . . , id range over {0, . . . ,m − 1}. This definition guarantees that the number of
design points lying in an ellipsoid E is asymptotically of the same order as nV ol(E), as
n → ∞. This suffices for (A3). Of course, it is unlikely to have such a design in practice,
since even for small m and moderate d it leads to an unrealistically large sample size.

4. Simulation results

The aim of this section is to demonstrate on several examples how the performance of the
algorithm SAMM depends on the sample size n, the dimension d and the noise level σ. We
also show that our procedure can be successfully applied in autoregressive models. Many
unreported results show that in most situations the performance of SAMM is comparable
to the performance of SA approach based on PCA and to that of MAVE. A thorough
comparison of the numerical virtues of these methods being out of scope of this paper, we
simply show on some examples that SAMM may substantially outperform MAVE in the
case of large “bias”.

The computer code of the procedure SAMM is distributed freely, it can be downloaded
from http://www.proba.jussieu.fr/pageperso/dalalyan/. It requires the MATLAB packages
SDPT3 and LMI.We are grateful to Professor Yingcun Xia for making the computer code
of MAVE available to us.

To obtain higher stability of the algorithm, we preliminarily standardize the response Y
and the predictors X(j). More precisely, we deal with Ỹi = Yi/σY and X̃ = diag(ΣX)−1/2X,
where σ2

Y is the empirical variance of Y , ΣX is the empirical covariance matrix of X and
diag(ΣX) is the d × d matrix obtained from ΣX by replacing the off-diagonal elements by
zero. To preserve consistency, we set β̃`,k(n) = diag(ΣX)−1/2β̂`,k(n), where β̂`,k(n) is the

last-step estimate of β`, and define Π̂k(n) as the solution to (6) with β̂` replaced by β̃`,k(n).

Furthermore, we add the small full-rank matrix Id+1/n to
∑n

j=1

(
1
Xij

)(
1
Xij

)>
wij in (3).

In all examples presented below the number of replications is N = 250. The mean

loss erN = 1
N

∑
j erj and the standard deviation

√
1
N

∑
j(erj − erN )2 are reported, where

erj = ‖Π̂(j) − Π∗‖ with Π̂(j) being the estimator of Π∗ for jth replication.

4.1 Choice of {ψ`, ` ≤ L}

The set {ψ`} plays an essential role in the algorithm. The optimal choice of this set is
an important issue that needs further investigation. We content ourselves with giving one
particular choice which agrees with theory and leads to nice empirical results.

Let Sj , j ≤ d, be the permutation of the set {1, . . . , n} satisfying X
(j)
Sj(1)

≤ . . . ≤ X
(j)
Sj(n).

Let S
−1
j be the inverse of Sj , i.e. Sj(S

−1
j (k)) = k for every k = 1, . . . , n. Define {ψ`} as

the set of vectors

{(
cos
(2π(k−1)S−1

j (1)

n

)
, . . . , cos

(2π(k−1)S−1

j (n)

n

))>
(

sin
(2πkS

−1

j (1)

n

)
, . . . , sin

(2πkS
−1

j (n)

n

))> , k ≤ [n/2], j ≤ d

}

11
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Table 1: Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE procedures in
Example 1. The standard deviation is given in parentheses.

n 200 300 400 600 800

SAMM, 1st 0.443 0.329 0.271 0.215 0.155
(.211) (.120) (.115) (.095) (.079)

SAMM, Fnl 0.337 0.170 0.116 0.076 0.053
(.273) (.147) (.104) (.054) (.031)

MAVE 0.626 0.455 0.249 0.154 0.061
(.363) (.408) (.342) (.290) (.161)

normalized to satisfy
∑n

i=1 ψ
2
`,i = n for every `. It is easily seen that these vectors satisfy

conditions (13) and span({ψ`}) = R
n, so the conclusion of Lemma 2 holds. Above, [n/2] is

the integer part of n/2 and k and j are positive integers.

Example 1 (Single-index)

We set d = 5 and f(x) = g(ϑ>x) with

g(t) = 4|t|1/2 sin2(πt), and ϑ = (1/
√

5, 2/
√

5, 0, 0, 0)> ∈ R
5.

We run SAMM and MAVE procedures on the data generated by the model

Yi = f(Xi) + 0.5 · εi,

where the design X is such that the coordinates (X
(j)
i , j ≤ 5, i ≤ n) are i.i.d. uniform on

[−1, 1], and the errors εi are i.i.d. standard Gaussian independent of the design.
Table 1 contains the average loss for different values of the sample size n for the first

step estimator by SAMM, the final estimator provided by SAMM and the estimator based
on MAVE. We plot in Figure 1 (a) the average loss normalized by the square rood of the
sample size n versus n. It is clearly seen that the iterative procedure improves considerably
the quality of estimation and that the final estimator provided by SAMM is

√
n-consistent.

In this example, MAVE method often fails to recover the EDR subspace. However, the
number of failures decreases very rapidly with increasing n. This is the reason why the
curve corresponding to MAVE in Figure 1 (a) decreases with a strong slope.

Example 2 (Double-index)

For d ≥ 2 we set f(x) = g(ϑ>x) with

g(x) = (x1 − x3
2)(x

3
1 + x2);

and ϑ1 = (1, 0, . . . , 0) ∈ R
d, ϑ2 = (0, 1, . . . , 0) ∈ R

d. We run SAMM and MAVE procedures
on the data generated by the model

Yi = f(Xi) + 0.1 · εi, i = 1, . . . , 300,

12
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Figure 1: (a) Average loss multiplied by
√

n versus n for the first step (full line) and the final (dotted line)
estimators provided by SAMM and for the estimator based on MAVE (broken line) in Example
1, (b) (resp. (c)) Average loss versus d (resp. σ) for the first step (full line) and the final (dotted
line) estimators provided by SAMM and for the estimator based on MAVE (broken line) in
Example 2 (resp. Example 3).

Table 2: Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE procedures in
Example 2. The standard deviation is given in parentheses.

d 4 6 8 10 12

SAMM 1st 0.154 0.242 0.296 0.365 0.421
(.063) (.081) (.071) (.087) (.095)

SAMM, Fnl 0.028 0.048 0.060 0.077 0.098
(.011) (.020) (.021) (.026) (.037)

MAVE 0.284 0.607 0.664 0.681 0.693
(.147) (.073) (.052) (.054) (.044)

where the design X is such that the coordinates (X
(j)
i , j ≤ d, i ≤ n) are i.i.d. uniform on

[−40, 40], and the errors εi are i.i.d. standard Gaussian independent of the design. The
results of simulations for different values of d are reported in Table 2.

As expected, we found that (cf. Figure 1(b)) the quality of SAMM deteriorated linearly
in d as d increased. This agrees with our theoretical results. It should be noted that in this
case MAVE fails to find the EDR space.

Example 3

For d = 5 we set f(x) = g(ϑ>x) with

g(x) = (1 + x1)(1 + x2)(1 + x3)

13
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Table 3: Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE procedures in
Example 3. The standard deviation is given in parentheses.

σ 200 150 100 50 25 10

SAMM 1st 0.227 0.177 0.141 0.119 0.113 0.106
(.092) (.075) (.055) (.051) (.048) (.043)

SAMM, Fnl 0.125 0.084 0.057 0.039 0.034 0.030
(.076) (.037) (.026) (.019) (.021) (.018)

MAVE 0.103 0.087 0.073 0.062 0.063 0.059
(.041) (.035) (.027) (.023) (.024) (.023)

and ϑ1 = (1, 0, 0, 0, 0), ϑ2 = (0, 1, 0, 0, 0), ϑ3 = (0, 0, 1, 0, 0). We run SAMM and MAVE
procedures on the data generated by the model

Yi = f(Xi) + σ · εi, i = 1, . . . , 250,

where the design X is such that the coordinates (X
(j)
i , j ≤ d, i ≤ n) are i.i.d. uniform on

[0, 20], and the errors εi are i.i.d. standard Gaussian independent of the design.

Figure 1(c) shows that the qualities of both SAMM and MAVE deteriorate linearly in σ,
when σ increases. These results also demonstrate that, thanks to an efficient bias reduction,
the SAMM procedure outperforms MAVE when stochastic error is small, whereas MAVE
works better than SAMM in the case of dominating stochastic error (that is when σ is
large).

Example 4 (time series)

Let now T1, . . . , Tn+6 be generated by the autoregressive model

Ti+6 = f(Ti+5, Ti+4, Ti+3, Ti+2, Ti+1, Ti) + 0.2 · εi, i = 1, . . . , n,

with initial variables T1, . . . , T6 being independent standard normal independent of the
innovations εi, which are i.i.d. standard normal as well. Let now f(x) = g(ϑ>x) with

g(x) = −1 + 0.6x1 − cos(0.5πx2) + e−x2

3 ,

ϑ1 = (1, 0, 0, 2, 0, 0)/
√

5,

ϑ2 = (0, 0, 1, 0, 0, 2)/
√

5,

ϑ3 = (−2, 2,−2, 1,−1, 1)/
√

15.

We run SAMM and MAVE procedures on the data (Xi, Yi), i = 1, . . . , 250, where Yi = Ti+6

and Xi = (Ti, . . . , Ti+5)
>. The results of simulations reported in Table 4 show that the

qualities of SAMM and MAVE are comparable, with SAMM being slightly more performant.

14
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Table 4: Average loss ‖Π̂ − Π∗‖ of the estimators obtained by SAMM and MAVE procedures in
Example 4. The standard deviation is given in parentheses.

n 300 400 500 600

SAMM, 1st 0.391 0.351 0.334 0.293
(.172) (.161) (.137) (.132)

SAMM, Fnl 0.220 0.186 0.174 0.146
(.119) (.123) (.102) (.089)

MAVE 0.268 0.231 0.209 0.182
(.209) (.170) (.159) (.122)

5. Proofs

Since the proof of the main result is carried out in several steps, we give a short road map
for guiding the reader throughout the proof. The main idea is to evaluate the accuracy
of the first step estimators of β` and, given the accuracy of the estimator at the step k,
evaluate the accuracy of the estimators at the step k + 1. This is done in Subsections 5.1
and 5.2. These results are based on a maximal inequality proved in Subsection 5.4 and on
some properties of the solution to (6) proved in Subsection 5.5. The proof of Theorem 3 is
presented in Subsection 5.3, while some technical lemmas are postponed to Subsection 5.6.

5.1 The accuracy of the first-step estimator

Since at the first step no information about the EDR subspace is available, we use the same
bandwidth in all directions, that is the local neighborhoods are balls (and not ellipsoids) of
radius h. Therefore the first step estimator β̂1,` of the vector β∗

` is the same as the one used
in (Hristache et al., 2001a).

Proposition 9 Under assumptions (A1),(A3), (A4) and (13), for every ` ≤ L,

|β̂1,` − β`| ≤ h1Cg

√
2CV +

ξ1,`

h1
√
n
,

where ξ1,` is a zero mean normal vector verifying E|ξ1,`|2 ≤ 2dσ2CV CK ψ̄
2.

Proof Since at the first iteration we take S1 = I, the inequality |S1Xij | ≤ h1 implies that

|Π∗Xij | ≤ |Xij | ≤ h1. Therefore the bias term |P ∗
1 (Eβ̂1,` − β`)| is bounded by h1Cg

√
CV

(cf. the proof of Proposition 12).

For the stochastic term, we set ξ1,` = h1
√
n(β̂1,` − Eβ̂1,`). By Lemma 21, we have

E|P ∗
1 ξ1,`|2 ≤ dσ2CV CK ψ̄

2. The assertion of the proposition follows now from P ∗
1 =

(I + ρ−2
1 Π∗)−1/2 � I/

√
2.
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Corollary 10 If nL ≥ 6 and the assertions of Proposition 9 hold, then

P

(
max

`
|β̂1,` − β`| ≥ h1Cg

√
CV +

2
√

2dCV CK log(nL)σψ̄

h1
√
n

)
≤ 1

n
.

Remark 11 In order that the kernel estimator of ∇f(x) be consistent, the ball centered at
x with radius h1 should contain at least d points from {Xi, i = 1, . . . , n}. If the design is
regular, this means that h1 is at least of order n−1/d. The optimization of the risk of β̂1,`

with respect to h1 verifying h1 ≥ n−1/d leads to the choice h1 = Const.n−1/(4∨d).

5.2 One step improvement

At the kth step of iteration, we have at our disposal a symmetric matrix Π ∈ Md×d

belonging to the set

Pδ(Π
∗) =

{
Π ∈ Md×d : tr Π ≤ m∗, 0 � Π � I, tr(I − Π)Π∗ ≤ δ2

}

Thus the matrix Π is the kth step approximation of the projector Π∗ onto the EDR subspace
S∗. Using this approximation, we construct the new matrix Π̂ in the following way: Set
SΠ,ρ = (I + ρ−2Π)1/2, PΠ,ρ = S−1

Π,ρ and define the estimator of the regression function and
its gradient at the design point Xi as follows:

(
f̂Π(Xi)

∇̂fΠ(Xi)

)
= Vi(Π)−1

n∑

j=1

Yj

(
1
Xij

)
wij(Π),

where wij(Π) = K
(
h−2|SΠ,ρXij |2

)
and

Vi(Π) =
n∑

j=1

(
1
Xij

)(
1
Xij

)>
wij(Π).

To state the next result, we need some additional notation. Set Zij = (hP ∗
ρ )−1Xij , U =

P ∗
ρS

2
Π,ρP

∗
ρ and U∗ = I, where P ∗

ρ = PΠ∗,ρ = (I − Π∗) + ρ(1 + ρ2)−1/2 Π∗. In this notation,
we obtain

(
h−1f̂Π(Xi)

P ∗
ρ ∇̂fΠ(Xi)

)
=

(
h−1 0
0 P ∗

ρ

)
Vi(Π)−1

n∑

j=1

Yj

(
1
Xij

)
wij(Π)

=
1

h

(
1 0
0 hP ∗

ρ

)
Vi(Π)−1

(
1 0
0 hP ∗

ρ

) n∑

j=1

Yj

(
1
Zij

)
wij(Π)

= h−1Ṽi(U)−1
n∑

j=1

Yj

(
1
Zij

)
wij(U)

where wij(U) = K
(
Z>

ijUZij

)
and

Ṽi(U) =

n∑

j=1

(
1
Zij

)(
1
Zij

)>
wij(U).

Set Ni(U) =
∑

j wij(U) and α = 2δ2ρ−2 + 2δρ−1.

16



Estimation of the dimension-reduction subspace

Proposition 12 If (A1)-(A4) are fulfilled then there exist Gaussian vectors ξ∗1 , . . . , ξ
∗
L ∈ R

d

such that E[|ξ∗` |2] ≤ c20σ
2 and

P

(
sup
Π,`

∣∣∣P ∗
ρ (β̂`,Π − β`) −

ξ∗`
h
√
n

∣∣∣ ≥
√
CV Cg(ρ+ δ)2h+

c1σαtn
h
√
n

)
≤ 2

n
,

where the sup is taken over Π ∈ Pδ, ` = 1, . . . , L and we used the notation tn = 5 +√
3 log(Ln) + 3

2d
2 log n, c0 = ψ̄

√
dCKCV and c1 = 30ψ̄(C2

wC
4
V C

2
K + C2

V C
2
K′)1/2.

Proof Let us start with evaluating the bias term |P ∗
ρ (Eβ̂`,Π − β`)|. According to the

Cauchy-Schwarz inequality, it holds

∣∣P ∗
ρ

(
Eβ̂`,Π − β`

)∣∣2 = n−2

∣∣∣∣
n∑

i=1

P ∗
ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)
ψ`(Xi)

∣∣∣∣
2

≤ 1

n2

n∑

i=1

∣∣P ∗
ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)∣∣2
n∑

i=1

ψ2
l (Xi)

≤ max
i=1,...,n

∣∣P ∗
ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)∣∣2.

Simple computations show that
∣∣P ∗

ρ

(
E[∇̂fΠ(Xi)] −∇f(Xi)

)∣∣

≤
∣∣∣∣∣E
(
h−1f̂Π(Xi)

P ∗
ρ ∇̂fΠ(Xi)

)
−
(
h−1f(Xi)

P ∗
ρ∇f(Xi)

)∣∣∣∣∣

= h−1

∣∣∣∣∣Ṽ
−1
i

n∑

j=1

f(Xj)

(
1
Zij

)
wij(U) −

(
h−1f(Xi)

P ∗
ρ∇f(Xi)

)∣∣∣∣∣

= h−1
∣∣∣Ṽ −1

i

n∑

j=1

rij

(
1
Zij

)
wij(U)

∣∣∣ := b(Xi),

where rij = f(Xj) − f(Xi) − X>
ij∇f(Xi). Define vj = Ṽ

−1/2
i

(
1
Zij

)√
wij(U) and λj =

h−1rij
√
wij(U). Then

b(Xi) =

∣∣∣∣Ṽ
−1/2
i

n∑

j=1

λjvj

∣∣∣∣ ≤
∥∥Ṽ −1/2

i

∥∥ · |λ| ·
∥∥∥∥

n∑

j=1

vjv
>
j

∥∥∥∥
1/2

.

The identity
∑

j vjv
>
j = Id+1 implies

b(Xi)
2 ≤ 1

h2

∥∥∥Ṽ −1/2
i

∥∥∥
2
·

n∑

j=1

r2ijwij(U)

≤ h−2 max
j
r2ij

∥∥∥Ṽ −1
i

∥∥∥ ·
n∑

j=1

wij(U)

≤ CV h
−2 max

j
r2ij ,
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where the maximum of rij is taken over the indices j satisfying wij(U) 6= 0. Since the weights
wij are defined via the kernel function K vanishing on the interval [1,∞[, we havemaxj rij =
max{rij : |SΠ,ρXij | ≤ h}. By Corollary 18 |SΠ,ρXij | ≤ h implies |Π∗Xij | ≤ (ρ+ δ)h. Let us
denote by Θ the (d×m∗) matrix having ϑk as kth column. Then Π∗ = ΘΘ> and therefore

|rij | = |f(Xj) − f(Xi) −X>
ij∇f(Xi)|

= |g(Θ>Xj) − g(Θ>Xi) − (Θ>Xij)
>∇g(Θ>Xi)|

≤ Cg|Θ>Xij |2 ≤ Cg(ρ+ δ)2h2.

These estimates yield |b(Xi)| ≤
√
CV Cg(ρ+ δ)2h, and consequently,

∣∣P ∗
ρ

(
Eβ̂`,Π − β`

)∣∣ ≤ max
i
b(Xi) ≤

√
CV Cg(ρ+ δ)2h. (14)

Let us treat now the stochastic term P ∗
ρ

(
β̂`,Π − β∗

l

)
. It can be bounded as follows

∣∣P ∗
ρ

(
β̂`,Π − Eβ̂`,Π

)∣∣ ≤
∣∣∣∣

n∑

j=1

cj,`(U) εj

∣∣∣∣,

where

cj,`(U) =
1

hn

n∑

i=1

Ṽ −1
i (U)

(
1
Zij

)
wij(U)ψ`(Xi).

Let us define ξ∗` = h
√
nP ∗

ρ (β̂`,Π∗ − E[β̂`,Π∗ ]). In view of Lemma 21, we have E[|ξ∗` |2] ≤
nh2σ2

∑
j |cj,`(U∗)|2 ≤ c20σ

2.

One checks that for any ` = 1, . . . , L and for any Π such that tr(I −Π)Π∗ ≤ δ2, it holds

∣∣∣P ∗
ρ (β̂`,Π − E[β̂`,Π]) − ξ∗`

h
√
n

∣∣∣ ≤ sup
‖U−U∗‖2≤α

∣∣∣∣
n∑

j=1

(
cj,`(U) − cj,`(U

∗)
)
εj

∣∣∣∣.

Set aj,`(U) = cj,`(U)− cj,`(U
∗). Lemma 22 implies that Proposition 14 can be applied with

κ0 = c1α
h
√

n
and κ1 = c1

h
√

n
. Setting ε = 2α/

√
n we get that the probability of the event

{
sup
U,`

∣∣∣∣
n∑

j=1

(
cj,`(U) − cj,`(U

∗)
)
εj

∣∣∣∣ ≥
c1σα(5 +

√
3 log(Ln) + 3d2 log(

√
n))

h
√
n

}

is less than 2/n. This completes the proof of the proposition.

Corollary 13 If nL ≥ 6 and the assumptions of Proposition 12 are fulfilled, then

P

(
sup
`,Π

∣∣P ∗
ρ (β̂`,Π − β`)

∣∣ ≥
√
CV Cg(ρ+ δ)2h+

σ(zc0 + c1αtn)

h
√
n

)
≤ Lze−

z2
−1

2 .

In particular, if nL ≥ 6, the probability of the event
{

sup
`,Π

∣∣P ∗
ρ (β̂`,Π − β`)

∣∣ ≥
√
CV Cg(ρ+ δ)2h+

σ(2c0
√

log(Ln) + c1αtn)

h
√
n

}

does not exceed 3/n, where sup is taken over all Π ∈ Pδ(Π
∗), ` = 1, . . . , L and c0, c1, tn

are defined in Proposition 12 and in Theorem 3.
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Proof In view of Lemma 7 in (Hristache et al., 2001b) and Lemma 21 , we have

P
(

max
`=1,...,L

∣∣ξ∗`
∣∣ ≥ zc0σ

)
≤

L∑

`=1

P
(∣∣ξ∗`

∣∣ ≥ zc0σ
)
≤ Lze−(z2−1)/2.

The choice z =
√

4 log(nL) leads to the desired inequality provided that nL ≥ 6.

5.3 Proof of Theorem 3

Recall that at the first step we use the following values of parameters: Π̂0 = 0, ρ1 = 1 and
h1 = n−1/(d∨4). Let us denote

γ1 = h1Cg

√
CV +

2
√

2dCV CK log(nL)σψ̄

h1
√
n

, δ1 = 2γ1

√
µ∗,

and introduce the event Ω1 = {max` |β̂1,` − β`| ≤ γ1}. According to Corollary 10 the
probability of the event Ω1 is at least 1 − n−1. In view of Proposition 16, we get P(tr(I −
Π̂1)Π

∗ ≤ δ21) ≥ 1 − n−1.
For any integer k ∈ [2, k(n)] (where k(n) is the total number of iterations), we define

ρk = aρρk−1, hk = ahhk−1, αk =
2δk−1

ρk

(
δk−1

ρk
+ 1

)
,

γk =





Cg

√
CV (ρk + δk−1)

2hk +
σ(2c0

√
log(nL) + c1αktn)

hk
√
n

, k < k(n),

Cg

√
CV (ρk + δk−1)

2hk +
σ(zc0 + c1αktn)

hk
√
n

, k = k(n),

ζk = 2µ∗(γ2
kρ

−2
k +

√
2 γkρ

−1
k Cg),

δk = 2γk

√
µ∗/
√

1 − ζk,

Ωk = {max
`

|P ∗
k (β̂k,` − β`)| ≤ γk}.

Here β̂k,` = 1
n

∑n
i=1 ∇̂f

(k)
(Xi)ψ`(Xi) with

(
f̂ (k)(Xi)

∇̂f (k)
(Xi)

)
=

( n∑

j=1

(
1
Xij

)(
1
Xij

)>
w

(k)
ij

)−1 n∑

j=1

Yj

(
1
Xij

)
w

(k)
ij ,

and w
(k)
ij = K

(
h−2

k |(I + ρ−2
k Π̂k−1)

1/2Xij |2
)
.

Combining Lemmas 23 and 24, we obtain P(tr(I − Π̂k−1)Π
∗ > δ2k−1) ≤ P(Ωc

k−1) and
therefore, using Corollary 13, we get

P
(
Ωc

k

)
≤ P

(
max

`
|P ∗

k (β̂k,` − β`)| > γk, tr(I − Π̂k−1)Π
∗ ≤ δ2k−1

)
+ P

(
Ωc

k−1

)

≤ P
(

sup
Π∈Pm∗,δk−1

max
`

|P ∗
k (β̂k,` − β`)| > γk

)
+ P

(
Ωc

k−1

)

≤ 3

n
+ P

(
Ωc

k−1

)
, k ≤ k(n) − 1.
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Since P(Ωc
1) ≤ 1/n, it holds P(Ωc

k(n)−1) ≤ (3k(n) − 5)/n and P(Ωc
k(n)) ≤ Lze−(z2−1)/2 +

3k(n)−5
n . Lemma 24 implies that

P
(
tr(I − Π̂k(n))Π

∗ > δ2k(n)

)
≤ Lze−(z2−1)/2 +

3k(n) − 5

n
.

According to Lemma 23, we have δk(n)−2 ≤ ρk(n)−1, αk(n)−1 ≤ 4 and ζk(n)−1 ≤ 1/2. Conse-
quently, for n sufficiently large, we have

δk(n)−1 =
2
√
µ∗γk(n)−1√

1 − ζk(n)−1

≤ C

(
log(Ln)

n

)1/2

∨ n−2/3∨m∗

and αk(n) ≤ 4δk(n)−1ρ
−1
k(n) ≤ C[(

√
log(Ln)(ρk(n)

√
n)−1) ∨ n−1/3∨m∗

]. Since hk(n) = 1 and

(nρk(n))
−1 ≤ ρ2

k(n) = n−2/(3∨m∗), we infer that

γk(n) = Cg

√
CV (ρk(n) + δk(n)−1)

2 +
σ(zc0 + c1αk(n)tn)√

n

≤ Ct2nn
−2/(3∨m∗) +

c0σ z√
n
.

Therefore ζn := ζk(n) = O(γk(n)ρ
−1
k(n)) tends to zero as n tends to infinity not slower than√

log(nL)n−1/(6∨m∗) and the assertion of the theorem follows from the definition of δk(n)

and Lemma 19 (see below).

5.4 Maximal inequality

The following result contains a well known maximal inequality for the maximum of a Gaus-
sian process. We include its proof for the completeness of exposition.

Proposition 14 Let r be a positive number and let Γ be a finite set. Let functions aj,γ :
R

p → R
d obey the conditions

sup
γ∈Γ

sup
|u−u∗|≤r

n∑

j=1

|aj,γ(u)|2 ≤ κ2
0, (15)

sup
γ∈Γ

sup
|u−u∗|≤r

sup
e∈Sd−1

n∑

j=1

∣∣∣∣
d

du
(e>aj,γ(u))

∣∣∣∣
2

≤ κ2
1. (16)

If the εj’s are independent N (0, σ2)-distributed random variables, then

P

(
sup
γ∈Γ

sup
|u−u∗|≤r

∣∣∣∣
n∑

j=1

aj,γ(u) εj

∣∣∣∣ > tσκ0 + 2
√
nσκ1ε

)
≤ 2

n
,

where t =
√

3 log(|Γ|(2r/ε)pn).
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Proof Let Br be the ball {u : |u − u∗| ≤ r} ⊂ R
p and Σr,ε be the ε-net on Br such

that for any u ∈ Br there is an element ul ∈ Σr,ε such that |u − ul| ≤ ε. It is easy to see
that such a net with cardinality Nr,ε < (2r/ε)p can be constructed. For every u ∈ Br we
denoteηγ(u) =

∑n
j=1 aj,γ(u) εj . Since E(|ηγ(u)|2) ≤ σ2κ2

0 for any γ and for any u, we have

P
(
|ηγ(ul)| > tσκ0

)
≤ P

(
|ηγ(ul)| > t

√
E(|ηγ(ul)|2)

)
≤ te−(t2−1)/2.

Thus we get

P
(

sup
γ∈Γ

sup
ul∈Σr,ε

∣∣ηγ(ul)
∣∣ > tσκ0

)
≤
∑

γ∈Γ

Nr,ε∑

l=1

P
(∣∣ηγ(ul)

∣∣ > tσκ0

)

≤ |Γ|Nr,εte
−(t2−1)/2.

Hence, if t =
√

3 log(|Γ|Nr,εn), then P
(

supγ∈Γ supul∈Σr,ε

∣∣ηγ(ul)
∣∣ > tσκ0

)
≤ 1/n. On the

other hand, for any u, u′ ∈ Br the Cauchy-Schwarz inequality yields

∣∣ηγ(u) − ηγ(u′)
∣∣2 = sup

e∈Sd−1

∣∣e>(ηγ(u) − ηγ(u′)
)∣∣2

≤ |u− u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
d(e>ηγ)

du
(u)

∣∣∣∣
2

= |u− u′|2 · sup
u∈Br

sup
e∈Sd−1

∣∣∣∣
n∑

j=1

d(e>aj,γ)

du
(u) εj

∣∣∣∣
2

≤ |u− u′|2 · sup
u∈Br

sup
e∈Sd−1

n∑

j=1

∣∣∣∣
d(e>aj,γ)

du
(u)

∣∣∣∣
2 n∑

j=1

ε2j

≤ κ2
1|u− u′|2

n∑

j=1

ε2j .

Since P
(∑n

j=1 ε
2
j > 4nσ2

)
is certainly less than n−1, we have

P
(

sup
γ∈Γ

sup
u∈Br

∣∣ηγ(u)
∣∣ > tσκ0 + 2

√
nσκ1ε

)

≤ P
(

sup
γ∈Γ

sup
ul∈Σr,ε

|ηγ(ul)|
tσκ0

> 1
)

+ P
(

sup
γ∈Γ

sup
u∈Br

|ηγ(u) − ηγ(ul(u))|
2
√
nσκ1ε

> 1
)

≤ 1

n
+ P

(
sup
u∈Br

κ2
1|u− ul(u)|2

n∑

j=1

ε2j > 4nσ2κ2
1ε

2
)
≤ 2

n
,

and the assertion of proposition follows.
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5.5 Properties of the solution to (6)

We collect below some simple facts concerning the solution to the optimization problem (6).
By classical arguments, it is always possible to choose a measurable solution Π̂ to (6). This
measurability will be assumed in the sequel.

In Proposition 15 the case of general m (not necessarily equal to m∗) is considered. As
we explain below, this generality is useful for further developments of the method extending
it to the case of unknown structural dimension m∗.

The vectors β` are assumed to belong to a m∗-dimensional subspace S of R
d, but in this

subsection we do not assume that β`s are defined by (4). In fact, we will apply the results
of this subsection to the vectors Π∗β̂`.

Denote

R(Π) = max
`
β̂>` (I − Π)β̂`,

R̂(m) = min
Π∈Am

√
R(Π) =

√
R(Π̂m).

We also define

R∗(m) = min
Π∈Am

max
`

|(I − Π)1/2β`|.

and denote by Π∗
m a minimizer of max` β

>
` (I − Π)β` over Π ∈ Am. Since for m ≥ m∗ the

projector Π∗ is in Am, we have Π∗
m = Π∗ and R∗(m) = 0.

Proposition 15 Let B∗ =
{
β̄ =

∑
` c`β` :

∑
` |c`| ≤ 1

}
be the convex hull of vectors β`. If

max` |β̂` − β`| ≤ ε, then

R̂(m) ≤ R∗(m) + ε,

max
β̄∈B∗

|(I − Π̂m)1/2β̄| ≤ R∗(m) + 2ε.

When m < m∗, we have also the lower bound R̂(m) ≥ (R∗(m) − ε)+.

Proof For every ` ∈ 1, . . . , L, we have

|(I − Π∗
m)1/2β̂`| ≤ |(I − Π∗

m)1/2β`| + |(I − Π∗
m)1/2(β̂` − β`)|

≤ R∗(m) + |β̂` − β`| ≤ R∗(m) + ε.

Since Π̂m minimizes max` |(I − Π)1/2β̂`| over Π ∈ Am, we have

max
`

|(I − Π̂m)1/2β̂`| ≤ max
`

|(I − Π∗
m)1/2β̂`| ≤ R∗(m) + ε.

Denote A = (I − Π̂m)1/2. From definition 0 � A � I. Therefore, for every `

|Aβ`| ≤ |Aβ̂`| + |A(β` − β̂`)| ≤ |Aβ̂`| + |β` − β̂`| ≤ R∗(m) + 2ε.

The second inequality of the proposition follows now from |Aβ̄| ≤ max` |Aβ`| for every
β̄ ∈ B∗.
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To prove the last assertion, remark that according to the definition of R∗(m), for every
matrix Π ∈ Am there exists an index ` such that |(I − Π)1/2β`| ≥ R∗(m). In particular,
|(I−Π̂m)1/2β`| ≥ R∗(m) for some ` and hence |(I−Π̂m)1/2β̂`| ≥ |(I−Π̂m)1/2β`|−|β̂`−β`| ≥
R∗(m) − ε.

Proposition 15 can be used for estimating the structural dimensionm. Indeed, R̂(m) ≤ ε
for m ≥ m∗ and the results mean that R̂(m) ≥ (R∗(m) − ε)+ for m < m∗. Therefore, it
is natural to search for the smallest value m̂ of m such that the function R̂(m) does not
significantly decrease for m ≥ m̂.

From now on, we assume that the structural dimension m∗ is known and write Π̂ instead
of Π̂m∗ .

Proposition 16 If the vectors β` satisfy (A2) and max` |β̂` −β`| ≤ ε, then tr(I − Π̂)Π∗ ≤
4ε2µ∗ and tr[(Π̂ − Π∗)2] ≤ 8ε2µ∗.

Proof In view of the relations tr Π̂2 ≤ tr Π̂ ≤ m∗ and tr(Π∗)2 = tr Π∗ = m∗, we have

tr(Π̂ − Π∗)2 = tr(Π̂2 − Π∗) + 2 tr(I − Π̂)Π∗ ≤ 2| tr(I − Π̂)Π∗|.

Note also that the equality tr(I−Π̂)Π∗ = tr(I−Π̂)1/2Π∗(I−Π̂)1/2 implies that tr(I−Π̂)Π∗ ≥
0. Now condition (8) and Proposition 15 imply

tr(I − Π̂)Π∗ = tr(I − Π̂)1/2Π∗(I − Π̂)1/2

≤
m∗∑

k=1

µk tr(I − Π̂)1/2β̄kβ̄
>
k (I − Π̂)1/2

≤
m∗∑

k=1

µkβ̄
>
k (I − Π̂)β̄k ≤ (2ε)2

m∗∑

k=1

µk

and the assertion follows.

Lemma 17 Let tr(I − Π̂)Π∗ ≤ δ2 for some δ < 1. Then for any x ∈ R
d

|Π∗x| ≤ |Π̂1/2x| + δ|x|.

Proof Denote Â = Π̂1/2. It obviously holds |Π∗x| ≤ |Π∗Âx| + |Π∗(I − Â)x| and

|Π∗(I − Â)x|2 ≤ ‖Π∗(I − Â)‖2
2 · |x|2 ≤ tr[Π∗(I − Â)2Π∗] · |x|2.

For every Π ∈ Am, it obviously holds (I − Π1/2)2 = I − 2Π1/2 + Π � I − Π, and hence,
tr Π∗(I − Π1/2)2Π∗ ≤ tr Π∗(I − Π)Π∗. Therefore,

tr Π∗(I − Â)2Π∗ ≤ tr Π∗(I − Π̂)Π∗ = tr(I − Π̂)Π∗ ≤ δ2

yielding |Π∗x| ≤ |Π∗Âx| + δ|x| ≤ |Âx| + δ|x| as required.
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Corollary 18 Let ρ ∈ (0, 1), and Ŝρ = (I + ρ−2Π̂)1/2. If tr(I − Π̂)Π∗ ≤ δ2, then for any
x ∈ R

d, the condition |Ŝρx| ≤ h implies |Π∗x| ≤ (ρ+ δ)h.

Proof The result follows from Lemma 17 and the obvious inequalities |x| ≤ |Ŝρx| ≤ h and

|Π̂1/2x| ≤ ρ|Ŝρx| ≤ ρh.

Lemma 19 Let tr(I−Π̂)Π∗ ≤ δ2 for some δ ∈ [0, 1[ and let Π̂m∗ be the orthogonal projection
matrix in R

d onto the subspace spanned by the eigenvectors of Π̂ corresponding to its largest
m∗ eigenvalues. Then tr(I − Π̂m∗)Π∗ ≤ δ2/(1 − δ2).

Proof Let λ̂j and ϑ̂j , j = 1, . . . , d be respectively the eigenvalues and the eigenvectors of

Π̂. Assume that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d. Then Π̂ =
∑d

j=1 λ̂jϑ̂jϑ̂
>
j and Π̂m∗ =

∑m∗

j=1 ϑ̂jϑ̂
>
j .

Moreover,
∑d

j=1 ϑ̂jϑ̂
>
j = I since {ϑ̂1, . . . , ϑ̂d} is an orthonormal basis of R

d, Therefore, on
the one hand,

tr[Π̂Π∗] ≤
∑

j≤m∗

λ̂j tr[ϑ̂jϑ̂
>
j Π∗] + λ̂m∗

∑

j>m∗

tr[ϑ̂jϑ̂
>
j Π∗]

=
∑

j≤m∗

(λ̂j − λ̂m∗) tr[ϑ̂jϑ̂
>
j Π∗] + λ̂m∗ tr

[ d∑

j=1

ϑ̂jϑ̂
>
j Π∗

]

=
∑

j≤m∗

(λ̂j − λ̂m∗) tr[ϑ̂jϑ̂
>
j Π∗] +m∗λ̂m∗ .

Since tr[ϑ̂jϑ̂
>
j Π∗] = |Π∗ϑ̂j |2 ≤ 1, we get tr[Π̂Π∗] ≤∑j≤m∗ λ̂j . Taking into account the rela-

tions
∑

j≤d λ̂j ≤ m∗, tr Π∗ = m∗ and (1− λ̂m∗+1)(I − Π̂m∗) � I − Π̂, we get λm∗+1 ≤ m∗ −∑
j≤m∗ λ̂j ≤ tr[(I−Π̂)Π∗] ≤ δ2 and therefore tr[(I−Π̂m∗)Π∗] ≤ δ2/(1−λ̂m∗+1) ≤ δ2/(1−δ2).

5.6 Technical lemmas

This subsection contains five technical results. The first three lemmas have been used in
the proof of Proposition 12, whereas the two last lemmas have been used in the proof of
Theorem 3.

Lemma 20 If ρ ≤ 1, then ‖U − U ∗‖2 ≤ α.

Proof The inequality P ∗
ρ � (I − Π∗) + ρΠ∗ implies that

ρ2
∥∥U − U∗∥∥

2
=
∥∥P ∗

ρ (Π − Π∗)P ∗
ρ

∥∥
2

≤ ρ2
∥∥Π∗(Π − Π∗)Π∗∥∥

2
+
∥∥(I − Π∗)(Π − Π∗)(I − Π∗)

∥∥
2

+ 2ρ
∥∥Π∗(Π − Π∗)(I − Π∗)

∥∥
2
.
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Since ‖A‖2
2 = trAA> ≤ (tr(AA>)1/2)2 for any matrix A, it holds

∥∥Π∗(Π − Π∗)Π∗∥∥
2

=
∥∥Π∗(I − Π)Π∗∥∥

2

≤ tr Π∗(I − Π)Π∗ = tr(I − Π)Π∗ ≤ δ2.

By similar arguments one checks that
∥∥(I − Π∗)(Π − Π∗)(I − Π∗)

∥∥
2

=
∥∥(I − Π∗)Π(I − Π∗)

∥∥
2
≤ tr(I − Π∗)Π

= tr Π − tr Π∗ + tr Π∗(I − Π)

≤ m∗ −m∗ + δ2,∥∥Π∗(Π − Π∗)(I − Π∗)
∥∥

2
≤
∥∥Π∗(Π − Π∗)

∥∥
2

=
∥∥Π∗(I − Π)

∥∥
2

≤
∥∥Π∗(I − Π)1/2

∥∥
2
≤ (tr Π∗(I − Π)Π∗)1/2

= (tr(I − Π)Π∗)1/2 ≤ δ.

Thus we get
∥∥U − U∗∥∥

2
≤ δ2(1 + ρ−2) + 2δρ−1. The assumption ρ ≤ 1 yields the assertion

of the lemma.

Lemma 21 If ψ`s and U satisfy (A3) and (13), then

n∑

j=1

|cj,`(U)|2 ≤ dCKCV ψ̄
2

h2n
.

Proof Simple computations yield

n∑

j=1

∣∣∣∣Ṽ −1
i

(
1
Zij

)∣∣∣∣
2

wij = tr(Ṽ −1
i ) ≤ dCV

Ni
. (17)

Hence, we have

n∑

j=1

|cj,`|2 =
1

h2n2

n∑

j=1

∣∣∣∣
n∑

i=1

Ṽ −1
i

(
1
Zij

)
wij ψ`(Xi)

∣∣∣∣
2

≤ ψ̄2

h2n2

n∑

j=1

( n∑

i=1

wij

Ni

)( n∑

i=1

∣∣∣∣Ṽ −1
i

(
1
Zij

)∣∣∣∣
2

Niwij

)

≤ CK ψ̄
2

h2n2

n∑

j=1

n∑

i=1

∣∣∣∣Ṽ −1
i

(
1
Zij

)∣∣∣∣
2

Niwij .

Interchanging the order of summation and using inequality (17) we get the desired result.

Lemma 22 If (A3) and (13) are fulfilled, then, for any j = 1, . . . , n,

sup
U

sup
e∈Sd−1

∣∣∣∣
d

dU
(e>cj,`)(U)

∣∣∣∣
2

≤ C

(
C2

wC
4
V C

2
K ψ̄

2

n2h2
+
C2

V C
2
K′ψ̄2

n2h2

)
,

where C is a numerical constant and d
dU (e>cj,`)(U) is the d×d matrix with entries

∂ e
>cj,`(U)
∂Upq

.
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Proof We have
∥∥∥∥
d e>cj,`(U)

dU

∥∥∥∥
2

2

≤ 2

∥∥∥∥
1

hn

n∑

i=1

[
d

dU
e>Ṽ −1

i (U)

(
1
Zij

)]
wij(U)ψ`(Xi)

∥∥∥∥
2

2

+ 2

∥∥∥∥
1

hn

n∑

i=1

e>Ṽ −1
i (U)

(
1
Zij

)
dwij(U)

dU
ψ`(Xi)

∥∥∥∥
2

2

= ∆1 + ∆2.

One checks that ‖dwij(U)/dU‖2 = |w′
ij(U)| · |Zij |2 ≤ 5|w′

ij(U)|, where we used the notation

w′
ij(U) = K ′(Z>

ijUZij) and the inequality

h2|Zij |2 = |S∗
ρXij |2 = |(I − Π∗)Xij |2 + 2ρ−2|Π∗Xij |2

≤ h2 + 2(δ/ρ+ 1)2h2 ≤ 5h2,

which follows from Lemma 17. We get

∆2 ≤ 50ψ̄2

n2h2

( n∑

i=1

∣∣∣Ṽ −1
i (U)

(
1
Zij

)
w′

ij(U)
∣∣∣
)2

≤ Cψ̄2C2
V C

2
K′

n2h2
.

In order to estimate the term ∆1, remark that the differentiation (with respect to Upq) of
the identity Ṽ −1

i (U)Ṽi(U) = Id+1 yields

∂Ṽ −1
i

∂Upq
(U) = −Ṽ −1

i (U)
∂Ṽi

∂Upq
(U)Ṽ −1

i (U).

Simple computations show that

∂Ṽi

∂Upq
(U) =

n∑

j=1

(
1
Zij

)(
1
Zij

)> ∂

∂Upq
wij(U)

=
n∑

j=1

(
1
Zij

)(
1
Zij

)>
w′

ij(U)(Zij)p(Zij)q.

Hence, for any a1, a2 ∈ R
d+1,

da>1 Ṽ
−1
i a2

dU
(U) =

n∑

j=1

a>1 Ṽ
−1
i (U)

(
1
Zij

)(
1
Zij

)>
Ṽ −1

i (U)a2 w
′
ij(U)ZijZ

>
ij .

This relation combined with the estimate |Zij | ≤ 5 for all i, j such that wij 6= 0, implies the
norm estimate

∥∥∥∥
da>1 Ṽ

−1
i a2

dU
(U)

∥∥∥∥
2

≤ 25

n∑

j=1

∣∣∣∣a>1 Ṽ −1
i (U)

(
1
Zij

)(
1
Zij

)>
Ṽ −1

i (U)a2 w
′
ij(U)

∣∣∣∣

≤ 150|a1| |a2|
n∑

j=1

∥∥Ṽ −1
i (U)

∥∥2|w′
ij(U)|

≤ 150CwC
2
V |a1| |a2|Ni(U)−1.
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It provides the following estimate of the term ∆1:

∆1 ≤ C
C2

wC
4
V C

2
K ψ̄

2

n2h2
,

and the assertion of the lemma follows.

Lemma 23 There exists an integer n0 ≥ 0 such that, as soon as n ≥ n0, δk−1 ≤ ρk, αk ≤ 4
and ζk ≤ 1/2 for all k ∈ {2, . . . , k(n)}.

Proof In view of the inequalities C0n
−1/(d∨4) = ρ1h1 and ρk(n)hk(n) ≥ C2n

−1/3, the
sequence

sn = 4
√
CV Cgh1 +

4σ(c0
√

log(Ln) + c1tn)√
nρk(n)hk(n)

tends to zero as n→ ∞.

We do now an induction on k. Since sn → 0 as n → ∞ and γ1 ≤ sn, the inequality
δ1 = 2γ1

√
µ∗ ≤ 1/

√
2 = ρ1/

√
2 is true for sufficiently large values of n. Let us prove the

implication

δk−1 ≤ ρk−1/
√

2 =⇒
{
ζk ≤ 1/2,

δk ≤ ρk/
√

2.

Since 1/
√

2 ≤ e−1/6 we infer that δk−1 ≤ ρk and therefore αk ≤ 4. By our choice of ah and
aρ, we have ρ1h1 ≥ ρkhk ≥ ρk(n)hk(n). Therefore,

γk

ρk
≤ 4
√
CV Cgρkhk +

4σ(c0
√

log(Ln) + c1tn)√
nρkhk

≤ 4
√
CV Cgh1 +

4σ(c0
√

log(Ln) + c1tn)√
nρk(n)hk(n)

= sn.

Thus, for n large enough, ζk ≤ 1/2 and γk ≤ ρk/4. This implies that δk = 2γk(1−ζk)−1/2 ≤
ρk/

√
2.

By induction we infer that δk−1 ≤ ρk−1/
√

2 ≤ ρk and ζk ≤ 1/2 for any k = 2, . . . , k(n)−
1. This completes the proof of the lemma.

Lemma 24 If k > 2 and ζk−1 < 1 then Ωk−1 ⊂ {tr(I − Π̂k−1)Π
∗ ≤ δ2k−1}.

Proof Let us denote β̃` = Π∗β̂k−1,`, then β̃` ∈ S∗ and under Ωk−1 we have

|P ∗
k−1(β̂k−1,` − β`)| ≤ γk−1 =⇒

{
max` |β̂k−1,` − β̃`| ≤ γk−1,

max` |β̃` − β`| ≤
√

2γk−1/ρk−1.
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Set B =
∑m∗

i=1 µiβ̄iβ̄
>
i and B̃ =

∑m∗

i=1 µi
¯̃
βi

¯̃
β>i , where

¯̃
βi =

∑
` c`β̃` if β̄i =

∑
` c`β`. Since∑

` |c`| ≤ 1, we have |β̄i| ≤ max` |β`| ≤ ‖∇f‖∞ and |β̄i − ¯̃
βi| ≤ max` |β` − β̃`|. Therefore

‖B − B̃‖ ≤
m∗∑

i=1

µi‖β̄iβ̄
>
i − ¯̃

βi
¯̃
β>i ‖ ≤ µ∗ max

k
‖β̄iβ̄

>
i − ¯̃

βi
¯̃
β>i ‖

≤ µ∗ max
i

(
|β̄i − ¯̃

βi|2 + 2|β̄i| · |β̄i − ¯̃
βi|
)

≤ µ∗
(
2γ2

k−1ρ
−2
k−1 + 2

√
2 γk−1ρ

−1
k−1 max

`
|β`|
)

= ζk−1

and hence, for every unit vector v ∈ S∗, v>B̃v ≥
(
v>Bv −

∣∣v>Bv − v>B̃v
∣∣) ≥ v>Bv −

‖B − B̃‖ ≥ 1 − ζk−1. This inequality implies that Π∗ � (1 − ζk−1)
−1B̃ and, in view of

Proposition 16 we obtain the assertion of the lemma.
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