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2 omponent identifiation by strutural adaptation1 IntrodutionWe onsider the model y = f(x) + "; f(x) = �>x1 +G(x2); (1.1)where x> = (x>1 ;x>2 ) , dim(x2) =M , dim(x1) = d�M , and M � d . Funtion G(�) ,vetor of oeÆients � , and the distribution of the noise " are unknown. And mostimportantly, we do not know with respet to whih d1 = d �M variables x1 the modelis linear.The model (1.1) naturally generalizes the linear model and are alled a partially linearmodel. Suh models an be used in analysis of high dimensional data when the assumptionof linearity is too restritive. They an also be used as a natural alternative to a linearmodel in the problem of testing the linearity assumption. A general ase with a highdimensional nonlinear omponent makes the analysis ompliated beause of the \urse ofdimensionality" problem. In this paper we onsider the situation in whih the nonlinearomponent is low dimensional, that is, M is relatively small.Hristahe, Juditsky and Spokoiny (2001) and Hristahe, Juditsky, Polzehl and Spokoiny(2001) (referred to as HJS and HJPS, respetively, in the rest of the paper) proposed anew method of exploring a high-dimensional regression model with the help of a generalstrutural adaptation approah. The aim of the present artile is to apply this approah tothe estimation and inferene in the partially linear model (1.1). The analysis inludes, inpartiular, estimation of the degree of nonlinearity M , identifying with respet to whihd�M variables x1 the model is linear or equivalently whih M variables enter in f ina nonlinear fashion, estimation of the vetor � and of the nonlinear link funtion G .It is important to note that the approah proposed here provides also a new method ofseleting signi�ant variables in nonparametri regression in ase when the dimensionalityof the nonlinear omponent is relatively small. More spei�ally, after seleting M (sig-ni�ant) nonlinear variables, one an further selet variables among the linear ones usingstandard methods of linear regression analysis or by testing signi�ane of linear variableslopes as suggested in Setion 4.3 below.As a by-produt of our analysis, we develop a test of the hypothesis of linearity againsta partially linear alternative, and, more generally, a test of the hypothesis that the dimen-sionality of the nonlinear omponent does not exeed the presribed value M .Following the work of Engle, Granger, Rie and Weiss (1986), muh attention has beendireted to estimating model (1.1). See, for example, Hekman (1986), Rie (1986), Chen(1988), Robinson (1988), Spekman (1988), Gao (1995), Shik (1996a,b), Bhattaharyaand Zhao (1997), Mammen and Van der Geer (1997), Hamilton and Truong (1997), Eu-



samarov, a. , spokoiny, v. and vial, . 3bank, Kambour, Kim, Klipple, Reese and Shimek (1998), Shimek (2000), Golubev andH�ardle (2000, 2001). Further referenes and appliations of partially linear models ouldbe found in the reent book by H�ardle, Liang, and Gao (2000). This literature addressedthe problem of estimation of the parametri and nonparametri omponents of the model(1.1) under the assumption that the "nonlinear" variables x2 are spei�ed and, in fat,most papers assume that M = 1. Various estimators have been proposed whih ahieveroot-n rate or are semiparametrially eÆient for estimating the parametri omponent �as well as those whih ahieve the usual nonparametri rates for estimating G(x2).To our knowledge, the only paper whih addressed the problem of seleting whihvariables x2 enter nonlinearly in the model (1.1) was Chen and Chen (1991). That pa-per proposed a model-seletion-type rule and showed that the probability of the orretidenti�ation by this method goes to one as the sample size goes to in�nity. H�ardle andKorostelev (1996) showed for the similar problem of seleting the signi�ant variables inan additive model that the error of lassi�ation an be made exponentially small. In thispaper we onsider another setup whih seems to be more appealing for pratial applia-tions. Namely, we develop a nonlinear omponent identi�ation method whih guaranteesa presribed level of model misspei�ation uniformly over the lass of models whose non-linear omponent is separated away from the linear one by the squared distane of ordern�1 log n or larger. Our results are essentially nonasymptoti and apply for a small ormoderate sample size.H�ardle, Spokoiny and Sperlih (2001) onsidered a similar problem of identifying thelinear omponent for an additive model, using a wavelet (Haar) expansion of every additiveomponent. The advantage of the struture adaptive proedure proposed here is that theadditive struture is not required and is not used in the method.There also exists a large literature on testing a parametri, in partiular linear, re-gression model against nonparametri alternative. See, for example, Eubank and Spiegel-man (1990), Eubank and Hart (1992), Ledwina (1994), H�ardle and Mammen (1993), Fan(1996), Hart (1997), Stute (1997), Horowitz and Spokoiny (2001) and referenes therein.Our testing results are stated in the spirit of Spokoiny (2001) fousing on the minimalseparation distane between the null and the alternative providing test onsisteny.The paper is organized as follows. Setion 2 ontains the desription of the strutureadaptive estimation algorithm. Auray of estimation by the proposed method is de-sribed in Setion 3. Further problems of identi�ation of the nonlinear omponent andof estimation of slope oeÆients of the linear omponent are disussed in Setion 4. Se-tion 5 presents results of a simulation study and an appliation to real data. Conlusionand some extensions of the method are presented in Setion 6. The proofs are olleted



4 omponent identifiation by strutural adaptationin the Appendix.2 Struture adaptive proedureThis setion explains the adaptive estimation proedure starting with a short heuristidisussion.2.1 PreliminariesThe idea of strutural adaptation from HJPS an be summarized as follows.(i) knowing the strutural information helps better estimate the model funtion;(ii) a good pilot estimator of the model funtion helps reover some strutural informationabout the model.These two observations lead to the following iterative proedure: we start with a purelynonparametri estimator of the model funtion; then the above two steps (estimation ofthe model and estimation of the struture) are iterated several times inreasing the amountof strutural information and improving the quality of model estimation during iteration.HJPS onsidered the problem of estimation for a multi-index model in whih theregression funtion is of the form f(x) = g(�>1 x; : : : �>Mx) , where �1; : : : ; �M are unknownindex vetors in IRd . The partially linear model (1.1) an be regarded as a speial aseof the multi-index model with M + 1 indies. Indeed, f(x) depends on x only through�>x1 and the oordinate vetors orresponding to the nonlinear omponent. So, one anformally apply the proedure from HJPS in the onsidered ase. However, the speialstruture of the model (1.1) allows to onsiderably simplify the proedure and furtheranalysis that justi�es a separate treatment of the partially linear models.Here the struture of the model (1.1) is desribed by the set J of indies orrespondingto the nonlinear omponent x2 . An alternative desription an be done by using theaverage gradient idea. Namely, if the funtion f(x) is linear with respet to the m thoordinate funtion xm , then the partial derivative �f=�xm is a onstant, and therefore,the variane Vm of the m th partial derivative an be used to measure the degree ofnonlinearity of the m th oordinate. Suppose that some information about the set J or,equivalently, about the values Vm is available. Now we explain how this information anbe used for improving the quality of estimation of the model funtion f . A loal linearestimator of the funtion f and its gradient rf at a point Xi is given by bf(Xi)rf(Xi)! = 8<: nXj=1� 1Xij�� 1Xij�>K� jXij j2b2 �9=;�1 nXj=1 Yj� 1Xij�K� jXij j2b2 �



samarov, a. , spokoiny, v. and vial, . 5where Xij = Xj�Xi , b is a bandwidth and K(�) is a univariate kernel K on the positivesemiaxis. supported on [0; 1℄ . The bandwidth b should be seleted in a way that the ballwith the radius b and the enter the point of estimation Xi ontains at least d+1 designpoints whih for large value of d leads to a the bandwidth b of order one and to a hugeestimation bias. This phenomenon is alled the \urse of dimensionality". Observe nowthat the funtion f has anisotropi smoothness properties: smoothness of G in diretionof the nonlinear omponent, and in�nite smoothness (orresponding to a linear funtion)in other diretions. This suggests to apply an anisotropi bandwidth for estimating themodel funtion and its gradient. So, the `ideal' estimator whih utilizes the knowledge ofthe set J an be de�ned by using the di�erent bandwidths for di�erent omponents ofthe vetor x . Let b = diag(b1; : : : ; bd) be a diagonal matrix with the diagonal entriesb1; : : : ; bd . De�ne the loal linear estimator with the anisotropi bandwidth b by bf(Xi)rf(Xi)! =8<: nXj=1� 1Xij�� 1Xij�>Kd(Xij ; b)9=;�1 nXj=1 Yj� 1Xij�Kd(Xij ; b) ; (2.1)where Kd(x; b) = K(jb�1xj2) . Knowing that the value Vm is signi�antly positive (thatis, m is presumably in J ) leads to the hoie of smaller bandwidth values bm for suhm and possibly larger bandwidths for the other regressors. This would help to avoid the\urse of dimensionality" problem if the dimension M of the nonlinear omponent is nottoo large, f. Carroll, Fan, Gijbels and Wand (1997) or HJPS.Next we explain how the strutural information an be extrated from the pilot esti-mator (2.1) of the model funtion. De�ne for every oordinate xm of x 2 IRd a set offuntions  1m; : : : ;  Lm satisfying the onditions:nXi=1  lm(Xi;m) = 0; n�1 nXi=1  lm(Xi;m) l0m(Xi;m) = Æll0 :In other words, f lm; l = 1; : : : ; Lg is a orthonormal set of funtions with respet to thedesign of m th oordinate. Eah of  lm is also orthogonal to the onstant funtion. Thelatter property implies that if f is linear with respet to xm , then��lm = n�1 nXi=1 rfm(Xi) lm(Xi;m) � 0 (2.2)for every l = 1; : : : ; L , where rfm(x) = �f=�xm(x) . Thus, the sumv�m = LXl=1(��lm)2



6 omponent identifiation by strutural adaptationan be used as the measure of nonlinearity of f with respet to xm . Having estimatedthe gradient of f for all Xi , we an also estimate the oeÆients �lm withb�lm = n�1 nXi=1 rfm(Xi) lm(Xi;m) (2.3)and use the sum bvm = b�21m+ : : :+ b�2Lm as the estimated degree of nonlinearity of f withrespet to the m th regression variable.Next, the quantities bvm an be used to de�ne new anisotropi bandwidth b takingsmaller bandwidths for the regressors with large bvm .Remark 2.1. Similarly to HJPS, we use here the estimation method based on the Fourierexpansion of the gradient rf(x) . Alternatively, one an estimate Vm diretly using theaverage of jrfm(Xi)j2 . However, a detailed alulation (not given in the paper) showsthat the proedure based on suh a diret estimation of the quadrati funtionals Vm leadsto worse estimation results. At the same time, the loss of information from replaing Vmwith v�m as a measure of nonlinearity is not signi�ant if L is hosen suÆiently large,see more on the hoie of L in Setion 6.2.2 Iterative proedureWe now present the desription of the method. The proedure involves input parametersh1; ah , �1; �min; a� and � . The parameter of elliptiity � dereases geometrially from�1 to �min by the fator a� < 1 while the bandwidth h inreases geometrially from h1by the fator ah > 1 during iterations. The value � an be interpreted as the \memoryparameter" of the proedure. The hoie of these parameters, as well as of the set of basisfuntions f lmg will be disussed in Setion 2.3. The algorithm reads as follows:1. Selet h1 . Set bv(0)1 = : : : = bv(0)d = 0 , and k = 1 . Compute for i = 1; : : : ; nbV (0)i = nXj=1� 1Xij�� 1Xij�>; bS(0)i = nXj=1� 1Xij�Yj ;where Xij = Xj �Xi .2. Compute b(k)m = hk�1 + ��2k bv(k�1)m ��1=2; m = 1; : : : ; d: (2.4)De�ne b(k) = diag(b(k)1 ; : : : ; b(k)d ) .



samarov, a. , spokoiny, v. and vial, . 73. For every Xi omputeV (k)i = �V (k�1)i + (1� �) nXj=1� 1Xij�� 1Xij�>Kd�Xij ; b(k)�; (2.5)S(k)i = �S(k�1)i + (1� �) nXj=1� 1Xij�YjKd�Xij ; b(k)�; (2.6)and 0� bf (k)(Xi)rf (k)(Xi)1A = �V (k)i ��1 S(k)i : (2.7)Compute b"(k)i = Yi � bf (k)(Xi) .4. Compute for m = 1; : : : ; d and l = 1; : : : ; Lb�(k)lm = n�1 nXi=1 rf (k)m (Xi) lm(Xi;m); bv(k)m = LXl=1 ���b�(k)lm ���2 : (2.8)If bv(k)m > 1 , then set bv(k)m = 1 .5. Inrease k by 1. Set �k+1 = a��k , hk+1 = ahhk . If �k+1 � �min , then set k = k + 1and ontinue with Step 2; otherwise terminate.Denote by kn the number of iterations and by b�lm = b�(kn)lm (resp. bvm = bv(kn)m ) thelast step estimators of ��m (resp. v�m ). Similarly, bf(Xi) denotes the last step estimatorof f(Xi) and b"i = b"(kn)i = Yi � bf(Xi) .Remark 2.2. At every step k of the algorithm the bandwidth b(k)m for the m th regressoris seleted between hk and hk�k depending on the value bv(k�1)m . For the linear omponent,the values bv(k�1)m should be small leading to a bandwidth about hk , while for the nonlinearregressors with a large value v�m , the estimator bv(k�1)m will be also large leading to abandwidth about hk�k . During iteration the parameter h grows to h�nal � 1 whilehk�k dereases to �min leading to the adaptive anisotropi bandwidth at the last step.Remark 2.3. We ut bv(k)m at one at step 4 in order to avoid too strong shrinkage indiretion of m th regressor whih may our for too large values of bv(k)m .2.3 Choie of parametersIt is obvious that the quality of estimation by the proposed method strongly dependson the rule for hanging the parameters h and � , and, in partiular, on their values atthe initial and �nal iteration. Some related disussion about this hoie an be found inHJPS. The general idea is to ensure that the parameter h grows to one and h� dereases



8 omponent identifiation by strutural adaptationunder the onstraint that at every iteration k there exist enough design points in every oralmost every loal ellipsoidal neighborhoods E(k)(Xi) = �x : ���b(k)��1(x�Xi)��2 � 1	 .Assuming that every b(k)m is lose to the `ideal bandwidth' b�(k)m = hk(1 + ��2k v�m)�1=2we observe, that neighborhood E(k)(Xi) is strethed at eah iteration step by fator ahin all diretions and is shrunk by a fator about a� in diretions of the M -dimensionalnonlinear omponent J where ah and a� are parameters of the proedure. Therefore,the Lebesgue measure of every suh neighborhood is hanged eah time by a fator aboutadhaM� . This leads to the onstraint adhaM� � 1 , f. Assumption 3 in Setion 3 below. Underthe assumption of a random design with a positive density, this would result in an inreaseof the mean number of design points inside eah E(k)(Xi) . Our theoretial results willbe stated for the hoie h1 � n�1=maxf4;dg , hmax � 1 , �1 = 1 , �min � �n�1 log n�1=3 ,see Setion 3 for more details. Similarly to HJPS, suh a hoie under the onstraintadhaM� > 1 is possible only for M � 3 .We reommend to de�ne for every m = 1; : : : ; d the set of funtions  lm , l = 1; : : : ; Lby orthogonalizing the set of polynomials xm; x2m; : : : xLm with respet to the design of them th regressor under the onstraint Pni=1  lm(Xi;m) = 0 . A model or variable dependenthoie of the basis f lmg is possible as well. The \memory parameter" � used in (2.5)and (2.6) an be taken between 0:1 and 0:5 . The number L an be taken between 5 and10, see Setion 6 for more disussion.Remark 2.4. Similarly to HJS and HJPS we apply in our numerial study a slightlymodi�ed proedure. The only di�erene is in the de�nition of the estimated vetors b�lm .Namely we de�ne b�(k)lm =  nXi=1 w(k)i !�1 nXi=1 w(k)i rf (k)m (Xi) lm(Xi;m);where w(k)i is square root of the smallest eigenvalue of the matrix V (k)i , that is, w(k)i =�1=2min(V (k)i ) . In addition, the basis funtions  lm should be modi�ed as eah step to satisfythe ondition Pni=1w(k)i  lm(Xi) = 0 .2.4 Estimation of the noise varianeThe variane �2 of the noise " does not enter in the desription of the method. However, itwill be used for de�ning the stopping rule of the algorithm and the resampling proedure inSetion 4. Here we briey disuss how this variane an be estimated under the assumptionof the noise homogeneity at every step of the algorithm.A natural variane estimator an be de�ned on the base of residuals squared after eahthe step k : ��e�(k)��2 = n�1Pni=1 ��b"(k)i ��2 . This simple rude estimator an be re�ned, see



samarov, a. , spokoiny, v. and vial, . 9e.g. Gasser, Sroka and Jennen-Steinmetz (1986) or Spokoiny (2002) and referene therein.Namely, the residuals b"(k)i an obviously be represented in the form b"(k)i = Pnj=1 (k)ij Yjwhere (k)ij are known oeÆients. These oeÆients are random and dependent on theYi 's through the random bandwidths bb(k)m . However, our theoretial results indiate thatone an ignore this dependene and proeed as if the oeÆients (k)ij were deterministiand orrespond to the \ideal" bandwidths b�(k)m .Next, if the funtion f is suÆiently smooth, then the distribution of the residuals b"ionly weakly depends on this funtion f and an be e�etively evaluated for f � 0 . Inthe last ase, E��b"(k)i ��2 = �2Pnj=1 ��(k)ij ��2 that leads to the estimator��b�(k)��2 = 1n nXi=10� nXj=1 ��(k)ij ��21A�1 ��b"(k)i ��2: (2.9)The properties of this estimator are briey disussed in Setion 3.4 below.3 Auray of estimationIn this setion we present the results about the auray of estimation of the funtionals��lm and v�m by the proposed iterative proedure.3.1 AssumptionsAs in HJPS, it is useful to proeed with the renormalized link funtion. In what followswe onsider the model f(x) = x>1 � + g(R�x2) (3.1)where R� is the diagonal M �M matrix with diagonal entries pv�m , m 2 J and g isa nonlinear link funtion.Our main results will be stated under the following assumptions.Assumption 1. (Kernel) The kernel K(�) is ontinuously di�erentiable dereasingfuntion on IR+ with K(0) = 1 and K(x) = 0 for all jxj � 1 .Assumption 2. (Errors) The random variables "i in (1.1) are independent and normallydistributed with zero mean and variane �2 .Assumption 3. (Range of parameters hk , �k ) The parameters of the proedure ful�ll�1 = 1 , �min = (�2n�1L log n)1=3 , h1 = C0n� 14_d with a onstant C0 � 1 , hmax � 1 andadhaM� � 1 .Assumption 4. (Link funtion) The funtion g from (3.1) is twie di�erentiable witha bounded seond derivative, so that, for some onstant Cg and for all u; v 2 IRMjg(v) � g(u) � (v � u)rg(u)j � Cg ju� vj2;



10 omponent identifiation by strutural adaptationOur last assumption onerns the design properties. In what follows we assume thatthe design is deterministi. That is, X1; : : : ;Xn are non-random points in IRd . Note,however, that the ase of a random design an be onsidered as well, supposing X1; : : : ;Xnindependent and identially distributed random points in IRd with a design density p(x) .Then all the results should be understood onditionally on the design.In order for the proedure to work, we have to suppose that the design points (Xi)are \well di�used" and, as a onsequene, at k th iteration of the algorithm, all lo-al gradient estimators from (2.7) orresponding to the anisotropi bandwidth b(k) =diag(b(k)1 ; : : : ; b(k)d ) from (2.4) are well de�ned. The latter is equivalent to the ondi-tion that all the matries V (k)i from (2.5) are non-singular. We also de�ne for the k thiteration the \ideal anisotropi bandwidth" b�(k) having the diagonal entries b�(k)m =�1 + ��2k v�m��1=2 hk . The loseness of b(k) to the \ideal bandwidth" b�(k) an be hara-terized by the values U (k)m = �b(k)m =b�(k)m �2 = �1 + ��2k v�m�=�1 + ��2k bv(k�1)m � , m = 1; : : : ; d .If bv(k�1)m = v�m , then U (k)m = 1 . The ondition we need means that at the step k ofthe algorithm, for every anisotropi bandwidth b = diag(b1; : : : ; bd) lose to b�(k) in theabove sense, the design is regular within the ellipti neighborhood with the enter at eahpoint Xi and with the prinipal semiaxis bm , m = 1; : : : ; d .De�ne Z(k)ij = �b�(k)��1(Xj �Xi) for i; j = 1; : : : ; n . These vetors desribe loationsof the design points in the oordinate system shifted by Xi and resaled by b�(k) . For avetor U = (U1; : : : ; Ud)> 2 IRd with Um � 0 , de�ne DU = diag(U1; : : : ; Ud) . Then, forb = D�1=2U b�(k) , it holds Kd(Xij ; b) = K��Z(k)ij �>DUZ(k)ij � . SetN (k)i (U) = nXj=1K��Z(k)ij �>DUZ(k)ij �; i = 1; : : : ; n;V(k)i (U) = nXj=1� 1Z(k)ij �� 1Z(k)ij �>K��Z(k)ij �>DUZ(k)ij �; i = 1; : : : ; n:In what follows kAk stands for the matrix norm assoiated with the Eulidean vetornorm: kAk = sup� jA�j=j�j .Assumption 5. (Design) There exist onstants CV , CK , CK0 and some � 2 (0; 1=2) ,suh that for all vetors U 2 IRd satisfying jUm � 1j � � , m = 1; : : : ; d , and for k � knthe inverse matries V(k)i (U)�1 are well de�ned withN (k)i (U)V(k)i (U)�1 � CV ; i = 1; : : : ; n;



samarov, a. , spokoiny, v. and vial, . 11Moreover, for i; j = 1; : : : ; n ,nXi=1 1N (k)i (U) K��Z(k)ij �>DUZ(k)ij � � CK ;nXi=1 1N (k)i (U) ���K 0��Z(k)ij �>DUZ(k)ij ���� � CK0 ;nXj=1 1N (k)i (U) ���K 0��Z(k)ij �>DUZ(k)ij ���� � CK0 :where K 0 means the derivative of K.Remark 3.1. As already mentioned in HJS and HJPS, in the ase of random design witha ontinuous positive density one an �x some onstants CV , CK and CK0 (whih dependon the dimension d and the design distribution) suh that the bounds in Assumption 5hold with probability whih onverges to 1 exponentially fast as n grows to in�nity.3.2 The �rst step estimatorOur �rst result desribes the quality of the estimators b�(1)lm obtained at the �rst step of thealgorithm. These estimators orrespond to usual nonparametri loal linear estimation ofthe funtion f and its gradient. We also state the result about the auray of estimationof the values v�m at the �rst step.Let ��m denote an L-vetor with the omponents ��lm, l = 1; : : : ; L .Proposition 3.1. Let Assumptions 1 through 5 hold. For the �rst-iteration estimatorb�(1)m of the vetor ��m, m = 1; : : : ; d, it holds:b�(1)m � ��m = smh1 + �mh1pn;where deterministi L-vetors sm satisfy jsmj � CgC1=2V v�(1) with v�(1) = maxm=1;:::;d v�m,and the �m 's are mean zero Gaussian random L-vetors with omponents �lm suh thatEj�lmj2 � 2�2C2V CK , l = 1; : : : ; L . Also, it holdsP � maxm=1;:::;d ���b�(1)m � ��m��� > Æ1� � 1n ; (3.2)where Æ1 = Cg C1=2V v�(1) h1 + p2L�CV C1=2K znh1pn ; (3.3)and zn = (1 + 2 log(nd) + 2 log log(nd))1=2 .Moreover, for the �rst-iteration estimator bv(1)m , m = 1; : : : ; d , it holds:P ����bv(1)m � v�m��� � Æ21 + 2Æ1�m;1; 8m = 1; : : : ; d� � 1� 1n ; (3.4)where �m;1 = pv�m(1 + v�m)�1=2 � minf1;pv�mg.



12 omponent identifiation by strutural adaptation3.3 The quality of the �nal estimatorsNow we present the result whih indiates how the auray of estimation an be improvedby the iterative algorithm. As in HJS and HJPS, the quality of the �nal estimators dependson the `diretion'. This quality is of order n�1=2 for the linear omponent and is worsefor the nonlinear omponent. This fat has a very simple explanation: estimation of anonlinear omponent is a harder task than that of a linear one; hene, the worse auray.To express this fat, we introdue the saling fator P�;m = (1 + ��2v�m)�1=2 , where �is a running parameter of the proedure. Note that P�;m = 1 for all linear regressorswhih have v�m = 0 . If v�m is a positive onstant, then P�;m � � . We will see that theestimation error b�lm � ��lm , after being multiplied by P�;m , an be bounded uniformlyover l;m at every step of the algorithm. This implies, in partiular, that the quality ofestimation of the nonlinear omponent is about P�1� � ��1 times worse than the qualityfor the linear one.In the next theorem and in Theorem 4.1 below, � (resp. h ) denotes �kn (resp. hkn )at the last iteration. Reall that h; � satisfy onditions h � 1 and � = ��2n�1L log n�1=3 .Theorem 3.1. Let Assumptions 1 through 5 hold. Then there exist a random set Awith P (A) � 1 � 3kn=n and, for every m = 1; : : : ; d , a Gaussian zero mean randomvetor ��m = (��1m; : : : ; ��Lm)> 2 IRL de�ned as a linear ombination of the errors "i withdeterministi oeÆients, whih depend on the \ideal" bandwidth b� = b�(kn) , the designX1; : : : ;Xn , basis funtions  lm(�), and the kernel K only, and suh thatEj��lmj2 � 2�2C2V CK l = 1; : : : ; L; m = 1; : : : ; d;and on A it holdsmaxm=1;:::;d ���P�;m(b�m � ��m)� n�1=2��m��� � C ��2n�1L log n�2=3 ;maxm=1;:::;d ���P�;m(b�m � ��m)��� � Æn ;maxm=1;:::;d jP 2�;m(bvm � v�m)j � Æ2n + 2Æn�m ; (3.5)where C = C(d;M;Cg; CV ; CK ; CK0 ;  ) ,  = maxi;l;m j lm(Xi)j ,Æn =q2C2V CK�2n�1Lz2n + C ��2n�1L logn�2=3 (3.6)and �m = �pv�m ��2 + v�m��1=2 � minf�;pv�mg . This implies that on A for every m =2J , with !n = C ��2n�1L log n�2=3 :jb�m � n�1=2��mj � !n; jb�mj � Æn ; ���jb�mj2 � n�1j��mj2��� � !2n + 2!nÆn : (3.7)



samarov, a. , spokoiny, v. and vial, . 13Remark 3.2. The meaning of the random set A appearing in Theorem 3.1 an beunderstood as follows. The result of every iteration of the algorithm is random. Withsome probability it may happen that the estimation result at some step of the proeduredoes not follow the model struture. For instane, with some probability, bvm an belarge even if v�m = 0 . Our results indiate that the overall probability of suh events israther small and their omplement is preisely the set A (of a dominating probability) onwhih the proedure `works', that is, the iterative proedure leads to improvement of thequality of estimation at every iteration. The other results of Theorem 3.1 laim that onthe set A , the adaptive estimators b�lm behave essentially as the `ideal' estimators b��lmorresponding to the `ideal' bandwidth b� . Sine our further analysis is based on the �nalstep estimators b�lm , all our results that follow will also be stated onditionally on thisset A .Remark 3.3. (Origin of the onstraint M � 3 ) It follows from the proof of Theo-rem 3.1 that the bias of the `ideal' estimators b��lm based on the loal linear smoothing withthe `ideal' bandwidth b� = b�(kn) is of the order (n�1 logn)�2=3 only if the dimensionalityM of the nonlinear omponent does not exeed 3 . For M � 4 , the model dependent biasof estimation is of order n�1=2 or larger while the stohasti omponent (whih is modelfree) is of order n�1=2 . The same applies for the adaptive estimators b�lm . Therefore, theleading term in the estimation loss is model free only for M � 3 , and the estimators b�lmdo not ahieve asymptoti normality at root-n rate for M � 4 .3.4 Variane estimationThe algorithm delivers an estimator b�2 , see (2.9), of the error variane �2 . This esti-mator also utilizes the estimated strutural information and improves upon the purelynonparametri variane estimators. Spokoiny (2002) has shown that in a general highdimensional regression model with d > 8 , a root-n onsistent estimation of the variane�2 is impossible. Here the use of the strutural assumption allows to relax this onditionand to get a root-n auray for any d .Theorem 3.2. Let Assumptions 1 through 5 hold. There exists a onstant C� , whihdepends on the onstants entering in these assumptions only, suh thatP �pn ��b�2 � �2�� > C��2�� � 2e��2=4 + 3kn=n:



14 omponent identifiation by strutural adaptation4 Inferene in a partially linear modelThis setion explains how the model (1.1) an be explored using our iterative proedureand results of Setion 3. First we state the important separation result that will be usedin the analysis below.Let some integer M be �xed. We put the estimated values bvm in the dereasing orderbv(1) � bv(2) � bv(3) : : : and denote by bJM the index set orresponding to the M largestvalues bvm . Theorem 3.1 implies the following separation result.Theorem 4.1. Let un = Æn=� < p2�1 with � = �kn and Æn from (3.6). Let r be somenumber satisfying r � 1 . If v�m > (rsrÆn)2 for all m 2 J wheresr = 1 +p1 + (r2 + 1)(1� u2n � 2un)1� u2n � 2un ;then it holds on the random set A de�ned in Theorem 3.1 bvm > r2Æ2n for m 2 J andbvm � Æ2n for m =2 J and thus, J � bJM for all M�M .Remark 4.1. The result of Theorem 4.1 applied with r = 1 yields the suÆient sepa-ration ondition: if v�m > (s1Æn)2 , then, with a high probability, bvm > Æ2n for m 2 Jand bvm � Æ2n for m =2 J , and therefore bJM = J . For appliation of this result to theresampling sheme below in this setion, we introdued the fator r � 1 , whih ensures aquali�ed separation between linear and nonlinear omponent.The value un = Æn=� is small at least if n is suÆiently large. Hene, sr de�ned inTheorem 4.1 is bounded by a onstant depending on r only and therefore, the thresholdt� = (rsrÆn)2 , providing with a high probability a orret separation between linear andnonlinear omponents is of order Æ2n � (n�1 logn) . It an be easily seen that the separationwith the presribed level of the identi�ation error is impossible if the separation distanesquare is smaller in order than n�1 . Therefore, the proedure provides a near optimalrate of separation within a log-fator.4.1 Testing the hypothesis about MHere we disuss the problem how the estimators bvm of v�m an be used for seletingthe nonlinear omponent and for testing the hypothesis that the dimensionality M ofthe nonlinear omponent does not exeed the presribed value M . As speial ases,for M = 0 we get the hypothesis that the original model is linear, and for M = 1 ,the hypothesis that the nonlinear omponent is univariate. Then the e�etive nonlineardimension of the model an be estimated by the minimal M suh that the hypothesisM �M is not rejeted.



samarov, a. , spokoiny, v. and vial, . 15The idea of the method is very simple: rejet HM : M � M if the value bv(M+1) issigni�antly positive. To formalize the proedure, we have to speify, for a given � , theritial value t� suh that the test has the signi�ane level about �. Suppose that thetrue model satis�es M � M and that the values v�m for all m 2 J exeed the valuet� = (rsrÆn)2 for some r � 1 . Then Theorems 3.1 and 4.1 imply that� under the null hypothesis M � M , the index (M + 1) orresponds with a highprobability to a linear omponent;� for m =2 J , the distributions of the b�lm 's and of bvm only weakly depend on themodel funtion f , see Remark 3.2;� for every m 2 J , if v�m is separated from zero by distane of order Æ2n , then thesame is true with a high probability for the estimator bvm .These observations suggest to apply the resampling sheme that mimis only the distri-bution of the values bv(1); : : : ; bv(M+1) . More preisely, we onstrut an arti�ial regressionfuntion efM that has exatly M -dimensional nonlinear omponent orresponding tom 2 bJM and suh that all the funtionals of type ��lm onstruted for this funtion efMoinide with the b�lm 's, that is,1n nXi=1 � efM(Xi)�xm  lm(Xi;m) = 8<:b�lm if m 2 bJM;0 otherwise, l = 1; : : : ; L:The funtion efM an be seleted as a linear ombination of the funtions xlm=l forl = 2; : : : ; L+ 1 : efM(x) = Xm2 bJM L+1Xl=2 lmxlm=l; (4.1)where the oeÆients lm must ful�ll	mm = b�m ; m 2 bJM : (4.2)Here m (resp. b�m ) denotes the vetor in IRL with the elements lm (resp. b�lm ) and	m is the L� L matrix whose elements are the sums	m;l0l = 1n nXi=1 X li;m l0m(Xi;m); l; l0 = 1; : : : ; L:We resample from the modeleYi = efM(Xi) + b�ie"i;



16 omponent identifiation by strutural adaptationwhere e"i are i.i.d. standard normal. The varianes b�2i either ful�ll b�2i = b�2 for thevariane estimator b�2 from Setion 2.4, or they simply are de�ned by b�2i = b"2i . The�rst proposal suits well the ase of a homogeneous noise, and the seond one is similarto the wild bootstrap idea and should be used if the assumption of noise homogeneity isquestionable.The reommended estimator of the ritial value an be omputed by using the fol-lowing simulation proedure:1. For eah i = 1; : : : ; n , generate eYi = efM(Xi) + b�ie"i , where e"i is sampled randomlyfrom the standard normal law.2. Use the data set feYi;Xi : i = 1; : : : ; ng to estimate gradient projetions ��lm withestimator (2.3) based on gradient estimator (2.1) with the last step bandwidth b =b(kn) . Denote the resulting estimator by e�lm . Compute evm =PLl=1 je�lmj2 for everym = 1; : : : ; d and the statisti eTM , that is ev(M+1) .3. De�ne t� as the (1��) -quantile of the empirial distribution of eTM that is obtainedby repeating steps 1-2 many times.Theorem 4.2. Let Assumptions 1{5 hold and minm2J v�m � (rsrÆn)2 with r = s1 . IfM =M , then P (HM is rejeted) � �+ 3(kn + 1)=n:4.2 Identi�ation of the nonlinear omponentHere we desribe how the e�etive nonlinear dimension M and the index set J orre-sponding to the nonlinear omponent an be estimated using the above testing proedure.Let some positive � < 1 be �xed. Starting with M = 0 , we onsider the model with M -dimensional nonlinear omponent due to (4.1) and (4.2) and test the hypothesis M �Mat the level � as desribed in Setion 4.1. Terminate if the hypothesis M � M is notrejeted, otherwise inrease M by one. Finally we set M = \the �rst nonrejeted M "and bJ = bJM .Theorem 4.3. Let Assumptions 1 through 5 hold and minm2J v�m � (rsrÆn)2 with r =s1 . Then P ( bJ 6= J ) � �+ 3(kn +M)=n:Remark 4.2. It an be easily heked that the results of Theorems 4.2 and 4.3 ontinueto hold even if the test level � depends on n and goes to zero as n grows. In partiular,



samarov, a. , spokoiny, v. and vial, . 17one an take � = n�a with a < 1=2 . With suh a hoie, our method leads to a onsistentestimation of the set J .4.3 Estimation and inferene for the linear omponentThe method desribed above allows to lassify the regressors into linear and nonlinear.Moreover, the result of lassi�ation is orret with a dominating probability provided thesample size is large enough. The impat of every linear regression variable in the modelfuntion is haraterized by the orresponding slope oeÆient �m from (1.1). Here wedisuss how these slope oeÆients an be estimated. We use again the observation that�f=�xm � �m for every m =2 J . Therefore, the sumb�m = 1n nXi=1 rfm(Xi) (4.3)is a reasonable estimator of �m . Here rf(Xi) is the gradient estimator obtained atthe last step of the algorithm. Our next result laims that b�m from (4.3) estimates thetrue value �m with the root-n auray and that it an be very well approximated by aGaussian random variable. This result an be viewed as an appliation of Theorem 3.1for m =2 J and  lm � 1 .Theorem 4.4. Let Assumptions 1 through 5 hold. Then for every m =2 J , there exists aGaussian zero mean random variable �m whih is de�ned as a linear ombination of theerrors "i with deterministi oeÆients, depending on the \ideal" bandwidth b� = b�(kn) ,the design X1; : : : ;Xn , the basis funtions  lm(�) and the kernel K only, and suh thatEj�mj2 � 2�2C2V CK ;and on the random set A from Theorem 3.1 with P (A) � 1� 3kn=n , it holdsmaxm=2J ���b�m � �m � n�1=2�m��� � C1 ��2n�1L log n�2=3 ;where C1 = C1(d;M;Cg ; CV ; CK ; CK0 ;  ) .Remark 4.3. The above estimator b�m an be slightly re�ned by expliitly using the esti-mated strutural information about the model. Namely, an appliation of the anisotropibandwidth bb = diag(bb1; : : : ;bbd) with bbm from the last iteration for m 2 bJ and bbm =1for m =2 bJ leads under ondition of the orret identi�ation to the lassial partiallylinear estimator for the ase with known J , see e.g. H�ardle, Liang and Gao (1999).Remark 4.4. (Seleting signi�ant regressors) The proedure in Setion 4.2 anbe also used for identifying the signi�ant omponents. All the regressors entering in



18 omponent identifiation by strutural adaptationthe nonlinear omponent are automatially signi�ant. The linear regressors an be fur-ther analyzed for signi�ane. Theorem 4.4 laims that the normalized estimation errorpn�b�m � �m� is asymptotially normal. Moreover, the asymptoti variane of b�m anbe easily estimated. Indeed, b�m is a linear ombination of the observations Yi with theknown oeÆients im , that is, b�m = Pi imYm . Then b�2m = �2Pi 2im is an estimatorof Var(b�m) . The searh of signi�ant regressors an be done by the rule ���b�m���2 � �2b�2m forsome � > 0 , see illustration of this proedure in Setion 5. We skip the further disussionfor the reasons of spae.5 Simulated and real data resultsIn this setion we illustrate the performane of the proposed method on some simulated ex-amples and give a real data appliation. With the simulated examples we aim to illustratehow the performane of the proposed method depends on the sample size n , dimensiond of the model, the dimensionality of the nonlinear omponent M and the noise variane�2 . We espeially fous on the omponent lassi�ation results: identi�ation of the non-linear variables and seletion of the signi�ant variables. We also demonstrate how thequality of estimation of the nonlinear omponents improves during iteration.In our simulation study we apply the modi�ed proedure (see Remark 2.4) with thefollowing parameter setting:�1 = 1; �min = n�1=3; a� = e�1=6; � = 0:2; ah = a�1=2� :The initial bandwidth h1 is seleted from the ondition #fi :Mh(Xi) � d+1g � n=2 ,where Mh(x) stand for the number of the design points Xi in the ball of radius hand enter x . This ondition ensures that for at least a half of the design points theloal gradient estimator is well de�ned. This setting leads to the number of iterationsk(n) � log(�1=�min)log a� � 2 log n .The proedure utilizes the kernel K(jxj2) = (1 � jxj2)2+ . For every m � d , thebasis system f 1m(xm); : : : ;  Lm(xm)g is obtained using polynomials of xm of degreefrom one to L satisfying the onditions Pni=1wi lm(Xi;m) l0m(Xi;m)ÆPni=1 wi = Æll0and Pni=1  lm(Xi;m)wi = 0 where wi = w(k)i = �1=2min(V (k)i ) for k th iteration with k � 1 .We apply L = 6 .In our simulation study we onsider the model Yi = �>Xi+g(Xi;d�M+1; : : : ;Xi;d)+"ifor M between 1 and 3. The vetor � is taken of the form � = (1; 2; 3; 4; 0; : : : ; 0)> . Thelink funtion g is g(u) = g1(u) = eu + e�u for M = 1 , g(u1; u2) = g1(u1)g1(u2)for M = 2 and g(u1; u2; u3) = g1(u1)g1(u2)g1(u3) for M = 3 . The dimension d



samarov, a. , spokoiny, v. and vial, . 19is taken 4 + M or larger. The errors "i are i.i.d. normal with parameters (0; �2)for �2 = 0:1 . The design X1; : : : ;Xn is modelled randomly so that eah Xi fol-lows Norm(0:2; 0:82) -distribution, restrited to the [�1; 1℄d-ube. The experiments weredone for sample size n = 100; 200; 400 . The results displaying the quality of estima-tion by the iterative algorithm are summarized in Tables 1 for M = 1 and in Table 2for M = 2 . We display the mean losses jbvmj for one linear regressor and jbv(k)m � v�mjfor nonlinear regressors where v�m = j��mj2 and ��m is the vetor with the omponents��lm =Pni=1 w(k)i rfm(Xi;m) lm(Xi;m)ÆPni=1 w(k)i .Table 1: CaseM = 1: mean loss ��bvm�v�m�� for the nonlinear regressor for the �rst, seond, fourth,and �nal iteration and �nal losses jbv1j for the �rst linear regressor. Results are obtained fromN = 250 simulations. The interquartile range of the losses is given in parentheses.d n nonlinear regressor linear regressor x11st 4th �nal �nal5 100 0:9580(0:1865) 0:6656(0:1546) 0:3069(0:2400) 0:0139(0:0113)5 200 0:9395(0:1378) 0:7711(0:1300) 0:2424(0:2024) 0:0072(0:0057)6 200 0:9432(0:1231) 0:7207(0:1067) 0:1641(0:1766) 0:0018(0:0016)8 200 0:9362(0:1253) 0:6703(0:1003) 0:2232(0:1797) 0:0006(0:0005)10 100 0:9574(0:2064) 0:6743(0:1526) 0:5822(0:2756) 0:0005(0:0004)10 200 0:9406(0:1522) 0:6777(0:1202) 0:3690(0:2213) 0:0002(0:0002)10 400 0:9348(0:0925) 0:7217(0:0838) 0:2316(0:1399) 0:0001(0:0001)It is interesting to observe that the quality of estimating the linear regressor x1 im-proves with growing dimension d .In Table 2 we demonstrate in addition how the error of estimation depends on thenoise variane �2 . One an see that the estimation risk for the nonlinear omponentsonly slightly inreases with � while it is essentially proportional to � for the linear one.An explanation might be that the estimation error for the nonlinear omponents is mostlydue to the nonparametri bias whih disappears in the linear omponents during iterationproess by strutural adaptation.The next �gure illustrates the result of Theorem 4.1 about separation between linearand nonlinear omponent. Let LN (�) denote the empirial distribution of the randomvariable � based on its sample of size N . A good separation between linear and nonlinear



20 omponent identifiation by strutural adaptationTable 2: Case M = 2: mean loss ��bvm � v�m�� for the nonlinear regressors for the �rst, seond,fourth, and �nal iteration and �nal losses jbv1j for the �rst linear regressor. Results are obtainedfrom N = 250 simulations. The interquartile range of the losses is given in parentheses.d n �2 1st nonlinear regressor 2nd nonlinear regressor linear regressor x11st 4th �nal 1st 4th �nal �nal6 200 0.1 4:6117(0:6646) 3:7349(0:5028) 0:4763(0:5211) 4:6337(0:6257) 3:7576(0:5402) 0:4473(0:4785) 0:0081(0:0063)8 200 0.1 4:6397(0:6683) 3:4423(0:5431) 0:4244(0:4108) 4:5942(0:6646) 3:4085(0:4621) 0:4058(0:4607) 0:0025(0:0019)10 100 0.1 4:6338(0:8840) 3:1450(0:7307) 0:7573(0:5302) 4:6862(1:0155) 3:1642(0:7312) 0:7089(0:4938) 0:0043(0:0032)10 200 0.1 4:5537(0:7458) 3:2806(0:5065) 0:5812(0:3404) 4:5904(0:7649) 3:2917(0:5875) 0:5489(0:4014) 0:0011(0:0010)10 400 0.1 4:5198(0:4850) 3:5276(0:3566) 0:4457(0:3121) 4:5584(0:4168) 3:5594(0:3562) 0:4319(0:3023) 0:0004(0:0003)10 400 0.2 4:5198(0:4850) 3:5284(0:3483) 0:4403(0:3949) 4:5584(0:4167) 3:5602(0:3642) 0:4325(0:3948) 0:0007(0:0006)10 400 0.4 4:5198(0:4850) 3:5297(0:3316) 0:4637(0:4891) 4:5584(0:4167) 3:5615(0:3727) 0:4666(0:5029) 0:0017(0:0013)omponents means that the funtions LN (bvm) for every m 2 J and 1 � LN (bvm) form =2 J have non-overlapping support.
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Figure 1: Case M = 2, d = 6 : LN (bv5) , LN (bv6) (dotted lines) and 1 � LN (maxm=1;:::;4 bvm)(solid line) for n = 100; 200 from 250 realizations.We observe a very good separability for n = 100 and a possibility of perfet separationfor n = 200 .Next we illustrate how the quality of estimation of the linear omponent improves withthe sample size. Figure 2 shows box-plots of the estimation errors n1=2kb� � ��k of thelinear omponent after the �nal iteration for d = 6 , M = 2 and di�erent sample sizes n .
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Figure 2: Case M = 2 : box-plots of the estimation errors n1=2kb� � ��k of the linearomponent after the �nal iteration for d = 6 . Results are obtained from N = 250simulations.Table 3 illustrates the performane of the test of the hypothesis M � M and thequality of the lassi�ation rule from Setions 4.2 and 4.3 for di�erent M , d and n . Inthis table we present the fration of wrong lassi�ations for every of nonlinear regressorsand for the whole model.One an observe one again that the results (the fration of wrong lassi�ations)improve as the dimensionality d grows. This an be explained by the fat that thedistribution of the test statisti used for lassi�ation will be more and more degeneratedwith growing dimension d .Another observation is that for M = 3 , the proedure requires some minimal samplesize to start seleting all the three nonlinear omponents. For n = 100 we obtain foralmost all the ases M <M . For n = 200 and d = 7 we orretly lassify in only about30% ases but for d = 10 the fration of wrong lassifying is already under ontrol.Figure 3 illustrates the quality of estimation of the noise variane �2 by b�2 for oneexample with d = 6 , M = 2 and di�erent sample size n . The results are in agreementwith the root-n onsisteny of the estimator b�2 .5.1 A real data exampleThis setion presents an appliation of the proedure to a real data set. We onsider theexample from Sperlih (1998) and H�ardle, Spokoiny and Sperlih (2001) where a subsampleof the Soio-Eonomi Panel of Germany from 1992 was studied. The target of analysis is
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Figure 3: Box-plots of the estimation errors n1=2kb�2���2k for d = 6,M = 2 and di�erent samplesize n.the weekly number of working hours, Yi, of 607 women with job and living together witha partner. The following explanatory variables were used: the age of woman, between 25



samarov, a. , spokoiny, v. and vial, . 23and 60, X1; her earning per hour, X2; the prestige index of her kind of profession (Treimanprestige index), X3; the monthly rent or redemption for their apartment or house, X4;the monthly net inome of their partner, X5; the number of years of eduation, X6; theunemployment rate at the partiular trat they live in, X7; and the number of hildrenyounger than 16 years, X8.The estimates bvm obtained by our estimation proedure are given in Table 4. We alsogot the estimate b�2 = 0:736 for error variane �2 .Table 4: Estimates bvm of v�m.bv1 bv2 bv3 bv4 bv5 bv6 bv7 bv80.05259 0.00729 0.00441 0.00012 0.00060 0.00142 0.00015 0.00875Next we identify the linear omponent starting withM = 0 as desribed in Setion 4.2.Table 5 gives the p-values PVM for eah testHM, whih are obtained during the bootstrapproedure, de�ned as: PVM = 1B BXb=1 1fev(b)(M+1)>bv(M+1)gThe �rst three hypotheses H0 , H1 and H2 are rejeted at 10% level, and there is learlyno rejetion of H3 . So, for the onsidered model, the nonlinear dimension is estimatedas three and the nonlinear variables are X1, X2, and X3. Our linear/nonlinear variablelassi�ation results oinide with those from H�ardle, Sperlih and Spokoiny (2001), butwith quite di�erent p-values: in our results X1 (age) is the most nonlinear and X2 (earningper hour) is the least nonlinear variable among the three, while in H�ardle, Sperlih andSpokoiny (2001) the situation is reversed. Note that while their identi�ation was madeunder the assumption of additive model struture, our results are obtained for a generalsituation when suh additive struture is not required.Table 5: p-values for onseutive testsM bv(M+1) p-values0 bv1 0:0039961 bv2 0:0869132 bv3 0:019983 bv5 0:47153



24 omponent identifiation by strutural adaptation6 Conlusion and outlookThe paper has introdued a new method of exploring a partially linear model based onthe idea of strutural adaptation. The method applies under mild assumptions on theunderlying regression funtion and the regression design. The proedure is fully adaptiveand does not require any prior information. The results laim that the proposed proedurewith a high probability orretly identi�es the nonlinear omponent and estimates the lin-ear omponent with the optimal rate n�1=2 provided that the dimension of the nonlinearomponent is not larger than 3. The simulation results demonstrate an exellent perfor-mane of the proedure for all onsidered situations. An important feature of the methodis that it is very stable with respet to high dimensionality and for a non-regular design.Non-Gaussian or heterogeneous noise. The method and results an be easily ex-tended to models with homogeneous non-Gaussian noise satisfying some exponential mo-ment onditions. Another interesting issue is appliability of the method for a generalheterogeneous or dependent noise, in partiular, to time series models and �nanial data.We leave these extensions for further researh.The ase with M � 4 . The method ontinues to apply even if M � 4 and itera-tions would lead to improvement of the bias. However, the bound for the bias of order(n�1 logn)2=3 an be ahieved only for M � 3 . For larger M , the bias will be of ordern�1=2 of bigger and the proedure does not provide root-n onsistent estimation of thefuntionals ��lm . So, if the hypothesis M � 3 is rejeted, then we reommend to applyfor the hoie of M some model seletion riteria like ross-validation or Mallows Cp .Data-driven hoie of parameter L . The method depends upon the parameter Ldesribing the number of basis funtions for every regressor. In the univariate ase, ei-ther an n -dependent or data-driven hoie of suh a parameter is usually applied, seeHart (1997) or Spokoiny (2001) and referenes therein. An adaptive hoie of L in theonsidered problem is an interesting question for further researh.Semiparametrially eÆient estimation of the linear omponent. Due to theresult of Theorem 4.4, the proposed estimator of the parameter � is root-n onsistent andasymptotially normal. However, it is unlikely that this or the re�ned estimator of � fromSetion 4.3 is semiparametrially eÆient in the sense of minimization of the asymptotivariane, see e.g. Bikel et al. (1998). A modi�ation of the method leading to thesemiparametrially eÆient estimation of linear part will be disussed elsewhere.Estimation of the nonlinear omponent. After the nonlinear omponent is identi�ed,it an be estimated using the standard methods of nonparametri statistis. Atually, thealgorithm gives an estimator of the whole funtion f and of the linear omponent, sothat the nonlinear omponent an be extrated as well. This estimator orresponds to the



samarov, a. , spokoiny, v. and vial, . 25loal linear smoothing of the nonparametri M -dimensional funtion with the bandwidthabout h� � �min , and may not ahieve the best rate. To improve the quality of estimation,one an apply the lassial ross-validation tehnique for seleting the bandwidth in thediretion of the nonparametri omponent.Disrete and ategorial data. Note that the assumption of linearity is meaningful fordisrete or ategorial variables as well. It means that the inuene of the orrespondingregressor is independent of the other variables and therefore, at least in the binary ase,an be modelled linearly. Moreover, the proedure easily applies for the situation withdisrete data without any hange.7 AppendixHere we ollet the proofs of the main results. For the ease of exposition, we onsider onlythe main proedure (without weights) and only the ase of � = 0 . The general ase anbe onsidered in the same way.7.1 One-step improvementSuppose that we are given some �xed numbers h and � (whih mean the urrent valueshk and �k ) and a vetor v = (v1; : : : ; vd)> 2 IRd whih an be viewed as an approximationof v� = (v�1 ; : : : ; v�d)> obtained at the previous step of the algorithm. Set alsobm = h �1 + ��2vm��1=2 ; m = 1; : : : ; d; (7.1)and de�ne b = diag(b1; : : : ; bd) . De�ne also bf(Xi) , rf(Xi) and b�lm by (2.1) and (2.3)for all l = 1; : : : ; L and m = 1; : : : ; d with the just de�ned bandwidth b . We aimto evaluate the estimation errors b�lm � ��lm . To desribe the results, we introdue theshrinking fators P�;m = �1 + ��2v�m��1=2 and de�neUm = P 2�;m(1 + ��2vm) = (1 + ��2v�m)�1(1 + ��2vm)and similarly U�m = P 2�;m(1 + ��2v�m) = 1 . Clearly the vetor U = (U1; : : : ; Ud)> 2 IRduniquely desribes v , so that we onsider later in this setion v = v(U) and similarlyb�lm = b�lm(U) for the funtionals b�lm in (2.3). Let � = (�1; : : : ; �d)> be a vetor in IRdwith entries �m 2 (0; 1) . De�neU� = fU = (U1; : : : ; Ud)> 2 IRd : jUm � 1j � �m ; m = 1; : : : ; dg:We also de�ne �� = maxm=1;:::;d �m .



26 omponent identifiation by strutural adaptationProposition 7.1. Let Assumptions 1 through 5 hold. Let �lm(U) = Eb�lm(U) . ThensupU2U� dXm=1 LXl=1 jP�;mf�lm(U)� ��lmgj2 �  Cg C1=2V1� �� �2h!2and, for every l = 1; : : : ; L and m = 1; : : : ; d , there exists a zero mean Gaussian randomvariable �lm de�ned as a linear ombination of the errors "i with deterministi oeÆ-ients, whih depend on v� , the design fXig , the basis funtions  lm(�), and the kernelK only, and suh that maxm;l E�2lm � 2�2C2V CK (7.2)and P�maxm;l supU2U� ����P�;mfb�lm(U)� �lm(U)g � �lmhpn���� > � C�;nj�jhpn � � 2n;where the maximum is taken over m = 1; : : : ; d and l = 1; : : : ; L,  = maxi;l;m j lm(Xi)j andC�;n =  p2CV CK0(1� ��)3=2 + 23=2C2V CK0 CK(1 � ��)5=2 !�2 +p2 log(ndL) + d log(4n)� :Let ��m denote, as in Proposition 3.1, an L-vetor with the omponents ��lm and b�m =b�m(U) its estimator with the omponents b�lm(U).Corollary 7.1. Let zn = (1 + 2 log(nd) + 2 log log(nd))1=2 andÆ = Cg C1=2V1� �� h�2 + p2L�CV C1=2K znhpn + pL�  C�;nj�jhpn : (7.3)Then under the onditions of Proposition 7.1 it holdsP � maxm=1;:::;d supU2U� ���P�;m �b�m(U)� ��m���� > Æ� � 3=n:The orollary helps bound the estimation error P 2�;m (bvm(U)� v�m) .Proposition 7.2. Under the onditions of Proposition 7.1,P � supU2U� ��P 2�;m (bvm(U)� v�m)�� � Æ2 + 2Æ�m for all m = 1; : : : ; d� � 1� 3=nwhere �m = �pv�m(�2 + v�m)�1=2 � min f�;pv�mg .



samarov, a. , spokoiny, v. and vial, . 277.2 Proof of Proposition 7.1Denote by P� the diagonal d � d -matrix with the diagonal entries P�;m , that is, P� =diagfP�;1; : : : ; P�;dg . Similarly, for U = (U1; : : : ; Ud)> 2 IRd , de�ne DU = diagfU1; : : : ; Udg .Next, for every i; j � n , de�ne Zij = h�1 P�1� (Xj �Xi) , Kij(U) = K(Z>ij DUZij)Vi(U) = nXj=1� 1Zij�� 1Zij�>Kij(U);bsi(U) = h�1Vi(U)�1 nXj=1� 1Zij�YjKij(U):It is easy to hek that for the (m+ 1)th omponent bsi;m(U) of bsi(U) it holds bsi;m(U) =P�;m rfm(Xi) and hene,P�;mb�lm(U) = n�1 nXi=1 bsi;m(U) lm(Xi;m):The model equation (1.1) implies bsi(U) = si(U) + �i(U) withsi(U) = h�1 Vi(U)�1 nXj=1� 1Zij�f(Xj)Kij(U);�i(U) = h�1 Vi(U)�1 nXj=1� 1Zij�"jKij(U):This yields, for eah oordinate m = 1; : : : ; d,P�;mfE b�lm(U)� ��lmg = 1n nXi=1 fsi;m(U)� P�;mrfm(Xi)g lm(Xi;m);P�;mfb�lm(U)�Eb�lmg = 1n nXi=1 �i;m(U) lm(Xi;m):Clearly �lm(U) := n�1Pni=1 �i;m(U) lm(Xi;m) is for every U a linear ombination of theGaussian errors "i and therefore it is also a Gaussian vetor in IRd .De�ne Ed is the projetion from IRd+1 onto IRd dropping the zero oordinate: Ed(x0; : : : ; xd)> =(x1; : : : ; xd)> . It is easy to see that the following three statements imply the laimed result:supU2U� jEdsi(U)� P�rf(Xi)j � Cg C1=2V1� �� h�2; i = 1; : : : ; n; (7.4)P �maxl;m supU2U� j�lm(U)� �lm(U�)j > �C�;nj�jhpn � � 2=n; (7.5)maxl;m Ej�lm(U�)j2 � 2�2C2V CKh2n : (7.6)



28 omponent identifiation by strutural adaptationwhere the maximum is taken over l = 1; : : : ; L and m = 1; : : : ; d . Indeed, the last twostatements of the proposition diretly follows from (7.5) and (7.6) for �lm = hpn �lm(U�) .Next, (7.4) impliesn�1 nXi=1 dXm=1 jsi;m(U)� P�;mrfm(Xi)j2 �  Cg C1=2V1� �� h�2!2 :Sine the vetors  lm 2 IRn are orthonormal for di�erent l , it follows for the Besselinequality for every m � d1n nXi=1 jsi;m(U)� P�;mrfm(Xi)j2 � LXl=1 ����� 1n nXi=1�si;m(U)� P�;mrfm(Xi)� lm(Xi;m)�����2= LXl=1 P 2�;m�Eb�lm(U)� ��lm�2and thus, dXm=1 LXl=1 P 2�;m�Eb�lm(U)� ��lm�2 �  Cg C1=2V1� �� h�2!2 :To hek the statements (7.4){(7.6), the following lemma will be useful.Lemma 7.1. Let jUm�1j � �m < 1 for all m = 1; : : : ; d . Then for all i; j , the inequalityjZ>ij DUZij j � 1 implies jZij j2 � 1=(1 � ��) and 1 + jZij j2 � 2=(1 � ��) .Proof. Note that the inequalities Z>ij DU Zij � 1 and jUm � 1j � �m imply���Z>ij DUZij � jZijj2��� = ���Z>ij (DU � I)Zij��� � ��jZij j2and thus, jZij j2 � (1� ��)�1Z>ij DUZij .Now we hek (7.4). Sine h�1f(Xi)P�rf(Xi)! = Vi(U)�1 nXj=1� 1Zij�� 1Zij�>  h�1f(Xi)P�rf(Xi)!Kij(U)= h�1 Vi(U)�1 nXj=1� 1Zij��f(Xi) +X>ijrf(Xi)	Kij(U)it followssi(U)� h�1f(Xi)P�rf(Xi)! = 1h Vi(U)�1 nXj=1� 1Zij�nf(Xj)� f(Xi)�X>ij rf(Xi)oKij(U)= 1h Vi(U)�1 nXj=1� 1Zij� rijKij(U)



samarov, a. , spokoiny, v. and vial, . 29where in view of (3.1)rij = g(R�Xj;2)� g(R�Xi;2)� (R�Xj;2 �R�Xi;2)>rg(R�Xi;2)with R� being the diagonal M �M matrix with diagonal entries pv�m , m 2 J . It islear that���pv�mXj;m �pv�mXi;m���2 = h2v�m(1 + ��2v�m)�1Z2ij;m � h2�2Z2ij;m:Therefore, jR�Xj;2 �R�Xi;2j2 � h2 �2 jZij j2:This yields by Lemma 7.1 and Assumption 4 for every pair (i; j) with Z>ij DUZij � 1 :jrij j � Cg h2 �2(1� ��)�1 :Using the Cauhy-Shwarz inequality and Assumptions 5 we boundjEd si(U)� P�rf(Xi)j � h�1 sup�2IRd+1 : j�j=1 �������>Vi(U)�1 nXj=1� 1Zij�rijKij(U)������� supj�j=1h�1 24 nXj=1 �>Vi(U)�1� 1Zij�� 1Zij�>Kij(U)Vi(U)�1� nXj=1 r2ijKij(U)351=2� Cg h �21� �� supj�j=10��>Vi(U)�1� nXj=1Kij(U)1A1=2� (1� ��)�1 Cg h �2 Ni(U)Vi(U)�11=2 � (1� ��)�1 Cg C1=2V h �2and (7.4) follows.By de�nition every �lm(U) is a linear ombination of the "i 's, that is, there areoeÆients i;lm(U) suh that�lm(U) = nXi=1 i;lm(U)"i:The oeÆients i;lm(U) depend on the design X1; : : : ;Xn , the basis funtion  lm , thekernel K and the vetor U . Moreover, these oeÆients satisfy the following onditions:Lemma 7.2. For every l = 1; : : : ; L and m = 1; : : : ; d(i) nXi=1 ji;lm(U�)j2 � 2C2V CKh2n ;



30 omponent identifiation by strutural adaptation(ii) supU2U� nXi=1 ji;lm(U)j2 � 2C2V CK(1� ��)h2n ;(iii) supU2U� ����di;lm(U)dU ���� � ��nh; where�� = p2(1� ��)�3=2CV CK0 + 23=2(1� ��)�5=2C2V CKCK0 :Proof. De�ne for i; j = 1; : : : ; nNi(U) = nXj=1Kij(U); vij(U) = Vi(U)�1� 1Zij�:It follows from Lemma 7.1 and Assumption 5 that U 2 U� implies for every i; j withZ>ij DU Zij � 1jNi(U) vij(U)j � CV (1 + jZij j2)1=2 � CVp2(1� ��)�1=2: (7.7)Next, for a �xed m � d , denote by vij;m(U) the (m+ 1) th omponent of vij(U) . Then�lm(U) = 1nh nXi=1  lm(Xi;m) nXj=1 vij;m(U)Kij(U) "j= nXj=1 1nh nXi=1  lm(Xi;m)vij;m(U)Kij(U)! "j = nXj=1 j;lm(U) "j :Clearly Ej�lm(U)j2 = �2Pnj=1 2j;lm(U) . The Cauhy-Shwarz inequality, (7.7) and As-sumption 5 implynXj=1 2j;lm(U) = 1n2h2 nXj=1 nXi=1  lm(Xi;m)vij;m(U)Kij(U)!2� 1n2h2 nXj=1 nXi=1  2lm(Xi;m)vij;m(U)Kij(U)! nXi=1 vij;m(U)Kij(U)!� 2C2V(1� ��)n2h2 nXj=1 nXi=1  2lm(Xi;m)Kij(U)Ni(U) ! nXi=1 Kij(U)Ni(U) !� 2C2V CK(1� ��)n2h2 nXj=1 nXi=1  2lm(Xi;m)Kij(U)Ni(U)= 2C2V CK(1� ��)n2h2 nXi=1  2lm(Xi;m) = 2C2V CK(1� ��)nh2 :As a partiular ase, with DU = DU� = I and �� = 0 , this yieldsnXj=1 2j;lm(U�) � 2C2V CKnh2



samarov, a. , spokoiny, v. and vial, . 31and the �rst two assertions of the lemma follows.Now we bound the derivative of eah oeÆient jl;m(U) with respet to U . For everypair i; j suh that Z>ijDUZij � 1 , Lemma 7.1 implies���� ddU Kij(U)���� = ���K 0(Z>ij DU Zij)��� jZij j2 � (1� ��)�1 ���K 0(Z>ij DU Zij)��� :Let o1 and o2 be unit vetors in IRd+1 . Then for every m = 1; : : : ; do>1 �Vi(U)�1o2�Um = �o>1 Vi(U)�1� ��UmVi(U)�Vi(U)�1o2= �o>1 Vi(U)�10� nXj=1� 1Zij�� 1Zij�>K 0(Z>ij DU Zij)Z2ij;m1AVi(U)�1o2:Lemma 7.1 and Assumption 5 yield�����o>1 Vi(U)�1o2�Um ���� � 2C2V(1� ��)jNi(U)j2 nXj=1 ���K 0(Z>ij DU Zij)���Z2ij;m:Sine vij;m(U) = �1 + jZij j2�1=2 e>mVi(U)�1o2 where em denotes the m th oordinatevetor in IRd+1 and o2 = �1 + jZij j2��1=2� 1Zij� , it follows for every pair i; j suh thatZ>ijDUZij � 1 :����dvij;m(U)dU ���� � �1 + jZij j2�1=2 dXm0=1 �����e>mVi(U)�1o2�Um0 ����2!1=2
� 23=2C2V(1� ��)3=2jNi(U)j2 24 dXm0=10� nXj=1 jK 0(Z>ij DU Zij)jZ2ij;m01A2351=2� 23=2C2V(1� ��)3=2jNi(U)j2 dXm0=1 nXj=1 jK 0(Z>ij DU Zij)jZ2ij;m0� 23=2C2V CK0(1� ��)3=2jNi(U)j2 nXj=1 jK 0(Z>ij DU Zij)j jZij j2 � 23=2C2V CK0(1� ��)5=2Ni(U) :Sinedj;lm(U)dU = 1nh nXi=1 vij;m(U) lm(Xi;m)dKij(U)dU + 1nh nXi=1 dvij;m(U)dU Kij(U) lm(Xi;m):the use of (7.7) and Assumption 5 yields����dj;lm(U)dU ���� � p2CV  lmnh(1� ��)3=2 nXi=1 jK 0(Z>ij DU Zij)jNi(U) + 23=2C2V CK0 lmnh(1� ��)5=2 nXi=1 Kij(U)Ni(U)� p2CV CK0 lmnh(1� ��)3=2 + 23=2C2V CK0CK lmnh(1� ��)5=2and assertion (iii) of the lemma follows.



32 omponent identifiation by strutural adaptationSine Ej�lm(U)j2 = �2Pnj=1 2j;lm(U) , ondition (7.6) follows from Lemma 7.2, (i).The following lemma is a minor modi�ation of Lemma 8 of HJS.Lemma 7.3. Let r be a positive number and let � be a �nite set. Let funtions ai;(u)of u 2 IRd obey the onditionssup2� supju�u�j�r ���� ddu ai;(u)���� � �; i = 1; : : : ; n: (7.8)If the "i 's are independent N (0; �2) -distributed random variables, thenP  sup2� supju�u�j�r 1pn ����� nXi=1fai;(u)� ai;(u�)g"i����� > �� rt! � 2nwhere t = 2 +p2 log(nj� j) + d log(4n) and j� j denotes the number of elements in � .The laim (7.5) follows from Lemma 7.2, (ii) and (iii), by the preeding lemma appliedwith ai;(u) = pnj;lm(U), � = ��hpn , � = f(m; l) : m = 1; : : : ; d; l = 1; : : : ; L g , andr = j�j. This ompletes the proof of the proposition.Remark 7.1. In the proof of Proposition 7.1 we de�ned the random variables �lm as�lm = �lm(U�) . One an easily hek that the result of the proposition ontinues to holdwith �lm replaed by �lm(U) for any U 2 U� and with the right hand-side of (7.2)and with the onstant C�;n multiplied by (1 � ��)�1 . This fat is used in the proofTheorem 4.2.7.3 Proof of Corollary 7.1By Proposition 7.1supU2U� maxm=1;:::;d ���P�;m �Eb�m(U)� ��m���� � Cg C1=2V1� �� �2hand on a random set of probability as least 1� 2=n����P�;m �b�m(U)�Eb�m(U)�� �mhpn���� � pL�  C�;n j�jhpn ; 8m = 1; : : : ; d;where �m 2 IRL , m = 1; : : : ; d, are Gaussian random vetors with omponents �l;m fromProposition 7.1.By Lemma 7 in HJS, P �j�mj � znpEj�mj2� � 1=(nd):In view of (7.2) Ej�mj2 � 2L�2C2V CK , and the orollary follows.



samarov, a. , spokoiny, v. and vial, . 337.4 Proof of Proposition 7.2The de�nition of �m impliesP 2�;mv�m = (1 + ��2v�m)�1v�m = �2m � min��2; v�m	 : (7.9)Lemma 7.4. If P�;mjb�m � ��mj < Æ, then P 2�;mjbvm � v�mj < Æ2 + 2Æ �m.Proof. De�ne the vetor bum 2 IRL (resp. u�m ) whose elements are P�;mb�lm (resp.P�;m��lm ). Clearly P 2�;mbvm(U) = jbum(U)j2 and by (7.9) P 2�;mv�m = ju�mj2 � �2m . It iseasy to hek that��jbumj2 � ju�mj2�� � jbum � u�mj2 + 2jbum � u�mj � ju�j; (7.10)and lemma follows.The proposition follows from Corollary 7.1 and Lemma 7.4.7.5 Proof of Proposition 3.1The proof of the �rst laim is a simpli�ed version of the proof of Proposition 7.1: just setthere P�;m = 1, drop supU , and repeat the proofs of (7.4) and (7.6). The fator v�(1) in Æ1omes from R� in (3.1). Next, applying Lemma 7 of HJS one gets the laim (3.2). Thelaim (3.4) follows from (3.2) and Lemma 7.4 applied with � = 1.7.6 Proof of Theorem 3.1Let the numbers hk and �k be as in the algorithm desription, k = 1; : : : ; kn . De�nesuessively the values Æk and d-vetors �k with omponents �k;m as follows: �1 = 0 ,Æ1 as in (3.3), and for k = 2; : : : ; knÆk = Cg C1=2V(1� ��k) hk �2k + p2L�CV C1=2K znhkpn + pL� C�k;n j�kjhkpn ;�k;m = ��2k �2Æk�1�k;m + Æ2k�1� ; m = 1; : : : ; d (7.11)with ��k = maxm=1;:::;m �k;m, �k;m = �kpv�m ��2k + v�m��1=2 � minf�k;pv�mg, and with  de�ned in Proposition 7.1 and zn in Corollary 7.1.We will need the following two lemmas proofs of whih require only minor modi�ationsin the proofs of Lemmas 4 and 5 from HJS.Lemma 7.5. For n suÆiently large, the �k 's satisfy maxk�kn ��k < 1=4 . In addition, forthe last iteration kn , it holds�n := Cg C1=2V(1� ��kn) hkn �2kn + pL� C�kn ;n j�kn jhknpn � C ��2n�1L logn�2=3



34 omponent identifiation by strutural adaptationand Ækn � Æn, where Æn is de�ned in (3.6) and C means a generi onstant depending ond , M and the onstants from Assumptions 1 through 5 only.Proof. Note that �k;m � Æ2k�1=�2k for all m 62 J and �k;m � Æ2k�1=�2k + 2Æk�1=�k form 2 J . The �rst assertion of the lemma easily follows from the fat that hk�k dereasesduring iteration, f. Lemma 4 of HJS.Sine the dimensionality of the nonlinear omponent is bounded by M , it followsj�kj2 � (d�M)Æ4k�1=�4k +M �Æ2k�1=�2k + 2Æk�1=�k�2 :Further, the inequality j�kn�1j � C1 with some onstant C1 depending on d and Monly implies in view of hkn�1 � 1=ah and 1 � �kn�1 ��2n�1L logn��1=3 � 1=a� thatÆkn�1 � C ��2n�1L logn�1=2 ; j�kn j � C ��2n�1L logn�1=6 :Substituting this bound in the formula for �n yields by hkn � 1 and �kn = ��2n�1L logn�1=3that �n � C ��2n�1L log n�2=3 and thereforeÆkn � p2CV C1=2K ��2n�1Lz2n�1=2 + C ��2n�1L logn�2=3 :Lemma 7.6. Let n be suÆiently large. There exist random sets A1 � : : : � Akn�1suh that P (Ak) � 1� 3kn and it holds on Akmaxm=1;:::;d��P�k+1;m�b�(k)m � ��m��� � Æk; k = 1; : : : ; kn � 1:Proof. We proeed by indution in k . First by (3.2) there exists a random set A1 withP (A1) � 1� 1=n suh that maxm=1;:::;d jb�1 � ��j � Æ1 on A1 . This obviously impliesmaxm=1;:::;d jP�2;m(b�1 � ��)j � Æ1:Suppose now that there is Ak�1 suh that P (Ak�1) � 1� 3(k�1)n and it holds on Ak�1 :maxm=1;:::;d ���P�k;m �b�(k�1)m � ��m���� � Æk�1:Then on Ak�1 by Lemma 7.4 P 2�k;mjbv(k�1)m �v�mj < Æ2k�1+2Æk�1�k;m simultaneously for allm = 1; : : : ; d , and denoting U (k) a d-vetor with omponents U (k)m = P 2�k;m(1+��2k bv(k�1)m ) ,one gets U (k) 2 U�k .By Corollary 7.1 there exists another random set Ak with P (Ak) � 1�3=n suh thaton Ak it holds for every U 2 U�kmaxm=1;:::;d jP�k;m(b�m(U)� ��m)j � Æk;



samarov, a. , spokoiny, v. and vial, . 35so that, with Ak = Ak�1 \Ak , we obtain P (Ak) � 1� 3k=n and it holds on Akmaxm=1;:::;d jP�k;m(b�(k)m � ��m)j � Æk:and, sine for every m P�k+1;m � P�k;m , the assertion follows.Let now Akn�1 be the random set with P (Akn�1) � 1� 3kn�3n shown in Lemma 7.6so that on this set maxm=1;:::;d jP�kn ;m(b�(kn�1)m � ��m)j � Ækn�1;and for the orresponding d-vetor U (kn) with omponents U (kn)m = P 2�kn ;m(1+��2kn bv(kn�1)m ),it holds U (kn) 2 U�kn .Let then �m be the Gaussian L-vetor with the omponents �lm from Proposition 7.1applied with h = hkn and � = �kn . Due to this proposition, there exists a random setAkn with P (Akn) � 1� 2=n , so that on Akn it holds for all U 2 U�kn :maxm=1;:::;d jP�kn ;m(b�m(U)� ��m)� �mhpn j � �n;where �n is de�ned in Lemma 7.5. This yields for the set Akn = Akn�1 \ An thatP (Akn) � 1� 3kn�1n and the �nal estimator b�m = b�(kn)m satis�es on Akn :maxm=1;:::;d ���P�kn (b�m � ��)� n�1=2��m��� � �nwhere ��m = h�1�m . In view of h = hkn � 1Ej��lmj2 = h�2Ej�lmj2 � 2�2C2VCKand the �rst two laims in (3.5) follow from Lemma 7.5. The last laim in (3.5) follow byapplying Lemma 7 of HJS and Lemma 7.4. The �rst two inequalities in (3.7) follow from(3.5) by setting P�;m = 1 and ��m = 0 . The last one is proved similarly to Lemma 7.4.7.7 Proof of Theorem 3.2The proof an be done similarly to Spokoiny (2002) using the bound for the bias ofestimation from the proof of Proposition 7.1. We omit the details to save the spae.7.8 Proof of Theorem 4.1In view of Theorem 3.1 on the set A , it holds bvm � Æ2n for all m 62 J . Therefore, itsuÆes to show that on A , it holds bvm > r2Æ2n for every m 2 J . Next, by Theorem 3.1again, for m 2 Jbvm > v�m � P�2� �Æ2n + 2ÆnP�v�m� = v�m � Æ2n(1 + v�m��2)� 2Æn(1 + v�m��2)1=2v�m:



36 omponent identifiation by strutural adaptationDe�ne s2 = v�m=Æ2n and un = Æn=� . Then, on A ,Æ�2n bvm > s2 � 1� s2u2n � 2s(1 + s2u2n)1=2 � s2(1� u2n � 2un)� 1� 2s:It is straightforward to hek that the right hand-side of this inequality as a funtion of sis greater than r2 for all s � sr . Therefore, on A , Æ�2n bvm > r2 for m 2 J as required.7.9 Proof of Theorem 4.2To simplify the exposition, we suppose that the resampling sheme of Setion 4.1 utilizesthe true variane �2 instead of the estimated variane b�2 . This assumption is easilyjusti�ed by the result of Theorem 3.2 laiming root-n onsistent estimation of �2 by b�2 .The idea of the proof is to show that the variable bv(M+1) and the similarly de�nedvariable ev(M+1) for the resampling model have approximately the same distribution. LetA be the random set from Theorem 3.1 with P (A) � 1�3kn=n . It is obviously suÆientto show that P ( bJM 6= J j A) � �+ 3=n:We therefore suppose that the event A holds true. Then, under the assumptions of thetheorem, the nonlinear omponent is orretly identi�ed and all the bounds of Theorem 3.1hold. Moreover, for every m =2 J , the value nbvm an be approximated by j��mj2 , wherethe distribution of the vetor ��m depend on the `ideal' bandwidth b� = b�(kn) , the kernelK , basis funtions  lm(�), and the design X1; : : : ;Xn only.Next we onsider the model we resample from. This arti�ial model has the samestruture (i.e. the same linear and nonlinear omponents) and di�ers from the originalone only by the parameters of the linear omponent (they are equal to zero in the re-sampling model) and by the nonlinear link funtion. More spei�ally, the estimators bvmbased on the original model are the \true" values for the resampling model and the laststep bandwidth b = b(kn) is the \ideal" bandwidth for the resampling model. Sine theresampling model ful�lls all the onditions that we impose on the original model, Theo-rem 3.1 (or Proposition 7.1 with � = 0 and b = b(kn) ) ontinues to apply. This yields,in partiular, that on a set eAM with P ( eAM ) � 1� 3=n , the nonlinear omponent of theresampling model will be orretly identi�ed. Moreover, due to Remark 7.1, every vari-able nevm with m =2 J an be approximated by the squared norm of a Gaussian randomvetor with the same distribution as ��m . And thus, it is true for nev(M+1) . This yields, inpartiular, that the (1 � �) -quantile evaluated from the distribution of nev(M+1) appliesup to the approximation error to nbv(M+1) . It follows from Theorem 3.1 that the error ofapproximation of nbvm by j��mj2 an be bounded by n(!2n+!nÆn) � C 0n�1=6(log n)5=6 for



samarov, a. , spokoiny, v. and vial, . 37some onstant C 0 . Therefore, at least for suÆiently large n , the approximation error issmall and the assertion of the theorem follows.7.10 Proof of Theorem 4.3Let A be the random set desribed in Theorem 3.1 with P (A) � 1� 3kn=n . In view ofTheorem 4.1, it is suÆient to prove that P (M 6=M j A) � �+ 3M=n.On A it holds bvm � Æ2n for all m =2 J and bvm > (rÆn)2 for all m 2 J and r = s1 .Thus bv(M) > (s1Æn)2 for all M�M and bv(M+1) � Æ2n . For every M < M , we resamplefrom the model having preisely M nonlinear regressors with bvm being the `true' measureof nonlinearity for every m 2 bJM .Appliation of Propositions 7.1 and 7.2 with � = 0 to this arti�ial models and againTheorem 4.1 with r = 1 ensures that on a set eAM with P ( eAM) � 1 � 3=n , every evmfor m =2 JM ful�lls evm � Æ2n . Hene, ev(M+1) � Æ2n on eAM and the same holds for the1 � � quantile of ev(M+1) provided that � > 3=n . Therefore, for every M < M , thehypothesis M �M will be rejeted on the intersetion A \ eAM . This yieldsP � M < M j A� � 3(M � 1)=n: (7.12)Next the de�nition of M implies the inlusionfM > Mg � fbv(M+1) > t�(M)g;where t�(M) is evaluated in the resampling proedure with M = M . Applying nowTheorem 4.2 we get, using also (7.12), the desired bound for P (M 6=M), and the theoremfollows.Referenes[1℄ Bhattaharya, P.K. and Zhao, P.L. (1997). Semiparametri inferene in a partial linear model. Ann.Statist., 25, 244{262.[2℄ Bikel, P.J., Klaassen, C.A.J., Ritov, Y., and Wellner, J. (1998). EÆient and adaptive estimation forsemiparametri models. New York: Springer. xix, 560 p.[3℄ Carroll, R.J., Fan, J., Gijbels, I., and Wand, M.P. (1997). Generalized partially linear single-indexmodels. J. Amer. Statist. Asso., 92, no. 438, 477{489.[4℄ Chen, H. (1988). Convergene rates for parametri omponents in a partly linear model. Ann. Statist.,16, 136{146.[5℄ Chen, H. and Chen, K. W. (1991). Seletion of the splined variables and onvergene rates in a partiallinear model. Canadian J. Statist., 19, 323{339.[6℄ Cuzik, J. (1992a). Semiparametri additive regression. J. Royal Statist. So., Series B, 54, 831{843.
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