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Abstract

This article proposes a new method of analysis of a partially linear model whose nonlinear compo-
nent is completely unknown. The target of analysis is identification of the set of regressors which
enter in a nonlinear way in the model function, and the complete estimation of the model including
slope coefficients of the linear component and the link function of the nonlinear component. The
procedure also allows for selecting the significant regression variables. As a by-product, we develop
a test of linear hypothesis against a partially linear alternative, or, more generally, a test that the

nonlinear component is M -dimensional for M =0,1,2,....

The approach proposed in this article is fully adaptive to the unknown model structure and applies
under mild conditions on the model. The only important assumption is that the dimensionality of
nonlinear component is relatively small. The theoretical results indicate that the procedure provides
a prescribed level of the identification error and estimates the linear component with the accuracy

1

of order n~'/2. A numerical study demonstrates a very good performance of the method even for

small or moderate sample sizes.
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1 Introduction

We consider the model
Y= f(iB) + ¢, f(m) = ngl + G(mQ)a (11)

where &' = (x|, 2, ), dim(xz) = M, dim(x;) =d— M, and M < d. Function G(-),
vector of coefficients 6, and the distribution of the noise £ are unknown. And most
importantly, we do not know with respect to which dy = d — M variables x; the model
is linear.

The model (1.1) naturally generalizes the linear model and are called a partially linear
model. Such models can be used in analysis of high dimensional data when the assumption
of linearity is too restrictive. They can also be used as a natural alternative to a linear
model in the problem of testing the linearity assumption. A general case with a high
dimensional nonlinear component makes the analysis complicated because of the “curse of
dimensionality” problem. In this paper we consider the situation in which the nonlinear
component is low dimensional, that is, M is relatively small.

Hristache, Juditsky and Spokoiny (2001) and Hristache, Juditsky, Polzehl and Spokoiny
(2001) (referred to as HJS and HJPS, respectively, in the rest of the paper) proposed a
new method of exploring a high-dimensional regression model with the help of a general
structural adaptation approach. The aim of the present article is to apply this approach to
the estimation and inference in the partially linear model (1.1). The analysis includes, in
particular, estimation of the degree of nonlinearity M , identifying with respect to which
d — M variables @1 the model is linear or equivalently which M variables enter in f in
a nonlinear fashion, estimation of the vector 6 and of the nonlinear link function G.

It is important to note that the approach proposed here provides also a new method of
selecting significant variables in nonparametric regression in case when the dimensionality
of the nonlinear component is relatively small. More specifically, after selecting M (sig-
nificant) nonlinear variables, one can further select variables among the linear ones using
standard methods of linear regression analysis or by testing significance of linear variable
slopes as suggested in Section 4.3 below.

As a by-product of our analysis, we develop a test of the hypothesis of linearity against
a partially linear alternative, and, more generally, a test of the hypothesis that the dimen-
sionality of the nonlinear component does not exceed the prescribed value M .

Following the work of Engle, Granger, Rice and Weiss (1986), much attention has been
directed to estimating model (1.1). See, for example, Heckman (1986), Rice (1986), Chen
(1988), Robinson (1988), Speckman (1988), Gao (1995), Schick (1996a,b), Bhattacharya
and Zhao (1997), Mammen and Van der Geer (1997), Hamilton and Truong (1997), Eu-
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bank, Kambour, Kim, Klipple, Reese and Schimek (1998), Schimek (2000), Golubev and
Hérdle (2000, 2001). Further references and applications of partially linear models could
be found in the recent book by Hardle, Liang, and Gao (2000). This literature addressed
the problem of estimation of the parametric and nonparametric components of the model
(1.1) under the assumption that the "nonlinear” variables @o are specified and, in fact,
most papers assume that M = 1. Various estimators have been proposed which achieve
root-n rate or are semiparametrically efficient for estimating the parametric component 6

as well as those which achieve the usual nonparametric rates for estimating G(x2).

To our knowledge, the only paper which addressed the problem of selecting which
variables x5 enter nonlinearly in the model (1.1) was Chen and Chen (1991). That pa-
per proposed a model-selection-type rule and showed that the probability of the correct
identification by this method goes to one as the sample size goes to infinity. Hardle and
Korostelev (1996) showed for the similar problem of selecting the significant variables in
an additive model that the error of classification can be made exponentially small. In this
paper we consider another setup which seems to be more appealing for practical applica-
tions. Namely, we develop a nonlinear component identification method which guarantees
a prescribed level of model misspecification uniformly over the class of models whose non-
linear component is separated away from the linear one by the squared distance of order
n~'logn or larger. Our results are essentially nonasymptotic and apply for a small or

moderate sample size.

Hérdle, Spokoiny and Sperlich (2001) considered a similar problem of identifying the
linear component for an additive model, using a wavelet (Haar) expansion of every additive
component. The advantage of the structure adaptive procedure proposed here is that the

additive structure is not required and is not used in the method.

There also exists a large literature on testing a parametric, in particular linear, re-
gression model against nonparametric alternative. See, for example, Eubank and Spiegel-
man (1990), Eubank and Hart (1992), Ledwina (1994), Hardle and Mammen (1993), Fan
(1996), Hart (1997), Stute (1997), Horowitz and Spokoiny (2001) and references therein.
Our testing results are stated in the spirit of Spokoiny (2001) focusing on the minimal

separation distance between the null and the alternative providing test consistency.

The paper is organized as follows. Section 2 contains the description of the structure
adaptive estimation algorithm. Accuracy of estimation by the proposed method is de-
scribed in Section 3. Further problems of identification of the nonlinear component and
of estimation of slope coefficients of the linear component are discussed in Section 4. Sec-
tion 5 presents results of a simulation study and an application to real data. Conclusion

and some extensions of the method are presented in Section 6. The proofs are collected
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in the Appendix.

2 Structure adaptive procedure

This section explains the adaptive estimation procedure starting with a short heuristic

discussion.

2.1 Preliminaries
The idea of structural adaptation from HJPS can be summarized as follows.
(i) knowing the structural information helps better estimate the model function;

(ii) a good pilot estimator of the model function helps recover some structural information

about the model.

These two observations lead to the following iterative procedure: we start with a purely
nonparametric estimator of the model function; then the above two steps (estimation of
the model and estimation of the structure) are iterated several times increasing the amount
of structural information and improving the quality of model estimation during iteration.

HJPS considered the problem of estimation for a multi-index model in which the
regression function is of the form f(z) = g(0, @,...0],2), where 6y,...,0) are unknown
index vectors in IR?. The partially linear model (1.1) can be regarded as a special case
of the multi-index model with M + 1 indices. Indeed, f(x) depends on x only through
6", and the coordinate vectors corresponding to the nonlinear component. So, one can
formally apply the procedure from HJPS in the considered case. However, the special
structure of the model (1.1) allows to considerably simplify the procedure and further
analysis that justifies a separate treatment of the partially linear models.

Here the structure of the model (1.1) is described by the set J of indices corresponding
to the nonlinear component a5. An alternative description can be done by using the
average gradient idea. Namely, if the function f(z) is linear with respect to the mth
coordinate function z,, then the partial derivative df/dz,, is a constant, and therefore,
the variance V,, of the mth partial derivative can be used to measure the degree of
nonlinearity of the m th coordinate. Suppose that some information about the set J or,
equivalently, about the values V,,, is available. Now we explain how this information can
be used for improving the quality of estimation of the model function f. A local linear

estimator of the function f and its gradient Vf at a point X; is given by

~ n -1 n
(L5180 () w0 () <)
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where X;; = X; —X;, b is a bandwidth and K(-) is a univariate kernel K on the positive
semiaxis. supported on [0,1]. The bandwidth b should be selected in a way that the ball
with the radius b and the center the point of estimation X; contains at least d+1 design
points which for large value of d leads to a the bandwidth b of order one and to a huge
estimation bias. This phenomenon is called the “curse of dimensionality”. Observe now
that the function f has anisotropic smoothness properties: smoothness of G in direction
of the nonlinear component, and infinite smoothness (corresponding to a linear function)
in other directions. This suggests to apply an anisotropic bandwidth for estimating the
model function and its gradient. So, the ‘ideal’ estimator which utilizes the knowledge of
the set J can be defined by using the different bandwidths for different components of
the vector x. Let b = diag(b,...,by) be a diagonal matrix with the diagonal entries

bi,...,bq. Define the local linear estimator with the anisotropic bandwidth b by

<Vi;(()§2)) _ i()é]) <;ij>rKd(Xij,b) ZY( )Kd Xi,b) ., (2.1)

where Ky(x,b) = K(|b 'z|?). Knowing that the value Vj, is significantly positive (that
is, m is presumably in J ) leads to the choice of smaller bandwidth values b, for such
m and possibly larger bandwidths for the other regressors. This would help to avoid the
“curse of dimensionality” problem if the dimension M of the nonlinear component is not
too large, cf. Carroll, Fan, Gijbels and Wand (1997) or HJPS.

Next we explain how the structural information can be extracted from the pilot esti-
mator (2.1) of the model function. Define for every coordinate z,, of € IR% a set of

functions 1y, ..., Y, satisfying the conditions:
n n
Y m(Xim) =0, 7Y P (Xim) P (Xim) = O
i=1 1=1
In other words, {ty,,l =1,...,L} is a orthonormal set of functions with respect to the

design of m th coordinate. Each of 1y, is also orthogonal to the constant function. The

latter property implies that if f is linear with respect to z,,, then
Bim =n"" Zme )i (Xim) = 0 (2:2)

for every [ =1,...,L, where Vf,(x) = 0f/0zy,(x). Thus, the sum

L
Z /Blm
=1
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can be used as the measure of nonlinearity of f with respect to z,,. Having estimated

the gradient of f for all X;, we can also estimate the coefficients f;,, with
Bim =11 Vf i (X)him (Xim) (2.3)
i=1

and use the sum v, = E%m +...+ B\%m as the estimated degree of nonlinearity of f with
respect to the m th regression variable.
Next, the quantities ¥,, can be used to define new anisotropic bandwidth b taking

smaller bandwidths for the regressors with large v,, .

Remark 2.1. Similarly to HJPS, we use here the estimation method based on the Fourier
expansion of the gradient Vf(x). Alternatively, one can estimate V,, directly using the
average of |Vf,(X;)|?. However, a detailed calculation (not given in the paper) shows
that the procedure based on such a direct estimation of the quadratic functionals V;, leads
to worse estimation results. At the same time, the loss of information from replacing V,,
with v}, as a measure of nonlinearity is not significant if L is chosen sufficiently large,

see more on the choice of L in Section 6.

2.2 Iterative procedure

We now present the description of the method. The procedure involves input parameters
hi,an, p1,pPmin,a, and n. The parameter of ellipticity p decreases geometrically from
p1 to pmin by the factor a, < 1 while the bandwidth h increases geometrically from h;
by the factor a; > 1 during iterations. The value n can be interpreted as the “memory
parameter” of the procedure. The choice of these parameters, as well as of the set of basis

functions {t;,} will be discussed in Section 2.3. The algorithm reads as follows:

1.Selecthl.Setﬁgo):...:ﬁgo)zo,andkzl.Computeforizl,...,n
n T n
N 1\/ 1 2(0) 1
(e )n) 5

where Xij = Xj — Xl' .
2. Compute

—1/2

Define b*) = diag(®{"”, ..., ).
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3. For every X; compute

y® gy +(1—n)2n:< ! )( ! )TKd(Xij,bw)), (2.5)

_ /1
j=1 3"
and
FR(X;) B~ ok
) = (u) s 27
Vi (X;)

Compute W —y; f(k)(Xi) .

1

4. Compute for m=1,...,d and [ =1,....L
‘2

n L
B =m0 T (X (i), 00 =3 [5)
i=1 =1

If ﬁyf) > 1, then set i)\gf) =1.
5. Increase k by 1. Set pri1 = a,pr, hgt1 = aphy . If ppy1 > pmin, thenset k=% +1

and continue with Step 2; otherwise terminate.

Denote by k, the number of iterations and by B\lm = B\l(:;”) (resp. Uy, = 6£,’§”)) the

last step estimators of 3% (resp. wvj,). Similarly, f(XZ) denotes the last step estimator

~

of f(X;) and & =& =Y; - f(X,).

Remark 2.2. At every step k of the algorithm the bandwidth bgf) for the m th regressor

is selected between hy and hip, depending on the value )

(k—1)

. For the linear component,

the values v, should be small leading to a bandwidth about hj , while for the nonlinear

(k—1)

regressors with a large value v}, , the estimator 7 will be also large leading to a
bandwidth about hgp,. During iteration the parameter h grows to hgn, > 1 while

hipr decreases to pmin leading to the adaptive anisotropic bandwidth at the last step.

Remark 2.3. We cut ﬁgf) at one at step 4 in order to avoid too strong shrinkage in

()

direction of m th regressor which may occur for too large values of vy,” .

2.3 Choice of parameters

It is obvious that the quality of estimation by the proposed method strongly depends
on the rule for changing the parameters h and p, and, in particular, on their values at
the initial and final iteration. Some related discussion about this choice can be found in

HJPS. The general idea is to ensure that the parameter A grows to one and hp decreases
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under the constraint that at every iteration k there exist enough design points in every or
almost every local ellipsoidal neighborhoods E®)(X;) = {z: ‘(b(k))_l(:c - XZ)‘2 <1}.
Assuming that every bgf) is close to the ‘ideal bandwidth’ b;gk) = hi(1+ ,0,;21)7’5,1)*1/2
we observe, that neighborhood E(k)(XZ-) is stretched at each iteration step by factor ay
in all directions and is shrunk by a factor about a, in directions of the M -dimensional
nonlinear component J where a; and a, are parameters of the procedure. Therefore,
the Lebesgue measure of every such neighborhood is changed each time by a factor about
a,dlaﬂ/l . This leads to the constraint a,dlaﬂ/l > 1, cf. Assumption 3 in Section 3 below. Under
the assumption of a random design with a positive density, this would result in an increase
of the mean number of design points inside each E®*)(X;). Our theoretical results will
be stated for the choice hy < nil/max{‘l’d}, bmax < 1, p1 =1, pmin < (Tf1 log n) 1/3,
see Section 3 for more details. Similarly to HJPS, such a choice under the constraint

a,dlaﬂ/l > 1 is possible only for M < 3.

We recommend to define for every m = 1,...,d the set of functions ¢y, , [ =1,...,L
by orthogonalizing the set of polynomials z,,,72,,...zL with respect to the design of the

m th regressor under the constraint Y. | ¥y, (X;m) = 0. A model or variable dependent
choice of the basis {1y} is possible as well. The “memory parameter” 71 used in (2.5)
and (2.6) can be taken between 0.1 and 0.5. The number L can be taken between 5 and

10, see Section 6 for more discussion.

Remark 2.4. Similarly to HJS and HJPS we apply in our numerical study a slightly
modified procedure. The only difference is in the definition of the estimated vectors Elm .

Namely we define

n -1 n

A (k)

51(:1) = (E :“’z(k)> E :wz(k)vfm (Xi)Vim (Xim),
i=1 i=1

(k)

i

(k) (k) _

;=
A2 (Vl-(k)) . In addition, the basis functions )y, should be modified as each step to satisfy

min

the condition ", wgk)@blm(Xi) =0.

where w;"’ is square root of the smallest eigenvalue of the matrix V™, that is, w

2.4 Estimation of the noise variance

The variance o2 of the noise € does not enter in the description of the method. However, it
will be used for defining the stopping rule of the algorithm and the resampling procedure in
Section 4. Here we briefly discuss how this variance can be estimated under the assumption
of the noise homogeneity at every step of the algorithm.

A natural variance estimator can be defined on the base of residuals squared after each

the step k: ‘5(]“) ‘2 =n"! Sy "égk) ‘2. This simple crude estimator can be refined, see
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e.g. Gasser, Sroka and Jennen-Steinmetz (1986) or Spokoiny (2002) and reference therein.

Namely, the residuals é‘gk) can obviously be represented in the form é‘gk) = Z?Zl cgf)Y]
where cz(-f) are known coefficients. These coefficients are random and dependent on the

Y;’s through the random bandwidths /b\(n]i) . However, our theoretical results indicate that

(k)

one can ignore this dependence and proceed as if the coefficients c; ;. were deterministic

and correspond to the “ideal” bandwidths b:,gk) .

Next, if the function f is sufficiently smooth, then the distribution of the residuals &;
only weakly depends on this function f and can be effectively evaluated for f = 0. In
the last case, E‘éfk) ‘2 =02 2?21 ‘cl(f) ‘2 that leads to the estimator

-1
JUPNT B N (k)2 (k)2
CCIEES Sl DIl Il 29)
i=1 \j=1

The properties of this estimator are briefly discussed in Section 3.4 below.

3 Accuracy of estimation

In this section we present the results about the accuracy of estimation of the functionals

B}, and vy, by the proposed iterative procedure.

3.1 Assumptions

As in HJPS, it is useful to proceed with the renormalized link function. In what follows

we consider the model
f(x) =2/ 0+ g(R*xy) (3.1)

where R* is the diagonal M x M matrix with diagonal entries /v},, m € J and g is
a nonlinear link function.

Our main results will be stated under the following assumptions.
Assumption 1. (Kernel) The kernel K(-) is continuously differentiable decreasing
function on R, with K(0) =1 and K(z) =0 for all |z| > 1.
Assumption 2. (Errors) The random variables ¢; in (1.1) are independent and normally
distributed with zero mean and variance o?.
Assumption 3. (Range of parameters hy, p; ) The parameters of the procedure fulfill
p1 =1, pmin = (6*n"'Llog n)1/3, hy = C’orfﬁ with a constant Cy > 1, hAmax > 1 and
a,dlaﬂ/l >1.
Assumption 4. (Link function) The function g from (3.1) is twice differentiable with

a bounded second derivative, so that, for some constant C, and for all u,v € RM

l9(v) = g(u) = (v =) Vg(u)| < Cyu —vf*;
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Our last assumption concerns the design properties. In what follows we assume that
the design is deterministic. That is, Xi,..., X, are non-random points in R%. Note,
however, that the case of a random design can be considered as well, supposing X1,..., X,
independent and identically distributed random points in IR? with a design density p(z).

Then all the results should be understood conditionally on the design.

In order for the procedure to work, we have to suppose that the design points (X;)
are “well diffused” and, as a consequence, at kth iteration of the algorithm, all lo-
cal gradient estimators from (2.7) corresponding to the anisotropic bandwidth b*¥) =
diag(bgk),...,bglk)) from (2.4) are well defined. The latter is equivalent to the condi-
tion that all the matrices V;(k) from (2.5) are non-singular. We also define for the k th
iteration the “ideal anisotropic bandwidth” b+ having the diagonal entries bi,gk) =
(1 + ,0,;21);’%)71/2 hi, . The closeness of b*) to the “ideal bandwidth” b**) can be charac-
terized by the values U\ = (bgf)/b;’;gk))Z — (14 p205) /(14 p B8 ), m=1,...d.
If i)\gf_l) = v, , then Ur(,f) = 1. The condition we need means that at the step k of
the algorithm, for every anisotropic bandwidth b = diag(by,...,bs) close to b**%) in the
above sense, the design is regular within the elliptic neighborhood with the center at each
point X; and with the principal semiaxis b,,, m=1,...,d.

Define Zl-(f) = (b*(k))fl(Xj —X;) for 4,5 =1,...,n. These vectors describe locations
of the design points in the coordinate system shifted by X; and rescaled by b**) . For a
vector U = (Uy,...,Uy)" € R? with U,, >0, define Dy = diag(Uy,...,U,). Then, for
b= Dy, *b*®) it holds Ky(X;;.b) = K((2))) Dyz). Set

In what follows ||A|| stands for the matrix norm associated with the Euclidean vector
norm: ||Al| = supy [AN|/|A].

Assumption 5. (Design) There exist constants Cy, Cx, Cgr and some « € (0,1/2),
such that for all vectors U € IR? satisfying |Uy, — 1| < a, m=1,...,d, and for k <k,

the inverse matrices Vi(k)(U)_1 are well defined with

N® ) va’“(U)—lH <Cy, i=1,...,n
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Moreover, for 4,5 =1,...,n,
S p ) < o
iz:;zvf’“i(m w2 pez)| < o
> i [ B < o

where K’ means the derivative of K.

Remark 3.1. As already mentioned in HJS and HJPS, in the case of random design with
a continuous positive density one can fix some constants Cy, Cx and Cg (which depend
on the dimension d and the design distribution) such that the bounds in Assumption 5

hold with probability which converges to 1 exponentially fast as n grows to infinity.

3.2 The first step estimator

Our first result describes the quality of the estimators Ez(nll) obtained at the first step of the
algorithm. These estimators correspond to usual nonparametric local linear estimation of
the function f and its gradient. We also state the result about the accuracy of estimation
of the values v}, at the first step.

Let 3}, denote an L-vector with the components 8 , [ =1,... L.

Proposition 3.1. Let Assumptions 1 through 5 hold. For the first-iteration estimator
B\(n}) of the vector B,, m =1,...,d, it holds:

B — B = smh1 + h?—m\/ﬁ,
where deterministic L-vectors sy, satisfy |sm| < C’gC‘l//ZUE‘U with vZ‘l) = MaXy=1,....d U
and the ny, ’s are mean zero Gaussian random L-vectors with components 1, such that
Enm|? < 202C3Ck, 1 =1,...,L. Also, it holds

~ 1
(1) _ g* < =
P (mr:nla,‘x,d ‘Bm Bm > 51) =5 (32)
where
. V2LoCy CY 2
01 = Cy OV vy by + V2K (3.3)

hiv/n ’
and z, = (1 + 2log(nd) + 2loglog(nd))'/? .
Moreover, for the first-iteration estimator i)\ﬁ,p, m=1,...,d, it holds:
1
P

< 62 4 20171, szl,...,d)Zl——, (3.4)
where Ty = /o (1 +v25)~Y? < min{1, \/oF, }.

o) gy
U, Um,

n
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3.3 The quality of the final estimators

Now we present the result which indicates how the accuracy of estimation can be improved
by the iterative algorithm. Asin HJS and HJPS, the quality of the final estimators depends

on the ‘direction’. This quality is of order n=!/2

for the linear component and is worse
for the nonlinear component. This fact has a very simple explanation: estimation of a
nonlinear component is a harder task than that of a linear one; hence, the worse accuracy.

To express this fact, we introduce the scaling factor P,,, = (1 + p~2v%,)~1/2

, where p
is a running parameter of the procedure. Note that P,,, = 1 for all linear regressors
which have v;, = 0. If vy, is a positive constant, then P,,, < p. We will see that the
estimation error Blm — f};,, , after being multiplied by P,,,, can be bounded uniformly
over [,m at every step of the algorithm. This implies, in particular, that the quality of
estimation of the nonlinear component is about Pp_1 = p~! times worse than the quality
for the linear one.

In the next theorem and in Theorem 4.1 below, p (resp. h) denotes pg, (resp. hg, )
at the last iteration. Recall that h, p satisfy conditions h > 1 and p = (02n*1Llog n) 13,
Theorem 3.1. Let Assumptions 1 through 5 hold. Then there exist a random set A
with P(A) > 1 — 3k, /n and, for every m = 1,...,d, a Gaussian zero mean random
vector & = (& - ,ézm)T € R defined as a linear combination of the errors e; with

deterministic coefficients, which depend on the “ideal” bandwidth b* = b*(kn) , the design
X1,...,Xn, basis functions Py, (-), and the kernel K only, and such that

B¢, 2 <202C2Ck  1=1,...,L,m=1,....d,

and on A it holds

~

x|\ Pon(Bn = ) = 0 12¢0| < C (o*n L1ogn) ',

m=1,...
max ‘Pp,m(ﬁm - ﬁ;kn)‘ < 0p, (35)
m=1,...,d
max |P2 (O —vp)| < 05 + 2007
m=1,...,d ’

where C = C(d, M, Cg, Cv, CK, CKI,J) , E = Max; | m ‘z,blm(Xz)‘ ,

5y = \/20‘2/0](0'2’)1_1112% + C (0*n 'Llogn) 2/3 (3.6)

and Tm = p\/vf, (,02 —i—v;‘n)_l/2 < min{p, v} }. This implies that on A for every m ¢
J, with w, =C (02n*1Llog n)2/3:

B —n 26 | <wny Bl < 6ns 1Bm|> = n e 2] < w2 4 2wnbn. (3.7)
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Remark 3.2. The meaning of the random set A appearing in Theorem 3.1 can be
understood as follows. The result of every iteration of the algorithm is random. With
some probability it may happen that the estimation result at some step of the procedure
does not follow the model structure. For instance, with some probability, v,, can be
large even if vy, = 0. Our results indicate that the overall probability of such events is
rather small and their complement is precisely the set A (of a dominating probability) on
which the procedure ‘works’, that is, the iterative procedure leads to improvement of the
quality of estimation at every iteration. The other results of Theorem 3.1 claim that on
the set A, the adaptive estimators B\lm behave essentially as the ‘ideal’ estimators Bl*m
corresponding to the ‘ideal’ bandwidth b*. Since our further analysis is based on the final
step estimators Elm, all our results that follow will also be stated conditionally on this
set A.

Remark 3.3. (Origin of the constraint M < 3) It follows from the proof of Theo-
rem 3.1 that the bias of the ‘ideal’ estimators El*m based on the local linear smoothing with
the ‘ideal’ bandwidth b* = b*(») is of the order (n~!logn) 2/3 only if the dimensionality
M of the nonlinear component does not exceed 3. For M > 4, the model dependent bias

of estimation is of order n~1/2

or larger while the stochastic component (which is model
free) is of order n~1/2 . The same applies for the adaptive estimators Z\ilm . Therefore, the
leading term in the estimation loss is model free only for M < 3, and the estimators Elm

do not achieve asymptotic normality at root-n rate for M > 4.

3.4 Variance estimation

The algorithm delivers an estimator 52, see (2.9), of the error variance . This esti-

mator also utilizes the estimated structural information and improves upon the purely
nonparametric variance estimators. Spokoiny (2002) has shown that in a general high
dimensional regression model with d > 8, a root-n consistent estimation of the variance
o? is impossible. Here the use of the structural assumption allows to relax this condition

and to get a root-n accuracy for any d.

Theorem 3.2. Let Assumptions 1 through 5 hold. There exists a constant C,, which

depends on the constants entering in these assumptions only, such that

P (\/ﬁ ‘32 — 02‘ > CUUQ)\) < 2e N/ 4 3kn /n.
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4 Inference in a partially linear model

This section explains how the model (1.1) can be explored using our iterative procedure
and results of Section 3. First we state the important separation result that will be used
in the analysis below.

Let some integer M be fixed. We put the estimated values ©,, in the decreasing order
V(1) = U(g) > V(z)--- and denote by Jw the index set corresponding to the M largest

values ¥y, . Theorem 3.1 implies the following separation result.

Theorem 4.1. Let u, = 6,/p < V2—1 with p = py, and &, from (3.6). Let r be some
number satisfying r > 1. If v}, > (r8,6,)? for all m € J where

L1+ 1T+ (1)1 — ud - 2uy,)
B 1—u? —2u,

T 3

then it holds on the random set A defined in Theorem 8.1 Uy, > r262 for m € J and
Um < 02 for m & J and thus, jng for all M > M .

Remark 4.1. The result of Theorem 4.1 applied with r = 1 yields the sufficient sepa-
ration condition: if v}, > (s16,)?, then, with a high probability, 7,, > 02 for m € J
and 7, < 5,21 for m ¢ J, and therefore jM = J . For application of this result to the
resampling scheme below in this section, we introduced the factor r > 1, which ensures a
qualified separation between linear and nonlinear component.

The value u, = 6, /p is small at least if n is sufficiently large. Hence, s, defined in
Theorem 4.1 is bounded by a constant depending on r only and therefore, the threshold
t* = (rs,0,)%, providing with a high probability a correct separation between linear and
nonlinear components is of order 62 ~ (n~'logn). It can be easily seen that the separation
with the prescribed level of the identification error is impossible if the separation distance

1

square is smaller in order than n~" . Therefore, the procedure provides a near optimal

rate of separation within a log-factor.

4.1 Testing the hypothesis about M

Here we discuss the problem how the estimators v,, of v}, can be used for selecting
the nonlinear component and for testing the hypothesis that the dimensionality M of
the nonlinear component does not exceed the prescribed value M. As special cases,
for M = 0 we get the hypothesis that the original model is linear, and for M = 1,
the hypothesis that the nonlinear component is univariate. Then the effective nonlinear
dimension of the model can be estimated by the minimal M such that the hypothesis
M < M is not rejected.
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The idea of the method is very simple: reject Hpq : M < M if the value vy 4y is
significantly positive. To formalize the procedure, we have to specify, for a given «, the
critical value t, such that the test has the significance level about «. Suppose that the
true model satisfies M < M and that the values v}, for all m € J exceed the value
t* = (rs;6,)? for some r > 1. Then Theorems 3.1 and 4.1 imply that

e under the null hypothesis M < M, the index (M 4+ 1) corresponds with a high

probability to a linear component;

e for m ¢ J . the distributions of the Elm 's and of v, only weakly depend on the

model function f, see Remark 3.2;

e for every m € J, if v}, is separated from zero by distance of order 42, then the

same is true with a high probability for the estimator o, .

These observations suggest to apply the resampling scheme that mimics only the distri-
bution of the values 6(1), ... ,6(M+1) . More precisely, we construct an artificial regression
function fM that has exactly M -dimensional nonlinear component corresponding to
meJ, v and such that all the functionals of type ] constructed for this function fM

coincide with the Z\ilm ’s, that is,

5 Yim(Xim) = I=1,...,L

Ly~ O (X)) Bim it m e T,
n 0T, 0

i=1 otherwise,

The function fu can be selected as a linear combination of the functions zl /I for
l=2,...,L+1:

L+1
@) = > cmzn/l, (4.1)
mGjM 1=2
where the coefficients ¢;,, must fulfill
rnCm = By mE Jn- (4.2)

Here ¢, (resp. ,@m) denotes the vector in IR with the elements ¢, (resp. Blm) and

Y,, is the L x L matrix whose elements are the sums
1 - l !
Unpr ==Y XigrmXim),  LI=1,..., L
i=1

We resample from the model
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where &; are i.i.d. standard normal. The variances 812 either fulfill 812 = &2 for the
2 from Section 2.4, or they simply are defined by 57 = £2. The

variance estimator & :

first proposal suits well the case of a homogeneous noise, and the second one is similar
to the wild bootstrap idea and should be used if the assumption of noise homogeneity is
questionable.

The recommended estimator of the critical value can be computed by using the fol-

lowing simulation procedure:

1. For each i =1,...,n, generate Y; = fM (X;) +0i€;, where g; is sampled randomly

from the standard normal law.

2. Use the data set {}N’Z,XZ 11 =1,...,n} to estimate gradient projections S~ with
estimator (2.3) based on gradient estimator (2.1) with the last step bandwidth b =
b*») . Denote the resulting estimator by Elm . Compute v, = ZzL:1 \Blm\Q for every

m =1,...,d and the statistic TM , that is U141y -

3. Define t, as the (1—a)-quantile of the empirical distribution of Ty that is obtained

by repeating steps 1-2 many times.

Theorem 4.2. Let Assumptions 1-5 hold and ming,c 7 v}, > (rs;6,)> with r = s1. If
M =M, then

P(Hu is rejected) < a+ 3(k, +1)/n.

4.2 Identification of the nonlinear component

Here we describe how the effective nonlinear dimension M and the index set J corre-
sponding to the nonlinear component can be estimated using the above testing procedure.
Let some positive a < 1 be fixed. Starting with M = 0, we consider the model with M -
dimensional nonlinear component due to (4.1) and (4.2) and test the hypothesis M < M
at the level a as described in Section 4.1. Terminate if the hypothesis M < M is not
rejected, otherwise increase M by one. Finally we set M = “the first nonrejected M”

and j: jﬂ

Theorem 4.3. Let Assumptions 1 through 5 hold and ming,¢c 7 v}, > (rs;6,)% with r =
s1. Then

P(T#J) < a+3(ky+M)/n.

Remark 4.2. It can be easily checked that the results of Theorems 4.2 and 4.3 continue

to hold even if the test level a depends on n and goes to zero as n grows. In particular,
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a

one can take @ = n~% with a < 1/2. With such a choice, our method leads to a consistent

estimation of the set J .

4.3 Estimation and inference for the linear component

The method described above allows to classify the regressors into linear and nonlinear.
Moreover, the result of classification is correct with a dominating probability provided the
sample size is large enough. The impact of every linear regression variable in the model
function is characterized by the corresponding slope coefficient 6, from (1.1). Here we
discuss how these slope coefficients can be estimated. We use again the observation that
of |0z, = 0, for every m ¢ J . Therefore, the sum

In = V7 ,u(X0) (43)
=1

is a reasonable estimator of 6,,. Here W(XZ) is the gradient estimator obtained at
the last step of the algorithm. Our next result claims that é\m from (4.3) estimates the
true value 6,, with the root-n accuracy and that it can be very well approximated by a

Gaussian random variable. This result can be viewed as an application of Theorem 3.1
for m¢ J and ¢y, =1.

Theorem 4.4. Let Assumptions 1 through 5 hold. Then for every m ¢ J , there exists a
Gaussian zero mean random variable -y, which is defined as a linear combination of the
errors e; with deterministic coefficients, depending on the “ideal” bandwidth b* = b*(kn) ,

the design Xi,...,X, , the basis functions Yy, (-) and the kernel K only, and such that
E|y,[* <20°CF Ck,

and on the random set A from Theorem 3.1 with P(A) > 1 — 3k, /n, it holds

max é\m — 0, — n_l/gfy,’;1

<0 (620~ 'Liogn)??
max < 1(0n ogn)

where C1 = Cy(d, M, Cg,CVaCKaCK’?z:b) .

Remark 4.3. The above estimator §m can be slightly refined by explicitly using the esti-
mated structural information about the model. Namely, an application of the anisotropic
bandwidth b = diag(/l;l, e ,/l;d) with /l;m from the last iteration for m € J and /b\m =00
for m ¢ J leads under condition of the correct identification to the classical partially

linear estimator for the case with known J, see e.g. Hérdle, Liang and Gao (1999).

Remark 4.4. (Selecting significant regressors) The procedure in Section 4.2 can

be also used for identifying the significant components. All the regressors entering in



18 COMPONENT IDENTIFICATION BY STRUCTURAL ADAPTATION

the nonlinear component are automatically significant. The linear regressors can be fur-
ther analyzed for significance. Theorem 4.4 claims that the normalized estimation error
vn <§m — 9m) is asymptotically normal. Moreover, the asymptotic variance of é\m can
be easily estimated. Indeed, é\m is a linear combination of the observations Y; with the
known coefficients c;, , that is, é\m =Y, ¢cimYm. Then 62 = 02> . c?, is an estimator
of Var(@\m) . The search of significant regressors can be done by the rule ‘§m‘2 > \262, for
some A > 0, see illustration of this procedure in Section 5. We skip the further discussion

for the reasons of space.

5 Simulated and real data results

In this section we illustrate the performance of the proposed method on some simulated ex-
amples and give a real data application. With the simulated examples we aim to illustrate
how the performance of the proposed method depends on the sample size n, dimension
d of the model, the dimensionality of the nonlinear component M and the noise variance
02 . We especially focus on the component classification results: identification of the non-
linear variables and selection of the significant variables. We also demonstrate how the
quality of estimation of the nonlinear components improves during iteration.

In our simulation study we apply the modified procedure (see Remark 2.4) with the

following parameter setting:

1/3 ~1/2

pr=1,  pmin=n" ap=e S =02 a,=aq

The initial bandwidth h; is selected from the condition #{i: M,(X;) > d+1} > n/2,
where Mj(z) stand for the number of the design points X; in the ball of radius h
and center z. This condition ensures that for at least a half of the design points the

local gradient estimator is well defined. This setting leads to the number of iterations

1 min
k(n) ~ Og({;lg/fp )

The procedure utilizes the kernel K(|z|?) = (1 — |z[*)2. For every m < d, the

~ 2logn.

basis system {1, (%m), ..., YLm(zm)} is obtained using polynomials of z,, of degree
from one to L satisfying the conditions > , wiz/)lm(Xi,m)z/)l,m(Xi,m)/Z?:l w; = Oy
and Y i (Xim)w; = 0 where w; = wgk) = Arlrfii(vi(k)) for kth iteration with k£ > 1.
We apply L=6.

In our simulation study we consider the model Y; = 07 X; +9(Xia—ms1,-. ., Xig)+ei
for M between 1 and 3. The vector 6 is taken of the form 6 = (1,2,3,4,0,...,0)" . The
link function ¢g is g(u) = gi1(u) = e“ +e ™ for M =1, g(ui,uz) = g1(u1)g1(u2)
for M = 2 and g(uj,ug,u3) = g1(u1)g1(uz)gi(us) for M = 3. The dimension d
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is taken 4 + M or larger. The errors g are i.i.d. normal with parameters (0,02)
for 0> = 0.1. The design Xi,...,X, is modelled randomly so that each X; fol-
lows Norm(0.2,0.8%) -distribution, restricted to the [—1,1]%cube. The experiments were
done for sample size n = 100,200,400. The results displaying the quality of estima-
tion by the iterative algorithm are summarized in Tables 1 for M = 1 and in Table 2
for M = 2. We display the mean losses |v,,| for one linear regressor and \ﬁﬁf) — vk

for nonlinear regressors where v, = |35 |? and B}, is the vector with the components

B =S W (X ttm (Xin) /0 w0

Table 1: Case M = 1: mean loss |ﬁm — v;‘n‘ for the nonlinear regressor for the first, second, fourth,
and final iteration and final losses |v1] for the first linear regressor. Results are obtained from

N = 250 simulations. The interquartile range of the losses is given in parentheses.

d n nonlinear regressor linear regressor x1
1st 4th final final
5 100 | 0-9580 0.6656  0.3069 0.0139
(0.1865)  (0.1546)  (0.2400) (0.0113)
5 900 | 09395 0.7711  0.2424 0.0072
(0.1378)  (0.1300)  (0.2024) (0.0057)
6 200 | 09432 0.7207  0.1641 0.0018
(0.1231)  (0.1067)  (0.1766) (0.0016)
g 900 | 09362 0.6703  0.2232 0.0006
(0.1253)  (0.1003)  (0.1797) (0.0005)
10 100 | 09574 0.6743  0.5822 0.0005
(0.2064)  (0.1526)  (0.2756) (0.0004)
10 9200 | 09406  0.6777  0.3690 0.0002
(0.1522) (0.1202) (0.2213) (0.0002)
10 400 | 09348 0.7217  0.2316 0.0001
(0.0925)  (0.0838)  (0.1399) (0.0001)

It is interesting to observe that the quality of estimating the linear regressor x; im-

proves with growing dimension d.

In Table 2 we demonstrate in addition how the error of estimation depends on the

2. One can see that the estimation risk for the nonlinear components

noise variance o
only slightly increases with o while it is essentially proportional to ¢ for the linear one.
An explanation might be that the estimation error for the nonlinear components is mostly
due to the nonparametric bias which disappears in the linear components during iteration

process by structural adaptation.
The next figure illustrates the result of Theorem 4.1 about separation between linear
and nonlinear component. Let Lx(¢) denote the empirical distribution of the random

variable ¢ based on its sample of size N . A good separation between linear and nonlinear
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Table 2: Case M = 2: mean loss ‘ﬁm — v;‘n| for the nonlinear regressors for the first, second,

fourth, and final iteration and final losses |v;| for the first linear regressor. Results are obtained

from N = 250 simulations. The interquartile range of the losses is given in parentheses.

d n o’ 1st nonlinear regressor 2nd nonlinear regressor  linear regressor
1st 4th final 1st 4th final final
6 200 0.1 | 46117 3.7349 0.4763 4.6337 3.7576  0.4473 0.0081
‘ (0.6646)  (0.5028)  (0.5211)  (0.6257)  (0.5402)  (0.4785) (0.0063)
8§ 9200 0.1 | 46397 3.4423 0.4244 4.5942 3.4085 0.4058 0.0025
' (0.6683)  (0.5431)  (0.4108)  (0.6646)  (0.4621)  (0.4607) (0.0019)
10 100 o071 | 46338 3.1450 0.7573 4.6862 3.1642 0.7089 0.0043
‘ (0.8840)  (0.7307)  (0.5302)  (1.0155)  (0.7312)  (0.4938) (0.0032)
10 200 o071 | 45537 3.2806 0.5812  4.5904  3.2917  0.5489 0.0011
' (0.7458)  (0.5065)  (0.3404)  (0.7649)  (0.5875)  (0.4014) (0.0010)
10 400 0.1 | 45198 3.5276  0.4457 4.5584  3.5594  0.4319 0.0004
‘ (0.4850)  (0.3566)  (0.3121)  (0.4168)  (0.3562)  (0.3023) (0.0003)
10 400 02 | 45198 3.5284 0.4403 4.5584 3.5602  0.4325 0.0007
’ (0.4850)  (0.3483)  (0.3949)  (0.4167)  (0.3642)  (0.3948) (0.0006)
10 400 0.4 | 45198 3.5297 0.4637 4.5584 3.5615  0.4666 0.0017
' (0.4850)  (0.3316)  (0.4891)  (0.4167)  (0.3727)  (0.5029) (0.0013)

components means that the functions Ly (v,,) for every m € J and 1 — Ly (¥y,) for

m ¢ J have non-overlapping support.
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Figure 1: Case M =2, d=6: Ln(U5), Ln(Vs) (dotted lines) and 1 — Ln(max,y=1,.. 4 Un)
(solid line) for n = 100,200 from 250 realizations.

We observe a very good separability for n = 100 and a possibility of perfect separation
for n = 200.

Next we illustrate how the quality of estimation of the linear component improves with
the sample size. Figure 2 shows box-plots of the estimation errors n!/2||§ — 6*|| of the

linear component after the final iteration for d = 6, M = 2 and different sample sizes n .
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Figure 2: Case M = 2 : box-plots of the estimation errors n1/2||§— 0*|| of the linear
component after the final iteration for d = 6. Results are obtained from N = 250

simulations.

Table 3 illustrates the performance of the test of the hypothesis M < M and the
quality of the classification rule from Sections 4.2 and 4.3 for different M, d and n. In
this table we present the fraction of wrong classifications for every of nonlinear regressors
and for the whole model.

One can observe once again that the results (the fraction of wrong classifications)
improve as the dimensionality d grows. This can be explained by the fact that the
distribution of the test statistic used for classification will be more and more degenerated
with growing dimension d.

Another observation is that for M = 3, the procedure requires some minimal sample
size to start selecting all the three nonlinear components. For n = 100 we obtain for
almost all the cases M < M. For n =200 and d =7 we correctly classify in only about
30% cases but for d = 10 the fraction of wrong classifying is already under control.

Figure 3 illustrates the quality of estimation of the noise variance o by &2 for one
example with d = 6, M = 2 and different sample size n. The results are in agreement

with the root-n consistency of the estimator 2.

5.1 A real data example

This section presents an application of the procedure to a real data set. We consider the
example from Sperlich (1998) and Héardle, Spokoiny and Sperlich (2001) where a subsample

of the Socio-Economic Panel of Germany from 1992 was studied. The target of analysis is
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Table 3: Fraction of wrong classifications for every nonlinear regressor and for the whole model.

Results are obtained from N = 250 simulations and 500 bootstrap replications.

M d n 1st n.c. 2nd n.c. 3rd n.c. {f #J}
100 0.152 - - 0.18
1 5 200 - -
400 0 - -
1 10 200 0 - - 0.
400 0 - - 0.00
1 20 400 0 - - 0.
100 0.268 0.308 - 0.38
2 6 200 0.056 0.048 - 0.1
400 0.004 0.004 - 0.024
2 10 200 0 0 - 0.008
400 0 0 - 0.0
2 20 400 0 0 - 0
100 0.976 0.96 0.964 0.992
3 7 200 0.62 0.656 0.656 0.748
400 0.076 0.06 0.072 0.1
3 10 200 0.004 0 0.004 0.004
400 0 0 0 0

n”z(uz—cr*z) for d=6 and M=2

n=100 n=200 n=400

Figure 3: Box-plots of the estimation errors n'/?(|G% —o*?|| for d = 6, M = 2 and different sample

size n.

the weekly number of working hours, Y;, of 607 women with job and living together with

a partner. The following explanatory variables were used: the age of woman, between 25
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and 60, X1; her earning per hour, Xy; the prestige index of her kind of profession (Treiman
prestige index), X3; the monthly rent or redemption for their apartment or house, Xj;
the monthly net income of their partner, X5; the number of years of education, Xg; the
unemployment rate at the particular tract they live in, X7; and the number of children
younger than 16 years, Xg.

The estimates v, obtained by our estimation procedure are given in Table 4. We also

got the estimate 2 = 0.736 for error variance o?.

Table 4: Estimates vy, of v},.

U1 02 U3 U4 Us Ve U Us

0.05259  0.00729 0.00441 0.00012 0.00060 0.00142 0.00015 0.00875

Next we identify the linear component starting with M = 0 as described in Section 4.2.
Table 5 gives the p-values PV, for each test Hq, which are obtained during the bootstrap

procedure, defined as:

B
1
PVpyy=—=> 1._ ~
M~ B bz—:l T30y >Pmsn)}

The first three hypotheses Hy, H; and Hy are rejected at 10% level, and there is clearly
no rejection of Hs. So, for the considered model, the nonlinear dimension is estimated
as three and the nonlinear variables are X, X5, and X3. Our linear/nonlinear variable
classification results coincide with those from Hérdle, Sperlich and Spokoiny (2001), but
with quite different p-values: in our results X; (age) is the most nonlinear and X5 (earning
per hour) is the least nonlinear variable among the three, while in Hérdle, Sperlich and
Spokoiny (2001) the situation is reversed. Note that while their identification was made
under the assumption of additive model structure, our results are obtained for a general

situation when such additive structure is not required.

Table 5: p-values for consecutive tests

M | Upm1) | p-values
1 0.003996
V2 0.086913
U3 0.01998
Vs 0.47153

W N = O
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6 Conclusion and outlook

The paper has introduced a new method of exploring a partially linear model based on
the idea of structural adaptation. The method applies under mild assumptions on the
underlying regression function and the regression design. The procedure is fully adaptive
and does not require any prior information. The results claim that the proposed procedure
with a high probability correctly identifies the nonlinear component and estimates the lin-
ear component with the optimal rate n='/2 provided that the dimension of the nonlinear
component is not larger than 3. The simulation results demonstrate an excellent perfor-
mance of the procedure for all considered situations. An important feature of the method
is that it is very stable with respect to high dimensionality and for a non-regular design.
Non-Gaussian or heterogeneous noise. The method and results can be easily ex-
tended to models with homogeneous non-Gaussian noise satisfying some exponential mo-
ment conditions. Another interesting issue is applicability of the method for a general
heterogeneous or dependent noise, in particular, to time series models and financial data.
We leave these extensions for further research.

The case with M > 4. The method continues to apply even if M > 4 and itera-
tions would lead to improvement of the bias. However, the bound for the bias of order

2/3 can be achieved only for M < 3. For larger M , the bias will be of order

(n~!logn)
n~1/2 of bigger and the procedure does not provide root-n consistent estimation of the
functionals 3, . So, if the hypothesis M < 3 is rejected, then we recommend to apply
for the choice of M some model selection criteria like cross-validation or Mallows C), .
Data-driven choice of parameter L. The method depends upon the parameter L
describing the number of basis functions for every regressor. In the univariate case, ei-
ther an n-dependent or data-driven choice of such a parameter is usually applied, see
Hart (1997) or Spokoiny (2001) and references therein. An adaptive choice of L in the
considered problem is an interesting question for further research.

Semiparametrically efficient estimation of the linear component. Due to the
result of Theorem 4.4, the proposed estimator of the parameter 0 is root-n consistent and
asymptotically normal. However, it is unlikely that this or the refined estimator of 8 from
Section 4.3 is semiparametrically efficient in the sense of minimization of the asymptotic
variance, see e.g. Bickel et al. (1998). A modification of the method leading to the
semiparametrically efficient estimation of linear part will be discussed elsewhere.
Estimation of the nonlinear component. After the nonlinear component is identified,
it can be estimated using the standard methods of nonparametric statistics. Actually, the
algorithm gives an estimator of the whole function f and of the linear component, so

that the nonlinear component can be extracted as well. This estimator corresponds to the



SAMAROV, A. , SPOKOINY, V. AND VIAL, C. 25

local linear smoothing of the nonparametric M -dimensional function with the bandwidth
about hp =~ pmin , and may not achieve the best rate. To improve the quality of estimation,
one can apply the classical cross-validation technique for selecting the bandwidth in the
direction of the nonparametric component.

Discrete and categorical data. Note that the assumption of linearity is meaningful for
discrete or categorical variables as well. It means that the influence of the corresponding
regressor is independent of the other variables and therefore, at least in the binary case,
can be modelled linearly. Moreover, the procedure easily applies for the situation with

discrete data without any change.

7 Appendix

Here we collect the proofs of the main results. For the ease of exposition, we consider only
the main procedure (without weights) and only the case of 7 = 0. The general case can

be considered in the same way.

7.1 One-step improvement

Suppose that we are given some fixed numbers h and p (which mean the current values

hy and py, ) and a vector v = (v1,...,v4)" € IR? which can be viewed as an approximation
of v* = (v],... ,v,’;)T obtained at the previous step of the algorithm. Set also
bp = h(1+p72vm)71/2, m=1,....,d, (7.1)

~

and define b = diag(by,...,bq). Define also f(X;), W(XZ) and By, by (2.1) and (2.3)
forall I = 1,...,L and m = 1,...,d with the just defined bandwidth b. We aim
to evaluate the estimation errors Elm — B}, - To describe the results, we introduce the

shrinking factors P, = (1 + /)*21);“,1)71/2 and define
Unm = P21+ p20m) = (1+ p7205) 7 (1 + p~2vp)

and similarly Uy, = P7,.(1 4 p~?v},) = 1. Clearly the vector U = (Uy,..., Uy)' € RY
uniquely describes v, so that we consider later in this section v = v(U) and similarly
Bim = B\lm(U) for the functionals By, in (2.3). Let a = (vq,...,q)" be a vector in IR?

with entries a,, € (0,1). Define
Up ={U = (U1,...,U))" € R : |Up — 1| <y, m=1,...,d}.

We also define o = max,,—1,.. 4m .
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Proposition 7.1. Let Assumptions 1 through 5 hold. Let B, (U) = E,@lm(U) Then

d L o o2 2
sup Y D | Bon{Bim (U) = B} < | F= 2 p%h
Ula =1 =1 -«

and, for every | =1,...,L and m=1,...,d, there exists a zero mean Gaussian random
variable &, defined as a linear combination of the errors e; with deterministic coeffi-
cients, which depend on v*, the design {X;}, the basis functions 1, (), and the kernel
K only, and such that

max E&, <20°CLCk (7.2)
and
2 glm O-Ecan a| 2
P( Py B () = Bu (U)} — : ) <2
max sup | F, {Bim (U) = Bim (U) } nml” " hvn ) S
where the mazimum is taken over m =1,....d andl =1,...,L, ¥ = max |y, (X;)| and

Can:

)

(ﬁ Cy Cgr  2/2C2 Cor Ok

(1 — a*)3/2 (1= o) ) (2 + v/2log(ndL) + dlog(4n)) ]

Let f3;, denote, as in Proposition 3.1, an L-vector with the components 3; and ,@m =

Bm(U) its estimator with the components B, (U).
Corollary 7.1. Let z, = (1 + 2log(nd) + 2loglog(nd))'/? and

5= Cy C"l//Z ho? 4 \/2LUCVCII(/2zn N VLo Cyplal (73)
1—a* P h/n hn ‘

Then under the conditions of Proposition 7.1 it holds

) o <mr:nlz}.).(.’d L?élbl{)a ‘Pp’m (Em(U) — ﬁ,’fn)‘ > 5) < 3/n.

The corollary helps bound the estimation error Pg’m (U (U) = vf) .

Proposition 7.2. Under the conditions of Proposition 7.1,

P ( sup ‘Pp%m (U (U) —v;"n)‘ < 02 4 207, for allm = 1,...,d> >1-3/n
UEUa

where Ty, = pyJ/ul, (p? +v5,) ™2 < min {p, /o, } .
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7.2 Proof of Proposition 7.1

Denote by P, the diagonal d x d-matrix with the diagonal entries P, ,,, that is, P, =
diag{P,1,...,P,4}. Similarly, for U = (Uy,....Uy)" € R?, define Dy = diag{Uy,...,Uqs}.
Next, for every 4,7 < n, define Zij =hp! prl (X] — Xz) , KZJ(U) = K(Zl—; DUZij)

o - () wo

7=1
1

5) = o) Z(Z,
j

)Y Ki(0).
j=1

It is easy to check that for the (m + 1)th component s; ,,,(U) of 5;(U) it holds 5;,,(U) =
P,m Wm(Xz) and hence,

p,m/Blm Z S, m ¢lm )

The model equation (1.1) implies 5;(U) = s;(U) + ¢;(U) with

5:(U) hlvz-(U)1i<14)f<xj)Kij(U),
GO) = W) Z(
This yields, for each coordinate m =1,...,d,
Pounl EBin(0) = B} = Z nU) = Py ¥ (X001 (Xim),
Ppm{Bun(U) = BBy} = Zczm )i (Xim)-

Clearly (m(U) :=n"" 3" Cim(U)im(Xim) is for every U a linear combination of the

Gaussian errors ¢; and therefore it is also a Gaussian vector in IR?.

Define &; is the projection from IR**' onto IR? dropping the zero coordinate: Eq(zo,...,zq)" =

(z1,...,24)" . It is easy to see that the following three statements imply the claimed result:
o o2
sup |E48i(U) — P,VF(X;)| < =2 V* hp?, i=1,...,n, (7.4)
Ul 11—«
0Conla
P (i sup G (0) —Gin(0)] > Z522120) <o, (75)
2020‘2/01(
h?n

max B[ (U7) ? < (7.6)
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where the maximum is taken over [ = 1,...,L and m = 1,...,d. Indeed, the last two
statements of the proposition directly follows from (7.5) and (7.6) for &, = hv/n (m(U™) .
Next, (7.4) implies

n d . Cl2 2
—1 . N2 g~V 2
n YN sim(U) = Bpn Vim (X)) < (ﬁ hP) :

i=1 m=1
Since the vectors 1, € IR" are orthonormal for different [, it follows for the Bessel

inequality for every m < d

n L n 9
%ZISi,m(U) = PomVim(X)? > ) %Z(si,m(U) —Pp,mem(Xi)>q/)lm(Xi7m)
=1 =1 1" =1
= Z o (EPun(V) ~ B)
and thus,
d L R . 9 C 01/2 2
33 rn (Bt 1) < ()

To check the statements (7.4)—(7.6), the following lemma will be useful.

Lemma 7.1. Let |Up—1| < ap, <1 forall m=1,...,d. Then for all i,7, the inequality
|Z Dy Zij| <1 implies |Zy|* <1/(1 —a*) and 14 |Z;5* <2/(1 —a*).

Proof. Note that the inequalities Z;; Dy Zij <1 and |Up, — 1| < i, imply

735 DuZij — \Zz'jIQ‘ =|Z;(Dy — 1) Zij| < o*| Z?

and thus, |Z;;> < (1 —a*)” IZZ'—]F' Dy Zij . =

Now we check (7.4). Since

h_lf(Xl) - ‘ -1 " 1 1 T lf(X) )
<Pf’vf(Xi)> - 21<sz> <sz> <P V(X )) ki (U)

it follows
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where in view of (3.1)
rij = g(R*X]"Q) — g(R*Xm) — (R*ng — R*XZ"Q)T Vg(’R*Xi,Q)

with R* being the diagonal M x M matrix with diagonal entries /v, , m € J. It is

clear that
‘\/@Xj,m = \/@Xi,m‘2 — W20 (14 p200) " 22 < D072
Therefore,
R*Xj2 — R*Xiol* < h? p?|Zii|.
This yields by Lemma 7.1 and Assumption 4 for every pair (i,7) with Zl-—]r- DyZ;; <1:
gl < Cy b2 p2(1 = a*)7"

Using the Cauchy-Schwarz inequality and Assumptions 5 we bound

_ (1
‘gd SZ(U) - Pp Vf(Xl)‘ < h ! sup )\TVZ(U) ! Z( >Tij KZ](U)
AERIFT :|)|=1 iJ

< (20w () )()) Koo s

1/2

C, h p? e
< AViU) Ay K
SToa P Vi(U) 2 i(U)

<1 —a) " Cyhp? | NUWVO) | < (1 =) Cy Y B
and (7.4) follows.

By definition every (;,,(U) is a linear combination of the ¢;’s, that is, there are

coefficients ¢; j,,(U) such that
CGm(U) = Zci,zm(U)é‘z‘-
i=1

The coefficients ¢; ;, (U) depend on the design Xi,..., X, , the basis function ;,, , the

kernel K and the vector U . Moreover, these coefficients satisfy the following conditions:

Lemma 7.2, For every l=1,...,L and m=1,...,d

= 202 Ck
: *Y |2 Vv .
(1) Zzzl ‘Ciylm(U )‘ S h2n ’
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207 Ck
" Z )2 < .
(i) ;élga P iim(U (1 — a*)h*n
dci lm(U) Ka
(iii) U?élbll)a piii < o where

Ra = \/5(1 — a*)’3/ZCVCK/@ + 23/2(1 — Oé*)75/20‘2/CKCK/¥.
Proof. Define for 4,7 =1,...,n

Ni(U) =Y Ki(U),  vy(U)=V(U)"! <Z1>
ij

It follows from Lemma 7.1 and Assumption 5 that U € U, implies for every 4,5 with
ZZ.; Dy Z;i; <1
INi(U) 03 (U)] < Cv(1+1Zi5|)'? < OvvV2(1 — a*) 12, (7.7)

Next, for a fixed m < d, denote by v;;nm(U) the (m+ 1)th component of v;;(U). Then

Gm(©) = %szmm,m)zvm,mw) Kif(U)e;

= Z(nhzwlm i,m vzym(U) ij ) :ch,lm

]: ]:1
Clearly E|(,(U)|? = o2 Z;’Zl cilm(U). The Cauchy-Schwarz inequality, (7.7) and As-

sumption 5 imply

n 2
Y nU) = 2h2 Z (Z Yim (Xi,m)Vijm(U) Kij(U))
=1 i

o [y
< mz(zmm) ;:éﬁf) (S5

< 12_Ca*07$h2i;¢lm i((UU))

_ (20 Cﬁhgidnm :%.

As a particular case, with Dy = Dy~ = I and o* = 0, this yields

n
202 Ck
2 % Vv
Zlcj’lm(U )< nh?
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and the first two assertions of the lemma follows.
Now we bound the derivative of each coefficient c;; ,,(U) with respect to U . For every

pair 4,7 such that ZTDUZ” <1, Lemma 7.1 implies

d
\@KW) — K2} Do 2)| 12, < (1= 0 |K/(2] Dy 7).
Let o1 and 0y be unit vectors in R4t . Then for every m =1,...,d
8Um o] V;(U)™! au, —Vi(U) | Vi(U)™ 02

n T

1 1 _

= —o] Vi(U)™" Z<Z> <Z> K'(Z5 Dy Zij) Z} | Vi(U) 00,
j=1 ) L)

Lemma 7.1 and Assumption § yield

801TV ( ) 09
U,

2C%
T (=) Ni(U)?

n
3 ‘K (Z} Dy Zij)| 22 .
j=1

Since v;jm(U) = (14 \Zij\Q)l/Q +Vi(U)"'oy where e,, denotes the mth coordinate

vector in R and oy = (1 + |Zij|2)*1/2 (Zl

) , it follows for every pair 7,7 such that
ij

ZEDyZij < 1:

o\ 1/2
dvl]m(U) o\ 1/2 86TV( ) 09
———= < (1 AT —m iz T2
dU = ( + | zy|) mZ::1 U
21 1/2
23/20‘2/ d n /
- (1—C¥*)3/2‘N'(U)‘2 Z Z|K DUZZ])|Zzgm’
13 m'=1 .
23/202
= (1 3/2‘N Z Z|K DUZZ])| 2]m
m'=1j=1
23/202 Cx , 23/20‘2/01(,
(1= o) 3/2\N Z|K iy Du Zij)|1Zij* < o) 2N T
Since
dC"l dK d’U ,
Tl - Z% 0 (i) T+ Z S Ky (U (Xim).

the use of (7.7) and Assumption 5 yields
dcj,lm(U) < \/ﬁcValm - ‘K’(Zz—g DU Zl])‘ 23/ C CK”QZ)lm Z zy
au ~ nh(l —a*)3/? P N;(U) h(1 — a*)5/2

V20 Crrtpry | 27203 CrorCcthiy,

nh(1 — a*)3/2 nh(l — a*)5/2

and assertion (iii) of the lemma follows. O
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Since E|(m(U)1> = 0327, ¢, (U), condition (7.6) follows from Lemma 7.2, (i).
The following lemma is a minor modification of Lemma 8 of HJS.

Lemma 7.3. Let r be a positive number and let I' be a finite set. Let functions a;(u)

of u € R obey the conditions

sup sup
Yl ju—u*|<r

< K, i=1,...,n. (7.8)

d
du iy (u)

If the ¢; ’s are independent N(0,0?) -distributed random variables, then

n

Z{am(“) — ain(u')}e;

=1

S

1
P |sup sup — >okrt ] <
Yl ju—u*|<r \/ﬁ

where t =2+ /2log(n|I'|) + dlog(4n) and |I'| denotes the number of elements in I.

The claim (7.5) follows from Lemma 7.2, (ii) and (iii), by the preceding lemma applied
with a;(u) = /nc;im(U), & = h’i?ﬁ’ r={md):m=1,...,d, 1l =1,...,L}, and

r = |a|. This completes the proof of the proposition.

Remark 7.1. In the proof of Proposition 7.1 we defined the random variables &;,, as
&im = &m(U™) . One can easily check that the result of the proposition continues to hold
with &, replaced by &,,(U) for any U € Uy and with the right hand-side of (7.2)
and with the constant C,, multiplied by (1 —«a*)~!.

Theorem 4.2.

This fact is used in the proof

7.3 Proof of Corollary 7.1

By Proposition 7.1

3 Cy C\I//2 2
sup  max Py (EBu(0) = B)| < S0 0%
and on a random set of probability as least 1 —2/n
~ ~ €m VLo Cpon |l
P ( U)—E U)— < 21X m=1,...d,
where &, € R", m = 1,...,d, are Gaussian random vectors with components &m from

Proposition 7.1.
By Lemma 7 in HJS,

P (|én| > 20 V/E[Enl?) < 1/(nd).

In view of (7.2) E|¢,|? < 2Lo?C%Ck , and the corollary follows.
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7.4 Proof of Proposition 7.2
The definition of 7, implies
P20t = (14 p~28) "o, = 72, < min {p?, 0}, } (7.9)

Lemma 7.4. If Pp,m\B\m — Bi] <0, then P2, [0 — vh| < 6% + 26 7.

Proof. Define the vector #,, € IRY (resp. wu’ ) whose elements are Pp,mé}m (resp.

m
PymBiy). Clearly P2, 0,(U) = |un(U)P* and by (7.9) P, o5 = |up,|> < 7. It is
easy to check that
|| — [t ] < [t — g * + 2(8m — ugy| - "], (7.10)
and lemma follows. 0

The proposition follows from Corollary 7.1 and Lemma, 7.4.

7.5 Proof of Proposition 3.1

The proof of the first claim is a simplified version of the proof of Proposition 7.1: just set
there P, ,,, = 1, drop supy;, and repeat the proofs of (7.4) and (7.6). The factor vZ‘l) in §;
comes from R* in (3.1). Next, applying Lemma 7 of HJS one gets the claim (3.2). The
claim (3.4) follows from (3.2) and Lemma 7.4 applied with p = 1.

7.6 Proof of Theorem 3.1

Let the numbers h; and p; be as in the algorithm description, & = 1,...,k,. Define
successively the values d; and d-vectors aj with components oy, ,, as follows: a; =0,
01 as in (3.3), and for k=2,...,k,

5 c, cy/? b+ V2LoCy Cy? 2 VIo9pCa, n loul
(1—ap) “"F hi/n hi/n
Qkm = /)1;2 (26k717'k,m+6]%_1) , m=1,....d (7.11)

with o = maxy;,—1,...m Qkm, Thm = PEVU}, (,0% + v,’fn)_l/2 < min{pg, o5}, and with 1
defined in Proposition 7.1 and z, in Corollary 7.1.
We will need the following two lemmas proofs of which require only minor modifications

in the proofs of Lemmas 4 and 5 from HJS.

Lemma 7.5. For n sufficiently large, the oy, ’s satisfy Ireréaicx ay, < 1/4. In addition, for
the last iteration ky , it holds -

\/Ea.@cakn )1 ‘akn |

ni=—2V _h p? + < C (c’>n"'Llogn 213
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and di, < 0pn, where &, is defined in (3.6) and C means a generic constant depending on

d, M and the constants from Assumptions 1 through 5 only.

Proof. Note that oy, < 6,%_1//)% for all m ¢ J and oy, < 6,%_1/,02 + 20;_1/py for

m € J . The first assertion of the lemma easily follows from the fact that hppr decreases
during iteration, cf. Lemma 4 of HJS.

Since the dimensionality of the nonlinear component is bounded by M , it follows
2
| < (d = M)&x_y/pi + M (551 /pi + 2001/ px)"-

Further, the inequality |ay, 1| < C; with some constant C; depending on d and M
only implies in view of hy,_1 > 1/ap and 1 < pg, 1 (02n_1Llogn)_1/3 <1/a, that

0,1 < C (0*n"'Llogn) 1/2, lag, | < C (o°n"'Llogn) e,

Substituting this bound in the formula for p, yieldsby hg, > 1 and py, = (UQn_lLlog n)1/3
that pu, <C (02n*1Llog n)2/3 and therefore

Ok, < V2Cy C’;(/Z (a2n71Lz,21)1/2 +C (a2n71L10g n) 28
O

Lemma 7.6. Let n be sufficiently large. There exist random sets Ay O ... O Ag,—1
such that P (Ag) > 1— 3% and it holds on Ay

max [Py, (B = B) <0k k=1 k- L

m=1,..

Proof. We proceed by induction in k. First by (3.2) there exists a random set A; with
P(A;) >1—1/n such that max,,—;, 4 |§1 — f*| <61 on A;. This obviously implies

max | Py, (B — )] < 6.

m=1,...,d

Suppose now that there is Ai_q such that P(Ag_1) > 1— w and it holds on Aj_1:

mr:nla.).(. Ppk,m ( r(r]f_l) - /B:n)‘ < Op—1-
Then on A;_; by Lemma 7.4 ng,mm,(fi‘” -] < 5,%71 +20k—1Tk,m simultaneously for all
m=1,...,d, and denoting U*) a d-vector with components Ur(,f) = ng’m(1+p,;2i)\§,]f_1)) ,

one gets UK) ¢ Uay -
By Corollary 7.1 there exists another random set Aj with P(Ag) > 1—3/n such that
on Ay it holds for every U € Uy,
max |Pﬂk,m(ﬁm(U) - ﬁ:n” < Ok,

m=1,...,
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so that, with Ax = Ag_1 N Ag, we obtain P(Ag) > 1 — 3k/n and it holds on A
max [Py (B~ B1)| < b

and, since for every m P, | m < Py, m , the assertion follows. O

Let now Ay, 1 be the random set with P (A, 1) >1— %;1;3 shown in Lemma 7.6
so that on this set
max [Py, (B4 = B < 6k, 1,
m=1,...,d

and for the corresponding d-vector U#) with components Uk = p2 (1 +p72A(k 1))

Php sM
it holds U*) € Uy, .

Let then &, be the Gaussian L-vector with the components &;,,, from Proposition 7.1

’

applied with h = hy, and p = pg, . Due to this proposition, there exists a random set
Ay, with P(Ag,) >1—2/n, so that on Ay, it holds for all U € Uy, :

max ‘ Pkyp s (IBm( ) /6:17,)_ \/—‘—uﬂ’

m=1,...,d
where p, is defined in Lemma 7.5. This yields for the set Ay, = Ag, _1 N A, that

P(A;,)>1— %;1;1 and the final estimator Em = B\,(,]f”) satisfies on Ay, :

mr:nla.).(. d Py, (B — B") = nil/ZS:n < Hn
where & = h"1¢, . In view of h=hy, >1
E|¢,)? = h?El&m|* < 20°CHCk

and the first two claims in (3.5) follow from Lemma 7.5. The last claim in (3.5) follow by
applying Lemma 7 of HJS and Lemma 7.4. The first two inequalities in (3.7) follow from
(3.5) by setting P,,, =1 and 8}, = 0. The last one is proved similarly to Lemma 7.4.

7.7 Proof of Theorem 3.2
The proof can be done similarly to Spokoiny (2002) using the bound for the bias of
estimation from the proof of Proposition 7.1. We omit the details to save the space.

7.8 Proof of Theorem 4.1

In view of Theorem 3.1 on the set A, it holds ©,, < 62 for all m ¢ J. Therefore, it
suffices to show that on A, it holds ©,, > r262 for every m € J. Next, by Theorem 3.1
again, for m € J

B > vjy — Py (02 + 20, Pyuy,) = vy — 02(1 + 07 2) — 26, (1 + v} p™2) 20,
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Define s = v /62 and u, = d,/p. Then, on A,
5720 > 8% — 1 — s%u2 — 25(1 + s%u2)Y2 > $2(1 —u2 — 2u,) — 1 — 2s.

It is straightforward to check that the right hand-side of this inequality as a function of s

is greater than r2 for all s > s,. Therefore, on A, 6,20, > r? for m € J as required.

7.9 Proof of Theorem 4.2

To simplify the exposition, we suppose that the resampling scheme of Section 4.1 utilizes

2 instead of the estimated variance &2

the true variance o . This assumption is easily
justified by the result of Theorem 3.2 claiming root-n consistent estimation of o2 by 52.

The idea of the proof is to show that the variable ¥,y and the similarly defined
variable v(;711) for the resampling model have approximately the same distribution. Let
A be the random set from Theorem 3.1 with P(A) > 1 —3k,/n. It is obviously sufficient

to show that
PJu#J|4A) < a+3/n.

We therefore suppose that the event A holds true. Then, under the assumptions of the
theorem, the nonlinear component is correctly identified and all the bounds of Theorem 3.1
hold. Moreover, for every m ¢ J, the value n@,, can be approximated by |¢}]?, where
the distribution of the vector ¢, depend on the ‘ideal’ bandwidth b* = b**n) | the kernel
K | basis functions ¢, (+), and the design Xi,..., X, only.

Next we consider the model we resample from. This artificial model has the same
structure (i.e. the same linear and nonlinear components) and differs from the original
one only by the parameters of the linear component (they are equal to zero in the re-
sampling model) and by the nonlinear link function. More specifically, the estimators v,
based on the original model are the “true” values for the resampling model and the last
step bandwidth b = b*7) is the “ideal” bandwidth for the resampling model. Since the
resampling model fulfills all the conditions that we impose on the original model, Theo-
rem 3.1 (or Proposition 7.1 with a =0 and b = plkn) ) continues to apply. This yields,
in particular, that on a set Ay, with P(Ay;) > 1 —3/n, the nonlinear component of the
resampling model will be correctly identified. Moreover, due to Remark 7.1, every vari-
able nv,, with m ¢ J can be approximated by the squared norm of a Gaussian random
vector with the same distribution as £, . And thus, it is true for nv(r4q). This yields, in
particular, that the (1 — «)-quantile evaluated from the distribution of nﬁ( M+1) applies
up to the approximation error to nﬁ( M+1) - 1t follows from Theorem 3.1 that the error of

approximation of n@,, by |£;|? can be bounded by n(w?2 +w,d,) < C'n~"/%(logn)/6 for
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some constant C'. Therefore, at least for sufficiently large n, the approximation error is

small and the assertion of the theorem follows.

7.10 Proof of Theorem 4.3

Let A be the random set described in Theorem 3.1 with P(A) > 1 — 3k, /n. In view of
Theorem 4.1, it is sufficient to prove that P(M\ #M|A) <a+3M/n.

On A it holds 9y, < 2 for all m ¢ J and ¥, > (ré,)? forall m € J and r = s7.
Thus Tpg) > (s10,)* for all M < M and a1y < 65 . For every M < M, we resample
from the model having precisely M nonlinear regressors with v, being the ‘true’ measure
of nonlinearity for every m € 7 M -

Application of Propositions 7.1 and 7.2 with a = 0 to this artificial models and again
Theorem 4.1 with 7 = 1 ensures that on a set Ay with P(Ay) > 1—3/n, every oy,
for m ¢ Iy fulfills v, < 5,%. Hence, 5(M+1) < 5% on EM and the same holds for the
1 — a quantile of ¥(xq4q) provided that « > 3/n. Therefore, for every M < M, the
hypothesis M < M will be rejected on the intersection A N EM . This yields

P(M<M|A)<3(M-1)/n. (7.12)
Next the definition of M implies the inclusion
(M > M} C {ar41) > ta(M)},

where t,(M) is evaluated in the resampling procedure with M = M. Applying now
Theorem 4.2 we get, using also (7.12), the desired bound for P(ﬂ # M), and the theorem

follows.
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