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omponent identifi
ation by stru
tural adaptation1 Introdu
tionWe 
onsider the model y = f(x) + "; f(x) = �>x1 +G(x2); (1.1)where x> = (x>1 ;x>2 ) , dim(x2) =M , dim(x1) = d�M , and M � d . Fun
tion G(�) ,ve
tor of 
oeÆ
ients � , and the distribution of the noise " are unknown. And mostimportantly, we do not know with respe
t to whi
h d1 = d �M variables x1 the modelis linear.The model (1.1) naturally generalizes the linear model and are 
alled a partially linearmodel. Su
h models 
an be used in analysis of high dimensional data when the assumptionof linearity is too restri
tive. They 
an also be used as a natural alternative to a linearmodel in the problem of testing the linearity assumption. A general 
ase with a highdimensional nonlinear 
omponent makes the analysis 
ompli
ated be
ause of the \
urse ofdimensionality" problem. In this paper we 
onsider the situation in whi
h the nonlinear
omponent is low dimensional, that is, M is relatively small.Hrista
he, Juditsky and Spokoiny (2001) and Hrista
he, Juditsky, Polzehl and Spokoiny(2001) (referred to as HJS and HJPS, respe
tively, in the rest of the paper) proposed anew method of exploring a high-dimensional regression model with the help of a generalstru
tural adaptation approa
h. The aim of the present arti
le is to apply this approa
h tothe estimation and inferen
e in the partially linear model (1.1). The analysis in
ludes, inparti
ular, estimation of the degree of nonlinearity M , identifying with respe
t to whi
hd�M variables x1 the model is linear or equivalently whi
h M variables enter in f ina nonlinear fashion, estimation of the ve
tor � and of the nonlinear link fun
tion G .It is important to note that the approa
h proposed here provides also a new method ofsele
ting signi�
ant variables in nonparametri
 regression in 
ase when the dimensionalityof the nonlinear 
omponent is relatively small. More spe
i�
ally, after sele
ting M (sig-ni�
ant) nonlinear variables, one 
an further sele
t variables among the linear ones usingstandard methods of linear regression analysis or by testing signi�
an
e of linear variableslopes as suggested in Se
tion 4.3 below.As a by-produ
t of our analysis, we develop a test of the hypothesis of linearity againsta partially linear alternative, and, more generally, a test of the hypothesis that the dimen-sionality of the nonlinear 
omponent does not ex
eed the pres
ribed value M .Following the work of Engle, Granger, Ri
e and Weiss (1986), mu
h attention has beendire
ted to estimating model (1.1). See, for example, He
kman (1986), Ri
e (1986), Chen(1988), Robinson (1988), Spe
kman (1988), Gao (1995), S
hi
k (1996a,b), Bhatta
haryaand Zhao (1997), Mammen and Van der Geer (1997), Hamilton and Truong (1997), Eu-



samarov, a. , spokoiny, v. and vial, 
. 3bank, Kambour, Kim, Klipple, Reese and S
himek (1998), S
himek (2000), Golubev andH�ardle (2000, 2001). Further referen
es and appli
ations of partially linear models 
ouldbe found in the re
ent book by H�ardle, Liang, and Gao (2000). This literature addressedthe problem of estimation of the parametri
 and nonparametri
 
omponents of the model(1.1) under the assumption that the "nonlinear" variables x2 are spe
i�ed and, in fa
t,most papers assume that M = 1. Various estimators have been proposed whi
h a
hieveroot-n rate or are semiparametri
ally eÆ
ient for estimating the parametri
 
omponent �as well as those whi
h a
hieve the usual nonparametri
 rates for estimating G(x2).To our knowledge, the only paper whi
h addressed the problem of sele
ting whi
hvariables x2 enter nonlinearly in the model (1.1) was Chen and Chen (1991). That pa-per proposed a model-sele
tion-type rule and showed that the probability of the 
orre
tidenti�
ation by this method goes to one as the sample size goes to in�nity. H�ardle andKorostelev (1996) showed for the similar problem of sele
ting the signi�
ant variables inan additive model that the error of 
lassi�
ation 
an be made exponentially small. In thispaper we 
onsider another setup whi
h seems to be more appealing for pra
ti
al appli
a-tions. Namely, we develop a nonlinear 
omponent identi�
ation method whi
h guaranteesa pres
ribed level of model misspe
i�
ation uniformly over the 
lass of models whose non-linear 
omponent is separated away from the linear one by the squared distan
e of ordern�1 log n or larger. Our results are essentially nonasymptoti
 and apply for a small ormoderate sample size.H�ardle, Spokoiny and Sperli
h (2001) 
onsidered a similar problem of identifying thelinear 
omponent for an additive model, using a wavelet (Haar) expansion of every additive
omponent. The advantage of the stru
ture adaptive pro
edure proposed here is that theadditive stru
ture is not required and is not used in the method.There also exists a large literature on testing a parametri
, in parti
ular linear, re-gression model against nonparametri
 alternative. See, for example, Eubank and Spiegel-man (1990), Eubank and Hart (1992), Ledwina (1994), H�ardle and Mammen (1993), Fan(1996), Hart (1997), Stute (1997), Horowitz and Spokoiny (2001) and referen
es therein.Our testing results are stated in the spirit of Spokoiny (2001) fo
using on the minimalseparation distan
e between the null and the alternative providing test 
onsisten
y.The paper is organized as follows. Se
tion 2 
ontains the des
ription of the stru
tureadaptive estimation algorithm. A

ura
y of estimation by the proposed method is de-s
ribed in Se
tion 3. Further problems of identi�
ation of the nonlinear 
omponent andof estimation of slope 
oeÆ
ients of the linear 
omponent are dis
ussed in Se
tion 4. Se
-tion 5 presents results of a simulation study and an appli
ation to real data. Con
lusionand some extensions of the method are presented in Se
tion 6. The proofs are 
olle
ted
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omponent identifi
ation by stru
tural adaptationin the Appendix.2 Stru
ture adaptive pro
edureThis se
tion explains the adaptive estimation pro
edure starting with a short heuristi
dis
ussion.2.1 PreliminariesThe idea of stru
tural adaptation from HJPS 
an be summarized as follows.(i) knowing the stru
tural information helps better estimate the model fun
tion;(ii) a good pilot estimator of the model fun
tion helps re
over some stru
tural informationabout the model.These two observations lead to the following iterative pro
edure: we start with a purelynonparametri
 estimator of the model fun
tion; then the above two steps (estimation ofthe model and estimation of the stru
ture) are iterated several times in
reasing the amountof stru
tural information and improving the quality of model estimation during iteration.HJPS 
onsidered the problem of estimation for a multi-index model in whi
h theregression fun
tion is of the form f(x) = g(�>1 x; : : : �>Mx) , where �1; : : : ; �M are unknownindex ve
tors in IRd . The partially linear model (1.1) 
an be regarded as a spe
ial 
aseof the multi-index model with M + 1 indi
es. Indeed, f(x) depends on x only through�>x1 and the 
oordinate ve
tors 
orresponding to the nonlinear 
omponent. So, one 
anformally apply the pro
edure from HJPS in the 
onsidered 
ase. However, the spe
ialstru
ture of the model (1.1) allows to 
onsiderably simplify the pro
edure and furtheranalysis that justi�es a separate treatment of the partially linear models.Here the stru
ture of the model (1.1) is des
ribed by the set J of indi
es 
orrespondingto the nonlinear 
omponent x2 . An alternative des
ription 
an be done by using theaverage gradient idea. Namely, if the fun
tion f(x) is linear with respe
t to the m th
oordinate fun
tion xm , then the partial derivative �f=�xm is a 
onstant, and therefore,the varian
e Vm of the m th partial derivative 
an be used to measure the degree ofnonlinearity of the m th 
oordinate. Suppose that some information about the set J or,equivalently, about the values Vm is available. Now we explain how this information 
anbe used for improving the quality of estimation of the model fun
tion f . A lo
al linearestimator of the fun
tion f and its gradient rf at a point Xi is given by bf(Xi)
rf(Xi)! = 8<: nXj=1� 1Xij�� 1Xij�>K� jXij j2b2 �9=;�1 nXj=1 Yj� 1Xij�K� jXij j2b2 �
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. 5where Xij = Xj�Xi , b is a bandwidth and K(�) is a univariate kernel K on the positivesemiaxis. supported on [0; 1℄ . The bandwidth b should be sele
ted in a way that the ballwith the radius b and the 
enter the point of estimation Xi 
ontains at least d+1 designpoints whi
h for large value of d leads to a the bandwidth b of order one and to a hugeestimation bias. This phenomenon is 
alled the \
urse of dimensionality". Observe nowthat the fun
tion f has anisotropi
 smoothness properties: smoothness of G in dire
tionof the nonlinear 
omponent, and in�nite smoothness (
orresponding to a linear fun
tion)in other dire
tions. This suggests to apply an anisotropi
 bandwidth for estimating themodel fun
tion and its gradient. So, the `ideal' estimator whi
h utilizes the knowledge ofthe set J 
an be de�ned by using the di�erent bandwidths for di�erent 
omponents ofthe ve
tor x . Let b = diag(b1; : : : ; bd) be a diagonal matrix with the diagonal entriesb1; : : : ; bd . De�ne the lo
al linear estimator with the anisotropi
 bandwidth b by bf(Xi)
rf(Xi)! =8<: nXj=1� 1Xij�� 1Xij�>Kd(Xij ; b)9=;�1 nXj=1 Yj� 1Xij�Kd(Xij ; b) ; (2.1)where Kd(x; b) = K(jb�1xj2) . Knowing that the value Vm is signi�
antly positive (thatis, m is presumably in J ) leads to the 
hoi
e of smaller bandwidth values bm for su
hm and possibly larger bandwidths for the other regressors. This would help to avoid the\
urse of dimensionality" problem if the dimension M of the nonlinear 
omponent is nottoo large, 
f. Carroll, Fan, Gijbels and Wand (1997) or HJPS.Next we explain how the stru
tural information 
an be extra
ted from the pilot esti-mator (2.1) of the model fun
tion. De�ne for every 
oordinate xm of x 2 IRd a set offun
tions  1m; : : : ;  Lm satisfying the 
onditions:nXi=1  lm(Xi;m) = 0; n�1 nXi=1  lm(Xi;m) l0m(Xi;m) = Æll0 :In other words, f lm; l = 1; : : : ; Lg is a orthonormal set of fun
tions with respe
t to thedesign of m th 
oordinate. Ea
h of  lm is also orthogonal to the 
onstant fun
tion. Thelatter property implies that if f is linear with respe
t to xm , then��lm = n�1 nXi=1 rfm(Xi) lm(Xi;m) � 0 (2.2)for every l = 1; : : : ; L , where rfm(x) = �f=�xm(x) . Thus, the sumv�m = LXl=1(��lm)2
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tural adaptation
an be used as the measure of nonlinearity of f with respe
t to xm . Having estimatedthe gradient of f for all Xi , we 
an also estimate the 
oeÆ
ients �lm withb�lm = n�1 nXi=1 
rfm(Xi) lm(Xi;m) (2.3)and use the sum bvm = b�21m+ : : :+ b�2Lm as the estimated degree of nonlinearity of f withrespe
t to the m th regression variable.Next, the quantities bvm 
an be used to de�ne new anisotropi
 bandwidth b takingsmaller bandwidths for the regressors with large bvm .Remark 2.1. Similarly to HJPS, we use here the estimation method based on the Fourierexpansion of the gradient rf(x) . Alternatively, one 
an estimate Vm dire
tly using theaverage of jrfm(Xi)j2 . However, a detailed 
al
ulation (not given in the paper) showsthat the pro
edure based on su
h a dire
t estimation of the quadrati
 fun
tionals Vm leadsto worse estimation results. At the same time, the loss of information from repla
ing Vmwith v�m as a measure of nonlinearity is not signi�
ant if L is 
hosen suÆ
iently large,see more on the 
hoi
e of L in Se
tion 6.2.2 Iterative pro
edureWe now present the des
ription of the method. The pro
edure involves input parametersh1; ah , �1; �min; a� and � . The parameter of ellipti
ity � de
reases geometri
ally from�1 to �min by the fa
tor a� < 1 while the bandwidth h in
reases geometri
ally from h1by the fa
tor ah > 1 during iterations. The value � 
an be interpreted as the \memoryparameter" of the pro
edure. The 
hoi
e of these parameters, as well as of the set of basisfun
tions f lmg will be dis
ussed in Se
tion 2.3. The algorithm reads as follows:1. Sele
t h1 . Set bv(0)1 = : : : = bv(0)d = 0 , and k = 1 . Compute for i = 1; : : : ; nbV (0)i = nXj=1� 1Xij�� 1Xij�>; bS(0)i = nXj=1� 1Xij�Yj ;where Xij = Xj �Xi .2. Compute b(k)m = hk�1 + ��2k bv(k�1)m ��1=2; m = 1; : : : ; d: (2.4)De�ne b(k) = diag(b(k)1 ; : : : ; b(k)d ) .
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. 73. For every Xi 
omputeV (k)i = �V (k�1)i + (1� �) nXj=1� 1Xij�� 1Xij�>Kd�Xij ; b(k)�; (2.5)S(k)i = �S(k�1)i + (1� �) nXj=1� 1Xij�YjKd�Xij ; b(k)�; (2.6)and 0� bf (k)(Xi)
rf (k)(Xi)1A = �V (k)i ��1 S(k)i : (2.7)Compute b"(k)i = Yi � bf (k)(Xi) .4. Compute for m = 1; : : : ; d and l = 1; : : : ; Lb�(k)lm = n�1 nXi=1 
rf (k)m (Xi) lm(Xi;m); bv(k)m = LXl=1 ���b�(k)lm ���2 : (2.8)If bv(k)m > 1 , then set bv(k)m = 1 .5. In
rease k by 1. Set �k+1 = a��k , hk+1 = ahhk . If �k+1 � �min , then set k = k + 1and 
ontinue with Step 2; otherwise terminate.Denote by kn the number of iterations and by b�lm = b�(kn)lm (resp. bvm = bv(kn)m ) thelast step estimators of ��m (resp. v�m ). Similarly, bf(Xi) denotes the last step estimatorof f(Xi) and b"i = b"(kn)i = Yi � bf(Xi) .Remark 2.2. At every step k of the algorithm the bandwidth b(k)m for the m th regressoris sele
ted between hk and hk�k depending on the value bv(k�1)m . For the linear 
omponent,the values bv(k�1)m should be small leading to a bandwidth about hk , while for the nonlinearregressors with a large value v�m , the estimator bv(k�1)m will be also large leading to abandwidth about hk�k . During iteration the parameter h grows to h�nal � 1 whilehk�k de
reases to �min leading to the adaptive anisotropi
 bandwidth at the last step.Remark 2.3. We 
ut bv(k)m at one at step 4 in order to avoid too strong shrinkage indire
tion of m th regressor whi
h may o

ur for too large values of bv(k)m .2.3 Choi
e of parametersIt is obvious that the quality of estimation by the proposed method strongly dependson the rule for 
hanging the parameters h and � , and, in parti
ular, on their values atthe initial and �nal iteration. Some related dis
ussion about this 
hoi
e 
an be found inHJPS. The general idea is to ensure that the parameter h grows to one and h� de
reases
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omponent identifi
ation by stru
tural adaptationunder the 
onstraint that at every iteration k there exist enough design points in every oralmost every lo
al ellipsoidal neighborhoods E(k)(Xi) = �x : ���b(k)��1(x�Xi)��2 � 1	 .Assuming that every b(k)m is 
lose to the `ideal bandwidth' b�(k)m = hk(1 + ��2k v�m)�1=2we observe, that neighborhood E(k)(Xi) is stret
hed at ea
h iteration step by fa
tor ahin all dire
tions and is shrunk by a fa
tor about a� in dire
tions of the M -dimensionalnonlinear 
omponent J where ah and a� are parameters of the pro
edure. Therefore,the Lebesgue measure of every su
h neighborhood is 
hanged ea
h time by a fa
tor aboutadhaM� . This leads to the 
onstraint adhaM� � 1 , 
f. Assumption 3 in Se
tion 3 below. Underthe assumption of a random design with a positive density, this would result in an in
reaseof the mean number of design points inside ea
h E(k)(Xi) . Our theoreti
al results willbe stated for the 
hoi
e h1 � n�1=maxf4;dg , hmax � 1 , �1 = 1 , �min � �n�1 log n�1=3 ,see Se
tion 3 for more details. Similarly to HJPS, su
h a 
hoi
e under the 
onstraintadhaM� > 1 is possible only for M � 3 .We re
ommend to de�ne for every m = 1; : : : ; d the set of fun
tions  lm , l = 1; : : : ; Lby orthogonalizing the set of polynomials xm; x2m; : : : xLm with respe
t to the design of them th regressor under the 
onstraint Pni=1  lm(Xi;m) = 0 . A model or variable dependent
hoi
e of the basis f lmg is possible as well. The \memory parameter" � used in (2.5)and (2.6) 
an be taken between 0:1 and 0:5 . The number L 
an be taken between 5 and10, see Se
tion 6 for more dis
ussion.Remark 2.4. Similarly to HJS and HJPS we apply in our numeri
al study a slightlymodi�ed pro
edure. The only di�eren
e is in the de�nition of the estimated ve
tors b�lm .Namely we de�ne b�(k)lm =  nXi=1 w(k)i !�1 nXi=1 w(k)i 
rf (k)m (Xi) lm(Xi;m);where w(k)i is square root of the smallest eigenvalue of the matrix V (k)i , that is, w(k)i =�1=2min(V (k)i ) . In addition, the basis fun
tions  lm should be modi�ed as ea
h step to satisfythe 
ondition Pni=1w(k)i  lm(Xi) = 0 .2.4 Estimation of the noise varian
eThe varian
e �2 of the noise " does not enter in the des
ription of the method. However, itwill be used for de�ning the stopping rule of the algorithm and the resampling pro
edure inSe
tion 4. Here we brie
y dis
uss how this varian
e 
an be estimated under the assumptionof the noise homogeneity at every step of the algorithm.A natural varian
e estimator 
an be de�ned on the base of residuals squared after ea
hthe step k : ��e�(k)��2 = n�1Pni=1 ��b"(k)i ��2 . This simple 
rude estimator 
an be re�ned, see
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. 9e.g. Gasser, Sroka and Jennen-Steinmetz (1986) or Spokoiny (2002) and referen
e therein.Namely, the residuals b"(k)i 
an obviously be represented in the form b"(k)i = Pnj=1 
(k)ij Yjwhere 
(k)ij are known 
oeÆ
ients. These 
oeÆ
ients are random and dependent on theYi 's through the random bandwidths bb(k)m . However, our theoreti
al results indi
ate thatone 
an ignore this dependen
e and pro
eed as if the 
oeÆ
ients 
(k)ij were deterministi
and 
orrespond to the \ideal" bandwidths b�(k)m .Next, if the fun
tion f is suÆ
iently smooth, then the distribution of the residuals b"ionly weakly depends on this fun
tion f and 
an be e�e
tively evaluated for f � 0 . Inthe last 
ase, E��b"(k)i ��2 = �2Pnj=1 ��
(k)ij ��2 that leads to the estimator��b�(k)��2 = 1n nXi=10� nXj=1 ��
(k)ij ��21A�1 ��b"(k)i ��2: (2.9)The properties of this estimator are brie
y dis
ussed in Se
tion 3.4 below.3 A

ura
y of estimationIn this se
tion we present the results about the a

ura
y of estimation of the fun
tionals��lm and v�m by the proposed iterative pro
edure.3.1 AssumptionsAs in HJPS, it is useful to pro
eed with the renormalized link fun
tion. In what followswe 
onsider the model f(x) = x>1 � + g(R�x2) (3.1)where R� is the diagonal M �M matrix with diagonal entries pv�m , m 2 J and g isa nonlinear link fun
tion.Our main results will be stated under the following assumptions.Assumption 1. (Kernel) The kernel K(�) is 
ontinuously di�erentiable de
reasingfun
tion on IR+ with K(0) = 1 and K(x) = 0 for all jxj � 1 .Assumption 2. (Errors) The random variables "i in (1.1) are independent and normallydistributed with zero mean and varian
e �2 .Assumption 3. (Range of parameters hk , �k ) The parameters of the pro
edure ful�ll�1 = 1 , �min = (�2n�1L log n)1=3 , h1 = C0n� 14_d with a 
onstant C0 � 1 , hmax � 1 andadhaM� � 1 .Assumption 4. (Link fun
tion) The fun
tion g from (3.1) is twi
e di�erentiable witha bounded se
ond derivative, so that, for some 
onstant Cg and for all u; v 2 IRMjg(v) � g(u) � (v � u)rg(u)j � Cg ju� vj2;
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omponent identifi
ation by stru
tural adaptationOur last assumption 
on
erns the design properties. In what follows we assume thatthe design is deterministi
. That is, X1; : : : ;Xn are non-random points in IRd . Note,however, that the 
ase of a random design 
an be 
onsidered as well, supposing X1; : : : ;Xnindependent and identi
ally distributed random points in IRd with a design density p(x) .Then all the results should be understood 
onditionally on the design.In order for the pro
edure to work, we have to suppose that the design points (Xi)are \well di�used" and, as a 
onsequen
e, at k th iteration of the algorithm, all lo-
al gradient estimators from (2.7) 
orresponding to the anisotropi
 bandwidth b(k) =diag(b(k)1 ; : : : ; b(k)d ) from (2.4) are well de�ned. The latter is equivalent to the 
ondi-tion that all the matri
es V (k)i from (2.5) are non-singular. We also de�ne for the k thiteration the \ideal anisotropi
 bandwidth" b�(k) having the diagonal entries b�(k)m =�1 + ��2k v�m��1=2 hk . The 
loseness of b(k) to the \ideal bandwidth" b�(k) 
an be 
hara
-terized by the values U (k)m = �b(k)m =b�(k)m �2 = �1 + ��2k v�m�=�1 + ��2k bv(k�1)m � , m = 1; : : : ; d .If bv(k�1)m = v�m , then U (k)m = 1 . The 
ondition we need means that at the step k ofthe algorithm, for every anisotropi
 bandwidth b = diag(b1; : : : ; bd) 
lose to b�(k) in theabove sense, the design is regular within the ellipti
 neighborhood with the 
enter at ea
hpoint Xi and with the prin
ipal semiaxis bm , m = 1; : : : ; d .De�ne Z(k)ij = �b�(k)��1(Xj �Xi) for i; j = 1; : : : ; n . These ve
tors des
ribe lo
ationsof the design points in the 
oordinate system shifted by Xi and res
aled by b�(k) . For ave
tor U = (U1; : : : ; Ud)> 2 IRd with Um � 0 , de�ne DU = diag(U1; : : : ; Ud) . Then, forb = D�1=2U b�(k) , it holds Kd(Xij ; b) = K��Z(k)ij �>DUZ(k)ij � . SetN (k)i (U) = nXj=1K��Z(k)ij �>DUZ(k)ij �; i = 1; : : : ; n;V(k)i (U) = nXj=1� 1Z(k)ij �� 1Z(k)ij �>K��Z(k)ij �>DUZ(k)ij �; i = 1; : : : ; n:In what follows kAk stands for the matrix norm asso
iated with the Eu
lidean ve
tornorm: kAk = sup� jA�j=j�j .Assumption 5. (Design) There exist 
onstants CV , CK , CK0 and some � 2 (0; 1=2) ,su
h that for all ve
tors U 2 IRd satisfying jUm � 1j � � , m = 1; : : : ; d , and for k � knthe inverse matri
es V(k)i (U)�1 are well de�ned withN (k)i (U)


V(k)i (U)�1


 � CV ; i = 1; : : : ; n;
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. 11Moreover, for i; j = 1; : : : ; n ,nXi=1 1N (k)i (U) K��Z(k)ij �>DUZ(k)ij � � CK ;nXi=1 1N (k)i (U) ���K 0��Z(k)ij �>DUZ(k)ij ���� � CK0 ;nXj=1 1N (k)i (U) ���K 0��Z(k)ij �>DUZ(k)ij ���� � CK0 :where K 0 means the derivative of K.Remark 3.1. As already mentioned in HJS and HJPS, in the 
ase of random design witha 
ontinuous positive density one 
an �x some 
onstants CV , CK and CK0 (whi
h dependon the dimension d and the design distribution) su
h that the bounds in Assumption 5hold with probability whi
h 
onverges to 1 exponentially fast as n grows to in�nity.3.2 The �rst step estimatorOur �rst result des
ribes the quality of the estimators b�(1)lm obtained at the �rst step of thealgorithm. These estimators 
orrespond to usual nonparametri
 lo
al linear estimation ofthe fun
tion f and its gradient. We also state the result about the a

ura
y of estimationof the values v�m at the �rst step.Let ��m denote an L-ve
tor with the 
omponents ��lm, l = 1; : : : ; L .Proposition 3.1. Let Assumptions 1 through 5 hold. For the �rst-iteration estimatorb�(1)m of the ve
tor ��m, m = 1; : : : ; d, it holds:b�(1)m � ��m = smh1 + �mh1pn;where deterministi
 L-ve
tors sm satisfy jsmj � CgC1=2V v�(1) with v�(1) = maxm=1;:::;d v�m,and the �m 's are mean zero Gaussian random L-ve
tors with 
omponents �lm su
h thatEj�lmj2 � 2�2C2V CK , l = 1; : : : ; L . Also, it holdsP � maxm=1;:::;d ���b�(1)m � ��m��� > Æ1� � 1n ; (3.2)where Æ1 = Cg C1=2V v�(1) h1 + p2L�CV C1=2K znh1pn ; (3.3)and zn = (1 + 2 log(nd) + 2 log log(nd))1=2 .Moreover, for the �rst-iteration estimator bv(1)m , m = 1; : : : ; d , it holds:P ����bv(1)m � v�m��� � Æ21 + 2Æ1�m;1; 8m = 1; : : : ; d� � 1� 1n ; (3.4)where �m;1 = pv�m(1 + v�m)�1=2 � minf1;pv�mg.
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omponent identifi
ation by stru
tural adaptation3.3 The quality of the �nal estimatorsNow we present the result whi
h indi
ates how the a

ura
y of estimation 
an be improvedby the iterative algorithm. As in HJS and HJPS, the quality of the �nal estimators dependson the `dire
tion'. This quality is of order n�1=2 for the linear 
omponent and is worsefor the nonlinear 
omponent. This fa
t has a very simple explanation: estimation of anonlinear 
omponent is a harder task than that of a linear one; hen
e, the worse a

ura
y.To express this fa
t, we introdu
e the s
aling fa
tor P�;m = (1 + ��2v�m)�1=2 , where �is a running parameter of the pro
edure. Note that P�;m = 1 for all linear regressorswhi
h have v�m = 0 . If v�m is a positive 
onstant, then P�;m � � . We will see that theestimation error b�lm � ��lm , after being multiplied by P�;m , 
an be bounded uniformlyover l;m at every step of the algorithm. This implies, in parti
ular, that the quality ofestimation of the nonlinear 
omponent is about P�1� � ��1 times worse than the qualityfor the linear one.In the next theorem and in Theorem 4.1 below, � (resp. h ) denotes �kn (resp. hkn )at the last iteration. Re
all that h; � satisfy 
onditions h � 1 and � = ��2n�1L log n�1=3 .Theorem 3.1. Let Assumptions 1 through 5 hold. Then there exist a random set Awith P (A) � 1 � 3kn=n and, for every m = 1; : : : ; d , a Gaussian zero mean randomve
tor ��m = (��1m; : : : ; ��Lm)> 2 IRL de�ned as a linear 
ombination of the errors "i withdeterministi
 
oeÆ
ients, whi
h depend on the \ideal" bandwidth b� = b�(kn) , the designX1; : : : ;Xn , basis fun
tions  lm(�), and the kernel K only, and su
h thatEj��lmj2 � 2�2C2V CK l = 1; : : : ; L; m = 1; : : : ; d;and on A it holdsmaxm=1;:::;d ���P�;m(b�m � ��m)� n�1=2��m��� � C ��2n�1L log n�2=3 ;maxm=1;:::;d ���P�;m(b�m � ��m)��� � Æn ;maxm=1;:::;d jP 2�;m(bvm � v�m)j � Æ2n + 2Æn�m ; (3.5)where C = C(d;M;Cg; CV ; CK ; CK0 ;  ) ,  = maxi;l;m j lm(Xi)j ,Æn =q2C2V CK�2n�1Lz2n + C ��2n�1L logn�2=3 (3.6)and �m = �pv�m ��2 + v�m��1=2 � minf�;pv�mg . This implies that on A for every m =2J , with !n = C ��2n�1L log n�2=3 :jb�m � n�1=2��mj � !n; jb�mj � Æn ; ���jb�mj2 � n�1j��mj2��� � !2n + 2!nÆn : (3.7)
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. 13Remark 3.2. The meaning of the random set A appearing in Theorem 3.1 
an beunderstood as follows. The result of every iteration of the algorithm is random. Withsome probability it may happen that the estimation result at some step of the pro
eduredoes not follow the model stru
ture. For instan
e, with some probability, bvm 
an belarge even if v�m = 0 . Our results indi
ate that the overall probability of su
h events israther small and their 
omplement is pre
isely the set A (of a dominating probability) onwhi
h the pro
edure `works', that is, the iterative pro
edure leads to improvement of thequality of estimation at every iteration. The other results of Theorem 3.1 
laim that onthe set A , the adaptive estimators b�lm behave essentially as the `ideal' estimators b��lm
orresponding to the `ideal' bandwidth b� . Sin
e our further analysis is based on the �nalstep estimators b�lm , all our results that follow will also be stated 
onditionally on thisset A .Remark 3.3. (Origin of the 
onstraint M � 3 ) It follows from the proof of Theo-rem 3.1 that the bias of the `ideal' estimators b��lm based on the lo
al linear smoothing withthe `ideal' bandwidth b� = b�(kn) is of the order (n�1 logn)�2=3 only if the dimensionalityM of the nonlinear 
omponent does not ex
eed 3 . For M � 4 , the model dependent biasof estimation is of order n�1=2 or larger while the sto
hasti
 
omponent (whi
h is modelfree) is of order n�1=2 . The same applies for the adaptive estimators b�lm . Therefore, theleading term in the estimation loss is model free only for M � 3 , and the estimators b�lmdo not a
hieve asymptoti
 normality at root-n rate for M � 4 .3.4 Varian
e estimationThe algorithm delivers an estimator b�2 , see (2.9), of the error varian
e �2 . This esti-mator also utilizes the estimated stru
tural information and improves upon the purelynonparametri
 varian
e estimators. Spokoiny (2002) has shown that in a general highdimensional regression model with d > 8 , a root-n 
onsistent estimation of the varian
e�2 is impossible. Here the use of the stru
tural assumption allows to relax this 
onditionand to get a root-n a

ura
y for any d .Theorem 3.2. Let Assumptions 1 through 5 hold. There exists a 
onstant C� , whi
hdepends on the 
onstants entering in these assumptions only, su
h thatP �pn ��b�2 � �2�� > C��2�� � 2e��2=4 + 3kn=n:
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omponent identifi
ation by stru
tural adaptation4 Inferen
e in a partially linear modelThis se
tion explains how the model (1.1) 
an be explored using our iterative pro
edureand results of Se
tion 3. First we state the important separation result that will be usedin the analysis below.Let some integer M be �xed. We put the estimated values bvm in the de
reasing orderbv(1) � bv(2) � bv(3) : : : and denote by bJM the index set 
orresponding to the M largestvalues bvm . Theorem 3.1 implies the following separation result.Theorem 4.1. Let un = Æn=� < p2�1 with � = �kn and Æn from (3.6). Let r be somenumber satisfying r � 1 . If v�m > (rsrÆn)2 for all m 2 J wheresr = 1 +p1 + (r2 + 1)(1� u2n � 2un)1� u2n � 2un ;then it holds on the random set A de�ned in Theorem 3.1 bvm > r2Æ2n for m 2 J andbvm � Æ2n for m =2 J and thus, J � bJM for all M�M .Remark 4.1. The result of Theorem 4.1 applied with r = 1 yields the suÆ
ient sepa-ration 
ondition: if v�m > (s1Æn)2 , then, with a high probability, bvm > Æ2n for m 2 Jand bvm � Æ2n for m =2 J , and therefore bJM = J . For appli
ation of this result to theresampling s
heme below in this se
tion, we introdu
ed the fa
tor r � 1 , whi
h ensures aquali�ed separation between linear and nonlinear 
omponent.The value un = Æn=� is small at least if n is suÆ
iently large. Hen
e, sr de�ned inTheorem 4.1 is bounded by a 
onstant depending on r only and therefore, the thresholdt� = (rsrÆn)2 , providing with a high probability a 
orre
t separation between linear andnonlinear 
omponents is of order Æ2n � (n�1 logn) . It 
an be easily seen that the separationwith the pres
ribed level of the identi�
ation error is impossible if the separation distan
esquare is smaller in order than n�1 . Therefore, the pro
edure provides a near optimalrate of separation within a log-fa
tor.4.1 Testing the hypothesis about MHere we dis
uss the problem how the estimators bvm of v�m 
an be used for sele
tingthe nonlinear 
omponent and for testing the hypothesis that the dimensionality M ofthe nonlinear 
omponent does not ex
eed the pres
ribed value M . As spe
ial 
ases,for M = 0 we get the hypothesis that the original model is linear, and for M = 1 ,the hypothesis that the nonlinear 
omponent is univariate. Then the e�e
tive nonlineardimension of the model 
an be estimated by the minimal M su
h that the hypothesisM �M is not reje
ted.
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. 15The idea of the method is very simple: reje
t HM : M � M if the value bv(M+1) issigni�
antly positive. To formalize the pro
edure, we have to spe
ify, for a given � , the
riti
al value t� su
h that the test has the signi�
an
e level about �. Suppose that thetrue model satis�es M � M and that the values v�m for all m 2 J ex
eed the valuet� = (rsrÆn)2 for some r � 1 . Then Theorems 3.1 and 4.1 imply that� under the null hypothesis M � M , the index (M + 1) 
orresponds with a highprobability to a linear 
omponent;� for m =2 J , the distributions of the b�lm 's and of bvm only weakly depend on themodel fun
tion f , see Remark 3.2;� for every m 2 J , if v�m is separated from zero by distan
e of order Æ2n , then thesame is true with a high probability for the estimator bvm .These observations suggest to apply the resampling s
heme that mimi
s only the distri-bution of the values bv(1); : : : ; bv(M+1) . More pre
isely, we 
onstru
t an arti�
ial regressionfun
tion efM that has exa
tly M -dimensional nonlinear 
omponent 
orresponding tom 2 bJM and su
h that all the fun
tionals of type ��lm 
onstru
ted for this fun
tion efM
oin
ide with the b�lm 's, that is,1n nXi=1 � efM(Xi)�xm  lm(Xi;m) = 8<:b�lm if m 2 bJM;0 otherwise, l = 1; : : : ; L:The fun
tion efM 
an be sele
ted as a linear 
ombination of the fun
tions xlm=l forl = 2; : : : ; L+ 1 : efM(x) = Xm2 bJM L+1Xl=2 
lmxlm=l; (4.1)where the 
oeÆ
ients 
lm must ful�ll	m
m = b�m ; m 2 bJM : (4.2)Here 
m (resp. b�m ) denotes the ve
tor in IRL with the elements 
lm (resp. b�lm ) and	m is the L� L matrix whose elements are the sums	m;l0l = 1n nXi=1 X li;m l0m(Xi;m); l; l0 = 1; : : : ; L:We resample from the modeleYi = efM(Xi) + b�ie"i;
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omponent identifi
ation by stru
tural adaptationwhere e"i are i.i.d. standard normal. The varian
es b�2i either ful�ll b�2i = b�2 for thevarian
e estimator b�2 from Se
tion 2.4, or they simply are de�ned by b�2i = b"2i . The�rst proposal suits well the 
ase of a homogeneous noise, and the se
ond one is similarto the wild bootstrap idea and should be used if the assumption of noise homogeneity isquestionable.The re
ommended estimator of the 
riti
al value 
an be 
omputed by using the fol-lowing simulation pro
edure:1. For ea
h i = 1; : : : ; n , generate eYi = efM(Xi) + b�ie"i , where e"i is sampled randomlyfrom the standard normal law.2. Use the data set feYi;Xi : i = 1; : : : ; ng to estimate gradient proje
tions ��lm withestimator (2.3) based on gradient estimator (2.1) with the last step bandwidth b =b(kn) . Denote the resulting estimator by e�lm . Compute evm =PLl=1 je�lmj2 for everym = 1; : : : ; d and the statisti
 eTM , that is ev(M+1) .3. De�ne t� as the (1��) -quantile of the empiri
al distribution of eTM that is obtainedby repeating steps 1-2 many times.Theorem 4.2. Let Assumptions 1{5 hold and minm2J v�m � (rsrÆn)2 with r = s1 . IfM =M , then P (HM is reje
ted) � �+ 3(kn + 1)=n:4.2 Identi�
ation of the nonlinear 
omponentHere we des
ribe how the e�e
tive nonlinear dimension M and the index set J 
orre-sponding to the nonlinear 
omponent 
an be estimated using the above testing pro
edure.Let some positive � < 1 be �xed. Starting with M = 0 , we 
onsider the model with M -dimensional nonlinear 
omponent due to (4.1) and (4.2) and test the hypothesis M �Mat the level � as des
ribed in Se
tion 4.1. Terminate if the hypothesis M � M is notreje
ted, otherwise in
rease M by one. Finally we set 
M = \the �rst nonreje
ted M "and bJ = bJ
M .Theorem 4.3. Let Assumptions 1 through 5 hold and minm2J v�m � (rsrÆn)2 with r =s1 . Then P ( bJ 6= J ) � �+ 3(kn +M)=n:Remark 4.2. It 
an be easily 
he
ked that the results of Theorems 4.2 and 4.3 
ontinueto hold even if the test level � depends on n and goes to zero as n grows. In parti
ular,
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. 17one 
an take � = n�a with a < 1=2 . With su
h a 
hoi
e, our method leads to a 
onsistentestimation of the set J .4.3 Estimation and inferen
e for the linear 
omponentThe method des
ribed above allows to 
lassify the regressors into linear and nonlinear.Moreover, the result of 
lassi�
ation is 
orre
t with a dominating probability provided thesample size is large enough. The impa
t of every linear regression variable in the modelfun
tion is 
hara
terized by the 
orresponding slope 
oeÆ
ient �m from (1.1). Here wedis
uss how these slope 
oeÆ
ients 
an be estimated. We use again the observation that�f=�xm � �m for every m =2 J . Therefore, the sumb�m = 1n nXi=1 
rfm(Xi) (4.3)is a reasonable estimator of �m . Here 
rf(Xi) is the gradient estimator obtained atthe last step of the algorithm. Our next result 
laims that b�m from (4.3) estimates thetrue value �m with the root-n a

ura
y and that it 
an be very well approximated by aGaussian random variable. This result 
an be viewed as an appli
ation of Theorem 3.1for m =2 J and  lm � 1 .Theorem 4.4. Let Assumptions 1 through 5 hold. Then for every m =2 J , there exists aGaussian zero mean random variable 
�m whi
h is de�ned as a linear 
ombination of theerrors "i with deterministi
 
oeÆ
ients, depending on the \ideal" bandwidth b� = b�(kn) ,the design X1; : : : ;Xn , the basis fun
tions  lm(�) and the kernel K only, and su
h thatEj
�mj2 � 2�2C2V CK ;and on the random set A from Theorem 3.1 with P (A) � 1� 3kn=n , it holdsmaxm=2J ���b�m � �m � n�1=2
�m��� � C1 ��2n�1L log n�2=3 ;where C1 = C1(d;M;Cg ; CV ; CK ; CK0 ;  ) .Remark 4.3. The above estimator b�m 
an be slightly re�ned by expli
itly using the esti-mated stru
tural information about the model. Namely, an appli
ation of the anisotropi
bandwidth bb = diag(bb1; : : : ;bbd) with bbm from the last iteration for m 2 bJ and bbm =1for m =2 bJ leads under 
ondition of the 
orre
t identi�
ation to the 
lassi
al partiallylinear estimator for the 
ase with known J , see e.g. H�ardle, Liang and Gao (1999).Remark 4.4. (Sele
ting signi�
ant regressors) The pro
edure in Se
tion 4.2 
anbe also used for identifying the signi�
ant 
omponents. All the regressors entering in
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omponent identifi
ation by stru
tural adaptationthe nonlinear 
omponent are automati
ally signi�
ant. The linear regressors 
an be fur-ther analyzed for signi�
an
e. Theorem 4.4 
laims that the normalized estimation errorpn�b�m � �m� is asymptoti
ally normal. Moreover, the asymptoti
 varian
e of b�m 
anbe easily estimated. Indeed, b�m is a linear 
ombination of the observations Yi with theknown 
oeÆ
ients 
im , that is, b�m = Pi 
imYm . Then b�2m = �2Pi 
2im is an estimatorof Var(b�m) . The sear
h of signi�
ant regressors 
an be done by the rule ���b�m���2 � �2b�2m forsome � > 0 , see illustration of this pro
edure in Se
tion 5. We skip the further dis
ussionfor the reasons of spa
e.5 Simulated and real data resultsIn this se
tion we illustrate the performan
e of the proposed method on some simulated ex-amples and give a real data appli
ation. With the simulated examples we aim to illustratehow the performan
e of the proposed method depends on the sample size n , dimensiond of the model, the dimensionality of the nonlinear 
omponent M and the noise varian
e�2 . We espe
ially fo
us on the 
omponent 
lassi�
ation results: identi�
ation of the non-linear variables and sele
tion of the signi�
ant variables. We also demonstrate how thequality of estimation of the nonlinear 
omponents improves during iteration.In our simulation study we apply the modi�ed pro
edure (see Remark 2.4) with thefollowing parameter setting:�1 = 1; �min = n�1=3; a� = e�1=6; � = 0:2; ah = a�1=2� :The initial bandwidth h1 is sele
ted from the 
ondition #fi :Mh(Xi) � d+1g � n=2 ,where Mh(x) stand for the number of the design points Xi in the ball of radius hand 
enter x . This 
ondition ensures that for at least a half of the design points thelo
al gradient estimator is well de�ned. This setting leads to the number of iterationsk(n) � log(�1=�min)log a� � 2 log n .The pro
edure utilizes the kernel K(jxj2) = (1 � jxj2)2+ . For every m � d , thebasis system f 1m(xm); : : : ;  Lm(xm)g is obtained using polynomials of xm of degreefrom one to L satisfying the 
onditions Pni=1wi lm(Xi;m) l0m(Xi;m)ÆPni=1 wi = Æll0and Pni=1  lm(Xi;m)wi = 0 where wi = w(k)i = �1=2min(V (k)i ) for k th iteration with k � 1 .We apply L = 6 .In our simulation study we 
onsider the model Yi = �>Xi+g(Xi;d�M+1; : : : ;Xi;d)+"ifor M between 1 and 3. The ve
tor � is taken of the form � = (1; 2; 3; 4; 0; : : : ; 0)> . Thelink fun
tion g is g(u) = g1(u) = eu + e�u for M = 1 , g(u1; u2) = g1(u1)g1(u2)for M = 2 and g(u1; u2; u3) = g1(u1)g1(u2)g1(u3) for M = 3 . The dimension d
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. 19is taken 4 + M or larger. The errors "i are i.i.d. normal with parameters (0; �2)for �2 = 0:1 . The design X1; : : : ;Xn is modelled randomly so that ea
h Xi fol-lows Norm(0:2; 0:82) -distribution, restri
ted to the [�1; 1℄d-
ube. The experiments weredone for sample size n = 100; 200; 400 . The results displaying the quality of estima-tion by the iterative algorithm are summarized in Tables 1 for M = 1 and in Table 2for M = 2 . We display the mean losses jbvmj for one linear regressor and jbv(k)m � v�mjfor nonlinear regressors where v�m = j��mj2 and ��m is the ve
tor with the 
omponents��lm =Pni=1 w(k)i rfm(Xi;m) lm(Xi;m)ÆPni=1 w(k)i .Table 1: CaseM = 1: mean loss ��bvm�v�m�� for the nonlinear regressor for the �rst, se
ond, fourth,and �nal iteration and �nal losses jbv1j for the �rst linear regressor. Results are obtained fromN = 250 simulations. The interquartile range of the losses is given in parentheses.d n nonlinear regressor linear regressor x11st 4th �nal �nal5 100 0:9580(0:1865) 0:6656(0:1546) 0:3069(0:2400) 0:0139(0:0113)5 200 0:9395(0:1378) 0:7711(0:1300) 0:2424(0:2024) 0:0072(0:0057)6 200 0:9432(0:1231) 0:7207(0:1067) 0:1641(0:1766) 0:0018(0:0016)8 200 0:9362(0:1253) 0:6703(0:1003) 0:2232(0:1797) 0:0006(0:0005)10 100 0:9574(0:2064) 0:6743(0:1526) 0:5822(0:2756) 0:0005(0:0004)10 200 0:9406(0:1522) 0:6777(0:1202) 0:3690(0:2213) 0:0002(0:0002)10 400 0:9348(0:0925) 0:7217(0:0838) 0:2316(0:1399) 0:0001(0:0001)It is interesting to observe that the quality of estimating the linear regressor x1 im-proves with growing dimension d .In Table 2 we demonstrate in addition how the error of estimation depends on thenoise varian
e �2 . One 
an see that the estimation risk for the nonlinear 
omponentsonly slightly in
reases with � while it is essentially proportional to � for the linear one.An explanation might be that the estimation error for the nonlinear 
omponents is mostlydue to the nonparametri
 bias whi
h disappears in the linear 
omponents during iterationpro
ess by stru
tural adaptation.The next �gure illustrates the result of Theorem 4.1 about separation between linearand nonlinear 
omponent. Let LN (�) denote the empiri
al distribution of the randomvariable � based on its sample of size N . A good separation between linear and nonlinear
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omponent identifi
ation by stru
tural adaptationTable 2: Case M = 2: mean loss ��bvm � v�m�� for the nonlinear regressors for the �rst, se
ond,fourth, and �nal iteration and �nal losses jbv1j for the �rst linear regressor. Results are obtainedfrom N = 250 simulations. The interquartile range of the losses is given in parentheses.d n �2 1st nonlinear regressor 2nd nonlinear regressor linear regressor x11st 4th �nal 1st 4th �nal �nal6 200 0.1 4:6117(0:6646) 3:7349(0:5028) 0:4763(0:5211) 4:6337(0:6257) 3:7576(0:5402) 0:4473(0:4785) 0:0081(0:0063)8 200 0.1 4:6397(0:6683) 3:4423(0:5431) 0:4244(0:4108) 4:5942(0:6646) 3:4085(0:4621) 0:4058(0:4607) 0:0025(0:0019)10 100 0.1 4:6338(0:8840) 3:1450(0:7307) 0:7573(0:5302) 4:6862(1:0155) 3:1642(0:7312) 0:7089(0:4938) 0:0043(0:0032)10 200 0.1 4:5537(0:7458) 3:2806(0:5065) 0:5812(0:3404) 4:5904(0:7649) 3:2917(0:5875) 0:5489(0:4014) 0:0011(0:0010)10 400 0.1 4:5198(0:4850) 3:5276(0:3566) 0:4457(0:3121) 4:5584(0:4168) 3:5594(0:3562) 0:4319(0:3023) 0:0004(0:0003)10 400 0.2 4:5198(0:4850) 3:5284(0:3483) 0:4403(0:3949) 4:5584(0:4167) 3:5602(0:3642) 0:4325(0:3948) 0:0007(0:0006)10 400 0.4 4:5198(0:4850) 3:5297(0:3316) 0:4637(0:4891) 4:5584(0:4167) 3:5615(0:3727) 0:4666(0:5029) 0:0017(0:0013)
omponents means that the fun
tions LN (bvm) for every m 2 J and 1 � LN (bvm) form =2 J have non-overlapping support.
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Figure 1: Case M = 2, d = 6 : LN (bv5) , LN (bv6) (dotted lines) and 1 � LN (maxm=1;:::;4 bvm)(solid line) for n = 100; 200 from 250 realizations.We observe a very good separability for n = 100 and a possibility of perfe
t separationfor n = 200 .Next we illustrate how the quality of estimation of the linear 
omponent improves withthe sample size. Figure 2 shows box-plots of the estimation errors n1=2kb� � ��k of thelinear 
omponent after the �nal iteration for d = 6 , M = 2 and di�erent sample sizes n .
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Figure 2: Case M = 2 : box-plots of the estimation errors n1=2kb� � ��k of the linear
omponent after the �nal iteration for d = 6 . Results are obtained from N = 250simulations.Table 3 illustrates the performan
e of the test of the hypothesis M � M and thequality of the 
lassi�
ation rule from Se
tions 4.2 and 4.3 for di�erent M , d and n . Inthis table we present the fra
tion of wrong 
lassi�
ations for every of nonlinear regressorsand for the whole model.One 
an observe on
e again that the results (the fra
tion of wrong 
lassi�
ations)improve as the dimensionality d grows. This 
an be explained by the fa
t that thedistribution of the test statisti
 used for 
lassi�
ation will be more and more degeneratedwith growing dimension d .Another observation is that for M = 3 , the pro
edure requires some minimal samplesize to start sele
ting all the three nonlinear 
omponents. For n = 100 we obtain foralmost all the 
ases 
M <M . For n = 200 and d = 7 we 
orre
tly 
lassify in only about30% 
ases but for d = 10 the fra
tion of wrong 
lassifying is already under 
ontrol.Figure 3 illustrates the quality of estimation of the noise varian
e �2 by b�2 for oneexample with d = 6 , M = 2 and di�erent sample size n . The results are in agreementwith the root-n 
onsisten
y of the estimator b�2 .5.1 A real data exampleThis se
tion presents an appli
ation of the pro
edure to a real data set. We 
onsider theexample from Sperli
h (1998) and H�ardle, Spokoiny and Sperli
h (2001) where a subsampleof the So
io-E
onomi
 Panel of Germany from 1992 was studied. The target of analysis is
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omponent identifi
ation by stru
tural adaptationTable 3: Fra
tion of wrong 
lassi�
ations for every nonlinear regressor and for the whole model.Results are obtained from N = 250 simulations and 500 bootstrap repli
ations.M d n 1st n.
. 2nd n.
. 3rd n.
. f bJ 6= J g100 0.152 { { 0.181 5 200 { {400 0 { {1 10 200 0 { { 0.400 0 { { 0.001 20 400 0 { { 0.100 0.268 0.308 { 0.382 6 200 0.056 0.048 { 0.1400 0.004 0.004 { 0.0242 10 200 0 0 { 0.008400 0 0 { 0.02 20 400 0 0 { 0100 0.976 0.96 0.964 0.9923 7 200 0.62 0.656 0.656 0.748400 0.076 0.06 0.072 0.13 10 200 0.004 0 0.004 0.004400 0 0 0 0
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n1/2(σ2−σ*2) for d=6 and M=2

Figure 3: Box-plots of the estimation errors n1=2kb�2���2k for d = 6,M = 2 and di�erent samplesize n.the weekly number of working hours, Yi, of 607 women with job and living together witha partner. The following explanatory variables were used: the age of woman, between 25
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. 23and 60, X1; her earning per hour, X2; the prestige index of her kind of profession (Treimanprestige index), X3; the monthly rent or redemption for their apartment or house, X4;the monthly net in
ome of their partner, X5; the number of years of edu
ation, X6; theunemployment rate at the parti
ular tra
t they live in, X7; and the number of 
hildrenyounger than 16 years, X8.The estimates bvm obtained by our estimation pro
edure are given in Table 4. We alsogot the estimate b�2 = 0:736 for error varian
e �2 .Table 4: Estimates bvm of v�m.bv1 bv2 bv3 bv4 bv5 bv6 bv7 bv80.05259 0.00729 0.00441 0.00012 0.00060 0.00142 0.00015 0.00875Next we identify the linear 
omponent starting withM = 0 as des
ribed in Se
tion 4.2.Table 5 gives the p-values PVM for ea
h testHM, whi
h are obtained during the bootstrappro
edure, de�ned as: PVM = 1B BXb=1 1fev(b)(M+1)>bv(M+1)gThe �rst three hypotheses H0 , H1 and H2 are reje
ted at 10% level, and there is 
learlyno reje
tion of H3 . So, for the 
onsidered model, the nonlinear dimension is estimatedas three and the nonlinear variables are X1, X2, and X3. Our linear/nonlinear variable
lassi�
ation results 
oin
ide with those from H�ardle, Sperli
h and Spokoiny (2001), butwith quite di�erent p-values: in our results X1 (age) is the most nonlinear and X2 (earningper hour) is the least nonlinear variable among the three, while in H�ardle, Sperli
h andSpokoiny (2001) the situation is reversed. Note that while their identi�
ation was madeunder the assumption of additive model stru
ture, our results are obtained for a generalsituation when su
h additive stru
ture is not required.Table 5: p-values for 
onse
utive testsM bv(M+1) p-values0 bv1 0:0039961 bv2 0:0869132 bv3 0:019983 bv5 0:47153
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omponent identifi
ation by stru
tural adaptation6 Con
lusion and outlookThe paper has introdu
ed a new method of exploring a partially linear model based onthe idea of stru
tural adaptation. The method applies under mild assumptions on theunderlying regression fun
tion and the regression design. The pro
edure is fully adaptiveand does not require any prior information. The results 
laim that the proposed pro
edurewith a high probability 
orre
tly identi�es the nonlinear 
omponent and estimates the lin-ear 
omponent with the optimal rate n�1=2 provided that the dimension of the nonlinear
omponent is not larger than 3. The simulation results demonstrate an ex
ellent perfor-man
e of the pro
edure for all 
onsidered situations. An important feature of the methodis that it is very stable with respe
t to high dimensionality and for a non-regular design.Non-Gaussian or heterogeneous noise. The method and results 
an be easily ex-tended to models with homogeneous non-Gaussian noise satisfying some exponential mo-ment 
onditions. Another interesting issue is appli
ability of the method for a generalheterogeneous or dependent noise, in parti
ular, to time series models and �nan
ial data.We leave these extensions for further resear
h.The 
ase with M � 4 . The method 
ontinues to apply even if M � 4 and itera-tions would lead to improvement of the bias. However, the bound for the bias of order(n�1 logn)2=3 
an be a
hieved only for M � 3 . For larger M , the bias will be of ordern�1=2 of bigger and the pro
edure does not provide root-n 
onsistent estimation of thefun
tionals ��lm . So, if the hypothesis M � 3 is reje
ted, then we re
ommend to applyfor the 
hoi
e of M some model sele
tion 
riteria like 
ross-validation or Mallows Cp .Data-driven 
hoi
e of parameter L . The method depends upon the parameter Ldes
ribing the number of basis fun
tions for every regressor. In the univariate 
ase, ei-ther an n -dependent or data-driven 
hoi
e of su
h a parameter is usually applied, seeHart (1997) or Spokoiny (2001) and referen
es therein. An adaptive 
hoi
e of L in the
onsidered problem is an interesting question for further resear
h.Semiparametri
ally eÆ
ient estimation of the linear 
omponent. Due to theresult of Theorem 4.4, the proposed estimator of the parameter � is root-n 
onsistent andasymptoti
ally normal. However, it is unlikely that this or the re�ned estimator of � fromSe
tion 4.3 is semiparametri
ally eÆ
ient in the sense of minimization of the asymptoti
varian
e, see e.g. Bi
kel et al. (1998). A modi�
ation of the method leading to thesemiparametri
ally eÆ
ient estimation of linear part will be dis
ussed elsewhere.Estimation of the nonlinear 
omponent. After the nonlinear 
omponent is identi�ed,it 
an be estimated using the standard methods of nonparametri
 statisti
s. A
tually, thealgorithm gives an estimator of the whole fun
tion f and of the linear 
omponent, sothat the nonlinear 
omponent 
an be extra
ted as well. This estimator 
orresponds to the
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al linear smoothing of the nonparametri
 M -dimensional fun
tion with the bandwidthabout h� � �min , and may not a
hieve the best rate. To improve the quality of estimation,one 
an apply the 
lassi
al 
ross-validation te
hnique for sele
ting the bandwidth in thedire
tion of the nonparametri
 
omponent.Dis
rete and 
ategori
al data. Note that the assumption of linearity is meaningful fordis
rete or 
ategori
al variables as well. It means that the in
uen
e of the 
orrespondingregressor is independent of the other variables and therefore, at least in the binary 
ase,
an be modelled linearly. Moreover, the pro
edure easily applies for the situation withdis
rete data without any 
hange.7 AppendixHere we 
olle
t the proofs of the main results. For the ease of exposition, we 
onsider onlythe main pro
edure (without weights) and only the 
ase of � = 0 . The general 
ase 
anbe 
onsidered in the same way.7.1 One-step improvementSuppose that we are given some �xed numbers h and � (whi
h mean the 
urrent valueshk and �k ) and a ve
tor v = (v1; : : : ; vd)> 2 IRd whi
h 
an be viewed as an approximationof v� = (v�1 ; : : : ; v�d)> obtained at the previous step of the algorithm. Set alsobm = h �1 + ��2vm��1=2 ; m = 1; : : : ; d; (7.1)and de�ne b = diag(b1; : : : ; bd) . De�ne also bf(Xi) , 
rf(Xi) and b�lm by (2.1) and (2.3)for all l = 1; : : : ; L and m = 1; : : : ; d with the just de�ned bandwidth b . We aimto evaluate the estimation errors b�lm � ��lm . To des
ribe the results, we introdu
e theshrinking fa
tors P�;m = �1 + ��2v�m��1=2 and de�neUm = P 2�;m(1 + ��2vm) = (1 + ��2v�m)�1(1 + ��2vm)and similarly U�m = P 2�;m(1 + ��2v�m) = 1 . Clearly the ve
tor U = (U1; : : : ; Ud)> 2 IRduniquely des
ribes v , so that we 
onsider later in this se
tion v = v(U) and similarlyb�lm = b�lm(U) for the fun
tionals b�lm in (2.3). Let � = (�1; : : : ; �d)> be a ve
tor in IRdwith entries �m 2 (0; 1) . De�neU� = fU = (U1; : : : ; Ud)> 2 IRd : jUm � 1j � �m ; m = 1; : : : ; dg:We also de�ne �� = maxm=1;:::;d �m .
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omponent identifi
ation by stru
tural adaptationProposition 7.1. Let Assumptions 1 through 5 hold. Let �lm(U) = Eb�lm(U) . ThensupU2U� dXm=1 LXl=1 jP�;mf�lm(U)� ��lmgj2 �  Cg C1=2V1� �� �2h!2and, for every l = 1; : : : ; L and m = 1; : : : ; d , there exists a zero mean Gaussian randomvariable �lm de�ned as a linear 
ombination of the errors "i with deterministi
 
oeÆ-
ients, whi
h depend on v� , the design fXig , the basis fun
tions  lm(�), and the kernelK only, and su
h that maxm;l E�2lm � 2�2C2V CK (7.2)and P�maxm;l supU2U� ����P�;mfb�lm(U)� �lm(U)g � �lmhpn���� > � C�;nj�jhpn � � 2n;where the maximum is taken over m = 1; : : : ; d and l = 1; : : : ; L,  = maxi;l;m j lm(Xi)j andC�;n =  p2CV CK0(1� ��)3=2 + 23=2C2V CK0 CK(1 � ��)5=2 !�2 +p2 log(ndL) + d log(4n)� :Let ��m denote, as in Proposition 3.1, an L-ve
tor with the 
omponents ��lm and b�m =b�m(U) its estimator with the 
omponents b�lm(U).Corollary 7.1. Let zn = (1 + 2 log(nd) + 2 log log(nd))1=2 andÆ = Cg C1=2V1� �� h�2 + p2L�CV C1=2K znhpn + pL�  C�;nj�jhpn : (7.3)Then under the 
onditions of Proposition 7.1 it holdsP � maxm=1;:::;d supU2U� ���P�;m �b�m(U)� ��m���� > Æ� � 3=n:The 
orollary helps bound the estimation error P 2�;m (bvm(U)� v�m) .Proposition 7.2. Under the 
onditions of Proposition 7.1,P � supU2U� ��P 2�;m (bvm(U)� v�m)�� � Æ2 + 2Æ�m for all m = 1; : : : ; d� � 1� 3=nwhere �m = �pv�m(�2 + v�m)�1=2 � min f�;pv�mg .
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. 277.2 Proof of Proposition 7.1Denote by P� the diagonal d � d -matrix with the diagonal entries P�;m , that is, P� =diagfP�;1; : : : ; P�;dg . Similarly, for U = (U1; : : : ; Ud)> 2 IRd , de�ne DU = diagfU1; : : : ; Udg .Next, for every i; j � n , de�ne Zij = h�1 P�1� (Xj �Xi) , Kij(U) = K(Z>ij DUZij)Vi(U) = nXj=1� 1Zij�� 1Zij�>Kij(U);bsi(U) = h�1Vi(U)�1 nXj=1� 1Zij�YjKij(U):It is easy to 
he
k that for the (m+ 1)th 
omponent bsi;m(U) of bsi(U) it holds bsi;m(U) =P�;m 
rfm(Xi) and hen
e,P�;mb�lm(U) = n�1 nXi=1 bsi;m(U) lm(Xi;m):The model equation (1.1) implies bsi(U) = si(U) + �i(U) withsi(U) = h�1 Vi(U)�1 nXj=1� 1Zij�f(Xj)Kij(U);�i(U) = h�1 Vi(U)�1 nXj=1� 1Zij�"jKij(U):This yields, for ea
h 
oordinate m = 1; : : : ; d,P�;mfE b�lm(U)� ��lmg = 1n nXi=1 fsi;m(U)� P�;mrfm(Xi)g lm(Xi;m);P�;mfb�lm(U)�Eb�lmg = 1n nXi=1 �i;m(U) lm(Xi;m):Clearly �lm(U) := n�1Pni=1 �i;m(U) lm(Xi;m) is for every U a linear 
ombination of theGaussian errors "i and therefore it is also a Gaussian ve
tor in IRd .De�ne Ed is the proje
tion from IRd+1 onto IRd dropping the zero 
oordinate: Ed(x0; : : : ; xd)> =(x1; : : : ; xd)> . It is easy to see that the following three statements imply the 
laimed result:supU2U� jEdsi(U)� P�rf(Xi)j � Cg C1=2V1� �� h�2; i = 1; : : : ; n; (7.4)P �maxl;m supU2U� j�lm(U)� �lm(U�)j > �C�;nj�jhpn � � 2=n; (7.5)maxl;m Ej�lm(U�)j2 � 2�2C2V CKh2n : (7.6)
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omponent identifi
ation by stru
tural adaptationwhere the maximum is taken over l = 1; : : : ; L and m = 1; : : : ; d . Indeed, the last twostatements of the proposition dire
tly follows from (7.5) and (7.6) for �lm = hpn �lm(U�) .Next, (7.4) impliesn�1 nXi=1 dXm=1 jsi;m(U)� P�;mrfm(Xi)j2 �  Cg C1=2V1� �� h�2!2 :Sin
e the ve
tors  lm 2 IRn are orthonormal for di�erent l , it follows for the Besselinequality for every m � d1n nXi=1 jsi;m(U)� P�;mrfm(Xi)j2 � LXl=1 ����� 1n nXi=1�si;m(U)� P�;mrfm(Xi)� lm(Xi;m)�����2= LXl=1 P 2�;m�Eb�lm(U)� ��lm�2and thus, dXm=1 LXl=1 P 2�;m�Eb�lm(U)� ��lm�2 �  Cg C1=2V1� �� h�2!2 :To 
he
k the statements (7.4){(7.6), the following lemma will be useful.Lemma 7.1. Let jUm�1j � �m < 1 for all m = 1; : : : ; d . Then for all i; j , the inequalityjZ>ij DUZij j � 1 implies jZij j2 � 1=(1 � ��) and 1 + jZij j2 � 2=(1 � ��) .Proof. Note that the inequalities Z>ij DU Zij � 1 and jUm � 1j � �m imply���Z>ij DUZij � jZijj2��� = ���Z>ij (DU � I)Zij��� � ��jZij j2and thus, jZij j2 � (1� ��)�1Z>ij DUZij .Now we 
he
k (7.4). Sin
e h�1f(Xi)P�rf(Xi)! = Vi(U)�1 nXj=1� 1Zij�� 1Zij�>  h�1f(Xi)P�rf(Xi)!Kij(U)= h�1 Vi(U)�1 nXj=1� 1Zij��f(Xi) +X>ijrf(Xi)	Kij(U)it followssi(U)� h�1f(Xi)P�rf(Xi)! = 1h Vi(U)�1 nXj=1� 1Zij�nf(Xj)� f(Xi)�X>ij rf(Xi)oKij(U)= 1h Vi(U)�1 nXj=1� 1Zij� rijKij(U)
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. 29where in view of (3.1)rij = g(R�Xj;2)� g(R�Xi;2)� (R�Xj;2 �R�Xi;2)>rg(R�Xi;2)with R� being the diagonal M �M matrix with diagonal entries pv�m , m 2 J . It is
lear that���pv�mXj;m �pv�mXi;m���2 = h2v�m(1 + ��2v�m)�1Z2ij;m � h2�2Z2ij;m:Therefore, jR�Xj;2 �R�Xi;2j2 � h2 �2 jZij j2:This yields by Lemma 7.1 and Assumption 4 for every pair (i; j) with Z>ij DUZij � 1 :jrij j � Cg h2 �2(1� ��)�1 :Using the Cau
hy-S
hwarz inequality and Assumptions 5 we boundjEd si(U)� P�rf(Xi)j � h�1 sup�2IRd+1 : j�j=1 �������>Vi(U)�1 nXj=1� 1Zij�rijKij(U)������� supj�j=1h�1 24 nXj=1 �>Vi(U)�1� 1Zij�� 1Zij�>Kij(U)Vi(U)�1� nXj=1 r2ijKij(U)351=2� Cg h �21� �� supj�j=10��>Vi(U)�1� nXj=1Kij(U)1A1=2� (1� ��)�1 Cg h �2 

Ni(U)Vi(U)�1

1=2 � (1� ��)�1 Cg C1=2V h �2and (7.4) follows.By de�nition every �lm(U) is a linear 
ombination of the "i 's, that is, there are
oeÆ
ients 
i;lm(U) su
h that�lm(U) = nXi=1 
i;lm(U)"i:The 
oeÆ
ients 
i;lm(U) depend on the design X1; : : : ;Xn , the basis fun
tion  lm , thekernel K and the ve
tor U . Moreover, these 
oeÆ
ients satisfy the following 
onditions:Lemma 7.2. For every l = 1; : : : ; L and m = 1; : : : ; d(i) nXi=1 j
i;lm(U�)j2 � 2C2V CKh2n ;
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omponent identifi
ation by stru
tural adaptation(ii) supU2U� nXi=1 j
i;lm(U)j2 � 2C2V CK(1� ��)h2n ;(iii) supU2U� ����d
i;lm(U)dU ���� � ��nh; where�� = p2(1� ��)�3=2CV CK0 + 23=2(1� ��)�5=2C2V CKCK0 :Proof. De�ne for i; j = 1; : : : ; nNi(U) = nXj=1Kij(U); vij(U) = Vi(U)�1� 1Zij�:It follows from Lemma 7.1 and Assumption 5 that U 2 U� implies for every i; j withZ>ij DU Zij � 1jNi(U) vij(U)j � CV (1 + jZij j2)1=2 � CVp2(1� ��)�1=2: (7.7)Next, for a �xed m � d , denote by vij;m(U) the (m+ 1) th 
omponent of vij(U) . Then�lm(U) = 1nh nXi=1  lm(Xi;m) nXj=1 vij;m(U)Kij(U) "j= nXj=1 1nh nXi=1  lm(Xi;m)vij;m(U)Kij(U)! "j = nXj=1 
j;lm(U) "j :Clearly Ej�lm(U)j2 = �2Pnj=1 
2j;lm(U) . The Cau
hy-S
hwarz inequality, (7.7) and As-sumption 5 implynXj=1 
2j;lm(U) = 1n2h2 nXj=1 nXi=1  lm(Xi;m)vij;m(U)Kij(U)!2� 1n2h2 nXj=1 nXi=1  2lm(Xi;m)vij;m(U)Kij(U)! nXi=1 vij;m(U)Kij(U)!� 2C2V(1� ��)n2h2 nXj=1 nXi=1  2lm(Xi;m)Kij(U)Ni(U) ! nXi=1 Kij(U)Ni(U) !� 2C2V CK(1� ��)n2h2 nXj=1 nXi=1  2lm(Xi;m)Kij(U)Ni(U)= 2C2V CK(1� ��)n2h2 nXi=1  2lm(Xi;m) = 2C2V CK(1� ��)nh2 :As a parti
ular 
ase, with DU = DU� = I and �� = 0 , this yieldsnXj=1 
2j;lm(U�) � 2C2V CKnh2
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. 31and the �rst two assertions of the lemma follows.Now we bound the derivative of ea
h 
oeÆ
ient 
jl;m(U) with respe
t to U . For everypair i; j su
h that Z>ijDUZij � 1 , Lemma 7.1 implies���� ddU Kij(U)���� = ���K 0(Z>ij DU Zij)��� jZij j2 � (1� ��)�1 ���K 0(Z>ij DU Zij)��� :Let o1 and o2 be unit ve
tors in IRd+1 . Then for every m = 1; : : : ; do>1 �Vi(U)�1o2�Um = �o>1 Vi(U)�1� ��UmVi(U)�Vi(U)�1o2= �o>1 Vi(U)�10� nXj=1� 1Zij�� 1Zij�>K 0(Z>ij DU Zij)Z2ij;m1AVi(U)�1o2:Lemma 7.1 and Assumption 5 yield�����o>1 Vi(U)�1o2�Um ���� � 2C2V(1� ��)jNi(U)j2 nXj=1 ���K 0(Z>ij DU Zij)���Z2ij;m:Sin
e vij;m(U) = �1 + jZij j2�1=2 e>mVi(U)�1o2 where em denotes the m th 
oordinateve
tor in IRd+1 and o2 = �1 + jZij j2��1=2� 1Zij� , it follows for every pair i; j su
h thatZ>ijDUZij � 1 :����dvij;m(U)dU ���� � �1 + jZij j2�1=2 dXm0=1 �����e>mVi(U)�1o2�Um0 ����2!1=2
� 23=2C2V(1� ��)3=2jNi(U)j2 24 dXm0=10� nXj=1 jK 0(Z>ij DU Zij)jZ2ij;m01A2351=2� 23=2C2V(1� ��)3=2jNi(U)j2 dXm0=1 nXj=1 jK 0(Z>ij DU Zij)jZ2ij;m0� 23=2C2V CK0(1� ��)3=2jNi(U)j2 nXj=1 jK 0(Z>ij DU Zij)j jZij j2 � 23=2C2V CK0(1� ��)5=2Ni(U) :Sin
ed
j;lm(U)dU = 1nh nXi=1 vij;m(U) lm(Xi;m)dKij(U)dU + 1nh nXi=1 dvij;m(U)dU Kij(U) lm(Xi;m):the use of (7.7) and Assumption 5 yields����d
j;lm(U)dU ���� � p2CV  lmnh(1� ��)3=2 nXi=1 jK 0(Z>ij DU Zij)jNi(U) + 23=2C2V CK0 lmnh(1� ��)5=2 nXi=1 Kij(U)Ni(U)� p2CV CK0 lmnh(1� ��)3=2 + 23=2C2V CK0CK lmnh(1� ��)5=2and assertion (iii) of the lemma follows.
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omponent identifi
ation by stru
tural adaptationSin
e Ej�lm(U)j2 = �2Pnj=1 
2j;lm(U) , 
ondition (7.6) follows from Lemma 7.2, (i).The following lemma is a minor modi�
ation of Lemma 8 of HJS.Lemma 7.3. Let r be a positive number and let � be a �nite set. Let fun
tions ai;
(u)of u 2 IRd obey the 
onditionssup
2� supju�u�j�r ���� ddu ai;
(u)���� � �; i = 1; : : : ; n: (7.8)If the "i 's are independent N (0; �2) -distributed random variables, thenP  sup
2� supju�u�j�r 1pn ����� nXi=1fai;
(u)� ai;
(u�)g"i����� > �� rt! � 2nwhere t = 2 +p2 log(nj� j) + d log(4n) and j� j denotes the number of elements in � .The 
laim (7.5) follows from Lemma 7.2, (ii) and (iii), by the pre
eding lemma appliedwith ai;
(u) = pn
j;lm(U), � = ��hpn , � = f(m; l) : m = 1; : : : ; d; l = 1; : : : ; L g , andr = j�j. This 
ompletes the proof of the proposition.Remark 7.1. In the proof of Proposition 7.1 we de�ned the random variables �lm as�lm = �lm(U�) . One 
an easily 
he
k that the result of the proposition 
ontinues to holdwith �lm repla
ed by �lm(U) for any U 2 U� and with the right hand-side of (7.2)and with the 
onstant C�;n multiplied by (1 � ��)�1 . This fa
t is used in the proofTheorem 4.2.7.3 Proof of Corollary 7.1By Proposition 7.1supU2U� maxm=1;:::;d ���P�;m �Eb�m(U)� ��m���� � Cg C1=2V1� �� �2hand on a random set of probability as least 1� 2=n����P�;m �b�m(U)�Eb�m(U)�� �mhpn���� � pL�  C�;n j�jhpn ; 8m = 1; : : : ; d;where �m 2 IRL , m = 1; : : : ; d, are Gaussian random ve
tors with 
omponents �l;m fromProposition 7.1.By Lemma 7 in HJS, P �j�mj � znpEj�mj2� � 1=(nd):In view of (7.2) Ej�mj2 � 2L�2C2V CK , and the 
orollary follows.
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. 337.4 Proof of Proposition 7.2The de�nition of �m impliesP 2�;mv�m = (1 + ��2v�m)�1v�m = �2m � min��2; v�m	 : (7.9)Lemma 7.4. If P�;mjb�m � ��mj < Æ, then P 2�;mjbvm � v�mj < Æ2 + 2Æ �m.Proof. De�ne the ve
tor bum 2 IRL (resp. u�m ) whose elements are P�;mb�lm (resp.P�;m��lm ). Clearly P 2�;mbvm(U) = jbum(U)j2 and by (7.9) P 2�;mv�m = ju�mj2 � �2m . It iseasy to 
he
k that��jbumj2 � ju�mj2�� � jbum � u�mj2 + 2jbum � u�mj � ju�j; (7.10)and lemma follows.The proposition follows from Corollary 7.1 and Lemma 7.4.7.5 Proof of Proposition 3.1The proof of the �rst 
laim is a simpli�ed version of the proof of Proposition 7.1: just setthere P�;m = 1, drop supU , and repeat the proofs of (7.4) and (7.6). The fa
tor v�(1) in Æ1
omes from R� in (3.1). Next, applying Lemma 7 of HJS one gets the 
laim (3.2). The
laim (3.4) follows from (3.2) and Lemma 7.4 applied with � = 1.7.6 Proof of Theorem 3.1Let the numbers hk and �k be as in the algorithm des
ription, k = 1; : : : ; kn . De�nesu

essively the values Æk and d-ve
tors �k with 
omponents �k;m as follows: �1 = 0 ,Æ1 as in (3.3), and for k = 2; : : : ; knÆk = Cg C1=2V(1� ��k) hk �2k + p2L�CV C1=2K znhkpn + pL� C�k;n j�kjhkpn ;�k;m = ��2k �2Æk�1�k;m + Æ2k�1� ; m = 1; : : : ; d (7.11)with ��k = maxm=1;:::;m �k;m, �k;m = �kpv�m ��2k + v�m��1=2 � minf�k;pv�mg, and with  de�ned in Proposition 7.1 and zn in Corollary 7.1.We will need the following two lemmas proofs of whi
h require only minor modi�
ationsin the proofs of Lemmas 4 and 5 from HJS.Lemma 7.5. For n suÆ
iently large, the �k 's satisfy maxk�kn ��k < 1=4 . In addition, forthe last iteration kn , it holds�n := Cg C1=2V(1� ��kn) hkn �2kn + pL� C�kn ;n j�kn jhknpn � C ��2n�1L logn�2=3
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omponent identifi
ation by stru
tural adaptationand Ækn � Æn, where Æn is de�ned in (3.6) and C means a generi
 
onstant depending ond , M and the 
onstants from Assumptions 1 through 5 only.Proof. Note that �k;m � Æ2k�1=�2k for all m 62 J and �k;m � Æ2k�1=�2k + 2Æk�1=�k form 2 J . The �rst assertion of the lemma easily follows from the fa
t that hk�k de
reasesduring iteration, 
f. Lemma 4 of HJS.Sin
e the dimensionality of the nonlinear 
omponent is bounded by M , it followsj�kj2 � (d�M)Æ4k�1=�4k +M �Æ2k�1=�2k + 2Æk�1=�k�2 :Further, the inequality j�kn�1j � C1 with some 
onstant C1 depending on d and Monly implies in view of hkn�1 � 1=ah and 1 � �kn�1 ��2n�1L logn��1=3 � 1=a� thatÆkn�1 � C ��2n�1L logn�1=2 ; j�kn j � C ��2n�1L logn�1=6 :Substituting this bound in the formula for �n yields by hkn � 1 and �kn = ��2n�1L logn�1=3that �n � C ��2n�1L log n�2=3 and thereforeÆkn � p2CV C1=2K ��2n�1Lz2n�1=2 + C ��2n�1L logn�2=3 :Lemma 7.6. Let n be suÆ
iently large. There exist random sets A1 � : : : � Akn�1su
h that P (Ak) � 1� 3kn and it holds on Akmaxm=1;:::;d��P�k+1;m�b�(k)m � ��m��� � Æk; k = 1; : : : ; kn � 1:Proof. We pro
eed by indu
tion in k . First by (3.2) there exists a random set A1 withP (A1) � 1� 1=n su
h that maxm=1;:::;d jb�1 � ��j � Æ1 on A1 . This obviously impliesmaxm=1;:::;d jP�2;m(b�1 � ��)j � Æ1:Suppose now that there is Ak�1 su
h that P (Ak�1) � 1� 3(k�1)n and it holds on Ak�1 :maxm=1;:::;d ���P�k;m �b�(k�1)m � ��m���� � Æk�1:Then on Ak�1 by Lemma 7.4 P 2�k;mjbv(k�1)m �v�mj < Æ2k�1+2Æk�1�k;m simultaneously for allm = 1; : : : ; d , and denoting U (k) a d-ve
tor with 
omponents U (k)m = P 2�k;m(1+��2k bv(k�1)m ) ,one gets U (k) 2 U�k .By Corollary 7.1 there exists another random set Ak with P (Ak) � 1�3=n su
h thaton Ak it holds for every U 2 U�kmaxm=1;:::;d jP�k;m(b�m(U)� ��m)j � Æk;
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. 35so that, with Ak = Ak�1 \Ak , we obtain P (Ak) � 1� 3k=n and it holds on Akmaxm=1;:::;d jP�k;m(b�(k)m � ��m)j � Æk:and, sin
e for every m P�k+1;m � P�k;m , the assertion follows.Let now Akn�1 be the random set with P (Akn�1) � 1� 3kn�3n shown in Lemma 7.6so that on this set maxm=1;:::;d jP�kn ;m(b�(kn�1)m � ��m)j � Ækn�1;and for the 
orresponding d-ve
tor U (kn) with 
omponents U (kn)m = P 2�kn ;m(1+��2kn bv(kn�1)m ),it holds U (kn) 2 U�kn .Let then �m be the Gaussian L-ve
tor with the 
omponents �lm from Proposition 7.1applied with h = hkn and � = �kn . Due to this proposition, there exists a random setAkn with P (Akn) � 1� 2=n , so that on Akn it holds for all U 2 U�kn :maxm=1;:::;d jP�kn ;m(b�m(U)� ��m)� �mhpn j � �n;where �n is de�ned in Lemma 7.5. This yields for the set Akn = Akn�1 \ An thatP (Akn) � 1� 3kn�1n and the �nal estimator b�m = b�(kn)m satis�es on Akn :maxm=1;:::;d ���P�kn (b�m � ��)� n�1=2��m��� � �nwhere ��m = h�1�m . In view of h = hkn � 1Ej��lmj2 = h�2Ej�lmj2 � 2�2C2VCKand the �rst two 
laims in (3.5) follow from Lemma 7.5. The last 
laim in (3.5) follow byapplying Lemma 7 of HJS and Lemma 7.4. The �rst two inequalities in (3.7) follow from(3.5) by setting P�;m = 1 and ��m = 0 . The last one is proved similarly to Lemma 7.4.7.7 Proof of Theorem 3.2The proof 
an be done similarly to Spokoiny (2002) using the bound for the bias ofestimation from the proof of Proposition 7.1. We omit the details to save the spa
e.7.8 Proof of Theorem 4.1In view of Theorem 3.1 on the set A , it holds bvm � Æ2n for all m 62 J . Therefore, itsuÆ
es to show that on A , it holds bvm > r2Æ2n for every m 2 J . Next, by Theorem 3.1again, for m 2 Jbvm > v�m � P�2� �Æ2n + 2ÆnP�v�m� = v�m � Æ2n(1 + v�m��2)� 2Æn(1 + v�m��2)1=2v�m:
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omponent identifi
ation by stru
tural adaptationDe�ne s2 = v�m=Æ2n and un = Æn=� . Then, on A ,Æ�2n bvm > s2 � 1� s2u2n � 2s(1 + s2u2n)1=2 � s2(1� u2n � 2un)� 1� 2s:It is straightforward to 
he
k that the right hand-side of this inequality as a fun
tion of sis greater than r2 for all s � sr . Therefore, on A , Æ�2n bvm > r2 for m 2 J as required.7.9 Proof of Theorem 4.2To simplify the exposition, we suppose that the resampling s
heme of Se
tion 4.1 utilizesthe true varian
e �2 instead of the estimated varian
e b�2 . This assumption is easilyjusti�ed by the result of Theorem 3.2 
laiming root-n 
onsistent estimation of �2 by b�2 .The idea of the proof is to show that the variable bv(M+1) and the similarly de�nedvariable ev(M+1) for the resampling model have approximately the same distribution. LetA be the random set from Theorem 3.1 with P (A) � 1�3kn=n . It is obviously suÆ
ientto show that P ( bJM 6= J j A) � �+ 3=n:We therefore suppose that the event A holds true. Then, under the assumptions of thetheorem, the nonlinear 
omponent is 
orre
tly identi�ed and all the bounds of Theorem 3.1hold. Moreover, for every m =2 J , the value nbvm 
an be approximated by j��mj2 , wherethe distribution of the ve
tor ��m depend on the `ideal' bandwidth b� = b�(kn) , the kernelK , basis fun
tions  lm(�), and the design X1; : : : ;Xn only.Next we 
onsider the model we resample from. This arti�
ial model has the samestru
ture (i.e. the same linear and nonlinear 
omponents) and di�ers from the originalone only by the parameters of the linear 
omponent (they are equal to zero in the re-sampling model) and by the nonlinear link fun
tion. More spe
i�
ally, the estimators bvmbased on the original model are the \true" values for the resampling model and the laststep bandwidth b = b(kn) is the \ideal" bandwidth for the resampling model. Sin
e theresampling model ful�lls all the 
onditions that we impose on the original model, Theo-rem 3.1 (or Proposition 7.1 with � = 0 and b = b(kn) ) 
ontinues to apply. This yields,in parti
ular, that on a set eAM with P ( eAM ) � 1� 3=n , the nonlinear 
omponent of theresampling model will be 
orre
tly identi�ed. Moreover, due to Remark 7.1, every vari-able nevm with m =2 J 
an be approximated by the squared norm of a Gaussian randomve
tor with the same distribution as ��m . And thus, it is true for nev(M+1) . This yields, inparti
ular, that the (1 � �) -quantile evaluated from the distribution of nev(M+1) appliesup to the approximation error to nbv(M+1) . It follows from Theorem 3.1 that the error ofapproximation of nbvm by j��mj2 
an be bounded by n(!2n+!nÆn) � C 0n�1=6(log n)5=6 for
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onstant C 0 . Therefore, at least for suÆ
iently large n , the approximation error issmall and the assertion of the theorem follows.7.10 Proof of Theorem 4.3Let A be the random set des
ribed in Theorem 3.1 with P (A) � 1� 3kn=n . In view ofTheorem 4.1, it is suÆ
ient to prove that P (
M 6=M j A) � �+ 3M=n.On A it holds bvm � Æ2n for all m =2 J and bvm > (rÆn)2 for all m 2 J and r = s1 .Thus bv(M) > (s1Æn)2 for all M�M and bv(M+1) � Æ2n . For every M < M , we resamplefrom the model having pre
isely M nonlinear regressors with bvm being the `true' measureof nonlinearity for every m 2 bJM .Appli
ation of Propositions 7.1 and 7.2 with � = 0 to this arti�
ial models and againTheorem 4.1 with r = 1 ensures that on a set eAM with P ( eAM) � 1 � 3=n , every evmfor m =2 JM ful�lls evm � Æ2n . Hen
e, ev(M+1) � Æ2n on eAM and the same holds for the1 � � quantile of ev(M+1) provided that � > 3=n . Therefore, for every M < M , thehypothesis M �M will be reje
ted on the interse
tion A \ eAM . This yieldsP � 
M < M j A� � 3(M � 1)=n: (7.12)Next the de�nition of 
M implies the in
lusionf
M > Mg � fbv(M+1) > t�(M)g;where t�(M) is evaluated in the resampling pro
edure with M = M . Applying nowTheorem 4.2 we get, using also (7.12), the desired bound for P (
M 6=M), and the theoremfollows.Referen
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