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Abstract. We establish large deviation principle for the family of vector-valued
random processes X, & — 0 defined by ordinary differential equations (under
0<k<1/2) . .

= F(X[) +e' PG (X))Wy,

where Wf = 571/29(&/5): & is a vector-valued ergodic diffusion satisfying, so
called, “recurrence condition” and g is a vector-function with zero barycenter
with respect to the invariant measure of (). A choice of ¥ < 1/2 provides the
rate function of Freidlin — Wentzell type.
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1. Introduction

Large deviation principle (LDP) is a powerful tool of asymptotic analysis
for various stochastic systems. A lot of important results in LDP are known
for systems governed by Wiener process. In many applications Wiener process
is only an approximation, in central limit theorem scale, for some intricate phe-
nomena and a priori is unclear that such type of robustness remains valid in the
LDP scale as well.
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The LDP in C ) (R’) is known from Freidlin and Wentzell, [14], for R’
valued diffusion with Wiener process W; and “diffusion parameter” Y (positive
definite (£ x £)-matrix):

dz§ = F(x5) dt + eG(z5) T2 dw,

g = Xo.

It is characterized by the speed ¢ and rate function

/|| X = F(X) g1 (x,) dt, X €3 (1.1)

otherwise,

where § = {X C 00 dX; = Xt dt, Xo = arg}, * is transposition
symbol, Q(z) = ( ) G* ( ) is nonsingular matrix, and || - ||g-1 is L?-norm:

[zllg-r = v/, Q")

If (27)>0 is an approximation for a smooth process (X;)¢>0 with
AX; = (F(X7) + VEG(XP)Wy) dt, (1.2)

where W7 is “wide-band noise” so that W; = fot W? ds converges in distribution
sense, as € — 0, to Wiener process with the diffusion matrix Y, a natural
question is important: may families (2f);>0 and (X7 );>o share the same LDP?
In general, the answer is negative. However, under certain natural restrictions
a result might be positive and this is the problem under consideration.

We assume that

WtE = %g(gt/s)a (1.3)

where & = (&)i>0, {0 = %0, is an ergodic R%valued diffusion with respect to
vector-valued Brownian motion B; with d independent components:

dft = b(ft)dt+a(§t) dBt, (14)

and ¢(z) is a vector-valued function such that

[ s@mtd =o. (15)

R4

where p is the invariant measure of £. Due to the above-mentioned remark on a
closeness of distributions for (W) and (W;), our approach to LDP examination
exploits ideas from proofs of functional central limit theorems (FCLT) based
on a method of corrector (see, e.g., the papers by Papanicolaou, Stroock and
Varadhan [29], Ethier and Kurtz [12], Bhattacharya [6], Pardoux and Vereten-
nikov [30]). This method uses the Poisson equations

Eui:—gi, ’i:l,...,d, (16)
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where g;’s are entries of g and

o 1 \ 8?2
L= Xi:bi(x)a—% +3 sz:(aa )ij (x)iaziaxj

is the diffusion operator of £. Under “recurrence conditions”: (Ay) in Section 2
(see [18] and also [38]) (1.6) possess unique solutions (up to additive constants) in
the class of functions with Sobolev’s partial second derivatives locally integrable
in any power and a polynomial growth. Henceforth

Ou  Owm
t Ox1 Oxzy Vuy
1/} = s \I’ = = . (17)
g Oua  Oua Vug
63:1 o Ba:d

By embedding theorems [20], all entries of the matrix ¥ are continuous func-

Y

tions. So, by Krylov’s generalization of 1t6 formula (see [19]), applied to 9(&;.),
we find the Poisson decomposition for e ~*/2 fot 9(&s)-)ds (= W¢):

Wi = e (1(20) — 9(&y2)) + M, (1.8)

where .
Aﬁz/m@md@aaﬁ&m (1.9)

0

is a continuous martingale with

<M5>t = \I’(fs/s)a(fs/e)a*(fs/s)q’*(fs/g) ds (110)

o .

the predictable quadratic covariation matrix-valued process. At the same time,
by the Bogolubov homogenization principle (see e.g. [14]), for any ¢ > 0 we have

(M?), 225 Tt, with
T = /\Il(z)a(z)a*(z)\I!*(z)u(dz). (1.11)
Rd

This convergence provides the FCLT: (M )0 la—“;]> (YY2W;) >0 for vector-
>0 >

valued Wiener process (W;)¢>o with independent components (see e.g., Chap-
law

ter 8 in [27]) and also (W} ):>o T~ (TY2W,)4>0, since /2 (1 (z0) — V(&:))
>0 >
is asymptotically negligible in € — 0.
It may seem that families (¢'/2W;);>0 and ('/2Y/2W,);>¢ share the same
LDP. Unfortunately, arguments valid for FCLT fail for LDP setting as far as
VEWF =e(1(&) — ¢(&/.)) + VEM; and

e(¥(&o) = ¥(&/-)) and e(M"),
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have the same smallness in e and, even if the LDP holds true for (W¢);>0, due
to an influence of &(¢(z0) — 1(&/.)), it is far from LDP for (e'/2Y'/2W})i>0
(see examples in [13] and [22]).

To keep the same LDP as for (e'/2Y'/2W});>¢ does, following Bayer and
Freidlin [3], we replace €'/2 by €'/27% 0 < k < 1/2. Then we have

AR = € ((z0) — () +EV2TEM]

and
51*"(@/)(20) — 1/)(&/5)) is smaller than 51*2"<M5>t ine — 0.

Now, it might be expected that (¢'/2~*W¢), (e'/>~*My), (e*/2T/2~*W;) share
the same LDP.

Thus, we deal with LDP of a moderate deviation type (shortly, MDP). The
MDP evaluation results are well known for many settings: see the papers by
Borovkov, Mogulski [4, 5], Chen [8], Ledoux [21] (processes with independent
increments); Guillin [16,17] (averaging principle and MDP); Dembo [9] (martin-
gales with bounded jumps); Dembo and Zajic [10] (functional of empirical pro-
cesses); Dembo and Zeitouni [11] (iterates of expanding maps); Liptser [23] (sta-
tionary process and MDP); Liptser and Spokoiny [28] (MDP for integral func-
tionals of diffusion processes); Puhalskii [35] (queues in critical loading); Chang,
Yao, Zajic [7] (queues with long-range dependent input); Wu [39] (Markov pro-
cesses) and [40] (Hamiltonian systems).

In accordance to given above comparative analysis for

(51/2Wf) and (51/2_“Wf)

we restrict ourselves by the LDP examination for X° = ((X§);>0,& — 0) when
X7 solves an ordinary differential equations (compare (1.2))

Xf = F(X;) + Y7 =G(X0)WE, (1.12)

where W is defined in (1.3) and 0 < k < 1/2. We show that X¢ shares the
LDP with a family X¢ = ((Xf)tzo,&f — 0) of diffusion type non-Markovian

processes defined by the Itd equation with respect to the continuous martingale
M; defined in (1.9):

dX; = F(X{)dt 4+ /2 *G(X]) dM;, (1.13)

subject to 5(5 = xg. So, the original problem is reduced to LDP examination for
diffusion type processes with “stochastic homogenization” of diffusion parameter
(see (1.10)). If G is a constant matrix, related LDP results can be found in
[2,36], and also in Example 7.3 in [32]. In the case considered G = G(X'f), so
that the direct use of the above-mentioned results is not applicable. We apply
Theorem 2.3 from [33], which allows to establish in this case that X shares the

LDP with a family X¢ of Markov diffusions
dX; = F(X{)dt +e'/* *G(X{)Y'*d(\/eB,).)

XSZCE(]
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if the matrix Q(z) = G(z)YG*(z) is nonsingular for all z € R

We include the case of singular matrix Q(X;) into consideration as well and
show that the LDP remains valid, under additional condition, and the inverse
matrix Q! is replaced by pseudoinverse one QF. The proof of this result uses
some regularization procedure having an independent interest.

The paper is organized as follows. In Section 2, the assumptions are given
and main results are formulated. The Poisson decomposition for an integral
functional of Markov processes is given in Section 3. Sections 4-6 hold all
proofs. Some auxiliary results are given in Appendix.

2. Assumptions. Main results

2.1. Assumptions

Equations (1.2) and (1.4) are subject to fixed zy and 2y respectively. Hence-
forth, || - || is Euclidean norm. If z is vector with entries x(1),...,z({) write

2] = Yiy |2 ().

(Ap) Entries of F' are continuously differentiable functions; their partial deriva-
tives are bounded; particularly for some constant K > 0

imu) g(uim).

(Ag) Entries of G are bounded and twice continuously differentiable functions;
their partial derivatives are bounded.

(A,) Entries of o are bounded and Lipschitz continuous functions;

inf inf (00*(z)z,2) > 0.

T z:fz]|=1

(Ap) Entries of b are locally bounded functions; there exist positive constants
C, r and a such that for |[z]| > C

b(x), =) < —rlz]|®.
( ||a:||)

(A,y) Entries of g are measurable functions satisfying (1.5); with a from (Aj)
and some 3 < 0 there is a constant C' > 0 such that

lg(2)|l < C+]z[))
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2.2. The LDP

Denote by Q% (z) the Moore — Penrose pseudoinverse matrix (see, e.g. [1]) for
Q(z). Parallel to § = {X € Cg o) (RY) : dX, = X,dt} introduce (henceforth 7
is a unite matrix)

~:gﬂ{ / dt:O}. (2.1)
{(QQ*(X:)~T)(X:~F(X,))#0}
Set (compare (1.1))

X, - F(Xy) ydt, X €5,
. / | X0 = F(X) 30 xy dt, X €3 )
00, otherwise.

We examine the LDP in C[O’OO)(RE) supplied by the local uniform metric

poo(X' II 22 n lApn(X' X”)),
n=1
where
X' X") =su X)) - X'G)|, T>0 2.3
pr( t<52| ] (2.3)

and X{(4), X{'(i)’s are components of X}, X/’ respectively. We follow here the
standard Varadhan’s definition of the LDP, [37].

Theorem 2.1. Under (Ar), (Ag), (4s), (As), (Ay) and (1.5) the family (X¢),
€ — 0, defined by (1.12) with W§ from (1.3), obeys the LDP with the speed
e!=2% and rate function (2.2).

Remark 2.1. Theorem 2.1 serves the MDP in the context of Wu [39] and Guil-
lin [16]
t/e

x; = [ (e ds

0
Under (A,) the MDP holds with the speed ! 2% and rate function

17 -
— [ 1 Xe||Z4dt, X
J(X) = 2/” tlly+dt, € 3,
0

00, otherwise.

Notice that non-singularity of Y is not required. Moreover under @ > 1 and
f =1 — « the function g might be taken unbounded while in [39] and [16] g is
bounded.
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~

Theorem 2.2. Let (X[)¢>0 be defined in (1.13). Under the assumptions of

Theorem 2.1 the family X = ((X'E)tzg,s — O), obeys the LDP with the speed
e!=2% and rate function (2.2).

2.3. Preliminaries

In this section, we briefly describe methods for proving Theorem 2.1 and 2.2.
It is obvious that the statement of Theorem 2.1 holds true provided that
Theorem 2.2 is valid and for any 7> 0 and n > 0

lim ' ~**log P (pr (X°, X°) > ) = —cc. (2.4)
The proof of Theorem 2.2 uses Puhalskii’s result (Theorem 2.3 in [33], see
also [34]). In accordance to it, Theorem 2.2 holds if
1) Q(z) = G(z)YG*(x) is uniformly nonsingular in z matrix;
2) fast homogenization of diffusion parameter holds: for any 7" > 0, n > 0
¢

221(1]6172K log P (fgg H / [G()?j){d(M5>s —Tds}G*(X?)] H > n) = —0o0.
’ (2.5)

For singular Q(z), the statement of Theorem 2.2 is proved with a help of
mentioned in Introduction regularization procedure.

3. Poisson decomposition

Recall that £ and p are the diffusion operator and invariant measure of £
respectively. Consider the Poisson equation

Lu = —f, (3.1)

where f is any entry of g. Pardoux an Veretennikov (Theorem 2 in [30]) proved
that, under (A;), (As) and (Ay), (3.1) possesses solution with properties (Vu

is the gradient of w): if for some § < 0 there is C' > 0 such that ||f(z)|| <
C(1+ ||z]|)P**=", then

u(z)] < ngp{\f(Z)\(l +lzll) et}

IVu()l| < (1 + || (F+o=07),

In the sequel, we shall consider only centered solutions, i.e. fRd u(2)u(dz) =0,
which is unique in the above described class. It is proved in [30] that Sobolev’s
partial second derivatives of u exist and are locally integrable in any power. So,
by Krylov’s generalization of the It6 formula, [19], we find

t t

u(&r) = ulz0) + / Cu(es) ds + / Ve u(é,)o (&) dB,

0
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and, due to (3.1), we get the Poisson decomposition

t

/f £.) ds = u(z) — u(&) + /V*u(fs)a(fs)st. (3.2)

0

4. Proof of Theorem 2.2. Nonsingular Q

4.1. Fast homogenization of diffusion parameter

It suffices to prove (2.5) in a coordinate form. By (1.10)
d<ME>S = \P(Es/s)a(gs/s)a*(Es/s)‘l’*(gs/s) ds.

Since entries of G()?i){d(ME)s - Yds}G* (X';) have the following structure:
h(X2)q(é,).)ds, we shall show that

11m cl- 2H10gP sup‘/h q(&s)e) ds‘ > n) —00. (4.1)
—0 t<T

By (Ag), h is bounded, twice continuously differentiable and its partial deriva-
tives are bounded. By (A,) and the boundedness of ¥, the function ¢ is
bounded. Notice also that (1.11) provides

/ a(=)u(dz) = 0.
Rd

To establish (4.1), we use a decomposition ¢(z) = ¢'(z) + ¢"'(z) with

' Q(Z)a ||Z|| <m, / '
- d dz) =
/() {0, hsm [ i
Rd

For m large enough, ¢’ with desired properties exist. In addition, ¢ = q — ¢’
possesses the property
" (2)] < CuI(||2]| > m),

where C,, is some constant. If suffices to show that

lim el™ 2’ilogP sup‘/h q (&)e) ds‘ > 77) —00 (4.2)
¢<T

lim &' 2% log P (/I(Hft/E)H >m)dt > 77) = —00. (4.3)
e—0
0
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4.1.1. Proof of (4.2)

For verification of (4.2) we apply the Poisson decomposition. Since ¢' is
bounded and compactly supported, the Poisson equation Lu = —¢q' possesses a
bounded solution » with bounded gradient Vu. Then

t

/ ¢/ (6) ds = u(zo) — u(€) + / V*u(£,)o(&,) dB,

0

and so
cultyye) = ulzo) — / 0 (E) ds +VE / Veule,)o(E).) d(VEB,.).
0 0

By the Ito6 formula

~

t t
~ ~ 1 ~
h(XtE) = h(XS) + / hé‘ (X.fvfs/s) ds + EEI/Q_H / h(XsEags/s) d(\/ng/s)a
0 0

where h.(z, z) is a function of arguments x € Rl, z e RY, depending on param-
eter €, and b is vector row of the same arguments. By (Ar), (Ag) and (A,),
the function h.(z, z) satisfies the linear growth condition

16 (2, 2) || < r(1+ [|l]]) (4.4)

with a constant r independent of z and entries of ) are bounded. Now, applying
the It6 formula to eh(X§)u(&;).), we find

t
Eh( ) (ft/s) = Eh 17(] h fs/s
o

t

+ \/g/h()?sg)vu(fs/s)a(gs/s) d(\/EBS/E)

0

t
+5/u(£s/s)h5()?ss’£s/5) ds
0

t
1 —x e
e / (€, ) (X2, 6, )) AM:
0

t

/b stfs/s) (gs/s) (fs/s)

0

N)I»—A
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Set

NtE = Ek/h(fg)vu(fs/s)a(fs/e)d(\/ng/E)
0

t
42 [ (e n (X5 6 anes.
0

Since h, u, Vu and h are bounded and b, satisfies (4.4) with a generic constant
r, we have

t
sup /h 5 "(&s/2) ds‘ < ret N(1-1—sup|)/(\'f‘) +e/2Fsup INF|. (4.5)
<t ) t<T t<T

With a help of Lemma A.1 (see Appendix), it is readily to derive that

lim lime'™*%logP ( sup|XE| > () = —c0.

C—00e—0

Hence, the proof of (4.2) is reduced to
lim e' 2% log P (/2" sup | Nf| > C) = —cc.
e—0 t<T

The process N§ is a continuous martingale with d(N¢); < re*dt, so that the
desired result is implied by Corollary A.1 to Lemma A.1. |

4.1.2. Proof of (4.3)

Introduce a nonlinear operator D acting on twice continuously differentiable
function v as

1
Du(z) = Lo(z) + §||Vv(z)a(z)||2. (4.6)
We apply D to
ooy TP
1+ ||z]]
The gradient
212+ [12]) =
Vo(z) = ——F——— 5 ——
S P R E

is bounded (]|Vu(z)|| < const, so ||[Vv(2)a(2)||* < const) and the boundedness
of the second partial derivatives of v is readily verified.
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Set Uf = v(&).) — v(zo) —e™! fot Du (&, ) ds. By the It6 formula

™ | =

V*’U(gs/s)a(gs/s) d(\/ng/s) + /(E - D)v(fs/s) ds

=

=

o O—

t
V*’U(gs/s)a(gs/s)d(\/ng/s) - 2_16/||vv(€s/5)0-(€s/5)”2d5
0

. . 1 . .. ;
= “continuous mart1nga1e—§ of quadratic variation process”.

Hence, Z; = exp (Uf) is a positive continuous local martingale with Z§ = 1 and
supermartingale as well (see Problem 1.4.4 in [27]). Then E Z5 < 1. So, with

%= {/Tz(nft/all 2 m) dt 2 ”}

we have 1 > E Iy Z5%. In the latter inequality, we replace Z% by its lower bound
on A. With Av := Y (00*);;v};, write Lv(z) = Vv(2)b(z) + Av(z)/2. Then

(see (4.6))

2+ [I2[)
(1 +1z[))?

Recall || Av(z)]| and ||Vv(z)o(z)]|| are bounded and by (Ap) for ||z|| > C we have
2*b(z) < —r|]z||**t® with » > 0 and a > 0. Hence

Du(z) = 2*b(z) + %Av(z) + %HV’U(Z)G’(Z)HQ.

sup Duv(z) =0 < oo, lim inf (=Du(z)+v) = 0.
2€R4 Yo ||z)>y

We give the lower bound for Z&. expressed in terms of ¥ and (—Duv(z)+v). With

m such that 9T < H i‘?f (= Du(z) + ©)n, write
z||>m

T
log Z5: = v(éay:) ~ o(za) - - [ Do(éyy.)ds
0

T
> o) = 27+ 2 [ 1(lell > m) (= Doteeye) +7) ds
0
> —wv(z) — 'ty 1 inf (—Du(z)+0)n := logZ..
= £ £ ||z]|>m

Since obviously 1 > E Iy Z, and Z, is nonrandom, we find
1 /. . ~
e 7 log P (A) < &' " v(z0) + - (vT — inf (—Du(z)+ v)n) —— —00.
gr llz][>m €0
O
Thus, for nonsingular @) the statement of Theorem 2.2 is valid. O
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5. Proof of Theorem 2.2 for singular Q

5.1. Preliminaries

In this section, Q(X;) is not assumed to be nonsingular for any X;. De-
spite (2.5) remains to hold, the statement of Puhalskii’s Theorem 2.3 from [33]
is not longer valid. So, we apply another way for proving Theorem 2.2 which
based on obtained LDP result for nonsingular Q.

The Dawson— Gértner theorem (see e.g. [11] or [31]), adapted to the case
considered, states that announced LDP for family Xe holds, if for any 7" > 0
the LDP for the family (X)7 = ((X})o<t<7,¢ — 0) holds in the metric space
(Cpo,1)(R"), pr) with the speed ! 2% and rate function (compare (2.2))

T

1 . 9 ~
0

o,

otherwise,

where 7 is the restriction of § on [0,T]. The proof of this statement requires
the verification of exponential tightness with speed ¢! ~2% and local LDP with
the same speed and rate function Jr: for any X € Cjp m (Rl)

lim lim &' ~*log P (pr(X*, X) < §) > = Jr(X)z (5.2)
d—0e—0

and . R
lim lim £' " log P (pr(X°®, X) < §) < —Jr(X). (5.3)
d—0e—0

5.2. Main lemma

With some v > 0 we introduce a process

t
Xi7 =m0+ /F(X';ﬂ) ds + />R M (5.4)
0
with
t
M = /G(X';ﬂ) dM: +~'/?B,, (5.5)
0

and (Et)tzo the standard vector-valued Wiener process (of suitable size) inde-
pendent of (&)>o0.

Lemma 5.1. Under the assumptions from Section 2, for any T > 0, > 0

lim lim &' 2" log P (pT()?E’V,)?E) > 1) = —o0.

¥—0e—0
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Proof. Set A5 = X7 — X£. Due to (1.13), (5.4) and (5.5) we find

t
a7 = [ (P(R27) - F(%D) ds
0

t

~

veios [ (G(R67) - GR) A + BB (o)

0

Denote |A77| = Zle |A;7(7)]. Since entries of F' and G are continuously
differentiable and their derivatives are bounded, entries of

(F(X:) - F(X)))
257

(G(X27) - G(X7))
A3

f(s) = and g(s) =

are well defined and bounded. Now, we may rewrite (5.6) to
t t
AP = / | A |fsds +&'/7" / |ASYANE + €' /27Ry 2By, (5.7)
0 0

where Nf = fot gs dM?: and entries Nf(i) of Nf are continuous martingales
with the predictable quadratic variation processes (N¢(i)); absolutely continu-
ous with respect to dt with bounded densities, i.e.

d(N* (i), < rdt (5.8)

(henceforth r is positive generic constant). Owing to [|A;7||? = (A77)*A77,
by the It6 formula we find

t t
[ /Q\Ai’” (AF7)75(s) d5+61/2*"/2\Ai’7 (AF7)"dNg
0 0

t t
+51/2”‘71/2/2(A§”)*d§t+51’2”/|A§’”|2d(trace(N5)s)
0 0

+ el 7250t (5.9)

Letting 0/0 = 0, introduce i*(s) = 2|AS7|[(AS7)* [ [|ASY]1%,i(s) = 2i(s)f(s) and
t(s) = |ASY|2 /||AZ7]]2. Obviously, t(s), j(s) and entries of i*(s) are bounded.
Set

t
U(t) = et/27rq1/2 / 2(AS)V*dB, + ' 2Lt
0
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With U(t), we rewrite (5.9) into a linear It6 equation with respect to ||A;7||%:

AT = / IAS|2{j(s) ds + /2 (s) AN

+ &' 7% () d(trace(N®),) } + Ut (5.10)

Since (N¢, B); = 0, applying the Ito formula to & fo ;1 dU(s), with

t
& = exp / s)ds + e'/27"*(s) dN¢
0

L () dN)i(s)}),

we find ||A77|? = & fo -1 dU(s). The statement of lemma is valid, if

+ &' 72F¢(s) d(trace(N®),) —

lim lim e' —2% logP(sup AT > n) —00. (5.11)

v¥—0e—0

For (5.11) to hold, it suffices

lim lim e'~%%log P (sup E > C’) —0Q,

C—00e—0 t<T

lim lim e!'~%%logP (supE > C) —00,

C—00e—0 t<T

lim lim ' %% log P (sup (AR C’) —o0, v >0. (5.12)
C—o00e—0

In fact, if (5.12) is valid, (5.11) is reduced to: for any C > 0

lim lim ' ~%* log P ( 12=821/2 gup ‘ /S;IQ(A?”)* (5.13)

v¥—0e—0 t<T

sup& < C, sup& ' <O, sup||ATT|7 < C) = —00.
t<T t<T t<T

Further, on the set {sup,cp& ' < C, sup,cp [|A%7]7 < C}, the integral

fot E712(AS)* dBy coincides with
¢
I, /IA58;12(A§W)*d§s,
0

where A; = {sups,gs(‘)s_,l < C, supy, [|A®7]|7s" < C}. Hence, (5.13) is
reduced to

lim Tim &'~ 2"”"logP( /2= Nsup ‘Mt| > 1/2) = —00, (5.14)

v—0e—0
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where M; = fot IA55;12(A§77)*d§3 is continuous martingale, (M )7 < const So,
the validity of (5.14) is established with a help of Lemma A.1.

The first and second conditions from (5.12) are implied by Lemma A.1. The
proof of the third condition from (5.12) is valid by remark to Lemma A.1 and
by A5 = X770 — X7, O
5.3. The LDP for X7

The family X7 = (()?E’V)tzg,s — 0), defined in (5.4), (5.5), obeys the
LDP, since the matrix
Q"(z) = Qz) +17 (5.15)
is uniformly in z nonsingular. This LDP is characterized by the speed g!=2
and rate function

17 )
J‘Y(X) = 5 0/ ||Xt - F(Xt))”(Q"/(Xt))—l dt, X € S,
0 otherwise.

Parallel to Jr(X) introduce

T
2(X) = %/ | X = F(X0) [[{gn)-1(x,) dt, X €8,
oo(,] otherwise
(here §r is the restriction of § on [0, T1).
Lemma 5.2.
1) lim JHX) = Jr(X), X € Cjoy(RY), T > 0.

2) The function Jr(X) is semicontinuous from below.

Proof. 1) If X ¢ Fr, then J.(X) = oo as well as Jp(X) = co. Let X € 3r\3r.
Then Jr(X) = co. On the other hand, since

X, - F(Xt))H?Qv(Xt))’l
increases in 7 | 0, by the monotone convergence theorem

T
1 .
. y _ . 2 _
tim J7(0) = 5 [ i 1 = PO gry v, = o
0
Let X € §T. It suffices to show

iig})llX ~ F(XOlfg)-1(x) = 1X = F(X0)[g+(x,)-
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Notice that QQ* (X;)(X, — F(Xy)) = (X; — F(X;)) provides
IX = F(X0)I[{gv)-1x,) = 1Xt = F(X) B+ @v)-100+ (x4

and it remains to check that lim,_oQQT(Q")™'QQT = QF. With S the
orthogonal matrix (S* = S~!) transforming @ to a diagonal form: S*QS =
diag@ we have S*Q7*S = diagQ™ (see e.g. [1]). So, it suffices to prove

lim ST T'QETS = SQTS*. (5.16)
Y=

+

The right-hand side of (5.16) is the scalar matrix with nonnegative entries ¢;;,

where ¢;; are entries of diag@) and

q+ — qz’_ila qz_zl > 07
" 0, otherwise.

At the same time the left-hand side of (5.16) is a scalar matrix as well
SQQT(QM)T'QQTS" = diagQ diagQ™ (vZ + diagQ) ' diagQ diagQ™

with entries (¢;iq;;)%/(v + ¢11) = ¢;;, v = 0.

2) As was mentioned above, J7.(X) is increasing in v | 0. This remark
and 1) provide J(X) < Jr(X). Let X", n > 1, converge to X in the metric
pr, i.e. lim, pp(X™, X) = 0. Since J7. is semicontinuous from below, we have
lim Jr(X") > lim J7.(X") > J7(X) = Jr(X), 7 —0.

n

n

5.4. The LDP for the family (X\E)T

Obviously, Xen obeys the LDP in the metric space (C[O,T] (RZ),/JT) with
the speed ¢! ~2% and rate function J7.. Hence, this family is exponentially tight
in (C[O’T](Rl),PT) with the speed ¢'~2%. The latter remark and Lemma 5.1
provide the exponential tightness in the same metric space and speed for family
(X)7.

We apply the LDP result for (X)) = (()A(E’”)OStST,E — 0) to establish
the lower bound in local LDP for ()/(\'E)T.

Lemma 5.3. Under the assumptions from Section 2, for any T > 0 and X €
Cpo,7(R) ~
lim lim &' ~**log P (pr(X*®, X) < 8) > —Jr(X).

d—0e—0

Proof. By the triangular inequality

pT()?EaX) < pT()?E7’va) + pT()?E”Ya)?E)
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we have
P(pr(R0,X) < 2) < P (pr(XX) — pr(X°, 89 < 3)
< P (pr(R77.X9) > ) +P (pr(X7,X) <)
< 2P (pn(X7, %) > g) /P (pr(X°,X) <4)}
and so

{EliE)sl_%logP (pT()/(\'E”,X'E) > g)}

\/ { im e 1og P (pr (X7, X) < 8) }

e—0
. 1-2k ve 6

> lim &'~ log P (pT(X 7 X) < —). (5.17)
e—0 2

The LDP for the family (X=7)r provides

lim e! %% log P (pT()A(E’V,X) < g) > —

e—0 -

{erT(;/I,lX)<6/2} (V) (2 =J7(X))

while by Lemma 5.2 lin}] J7(X) = Jp(X). Hence
Y=

lim lim &'~ log P (pr (X7, X) < 2} > = Jr(X).

v—0e—0 -

Now, owing to (5.17)

{ fim Tim &' 2% log P (pT()/(\'s,v,X'E) > g)}

v—0e—0

{ lim &'~ 1og P (pr (X7, X) < 9) }

e—0

> lim lim &1~ 2% log P (pT()?EW,X) < —) > —Jr(X).

¥—0e—0

By Lemma 5.1

Tim Tim &' 2% log P (pr(X=7, X°) > §/2) = —oc.

v¥—0e—0

Consequently,

lim lim &'~ 2" log P (pr(X°, X) < 8) > —Jr(X)

d—0e—0

and it remains to notice that P (pT(X'E,X) >46)>P (pT()/(\'E,X) < 4). O
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5.4.1. Upper bound in the local LDP for (X\E)T

Obviously, the case Xy = xq only has to be analyzed.
Denote (see (2.5))

AT = sup H/ XE’”’ ){d( M5> (Y +~Z)ds}G*( XE’” H > 77}
t<T

A7 = 0\ 2% and introduce the piece-wise constant vector-valued function
A(8), A(s) = AM(sk), Sk—1 < 8 < S
Proposition 5.1. Under the assumptions from Section 2, for any X from

C[O’T](Ré) with X(] = Zo

lim ' 2" logP (A7, pr(X=", X) < 4)

e—0

< Ki(AN)§ + Ka(M)n

T
/ )(dX, — F(X s)ds)—%A*(S)QW(XS)A(S))CJS, (5.18)

where fo $)dXs = Y Msk) (X5, — Xs,_,) and K;(X), i = 1,2, are positive
constants dependmg on A\ and independent of § and .

Proof. With M;"" defined in (5.5) let us introduce a positive continuous local
martingale
t

27" = exp (7= H//\ JAM;T — %//\* AM=7),A(5)).
0

By Problem 1.4.4 in [27], Z;” is also supermartingale, E Z;7 < 1. Taking into
account
dXs7 — F(X7)ds
el/2—k
d(M=7)s = G*(X;M)Q (X3 )G (X7 7)ds,

AM: =

it is readily to derive that on the set {ﬁs’v,pT()A(fw,X) < 4} the random
variable Z77 is bounded from below by a positive nonrandom parameter
1
Z. = exp (E [K1(/\)5 + K> (M)
T

_ / (M () (dX, — F(X,)ds) - %A*(S)QW(XS)A(S)) ds]).

0

Obviously, we have 1 > Z*P(ﬁg’w, pr(Xe7, X) < §) and the result is done. O
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Lemma 5.4. Under the assumptions from Section 2, for any T > 0 and X €
Co,7(R)

T o 1—2K AE. < < - .

,%li%gh_%s logP (pr(X®, X) <6) < —Jr(X)
X) <8) <P (A7) +P (A7, pr(X°, X) < 6) and

Proof. The use of P (pr( )
7, X) < pr(X=7,X#) + pr(X?, X) provides

Xe,
triangular inequality pr ()/(\'E
P (pr(X*,X) < 9)

P () + P (T, pr (£, X) —

(X7, X%) < 6)
0
2

IN

—e,

< P)+P (U

3{ P(A7)\/P (ﬁg’”,pT()?M,X) < g) \/P (pT()?E”,)?E) > g) }

s Sen O J
Topr(X0,X) < 2) +P (pr(X77, X9 > 2)

IN

By (4.1) EliE)sl’“ log P (A7) = 0. Taking also into account Proposition 5.1

we find

lim e' =2 log P (pT()A(E, X) <é)
e—0
)

< {[KiW3 + K00

T

- / (/\*(s)(dXs ~ F(X,)ds) — %A*(S)QW(XS)A(S))CZS]

\/EliE)sl_%logP (pT()/(\'E”,)?E) > g)}

By Lemma 5.1 m]sl’wlogP (pT(X'EW,X'E) > 6§/2) = —o0, v — 0. Hence,
E—
whereas Q7(X;) = Q(Xs), v — 0, it holds
@)51*2" log P (pT()?E,X) < 6)
e—

< [K g+ Ko
T
_ / (3 () (02X, — P(X,) ds) - %/\*(S)Q(Xs)/\(s))ds]

and in turn

lim lim £' 2" log P (pT(X'E,X) <)

6—0e—0
T

< [Kaon = [ ()X, = FOX) ds) = 53 (9Q(XIN)) ds].
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Moreover, since the left-hand side of this inequality is independent of 7, it also
holds

lim lim ' " log P (p ()A(E,X) <6)

d—0e—0

T
<= [ (FEX - FOL) - S0 QNG )ds. - (5.19)
0

Finally, minimization of the right-hand side of (5.19) in A\ gives a lower bound
—Jh with Ji(X) = oo for X € Cpq(R") \ §r (see, e.g. Theorem 6.1 in [25])
and for X € g7

- T
T = / sup (1/* (Xs _ F(Xs)) — %V*Q(Xs)l/)ds = %/HXS — F(Xs)||22+(X
0

vER!
0
Thus Jéﬂ = JT(X) O
6. Proof of Theorem 2.1

In this section, we verify (2.4). By (1.8) we have

t
VPR = / 9(6,/0) ds = X[ (z0) — h(€1)0)] + €/ ME.
0

The random process 1 (&;/.) is a continuous semimartingale, so that the Ito
integral V7 = gl " fot G(X5)d(&s)e) is semimartingale as well. With V7 (1.12)
is transformed to

t t
Xf:a;o+/F(XE ds +&'/*~ "/G XE)dM: - V¢, (6.1)
0 0

Lemma 6.1. For any T > 0 there is K > 0, so that p7(V*,0) < KTe! 2%,

Proof. Tt suffices to give the proof for any entries V(i) of V5. Write

/ZG” )duj(é,).). i=1,....d.
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By the It6 formula, applied to ' =% 37, G (X7)u;(&/2), we get

Vi) = —Elf'iZGij(Xo)uj(Zo)+€17”ZGij(Xf)Uj(€t/s)
/ Zangk Fy(X5)ds

ok 0G; ;(X; .
—e Z%GPQ(Xs)gq(fs/s)ds

0 e
and, owing to the boundedness of G;;, u;, Fp, 0Gpe/0xk, the result is done. O
Notice that pT(XE,X'E) = sup,;<r |Af], where A} = X; — X’f and |Af| =
S2¢_ As(i). By (6.1) and (1.13), it follows

t t

AS :/(F(Xj)—F()?j))ds+sl/2‘“/(G(Xf)—G()?f))dMSE—Vf. (6.2)

0 0

Set f(s) = (F(X5) = F(XJ))/IA5], a(s) = (G(X5) - G(XF))/|AF]. By (Ar)
and (Ag), the vector f(s) and matrix g(s) are well defined and have bounded
entries. Let us rewrite (6.2) in a coordinate form

t t
- / AZfi(s) ds + /7 / A2 dim (i) — Vi (),
0 0

where §;(s) and V(i) are coordinates of f(s) and V® respectively and

/ng Uip fs/s)apq(fs/s) (\/ng/s(k))

o0 Jpk

(here g;;(s) are entries of g(s)). Henceforth r is a positive generic constant.
Notice that m§ (i) is a continuous martingale with d(m®(i)), < rdt. By (Ar))
Ifi(s)| <7 and by Lemma 6.1 |V (i)| < re!~2%. Hence, for t' <t

<t

t' ‘
A% Sr[/|A§|ds+Zsl/2 "sup‘/\Aﬂdm gl 2"]
0 i=1

and by the Bellman — Gronwall inequality we have

sup |Af] <r[251/2 “sup‘/\Ai\dmf(i)‘ +61_2”].

t' <t
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Since supy <, |Af| is continuous in ¢ with |A§| = 0, we may assume that
supy <7 |Af | is bounded (otherwise a localization procedure is applied). Assum-

ing that ¢ is small enough so that p = ¢e=(1/2=%) > 1, by the Hélder inequality
it holds

‘ t
P
Esup |AL|P <P [p*” E E sup ‘ / A dmi(z)‘ +p72p}. (6.3)
< i st

Further, by the Doob inequality

t t
esup| [ 1zl amio)| < (S2) €| [ a5 dmi)|"
<t ) p—1 )

Moreover, similarly to the proof of Lemma 4.12 (Chapter 4, Section 4.3 in [26])
it is possible to establish

t t t
E\/\Agdmi(i)\p gr”/QpQ/E\Ai\”ds grp/QpQ/Esupmg,\pds.
0 0 0 U=
Thus, for U; = Esup, <, |Aj [P we get the integral inequality
t
Up <rPp 2P + rPp*P / U, ds.
0

Now, by the Bellman - Gronwall inequality we have Ur < rPp=2F exp (rPp*>~PT)
and, by the Chebyshev inequality

rPp2P exp (rpr_pT)
n” '

P (sup|Af| >n) <
t<T

Taking now into consideration that g!=2~

obtain

= 1/p and lim,_,o, rPp! 7P = 0, we

P
el=2% log P (sup|A§| > n) <logr —2logp + rp —n = —oc, € — 0.
t<T pP

A. Auxiliary results for exponential tightness

Let S and N; be continuous semimartingale and martingale respectively
with paths in Cpo 1 (R). Set

)/;E — Sts +€1/2_HNtE'

Denote by S§(i), Nf(i) the entries of S§, Nf and write V(i) = S§(i) +
'/277 N£ (i). Define |S5| = YL, S5 ()| and similarly |N¢|, [Y¢].
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Lemma A.1. Assume for some nonnegative ci, ¢a, 3

t
57 < c1+c2/ L 1Y)
0

d(N®(i))x < cgdt, i=1...,L
Then for any T > 0

lim lim &'~ log P (sup|Y | > C) —00.

C—00e—0

Remark A.1. The assumptions of Lemma A.1 are satisfied for Y7 being X7 (6.1),
X7 (1.13) and X7 (5.4).

Proof. Due to the first assumption
t
Ve <er+ e / (1+[VE])ds + /2 *sup |Nf|, t<T.
t<T
; <

Hence, by the Bellman —Gronwall inequality, for any t < T

Y7 | < expleaT) (61 + eaT + £/ sup | V7).

that is the same upper bound is valid for sup,<7 [Y;°| as well. The latter proves
the statement of the lemma, if

lim lim e!'~%*log P (sup|N5( )| > C’) = —00 (A1)

C—00e—0

foranyi=1,...,7¢.
Introduce Markov times

Ti—lnf{t N > +—— ¢ (S—L)},

ol/2—~ o1/2—x
where inf{@} = co. Owing to {e!/> *sup |M,| > C} C {75 < T}u{rs < T},
(A.1) is provided by =
lim lime'**logP (12 < T) = —oc. (A.2)

C—00e—0

So, we shall verify (A.2). With ¢ € R, let us define

2(6) = exp (6N: ) - - (N°(0), ).

By Problem 1.4.4 in [27] Z;(¢) is a supermartingale, so that E Z;s a7(¢) < 1.
Since by the second assumption <N5(i)>T < 3T, for a positive ¢ we have

¢C ¢*csT
cl/2—s 9 )

1> EX(r < T)Zoar() > P (5 <T)exp
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while the choice ¢ = C/c3Te'/>~% provides

02
£ < < - .
P (T+ - T) = €xp ( 203T51*2")
Then &' 2*log P (75 < T) < —C?/2¢,TK and (A.2) holds for “+”.
For “—”, the proof is similar. m|

Corollary A.1. Assume S; = 0 and d(N¢(i)); < cge®dt, i=1...,£, ¢4 > 0.
Then for any T > 0,n >0

lim ' =% log P (sup Y| > 77) = —00.
e—=0 t<T
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