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612 R. Liptser, V. Spokoiny and A.Yu. VeretennikovThe LDP in C[0;1)(R`) is known from Freidlin and Wentzell, [14℄, for R`valued di�usion with Wiener proess Wt and \di�usion parameter" � (positivede�nite (`� `)-matrix):dx"t = F (x"t ) dt+p"G(x"t )�1=2 dWtx"0 = x0:It is haraterized by the speed " and rate funtionJ(X) = 8>><>>:12 1Z0 k _Xt � F (Xt)) k2Q�1(Xt) dt; X 2 F1; otherwise; (1.1)where F = �X 2 C[0;1)(R`) : dXt = _Xt dt; X0 = x0	; � is transpositionsymbol, Q(x) = G(x)�G�(x) is nonsingular matrix, and k � kQ�1 is L2-norm:kxkQ�1 =phx;Q�1xi.If (x"t )t�0 is an approximation for a smooth proess (X"t )t�0 withdX"t = �F (X"t ) +p"G(X"t ) _W "t � dt; (1.2)where _W "t is \wide-band noise" so thatW "t = R t0 _W "s ds onverges in distributionsense, as " ! 0, to Wiener proess with the di�usion matrix �, a naturalquestion is important: may families (x"t )t�0 and (X"t )t�0 share the same LDP?In general, the answer is negative. However, under ertain natural restritionsa result might be positive and this is the problem under onsideration.We assume that _W "t = 1p"g(�t="); (1.3)where � = (�t)t�0, �0 = z0, is an ergodi Rd-valued di�usion with respet tovetor-valued Brownian motion Bt with d independent omponents:d�t = b(�t) dt+ �(�t) dBt; (1.4)and g(z) is a vetor-valued funtion suh thatZRd g(z)�(dz) = 0; (1.5)where � is the invariant measure of �. Due to the above-mentioned remark on aloseness of distributions for (W "t ) and (Wt), our approah to LDP examinationexploits ideas from proofs of funtional entral limit theorems (FCLT) basedon a method of orretor (see, e.g., the papers by Papaniolaou, Strook andVaradhan [29℄, Ethier and Kurtz [12℄, Bhattaharya [6℄, Pardoux and Vereten-nikov [30℄). This method uses the Poisson equationsLui = �gi; i = 1; : : : ; d; (1.6)



Freidlin {Wentzell type large deviations for smooth proesses 613where gi's are entries of g andL =Xi bi(x) ��xi + 12Xi;j (���)ij(x) �2�xi�xjis the di�usion operator of �. Under \reurrene onditions": (Ab) in Setion 2(see [18℄ and also [38℄) (1.6) possess unique solutions (up to additive onstants) inthe lass of funtions with Sobolev's partial seond derivatives loally integrablein any power and a polynomial growth. Heneforth = 0B�u1...ud1CA ; 	 = 0BBB��u1�x1 : : : �u1�xd:::::::::::::::�ud�x1 : : : �ud�xd1CCCA := 0B�ru1...rud1CA : (1.7)By embedding theorems [20℄, all entries of the matrix 	 are ontinuous fun-tions. So, by Krylov's generalization of Itô formula (see [19℄), applied to  (�t="),we �nd the Poisson deomposition for "�1=2 R t0 g(�s=") ds (=W "t ):W "t = "1=2� (z0)�  (�t=")�+M"t ; (1.8)where M"t = tZ0 	(�s=")�(�s=") d�p"Bs="� (1.9)is a ontinuous martingale with
M"�t = tZ0 	(�s=")�(�s=")��(�s=")	�(�s=") ds (1.10)the preditable quadrati ovariation matrix-valued proess. At the same time,by the Bogolubov homogenization priniple (see e.g. [14℄), for any t > 0 we have
M"�t prob:���!"!0 �t, with � = ZRd 	(z)�(z)��(z)	�(z)�(dz): (1.11)This onvergene provides the FCLT: (M"t )t�0 law���!"!0 (�1=2Wt)t�0 for vetor-valued Wiener proess (Wt)t�0 with independent omponents (see e.g., Chap-ter 8 in [27℄) and also (W "t )t�0 law���!"!0 (�1=2Wt)t�0; sine "1=2� (z0) �  (�t=")�is asymptotially negligible in "! 0.It may seem that families ("1=2W "t )t�0 and ("1=2�1=2Wt)t�0 share the sameLDP. Unfortunately, arguments valid for FCLT fail for LDP setting as far asp"W "t = "� (�0)�  (�t=")�+p"M"t and"� (�0)�  (�t=")� and "hM"it



614 R. Liptser, V. Spokoiny and A.Yu. Veretennikovhave the same smallness in " and, even if the LDP holds true for (W "t )t�0, dueto an inuene of "� (z0) �  (�t=")�, it is far from LDP for ("1=2�1=2Wt)t�0(see examples in [13℄ and [22℄).To keep the same LDP as for ("1=2�1=2Wt)t�0 does, following Bayer andFreidlin [3℄, we replae "1=2 by "1=2��, 0 < � < 1=2. Then we have"1=2��W "t = "1��� (z0)�  (�t=")�+ "1=2��M"tand "1��� (z0)�  (�t=")� is smaller than "1�2�
M"�t in "! 0:Now, it might be expeted that ("1=2��W "t ), ("1=2��M"t ), ("1=2�1=2��Wt) sharethe same LDP.Thus, we deal with LDP of a moderate deviation type (shortly, MDP). TheMDP evaluation results are well known for many settings: see the papers byBorovkov, Mogulski [4, 5℄, Chen [8℄, Ledoux [21℄ (proesses with independentinrements); Guillin [16,17℄ (averaging priniple and MDP); Dembo [9℄ (martin-gales with bounded jumps); Dembo and Zaji [10℄ (funtional of empirial pro-esses); Dembo and Zeitouni [11℄ (iterates of expanding maps); Liptser [23℄ (sta-tionary proess and MDP); Liptser and Spokoiny [28℄ (MDP for integral fun-tionals of di�usion proesses); Puhalskii [35℄ (queues in ritial loading); Chang,Yao, Zaji [7℄ (queues with long-range dependent input); Wu [39℄ (Markov pro-esses) and [40℄ (Hamiltonian systems).In aordane to given above omparative analysis for("1=2W "t ) and ("1=2��W "t )we restrit ourselves by the LDP examination for X" = �(X"t )t�0; "! 0� whenX"t solves an ordinary di�erential equations (ompare (1.2))_X"t = F (X"t ) + "1=2��G(X"t ) _W "t ; (1.12)where _W "t is de�ned in (1.3) and 0 < � < 1=2. We show that X" shares theLDP with a family bX" = �( bX"t )t�0; " ! 0� of di�usion type non-Markovianproesses de�ned by the Itô equation with respet to the ontinuous martingaleM"t de�ned in (1.9): d bX"t = F ( bX"t ) dt+ "1=2��G( bX"t ) dM"t ; (1.13)subjet to bX"0 = x0. So, the original problem is redued to LDP examination fordi�usion type proesses with \stohasti homogenization" of di�usion parameter(see (1.10)). If G is a onstant matrix, related LDP results an be found in[2, 36℄, and also in Example 7.3 in [32℄. In the ase onsidered G = G( bX"t ), sothat the diret use of the above-mentioned results is not appliable. We applyTheorem 2.3 from [33℄, whih allows to establish in this ase that bX" shares theLDP with a family eX" of Markov di�usionsd eX"t = F ( eX"t ) dt+ "1=2��G( eX"t )�1=2 d�p"Bs="�eX"0 = x0



Freidlin {Wentzell type large deviations for smooth proesses 615if the matrix Q(x) = G(x)�G�(x) is nonsingular for all x 2 R`.We inlude the ase of singular matrix Q(Xt) into onsideration as well andshow that the LDP remains valid, under additional ondition, and the inversematrix Q�1 is replaed by pseudoinverse one Q+. The proof of this result usessome regularization proedure having an independent interest.The paper is organized as follows. In Setion 2, the assumptions are givenand main results are formulated. The Poisson deomposition for an integralfuntional of Markov proesses is given in Setion 3. Setions 4{6 hold allproofs. Some auxiliary results are given in Appendix.2. Assumptions. Main results2.1. AssumptionsEquations (1.2) and (1.4) are subjet to �xed x0 and z0 respetively. Hene-forth, k � k is Eulidean norm. If x is vetor with entries x(1); : : : ; x(`) writejxj =Pì=1 jx(i)j.(AF ) Entries of F are ontinuously di�erentiable funtions; their partial deriva-tives are bounded; partiularly for some onstant K > 0X̀i=1 jFi(x)j � K�1 + X̀i=1 jxij�:(AG) Entries of G are bounded and twie ontinuously di�erentiable funtions;their partial derivatives are bounded.(A�) Entries of � are bounded and Lipshitz ontinuous funtions;infx infz:kzk=1 ����(x)z; z� > 0:(Ab) Entries of b are loally bounded funtions; there exist positive onstantsC, r and � suh that for kxk > C�b(x); xkxk� � �rkxk�:(Ag) Entries of g are measurable funtions satisfying (1.5); with � from (Ab)and some � < 0 there is a onstant C > 0 suh thatkg(z)k � C(1 + kzk)�+��1:



616 R. Liptser, V. Spokoiny and A.Yu. Veretennikov2.2. The LDPDenote by Q+(x) the Moore {Penrose pseudoinverse matrix (see, e.g. [1℄) forQ(x). Parallel to F = �X 2 C[0;1)(R`) : dXt = _Xtdt	 introdue (heneforth Iis a unite matrix)eF = F\n Zf(QQ+(Xt)�I)( _Xt�F (Xt))6=0g dt = 0o: (2.1)Set (ompare (1.1))J(X) =8>><>>:12 1Z0 k _Xt � F (Xt) k2Q+(Xt) dt; X 2 eF;1; otherwise: (2.2)We examine the LDP in C[0;1)(R`) supplied by the loal uniform metri�1(X 0; X 00) = 1Xn=1 2�n�1 ^ �n(X 0; X 00)�;where �T (X 0; X 00) = supt�T X̀i=1 ��X 0t(i)�X 00t (i)��; T > 0 (2.3)and X 0t(i); X 00t (i)'s are omponents of X 0t; X 00t respetively. We follow here thestandard Varadhan's de�nition of the LDP, [37℄.Theorem 2.1. Under (AF ), (AG), (Ab), (A�), (Ag) and (1.5) the family (X")," ! 0, de�ned by (1.12) with _W "t from (1.3), obeys the LDP with the speed"1�2� and rate funtion (2.2).Remark 2.1. Theorem 2.1 serves the MDP in the ontext of Wu [39℄ and Guil-lin [16℄ X"t = "1=2�� t="Z0 g(�s) ds:Under (Ag) the MDP holds with the speed "1�2� and rate funtionJ(X) = 8>><>>:12 1Z0 k _Xtk2�+dt; X 2 eF;1; otherwise:Notie that non-singularity of � is not required. Moreover under � > 1 and� = 1� � the funtion g might be taken unbounded while in [39℄ and [16℄ g isbounded.



Freidlin {Wentzell type large deviations for smooth proesses 617Theorem 2.2. Let ( bX"t )t�0 be de�ned in (1.13). Under the assumptions ofTheorem 2.1 the family bX" = �( bX")t�0; "! 0�, obeys the LDP with the speed"1�2� and rate funtion (2.2).2.3. PreliminariesIn this setion, we briey desribe methods for proving Theorem 2.1 and 2.2.It is obvious that the statement of Theorem 2.1 holds true provided thatTheorem 2.2 is valid and for any T > 0 and � > 0lim"!0 "1�2� logP ��T (X"; bX") > �� = �1: (2.4)The proof of Theorem 2.2 uses Puhalskii's result (Theorem 2.3 in [33℄, seealso [34℄). In aordane to it, Theorem 2.2 holds if1) Q(x) = G(x)�G�(x) is uniformly nonsingular in x matrix;2) fast homogenization of di�usion parameter holds: for any T > 0, � > 0lim"!0 "1�2� logP� supt�T  tZ0 �G( bX"s )�d
M"�s�� ds	G�( bX"s )� > �� = �1:(2.5)For singular Q(x), the statement of Theorem 2.2 is proved with a help ofmentioned in Introdution regularization proedure.3. Poisson deompositionReall that L and � are the di�usion operator and invariant measure of �respetively. Consider the Poisson equationLu = �f; (3.1)where f is any entry of g. Pardoux an Veretennikov (Theorem 2 in [30℄) provedthat, under (A�), (Ab) and (Ag), (3.1) possesses solution with properties (ruis the gradient of u): if for some � < 0 there is C > 0 suh that kf(x)k �C(1 + kxk)�+��1, thenju(z)j � C supz �jf(z)j(1 + kzk)����+1	;kru(z)k � C(1 + kzk��+��1)+�:In the sequel, we shall onsider only entered solutions, i.e. RRd u(z)�(dz) = 0;whih is unique in the above desribed lass. It is proved in [30℄ that Sobolev'spartial seond derivatives of u exist and are loally integrable in any power. So,by Krylov's generalization of the Itô formula, [19℄, we �ndu(�t) = u(z0) + tZ0 Lu(�s) ds+ tZ0 r�u(�s)�(�s) dBs



618 R. Liptser, V. Spokoiny and A.Yu. Veretennikovand, due to (3.1), we get the Poisson deompositiontZ0 f(�s) ds = u(z0)� u(�t) + tZ0 r�u(�s)�(�s) dBs: (3.2)4. Proof of Theorem 2.2. Nonsingular Q4.1. Fast homogenization of di�usion parameterIt suÆes to prove (2.5) in a oordinate form. By (1.10)d
M"�s = 	(�s=")�(�s=")��(�s=")	�(�s=") ds:Sine entries of G( bX"s )�d
M"�s � � ds	G�( bX"s ) have the following struture:h( bX"s )q(�s=")ds, we shall show thatlim"!0 "1�2� logP� supt�T ��� tZ0 h( bX"s )q(�s=")ds��� > �� = �1: (4.1)By (AG), h is bounded, twie ontinuously di�erentiable and its partial deriva-tives are bounded. By (A�) and the boundedness of 	, the funtion q isbounded. Notie also that (1.11) providesZRd q(z)�(dz) = 0:To establish (4.1), we use a deomposition q(z) = q0(z) + q00(z) withq0(z) = (q(z); kzk � m;0; kzk � m+ 1 and ZRd q0(z)�(dz) = 0:For m large enough, q0 with desired properties exist. In addition, q00 = q � q0possesses the property jq00(z)j � CmI(kzk � m);where Cm is some onstant. If suÆes to show thatlim"!0 "1�2� logP� supt�T ��� tZ0 h( bX"s )q0(�s=") ds��� � �� = �1 (4.2)lim"!0 "1�2� logP� TZ0 I(k�t=")k � m) dt � �� = �1: (4.3)



Freidlin {Wentzell type large deviations for smooth proesses 6194.1.1. Proof of (4.2)For veri�ation of (4.2) we apply the Poisson deomposition. Sine q0 isbounded and ompatly supported, the Poisson equation Lu = �q0 possesses abounded solution u with bounded gradient ru. ThentZ0 q0(�s) ds = u(z0)� u(�t) + tZ0 r�u(�s)�(�s) dBsand so"u(�t=") = "u(z0)� tZ0 q0(�s=") ds+p" tZ0 r�u(�s=")�(�s=") d�p"Bs="�:By the Itô formulah� bX"t � = h� bX"0�+ tZ0 h"� bX"s ; �s="� ds+ 12"1=2�� tZ0 h� bX"s ; �s="� d�p"Bs="�;where h"(x; z) is a funtion of arguments x 2 R`, z 2 Rd, depending on param-eter ", and h is vetor row of the same arguments. By (AF ), (AG) and (A�),the funtion h"(x; z) satis�es the linear growth onditionkh"(x; z)k � r(1 + kxk) (4.4)with a onstant r independent of z and entries of h are bounded. Now, applyingthe Itô formula to "h( bX"t )u(�t="), we �nd"h� bX"t �u(�t=") = "h(x0)u(z0)� tZ0 h� bX"s�q0(�s=") ds+p" tZ0 h� bX"s�ru(�s=")�(�s=") d�p"Bs="�+ " tZ0 u(�s=")h"� bX"s ; �s="� ds+ 12"3=2�� tZ0 u(�s=")h� bX"s ; �s="� dM"s+ 12"1�� tZ0 h� bX"s ; �s="��(�s=")r(�s=") ds:



620 R. Liptser, V. Spokoiny and A.Yu. VeretennikovSet N"t = "k tZ0 h� bX"s�ru(�s=")�(�s=") d�p"Bs="�+ "2 tZ0 u(�s=")h� bX"s ; �s="� dM"s :Sine h, u, ru and h are bounded and h" satis�es (4.4) with a generi onstantr, we havesupt�T ��� tZ0 h� bX"s�q0(�s=") ds��� � r"1���1 + supt�T �� bX"t ���+ "1=2�� supt�T jN"t j: (4.5)With a help of Lemma A.1 (see Appendix), it is readily to derive thatlimC!1 lim"!0 "1�2� logP � supt�T �� bX"t �� > C� = �1:Hene, the proof of (4.2) is redued tolim"!0 "1�2� logP �"1=2�� supt�T ��N"t �� > C� = �1:The proess N"t is a ontinuous martingale with dhN"it � r"kdt, so that thedesired result is implied by Corollary A.1 to Lemma A.1. 24.1.2. Proof of (4.3)Introdue a nonlinear operator D ating on twie ontinuously di�erentiablefuntion v as Dv(z) = Lv(z) + 12krv(z)�(z)k2: (4.6)We apply D to v(z) = kzk21 + kzk :The gradient rv(z) = kzk(2 + kzk)(1 + kzk)2 zkzkis bounded (krv(z)k � onst, so krv(z)�(z)k2 � onst) and the boundednessof the seond partial derivatives of v is readily veri�ed.



Freidlin {Wentzell type large deviations for smooth proesses 621Set U"t = v(�t=")� v(z0)� "�1 R t0 Dv(�s=") ds: By the Itô formulaU"t = 1p" tZ0 r�v(�s=")�(�s=") d�p"Bs="�+ 1" tZ0 (L �D)v(�s=") ds= 1p" tZ0 r�v(�s=")�(�s=") d�p"Bs="�� 12" tZ0 krv(�s=")�(�s=")k2 ds= \ontinuous martingale�12 of quadrati variation proess":Hene, Z"t = exp �U"t � is a positive ontinuous loal martingale with Z"0 = 1 andsupermartingale as well (see Problem 1.4.4 in [27℄). Then EZ"T � 1: So, withA = � TZ0 I�k�t=")k � m� dt � ��we have 1 � E IAZ"T : In the latter inequality, we replae Z"T by its lower boundon A. With Av := Pij (���)ijv00ij , write Lv(z) = rv(z)b(z) + Av(z)=2: Then(see (4.6)) Dv(z) = (2 + kzk)(1 + kzk)2 z�b(z) + 12Av(z) + 12krv(z)�(z)k2:Reall kAv(z)k and krv(z)�(z)k are bounded and by (Ab) for kzk > C we havez�b(z) � �rkzk1+� with r > 0 and � > 0. Henesupz2RdDv(z) = ev <1; limy!1 infkzk>y(�Dv(z) + ev) =1:We give the lower bound for Z"T expressed in terms of ev and (�Dv(z)+ev). Withm suh that evT < infkzk>m ��Dv(z) + ~v��, writelogZ"T = v(�T=")� v(z0)� 1" TZ0 Dv(�s=") ds� �v(z0)� ev"T + 1" TZ0 I�k�s="k > m���Dv(�s=") + ev� ds� �v(z0)� ev"T + 1" infkzk>m ��Dv(z) + ev�� := logZ�:Sine obviously 1 � E IAZ� and Z� is nonrandom, we �nd"1�2� logP �A� � "1�2�v(z0) + 1"2��evT � infkzk>m ��Dv(z) + ev��� ���!"!0 �1:2Thus, for nonsingular Q the statement of Theorem 2.2 is valid. 2



622 R. Liptser, V. Spokoiny and A.Yu. Veretennikov5. Proof of Theorem 2.2 for singular Q5.1. PreliminariesIn this setion, Q(Xt) is not assumed to be nonsingular for any Xt. De-spite (2.5) remains to hold, the statement of Puhalskii's Theorem 2.3 from [33℄is not longer valid. So, we apply another way for proving Theorem 2.2 whihbased on obtained LDP result for nonsingular Q.The Dawson {G�artner theorem (see e.g. [11℄ or [31℄), adapted to the aseonsidered, states that announed LDP for family bX" holds, if for any T > 0the LDP for the family ( bX")T = �( bX"t )0�t�T ; "! 0� holds in the metri spae(C[0;T ℄(R`); �T ) with the speed "1�2� and rate funtion (ompare (2.2))JT (X) = 8>><>>: 12 TZ0 k _Xt � F (Xt) k2Q+(Xt) dt; X 2 eFT ;1; otherwise; (5.1)where eFT is the restrition of eF on [0; T ℄. The proof of this statement requiresthe veri�ation of exponential tightness with speed "1�2� and loal LDP withthe same speed and rate funtion JT : for any X 2 C[0;T ℄(R`)limÆ!0 lim"!0 "1�2� logP ��T ( bX"; X) � Æ� � �JT (X)z (5.2)and limÆ!0 lim"!0 "1�2� logP ��T ( bX"; X) � Æ� � �JT (X): (5.3)5.2. Main lemmaWith some  > 0 we introdue a proessbX";t = x0 + tZ0 F � bX";s � ds+ "1=2��M";t (5.4)with M";t = tZ0 G� bX";s � dM"s + 1=2 bBt; (5.5)and ( bBt)t�0 the standard vetor-valued Wiener proess (of suitable size) inde-pendent of (�t)t�0.Lemma 5.1. Under the assumptions from Setion 2, for any T > 0, � > 0lim!0 lim"!0 "1�2� logP ��T ( bX"; ; bX") > �� = �1:



Freidlin {Wentzell type large deviations for smooth proesses 623Proof. Set 4";t = bX";t � bX"t . Due to (1.13), (5.4) and (5.5) we �nd4";t = tZ0 �F � bX";s �� F � bX"s�� ds+ "1=2�� tZ0 �G� bX";s ��G� bX"s�� dM"s + "1=2��1=2 bBt: (5.6)Denote j4";t j = Pì=1 j4";t (i)j: Sine entries of F and G are ontinuouslydi�erentiable and their derivatives are bounded, entries off(s) = �F � bX";s �� F ( bX"s )���4";s �� and g(s) = �G� bX";s ��G� bX"s����4";s ��are well de�ned and bounded. Now, we may rewrite (5.6) to4";t = tZ0 ��4";s ��fs ds+ "1=2�� tZ0 ��4";s �� dN"s + "1=2��1=2 bBt; (5.7)where N"t = R t0 gs dM"s and entries N"t (i) of N"t are ontinuous martingaleswith the preditable quadrati variation proesses hN"(i)it absolutely ontinu-ous with respet to dt with bounded densities, i.e.dhN"(i)it � r dt (5.8)(heneforth r is positive generi onstant). Owing to k4";t k2 = (4";t )�4";t ,by the Itô formula we �ndk4";t k2 = tZ0 2j4";s j(4";s )�f(s) ds+ "1=2�� tZ0 2j4";s j(4";s )� dN"s+ "1=2��1=2 tZ0 2(4";s )� d bBt + "1�2� tZ0 j4";s j2 d(traehN"is)+ "1�2�`t: (5.9)Letting 0=0 = 0, introdue i�(s) = 2j4";s j(4";s )� = k4";s k2; j(s) = 2i(s)f(s) andr(s) = j4";s j2 = k4";s k2: Obviously, r(s), j(s) and entries of i�(s) are bounded.Set U(t) = "1=2��1=2 tZ0 2(4";s )�d bBs + "1�2�`t:



624 R. Liptser, V. Spokoiny and A.Yu. VeretennikovWith U(t), we rewrite (5.9) into a linear Itô equation with respet to k4";t k2:k4";t k2 = tZ0 k4";s k2�j(s) ds+ "1=2��i�(s) dN"s+ "1�2�r(s) d(traehN"is)	+ U(t): (5.10)Sine hN"; bBit � 0, applying the Itô formula to Et R t0 E�1s dU(s); withEt = exp� tZ0 nj(s) ds+ "1=2��i�(s) dN"s+ "1�2�r(s) d(traehN"is)� 12"1�2�i�(s) dhN"isi(s)o�;we �nd k4";t k2 = Et R t0 E�1s dU(s): The statement of lemma is valid, iflim!0 lim"!0 "1�2� logP� supt�T k4";t k2 > �� = �1: (5.11)For (5.11) to hold, it suÆeslimC!1 lim"!0 "1�2� logP� supt�T Et > C� = �1;limC!1 lim"!0 "1�2� logP� supt�T E�1t > C� = �1;limC!1 lim"!0 "1�2� logP� supt�T k4";t k2 > C� = �1;  > 0: (5.12)In fat, if (5.12) is valid, (5.11) is redued to: for any C > 0lim!0 lim"!0 "1�2� logP�"1=2��1=2 supt�T ��� tZ0 E�1s 2(4";s )� d bBs��� > �; (5.13)supt�T Et � C; supt�T E�1t � C; supt�T k4";k2t � C� = �1:Further, on the set � supt�T E�1t � C; supt�T k4";k2t � C	; the integralR t0 E�1s 2(4";s )� d bBs oinides withIAt tZ0 IAsE�1s 2(4";s )� d bBs;where As = � sups0�s E�1s0 � C; sups0�s k4";k2t s0 � C	. Hene, (5.13) isredued to lim!0 lim"!0 "1�2� logP�"1=2�� supt�T ��Mt�� > �1=2� = �1; (5.14)



Freidlin {Wentzell type large deviations for smooth proesses 625whereMt = R t0 IAsE�1s 2(4";s )�d bBs is ontinuous martingale, hMiT � onst So,the validity of (5.14) is established with a help of Lemma A.1.The �rst and seond onditions from (5.12) are implied by Lemma A.1. Theproof of the third ondition from (5.12) is valid by remark to Lemma A.1 andby 4";t = bX";t � bX"t . 25.3. The LDP for X";The family bX"; = �( bX";)t�0; " ! 0�, de�ned in (5.4), (5.5), obeys theLDP, sine the matrix Q(x) = Q(x) + I (5.15)is uniformly in x nonsingular. This LDP is haraterized by the speed "1�2�and rate funtionJ(X) = 8>><>>:12 1Z0 k _Xt � F (Xt))k2(Q (Xt))�1 dt; X 2 F;1; otherwise:Parallel to JT (X) introdueJT (X) = 8>><>>:12 TZ0 k _X � F (Xt) k2(Q)�1(Xt) dt; X 2 FT ;1; otherwise(here FT is the restrition of F on [0; T ℄).Lemma 5.2.1) lim!0JT (X) = JT (X), X 2 C[0;T ℄(R`), T > 0.2) The funtion JT (X) is semiontinuous from below.Proof. 1) If X =2 FT , then JT (X) � 1 as well as JT (X) � 1. Let X 2 FT neFT .Then JT (X) =1. On the other hand, sinek _Xt � F (Xt))k2(Q(Xt))�1inreases in  # 0, by the monotone onvergene theoremlim!0 JT (X) = 12 TZ0 lim!0 k _X � F (Xt)k2(Q)�1(Xt) dt =1:Let X 2 eFT . It suÆes to showlim!0 k _X � F (Xt)k2(Q)�1(Xt) = k _X � F (Xt)k2Q+(Xt):



626 R. Liptser, V. Spokoiny and A.Yu. VeretennikovNotie that QQ+(Xt)( _Xt � F (Xt)) = ( _Xt � F (Xt)) providesk _X � F (Xt)k2(Q)�1(Xt) = k _Xt � F (Xt))k2QQ+(Q)�1QQ+(Xt)and it remains to hek that lim!0QQ+(Q)�1QQ+ = Q+. With S theorthogonal matrix (S� = S�1) transforming Q to a diagonal form: S�QS =diagQ we have S�Q+S = diagQ+ (see e.g. [1℄). So, it suÆes to provelim!0SQQ+(Q)�1QQ+S� = SQ+S�: (5.16)The right-hand side of (5.16) is the salar matrix with nonnegative entries q+ii ,where qii are entries of diagQ andq+ii = (q�1ii ; q�1ii > 0;0; otherwise.At the same time the left-hand side of (5.16) is a salar matrix as wellSQQ+(Q)�1QQ+S� = diagQ diagQ+(I + diagQ)�1diagQ diagQ+with entries (qiiq+ii )2=( + qii)! q+ii ;  ! 0:2) As was mentioned above, JT (X) is inreasing in  # 0. This remarkand 1) provide JT (X) � JT (X). Let Xn, n � 1; onverge to X in the metri�T , i.e. limn �T (Xn; X) = 0. Sine JT is semiontinuous from below, we havelimn JT (Xn) � limn JT (Xn) � JT (X)! JT (X);  ! 0: 25.4. The LDP for the family (X")TObviously, bX"; obeys the LDP in the metri spae �C[0;T ℄(R`); �T � withthe speed "1�2� and rate funtion JT . Hene, this family is exponentially tightin �C[0;T ℄(R`); �T � with the speed "1�2�. The latter remark and Lemma 5.1provide the exponential tightness in the same metri spae and speed for family( bX")T .We apply the LDP result for ( bX";)T = (( bX";)0�t�T ; " ! 0) to establishthe lower bound in loal LDP for ( bX")T .Lemma 5.3. Under the assumptions from Setion 2, for any T > 0 and X 2C[0;T ℄(R`) limÆ!0 lim"!0 "1�2� logP ��T ( bX"; X) � Æ� � �JT (X):Proof. By the triangular inequality�T ( bX"; X) � �T ( bX"; ; X) + �T ( bX"; ; bX")



Freidlin {Wentzell type large deviations for smooth proesses 627we haveP��T ( bX"; ; X) < Æ2� � P��T ( bX"; X)� �T ( bX"; ; bX") < Æ2�� P��T ( bX"; ; bX") > Æ2�+ P ��T ( bX"; X) � Æ�� 2nP��T ( bX"; ; bX") > Æ2�_P ��T ( bX"; X) � Æ�oand so n lim"!0 "1�2� logP��T ( bX"; ; bX") > Æ2�o_n lim"!0 "1�2� logP ��T ( bX"; X) � Æ�o� lim"!0 "1�2� logP��T ( bX"; ; X) < Æ2�: (5.17)The LDP for the family ( bX";)T provideslim"!0 "1�2� logP��T ( bX"; ; X) < Æ2� � � inffY :�T (Y;X)<Æ=2gJT (Y )� � �JT (X)�while by Lemma 5.2 lim!0 JT (X) = JT (X). Henelim!0 lim"!0 "1�2� logP��T ( bX"; ; X) < Æ2� � �JT (X):Now, owing to (5.17)n lim!0 lim"!0 "1�2� logP��T ( bX"; ; bX") > Æ2�o_n lim"!0 "1�2� logP ��T ( bX"; X) � Æ�o� lim!0 lim"!0 "1�2� logP��T ( bX"; ; X) < Æ2� � �JT (X):By Lemma 5.1 lim!0 lim"!0 "1�2� logP ��T ( bX"; ; bX") > Æ=2� = �1:Consequently, limÆ!0 lim"!0 "1�2� logP ��T ( bX"; X) < Æ� � �JT (X)and it remains to notie that P ��T ( bX"; X) � Æ� � P ��T ( bX"; X) < Æ�: 2



628 R. Liptser, V. Spokoiny and A.Yu. Veretennikov5.4.1. Upper bound in the loal LDP for (X")TObviously, the ase X0 = x0 only has to be analyzed.Denote (see (2.5))A"; = n supt�T  tZ0 �G( bX";s )�d
M"�s � (� + I) ds	G�( bX";s )� > �o;A"; = 
 n A"; and introdue the piee-wise onstant vetor-valued funtion�(s); �(s) = �(sk); sk�1 � s < sk.Proposition 5.1. Under the assumptions from Setion 2, for any X fromC[0;T ℄(R`) with X0 = x0lim"!0 "1�2� logP �A"; ; �T ( bX"; ; X) � Æ�� K1(�)Æ +K2(�)�� TZ0 ���(s)�dXs � F (Xs)ds)� 12��(s)Q(Xs)�(s)�ds; (5.18)where R t0 �(s)dXs = Pk �(sk)(Xsk � Xsk�1) and Ki(�), i = 1; 2; are positiveonstants depending on � and independent of Æ and .Proof. With M";t de�ned in (5.5) let us introdue a positive ontinuous loalmartingaleZ"t = exp� 1"1=2�� tZ0 ��(s) dM";s � 12"1�2� tZ0 ��(s) dhM";is�(s)�:By Problem 1.4.4 in [27℄, Z"t is also supermartingale, EZ"T � 1. Taking intoaount dM";s = d bX";s � F ( bX";s ) ds"1=2��dhM";is = G�( bX";s )Q( bX";s )G( bX";s )ds;it is readily to derive that on the set �A"; ; �T ( bX"; ; X) � Æ	 the randomvariable Z"T is bounded from below by a positive nonrandom parameterZ� = exp� 1"1�2� hK1(�)Æ +K2(�)�� TZ0 ���(s)�dXs � F (Xs) ds)� 12��(s)Q(Xs)�(s)� dsi�:Obviously, we have 1 � Z�P �A"; ; �T ( bX"; ; X) � Æ� and the result is done. 2



Freidlin {Wentzell type large deviations for smooth proesses 629Lemma 5.4. Under the assumptions from Setion 2, for any T > 0 and X 2C[0;T ℄(R`) limÆ!0 lim"!0 "1�2� logP ��T ( bX"; X) � Æ� � �JT (X):Proof. The use of P ��T ( bX"; X) � Æ� � P �A";�+P �A"; ; �T ( bX"; X) � Æ� andtriangular inequality �T ( bX"; ; X) � �T ( bX"; ; bX") + �T ( bX"; X) providesP ��T ( bX"; X) � Æ�� P �A";�+ P �A"; ; �T ( bX"; ; X)� �T ( bX"; ; bX") � Æ�� P �A";�+ P�A"; ; �T ( bX"; ; X) � Æ2�+ P��T ( bX"; ; bX") > Æ2�� 3nP �A";�_P�A"; ; �T ( bX"; ; X) � Æ2�_P��T ( bX"; ; bX") > Æ2�o:By (4.1) lim"!0 "1�2� logP �A";� = 0. Taking also into aount Proposition 5.1we �ndlim"!0 "1�2� logP ��T ( bX"; X) � Æ�� nhK1(�)Æ2 +K2(�)�� TZ0 ���(s)�dXs � F (Xs) ds)� 12��(s)Q(Xs)�(s)�dsi_ lim"!0 "1�2� logP��T ( bX"; ; bX") > Æ2�o:By Lemma 5.1 lim"!0 "1�2� logP ��T ( bX"; ; bX") > Æ=2� ! �1;  ! 0: Hene,whereas Q(Xs)! Q(Xs),  ! 0, it holdslim"!0 "1�2� logP ��T ( bX"; X) � Æ�� hK1(�)Æ2 +K2(�)�� TZ0 ���(s)�dXs � F (Xs) ds)� 12��(s)Q(Xs)�(s)�dsiand in turnlimÆ!0 lim"!0 "1�2� logP ��T ( bX"; X) � Æ�� hK2(�)� � TZ0 ���(s)�dXs � F (Xs) ds)� 12��(s)Q(Xs)�(s)� dsi:



630 R. Liptser, V. Spokoiny and A.Yu. VeretennikovMoreover, sine the left-hand side of this inequality is independent of �, it alsoholdslimÆ!0 lim"!0 "1�2� logP ��T ( bX"; X) � Æ�� � TZ0 ���(s)�dXs � F (Xs) )� 12��(s)Q(Xs)�(s)�ds: (5.19)Finally, minimization of the right-hand side of (5.19) in � gives a lower bound�J 0T with J 0T (X) = 1 for X 2 C[0;t℄(R`) n eFT (see, e.g. Theorem 6.1 in [25℄)and for X 2 eFTJ 0T = TZ0 sup�2R` ���� _Xs � F (Xs)�� 12��Q(Xs)��ds = 12 TZ0  _Xs � F (Xs)2Q+(Xs):Thus J 0T = JT (X). 26. Proof of Theorem 2.1In this setion, we verify (2.4). By (1.8) we have"1=2��W "t := tZ0 g(�s=") ds = "1��[ (z0)�  (�t=")℄ + "1=2��M"t :The random proess  (�t=") is a ontinuous semimartingale, so that the Itôintegral V "t = "1�� R t0 G(X"s ) d (�s=") is semimartingale as well. With V "t (1.12)is transformed toX"t = x0 + tZ0 F (X"s ) ds+ "1=2�� tZ0 G(X"s ) dM"s � V "t : (6.1)Lemma 6.1. For any T > 0 there is K > 0, so that �T (V "; 0) � KT"1�2�:Proof. It suÆes to give the proof for any entries V "t (i) of V "t . WriteV "t (i) = "1�� tZ0 Xj Gij(X"s ) duj(�s="); i = 1; : : : ; d:



Freidlin {Wentzell type large deviations for smooth proesses 631By the Itô formula, applied to "1��Pj Gij(X"t )uj(�t="); we getV "t (i) = �"1��Xj Gij(X0)uj(z0) + "1��Xj Gij(X"t )uj(�t=")� "1�� tZ0 Xjp �Gi;j(X"s )�xk Fp(X"s )ds� "1�2� tZ0 Xijpq �Gi;j(X"s )�xk Gpq(X"s )gq(�s=")dsand, owing to the boundedness of Gij ; ui; Fp; �Gpq=�xk, the result is done. 2Notie that �T (X"; bX") = supt�T j�"t j, where �"t = X"t � bX"t and j�"t j =Pì=1�"t (i). By (6.1) and (1.13), it follows�"t = tZ0 �F (X"s )� F ( bX"s )� ds+ "1=2�� tZ0 �G(X"t )�G( bX"t )� dM"s � V "t : (6.2)Set f(s) = (F (X"s )� F ( bX"s ))=j�"sj; g(s) = (G(X"s )�G( bX"s ))=j�"sj: By (AF )and (AG), the vetor f(s) and matrix g(s) are well de�ned and have boundedentries. Let us rewrite (6.2) in a oordinate form�"t (i) = tZ0 j�"sjfi(s) ds+ "1=2�� tZ0 j�"sj dm"s(i)� V "t (i);where fi(s) and V "t (i) are oordinates of f(s) and V "t respetively andm"t (i) = tZ0 Xjpk gij(s)	jp(�s=")�pq(�s=") d�p"Bs="(k)�(here gij(s) are entries of g(s)). Heneforth r is a positive generi onstant.Notie that m"t (i) is a ontinuous martingale with d
m"(i)�t � r dt: By (AF ))jfi(s)j � r and by Lemma 6.1 jV "t (i)j � r"1�2�. Hene, for t0 � tj�"t0 j � rh t0Z0 j�"sj ds+X̀i=1 "1=2�� supt0�t ��� t0Z0 j�"sj dm"s(i)���+ "1�2�iand by the Bellman {Gronwall inequality we havesupt0�t j�"t0 j � rhX̀i=1 "1=2�� supt0�t ��� t0Z0 j�"sjdm"t (i)���+ "1�2�i:



632 R. Liptser, V. Spokoiny and A.Yu. VeretennikovSine supt0�t j�"t0 j is ontinuous in t with j�"0j = 0, we may assume thatsupt0�T j�"t0 j is bounded (otherwise a loalization proedure is applied). Assum-ing that " is small enough so that p = "�(1=2��) > 1, by the H�older inequalityit holds E supt0�t j�"t0 jp � rphp�p X̀i=1 E supt0�t ��� t0Z0 j�"sj dm"s(i)���p + p�2pi: (6.3)Further, by the Doob inequalityE supt0�t ��� t0Z0 j�"sj dm"s(i)���p � � pp� 1�p E ��� tZ0 j�"sj dm"s(i)���p:Moreover, similarly to the proof of Lemma 4.12 (Chapter 4, Setion 4.3 in [26℄)it is possible to establishE ��� tZ0 j�"sj dm"s(i)���p � rp=2p2 tZ0 E j�"sjp ds � rp=2p2 tZ0 E sups0�s j�"s0 jp ds:Thus, for Ut = E supt0�t j�"t0 jp we get the integral inequalityUt � rpp�2p + rpp2�p tZ0 Us ds:Now, by the Bellman{Gronwall inequality we have UT � rpp�2p exp �rpp2�pT �and, by the Chebyshev inequalityP � supt�T j�"t j � �� � rpp�2p exp �rpp2�pT ��p :Taking now into onsideration that "1�2� = 1=p and limp!1 rpp1�p = 0, weobtain"1�2� logP� supt�T j�"t j � �� � log r � 2 log p+ rpppp � � ! �1; "!1: 2A. Auxiliary results for exponential tightnessLet S"t and N"t be ontinuous semimartingale and martingale respetivelywith paths in C[0;T ℄(R`). SetY "t = S"t + "1=2��N"t :Denote by S"t (i), N"t (i) the entries of S"t , N"t and write Y "t (i) = S"t (i) +"1=2��N"t (i). De�ne jS"t j =Pì=1 jS"t (i)j and similarly jN"t j, jY "t j.



Freidlin {Wentzell type large deviations for smooth proesses 633Lemma A.1. Assume for some nonnegative 1; 2; 3jS"t j � 1 + 2 tZ0 �1 + jY "s j� ds;dhN"(i)it� � 3 dt; i = 1 : : : ; `:Then for any T > 0limC!1 lim"!0 "1�2� logP� supt�T jY "t j > C� = �1:Remark A.1. The assumptions of Lemma A.1 are satis�ed for Y "t beingX"t (6.1),bX"t (1.13) and bX";t (5.4).Proof. Due to the �rst assumptionjY "t j � 1 + 2 tZ0 �1 + jY "s j�ds+ "1=2�� supt�T jN"t j; t � T:Hene, by the Bellman {Gronwall inequality, for any t � TjY "t j � expf2Tg�1 + 2T + "1=2�� supt�T jN"t j�;that is the same upper bound is valid for supt�T jY "t j as well. The latter provesthe statement of the lemma, iflimC!1 lim"!0 "1�2� logP� supt�T jN"t (i)j > C� = �1 (A.1)for any i = 1; : : : ; `.Introdue Markov times�"� = inf nt : N"t � + C"1=2�� � � � C"1=2���o;where inff?g = 1. Owing to f"1=2�� supt�� jMtj > Cg � f�"+ � Tg [ f�"� � Tg;(A.1) is provided by limC!1 lim"!0 "1�2� logP ��"� � T � = �1: (A.2)So, we shall verify (A.2). With � 2 R, let us de�neZt(�) = exp��N"t (i)� �22 
N"(i)�t�:By Problem 1.4.4 in [27℄ Zt(�) is a supermartingale, so that EZ�"�^T (�) � 1.Sine by the seond assumption 
N"(i)�T � 3T , for a positive � we have1 � E I(�"+ � T )Z�"+^T (�) � P ��"+ � T � exp� �C"1=2�� � �23T2 �
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