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MULTISCALE TESTING OF QUALITATIVE HYPOTHESES1
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Medizinische Universität zu Lübeck and
Weierstrass Institute for Applied Analysis and

Stochastics

Suppose that one observes a process Y on the unit interval, where
dY�t� = n1/2f�t�dt+dW�t� with an unknown function parameter f, given
scale parameter n ≥ 1 (“sample size”) and standard Brownian motion W.
We propose two classes of tests of qualitative nonparametric hypotheses
about f such as monotonicity or concavity. These tests are asymptotically
optimal and adaptive in a certain sense. They are constructed via a new
class of multiscale statistics and an extension of Lévy’s modulus of conti-
nuity of Brownian motion.

1. Introduction. Many nonparametric statistical models involve some
unknown function f on the real line. For instance, f might be the probability
density of some distribution or a regression function. In many applications
qualitative assumptions about f such as monotonicity, unimodality or concav-
ity are plausible, though not necessarily satisfied. A natural question is how
to test such assumptions. In the context of density estimation there exist var-
ious proposals for testing unimodality versus multimodality of f. Silverman
(1981) developed a test based on critical bandwidths of kernel density estima-
tors, whereas Hartigan and Hartigan (1985) and Müller and Sawitzki (1991)
used the so-called dip or excess mass functional. Further results for these pro-
cedures are given by Mammen, Marron and Fisher (1992) and Cheng and Hall
(1999). But the available distribution theory relies on additional smoothness
constraints on f.

Koul and Schick (1997) considered the problem of comparing two nonpara-
metric regression curves against a one-sided alternative, which, in the case of
a common design, reduces to testing the hypothesis of positivity. The authors,
however, discussed only asymptotic power against single directional alterna-
tives, which reduces the problem to the classical setup.

The aim of this paper is to propose a test for a qualitative hypothesis against
a general smooth alternative with unknown degree of smoothness. There is
another aspect of testing qualitative assumptions which we are interested in:
if there is evidence that such an assumption is violated one would often like
to identify, with a certain confidence, regions where this violation occurs.
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In the present paper we study such problems in detail within the (continu-
ous) white noise model. Suppose that one observes a stochastic process Y on
the unit interval I �= �0	1�, where

Y�t� = n1/2
∫

�0	 t�
f�x�dx + W�t��

Here f is an unknown function in L1�I�	 n ≥ 1 is a given scale parameter and
W is standard Brownian motion. We consider the following hypotheses:

�≤0 �= 
f � f ≤ 0�	
�↓ �= 
f � f is nonincreasing�	

�conc �= 
f � f is concave��
Note that these are nonparametric rather than finite or finite-dimensional
hypotheses. The ideal white noise model serves as a prototype for various
statistical models involving regression functions or distribution densities. The
results of Brown and Low (1996), Nussbaum (1996) and Grama and Nussbaum
(1998) on the asymptotic equivalence of these models can be used to transfer
the lower bounds of the present paper to other models. The main benefit of the
white noise model is the applicability of rescaling arguments as, for instance,
in Donoho and Low (1992).

There is an extensive literature on nonparametric testing of the simple
hypothesis 
0�. As a starting point we recommend the survey of Ingster (1993),
which contains many basic results and additional references. Under the non-
parametric approach it is typically assumed that f belongs to a certain class
� of smooth functions, and its distance to the null hypothesis 
0� is quantified
by some seminorm 
f
. For a given level α ∈�0	1� and some number δ > 0 the
goal is to find a statistical test φ � � �I� → I whose minimal power

inf
g∈� �
g
≥δ

Ɛgφ�Y�

is as large as possible under the constraint that Ɛ0φ�Y� ≤ α. Here and subse-
quently the dependency of probabilities and expected values on the functional
parameter f is indicated by a subscript. Approximate solutions, as n → ∞,
for this testing problem are known for various classes � and seminorms 
·
.
Ingster (1986, 1993) described the case of Lp-norm, 1 ≤ p ≤ ∞, and Hölder
and Sobolev smoothness classes. Spokoiny (1998) extended the results to the
case of arbitrary Besov classes. Sharp optimal asymptotic results are known
for a few cases: Ermakov (1990) found the sharp asymptotics for Sobolev
balls and L2-distance, while Lepski and Tsybakov (2000) also treated Hölder
smoothness classes and the supremum norm. The latter case is of special
importance for us since the sup-norm seems to be most suitable in order to
describe the alternative set for our qualitative null hypotheses; see Section 3.2
for a discussion in terms of test signals. The tests of Lepski and Tsybakov
(2000) are based on a kernel estimator of f with a kernel function and band-
width depending on � . It is a general problem that the available optimal tests
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φ depend explicitly on the class � and may fail if the latter is altered. With
this problem in mind we review some results of Lepski and Tsybakov (2000)
in Section 2 and introduce a new class of multiscale statistics combining ker-
nel estimators of various bandwidths. These statistics lead to adaptive tests
in the sense that they are asymptotically optimal for many Hölder classes
simultaneously.

The problem of adaptive (data-driven) testing a simple or parametric
hypothesis, where deviation from the null hypothesis is measured by some
integral norm, was considered in Eubank and Hart (1992), Ledwina (1994),
Ledwina and Kallenberg (1995), Fan (1996), Spokoiny (1996) and Hart (1997),
among others. The underlying idea is to consider simultaneously a family
of test statistics corresponding to different values of the smoothing parame-
ters which leads to multiple testing. Eubank and Hart (1992), Ledwina (1994),
Ledwina and Kallenberg (1995) and Hart (1997) discussed the so-called “order
selection test” or “data-driven Neyman test”: the deviation of the underly-
ing function f from the null hypothesis is estimated via an orthogonal series
expansion, and a modified Mallows’ criterion is used for selecting the number
of random coefficients to be included. This method allows one to combine test-
ing and model selection within one approach and provides root-n consistency
against any directional alternative, but it has no power against a general
smooth alternative. The tests in Fan (1996) and Spokoiny (1996) are based
on the maximum of centered and standardized statistics and are rate-optimal
adaptive against a smooth alternative. The main message of Spokoiny (1996)
is that the adaptive approach leads necessarily to suboptimal rates by a factor
log�log�n��. By way of contrast, the present paper shows that adaptive testing
with respect to the sup-norm is possible without essential loss of efficiency.
The reason is that a sup-norm test is based on the maximum of nonparamet-
ric estimates f̂h�x� of the model function f�x� for different locations x. Even
with a fixed value of the smoothing parameter h this requires an adjustment
for multiple testing, while an additional adjustment for using different h turns
out to be unncessary.

In Section 3 we introduce tests for the three nonparametric hypotheses
�≤0	�↓ and �conc. Given any of these composite hypotheses, say �o, we intro-
duce two different functionals ��f� measuring the distance of f to �o and
show how to maximize approximately

inf
g∈� ���g�≥δ

Ɛgφ�Y�

over all tests φ satisfying

sup
f∈�o

Ɛfφ�Y� ≤ α�

Again the proposed tests are based on the multiscale idea as introduced in
Section 2 and are adaptive in a certain sense. Moreover, whenever the hypoth-
esis�o is rejected we can identify with confidence 1−α one or several intervals
J ⊂ �0	1� on which the qualitative assumption about f is violated. Thus our
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procedures may be interpreted as multiple tests and lead automatically to
nonparametric confidence sets.

Section 4 describes some possible extensions and modifications for other,
more traditional statistical models. Some numerical examples for regression
with Gaussian errors are presented in Section 5. All proofs are deferred to
Section 6. There we present an extension of Lev́y’s modulus of continuity which
is of independent interest.

Two recent papers offering somewhat similar procedures are Chaudhuri
and Marron (1999) and Hall and Heckman (2000). The former paper treats
statistical inference about the modality of an unknown regression curve, using
Gaussian kernel estimators; see also the discussion in Section 3.2. The latter
paper is about testing monotonicity based on local linear smoothing with a
variable “locality” parameter. In both cases the theoretical results are quite
different from the ones presented here, and the issue of optimal testing is not
discussed.

2. Multiscale tests of the hypothesis “f = 0.” Let us first introduce
some notation. For measurable functions f	g on the real line let �f	g� �=∫
f�x�g�x�dx and 
f
2 �= �f	f�1/2. When the integrals are restricted to some

interval J ⊂ R we use an additional subscript J and write �f	g�J	 
f
2	J�
Moreover, let 
f
J denote the supremum norm supx∈J �f�x��.

Suppose that we want to test the null hypothesis 
0� versus a simple alter-
native 
g� with g ∈ L2�I�. Since log�d�g/d�0��Y� = n1/2

∫
I gdY − n
g
2/2,

the Neyman–Pearson test rejects the null hypothesis at level α if the linear
test statistic


g
−1
2	 I

∫
I
g�x�dY�x�

exceeds the �1−α� quantile of the standard Gaussian distribution. For
∫
I gdY

is normally distributed with mean n1/2�f	g�I and variance 
g
22	 I. Therefore
the power of this test is an increasing function of n1/2
g
2	 I.

In the case of a closed and convex alternative � ⊂ L2�I�\
0� letgo be the
unique point in � minimizing 
go
2	 I. It is well known from convex analysis
that go is uniquely determined by

�g	go�2	 I ≥ 
go
22	 I for all g ∈ � �

Therefore a Neyman–Pearson test of 
0� versus 
go� is automatically an opti-
mal test of 
0� versus � . Its minimal power over � is attained at the least
favorable parameter go.

For β	L > 0 and an interval J ⊂ R the Hölder smoothness class �J�β	L�
is defined as follows. In the case 0 < β ≤ 1 let

�J�β	L� �= 
f � �f�x� − f�y�� ≤ L�x − y�β for all x	y ∈ J��
For k < β ≤ k+1 with an integer k > 0 let �J�β	L� be the set of functions that
are k times differentiable on J and whose kth derivative belongs to �J�β −
k	L�. We also write � �β	L� instead of �R�β	L�.
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Suppose that we want to test 
0� versus


g ∈ � �β	L� � 
g
J ≥ δ�
for some δ > 0 and some interval J ⊂ I. This alternative is not convex but is
the union of the closed convex sets


g ∈ � �β	L� � g�t� ≥ δ� and 
g ∈ � �β	L� � −g�t� ≥ δ�
over all t ∈ J. Thus we look first for the least favorable points within these
sets.

Let ψ = ψ�·	 β� be the unique solution of the following optimization problem:

Minimize 
ψ
2 over all ψ ∈ � �β	1� with ψ�0� ≥ 1�(2.1)

It is known that ψ is an even function with compact support, say, �−R	R�	
and ψ�0� = 1 > �ψ�x�� for x �= 0. For instance, in the case 0 < β ≤ 1 one can
easily show that

ψ�x� = 1
�x� ≤ 1��1 − �x�β��
For the case β > 1 an explicit solution is known only for β = 2; see, for exam-
ple, Leonov (1999). Donoho (1994a) and Leonov (1999) contain some useful
properties of ψ and advice on how this function can be constructed numeri-
cally. For any scale parameter h > 0 and any location parameter t ∈ R let

ψt	h�x� �= ψ

(
x − t

h

)
�(2.2)

A simple rescaling argument shows that for δ > 0 the function ψ̃ �= ±δψt	h

belongs to � �β	 δh−β� and minimizes 
ψ̃
2 under the additional constraint
±ψ̃�t� ≥ δ. In the case Rh ≤ t ≤ 1 − Rh this function is supported by I and
thus minimizes 
ψ̃
2	 I as well. Then with

�̂�t	 h� �= h−1/2
ψ
−1
2

∫
I
ψt	h�x�dY�x�(2.3)

the test statistic ±�̂�t	 h� is optimal for testing 
0� versus 
g ∈ � �β	 δh−β� �
±g�t� ≥ δ�. Note that

Var ��̂�t	 h�� = 1 and Ɛ�̂�t	 h� = �n/h�1/2
ψ
−1
2 �f	ψt	h��

The following theorem implies that all these test statistics �̂�t	 h� can be
combined in a specific way.

Theorem 2.1. Let ψ be any function in L2�R� with bounded total variation
and compact support �−R	R�� For real numbers h > 0 and t ∈ �Rh	1 − Rh�
let ψt	h and �̂�t	 h� be defined as in �2�2� and �2�3�� Then, almost surely,

sup
h∈�0	R−1/2�

sup
t∈�Rh	1−Rh�

���̂�t	 h� − Ɛ�̂�t	 h�� − C�2Rh��/D�2Rh� < ∞	

where C�r� �= �2 log�1/r��1/2 and D�r� �= �log�e/r��−1/2 log log�ee/r��
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Remarks. The rationale behind the additive correction term C�2Rh� is
that the random variables �̂��2j−1�Rh	h� −Ɛ�̂��2j−1�Rh	h�	 j = 1	2	 � � �,
��2Rh�−1�, are independent with standard normal distribution. The maximum
of these variables is known to be C�2Rh� + op�1� as h → 0. Note further that
D�·� is bounded and strictly positive on �0	1� with limr→0D�r� = 0.

Multiscale test. For any function ψ as in Theorem 2.1 we define the
global test statistic

T�Y� = T�Y	ψ� �= sup
h∈�0	R−1/2�

sup
t∈�Rh	1−Rh�

���̂�t	 h�� − C�2Rh���(2.4)

In the case f = 0 this test statistic equals T�W� and is finite, by Theorem 2.1.
Therefore the critical value

κα = κα�ψ� �= min
r ∈ R � �
T�W� ≤ r� ≥ 1 − α�(2.5)

is well defined for any α ∈�0	1�. Then 1
T�·� > κα� defines a test of 
0� at
level α which is asymptotically optimal in the following sense.

Theorem 2.2. Let the test statistic T�Y� be defined as in �2�4� with the
solution ψ = ψ�·	 β� of �2�1�� We define

ρn = ρn�β� �=
(
log n
n

)β/�2β+1�

and

c∗ = c∗�β	L� �=
(

2L1/β

�2β + 1�
ψ
22

)β/�2β+1�
�

Then for arbitrary numbers εn > 0 with limn→∞ εn = 0 and limn→∞�log n�1/2×
εn = ∞ the following two conclusions hold:

(a) For any fixed nondegenerate interval J ⊂ I and arbitrary tests φn with
Ɛ0φn�Y� ≤ α	

lim sup
n→∞

inf
g∈� �β	L��
g
J≥�1−εn�c∗ρn

Ɛgφn�Y� ≤ α�

(b) Let J = Jn�β	L� �= �R�c∗ρn/L�1/β	1 − R�c∗ρn/L�1/β�. Then
lim
n→∞ inf

g∈� �β	L� � 
g
J≥�1+εn�c∗ρn
�g
T�Y� ≥ κα� = 1�

The result of Theorem 2.2 may be read as follows. If the underlying function
f deviates from the null hypothesis by at least �1 + εn�c∗ρn, then the test
rejects the null with probability close to 1. This deviation bound cannot be
significantly improved in the sense that, for every test φn of 
0� at level α,
there exists an alternative function g with deviation �1 − εn�c∗ρn which will
not be detected with probability 1 − α − o�1� or larger.
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Adaptivity. Part (a) of Theorem 2.2 is a modification of Lepski and
Tsybakov’s (2000) lower bound. Part (b) is novel in that one test, 1
T�·� > κα�,
is asymptotically optimal for all Hölder smoothness classes � �β	L�	L > 0. In
other words, it is adaptive with respect to the second parameter of � �β	L�.

Adaptivity with respect to both parameters, β and L, is still an open
problem. However, suppose that we use the test statistic T corresponding to
the, say, triangular kernel ψ�·	1�. Then it follows from Ingster (1986) that for
arbitrary β > 0 there is a constant c�β	L� ≥ c∗�β	L� such that

lim
n→∞ inf

g∈� �β	L� � 
g
I≥c�β	L�ρn
�g
T�Y� ≥ κα� = 1�

Thus our test with the triangular kernel ψ is rate optimal over arbitrary
Hölder classes with respect to the supremum norm over the whole unit
interval I.

Kernel estimators of f. If ψ is viewed as a kernel function it leads to
the kernel estimator

f̂n	 h�t� �=
∫
I ψt	hdY

n1/2�1	 ψt	h� = cn	h�̂�t	 h�

of f�t�, where cn	h �= �nh�−1/2
ψ
2/�1	 ψ� is the standard deviation of f̂h�t�.
Then our test statistic T�Y� may be written as

T�Y� = sup
h∈�0	R−1/2�

(
c−1
n	h
f̂n	 h
�Rh	1−Rh� − C�2Rh�)�

Thus we combine kernel estimators with arbitrary bandwidths in a specific
way.

Boundary effects. For the sake of simplicity we restricted our attention
to the supremum norm on compact subintervals of �0	1� instead of the whole
interval I. This restriction can be avoided by using suitable boundary kernels
similar to those used by Lepski and Tsybakov (2000).

3. Testing the qualitative assumptions. We propose two classes of tests
corresponding to different notions of distance from the composite null hypoth-
esis �≤0	�↓or�conc.

3.1. Lipschitz alternatives and sup-norm distance. In this section let �o

be either �≤0 or �↓. We assume that under the alternative f belongs to the
class � �1	L� for some unknown parameter L > 0 and measure its distance
to �o by

�J�f� �= inf
fo∈�o


f − fo
J
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for some interval J ⊂ I. Elementary calculus shows that, in the case f �∈ �o,

�J�f� =



sup
t∈J

f�t�	 if �o = �≤0,

sup
s	 t∈J�s<t

f�t� − f�s�
2

	 if �o = �↓.

A natural test statistic might be �J�f̂�, where f̂ is some estimator of f. Specif-
ically let

f̂n	 h�t� �= n−1/2h−1
∫
ψt	h dY = �3nh/2�−1/2�̂�t	 h�

for some h ∈�0	1/2�, where ψ is the triangular kernel given by ψ�x� �= 1
�x� ≤
1��1 − �x�� with 
ψ
22 = 2/3. If we had one specific Lipschitz class � �1	L� in
mind, it would indeed be sufficient to use the test statistic �J�f̂n	 h� with a
suitable bandwidth h = hn�L�. But in order to achieve adaptivity with respect
to L we combine all bandwidths and use the test statistic

To�Y� �= sup
h∈�0	1/2�

���h	1−h���̂�·	 h�� − C�2h��

= sup
h∈�0	1/2�

��3nh/2�1/2��h	1−h��f̂n	 h� − C�2h���

One can show that

To�Y� ≤ To�W� if f ∈ �o	(3.6)

with equality if f = 0. Moreover, To�W� is finite, according to Theorem 2.1.
Thus the critical value

κo	α �= min
{
r ∈ R � �
To�W� ≤ r� ≥ 1 − α

}
is well defined, and we reject the null hypothesis �o at level α if To�Y� > κo	α.
This test is asymptotically optimal for any Lipschitz class � �1	L�	L > 0.

Theorem 3.1. Let �εn�n≥1 be as described in Theorem 2�2 and

ρn �=
(
log n
n

)1/3

�

(a) For any fixed nondegenerate interval J ⊂ I and arbitrary tests φn with
Ɛ0φn�Y� ≤ α	

lim sup
n→∞

inf
g∈� �1	L� ��J�g�≥�1−εn�L1/3ρn

Ɛgφn�Y� ≤ α�

(b) Let J = Jn be any nonvoid subinterval of �L−2/3ρn	1 − L−2/3ρn�	 and
let J′ = J′

n be its neighborhood �min�J� − L−2/3ρn	max�J� + L−2/3ρn�� Then
lim
n→∞ inf

g∈�J′ �1	L� ��J�g�≥�1+εn�L1/3ρn

�g
To�Y� ≥ κo	α� = 1�
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Fig. 1. A function g �∈ �↓ and its projection fo onto �↓.

Spatial adaptivity. Statement (b) of Theorem 3.1 shows that our test is
spatially adaptive: if �J�f� ≥ �1 + εn�L1/3ρn on some interval J and f is
locally Lipschitz with constant L on a slightly larger interval J′, then the
null hypothesis will be rejected with probability close to 1.

3.2. Test signals and derivatives. In this section we consider the null
hypotheses�↓ and�conc and describe a second class of tests in terms of test sig-
nals. Let us first illustrate this approach for the hypothesis�↓: Figure 1 shows
a smooth function g �∈ �↓ together with the unique function fo ∈ �↓ minimiz-
ing 
g−fo
2	 I. The shaded region shows the difference g−fo. This difference
is similar to the sum of two functions with disjoint support but similar shape.
More precisely, for a suitable odd function ψ with compact support �−R	R�	
for example, ψ�x� = 1
�x� ≤ 1�x�1 − �x��, the difference g − fo is similar to
aψt	h +a′ψt′	 h′	 where 0 < a < a′	 h > h′ > 0 and t+Rh < t′ −Rh′. Therefore
a suitably weighted maximum of all statistics �̂�t	 h� with 0 < h ≤ R−1/2 and
Rh ≤ t ≤ 1−Rh should be an appropriate test statistic for the null hupothesis
�↓.

Generally let �o = �↓ or �o = �conc, and let ψ be a test signal in L2�R�
with compact support �−R	R� and bounded total variation such that

�f	ψ� ≤ 0 for all f ∈ �o�(3.7)
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Lemma 6.1 provides sufficient conditions for this requirement. Then we pro-
pose the test statistic

T̃�Y� = T̃�Y	ψ� �= sup
h∈�0	R−1/2�

sup
t∈�Rh	1−Rh�

��̂�t	 h� − C�2Rh��	(3.8)

which is just a one-sided version of (2.4). Requirement (3.7) on ψ implies that

T̃�Y�




≤ T̃�W�	 if f ∈ �o,
= T̃�W�	 if f is constant and �o = �↓,
= T̃�W�	 if f is linear and �o = �conc.

Thus with the �1 − α� quantile κ̃α = κ̃α�ψ� of T̃�W�,
max
f∈�o

�f

{
T̃�Y� > κ̃α

} = �
{
T̃�W� > κ̃α

} ≤ α�

Multiple tests. Our method can be viewed as a multiple test procedure.
Let �̃α be the random family of all intervals �t − Rh	 t + Rh� with h > 0 and
Rh ≤ t ≤ 1−Rh such that �̂�t	 h� > C�2Rh�+κ̃α. Then T̃�Y� > κ̃α if, and only
if, �̃α is nonempty. One may claim with confidence 1 − α that the unknown
regression function f violates the qualitative assumption, that is, being non-
increasing and concave, on every interval J ∈ �̃α. Consequently, whenever
the null hypothesis �o is rejected, we have some information about where this
violation occurs. Analogous considerations apply to the other multiscale tests
of this paper.

Optimal test signals. In order to identify a “good” test signal ψ satisfying
(3.7), note that a smooth function g is non-increasing if and only if g�1� ≤
0 while concavity of g is equivalent to g�2� ≤ 0. Here g�k� denotes the kth
derivative of g. Now we want to find an optimal test signal ψ for testing �o

versus all alternatives of the form 
g ∈ � �k + 1	L� � �̃J�g� ≥ δ�, where

�̃J�g� �= sup
t∈J

g�k��t� and k �=
{
1	 if �o = �↓,
2	 if �o = �conc.

This leads to the following optimization problem:

Minimize 
g − f
2 over all �g	f� ∈ � �k + 1	1� × �o with g�k��0� ≥ 1�(3.9)

Note that the set 
g ∈ � �k + 1	1� � g�k��0� ≥ 1� is convex, while �o is even
a convex cone. Thus a pair �go	 fo� solves problem (3.9) if, and only if, the
difference

ψ �= go − fo

satisfies

�f	ψ� ≤ �fo	ψ� = 0 for all f ∈ �o(3.10)
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and

�g	ψ� ≥ 
ψ
22 for all g ∈ � �k + 1	1� with g�k��0� ≥ 1�(3.11)

These inequalities imply that 
�g − f� − ψ
22 ≤ 
g − f
22 − 
ψ
22 for any pair
�g	f� as in (3.9). Therefore the difference ψ is unique and satisfies (3.7).

Lemma 3.1. (a) In the case �o = �↓ a solution �go	 fo� of problem �3�9� is
given by

go�x� �= x�1 − �x�/2� and fo�x� �= 1
�x� ≥ 2�go�x��
For the corresponding test signal ψ↓ �= go − fo	


ψ↓
22 = 8/15 = 0�533̄�

(b) In the case �o = �conc a solution �go	 fo� of problem �3�9� is given by
go�x� �= −32/81 + x2/2 − �x�3/6 and fo�x� �= 1
�x� ≥ 8/3�go�x��

For the corresponding test signal ψconc �= go − fo	


ψconc
22 = 216/�38 · 5 · 7� ≈ 0�2854�

The optimal test signals ψ↓ and ψconc are depicted in Figure 2.

Theorem 3.2. Let T̃ be defined with ψ = go −fo	 where �go	 fo� solves the
optimization problem �3�9�� For L > 0 let

ρn �=
(
log n
n

)1/�2k+3�
and c∗ = c∗�L� �=

(
2L2k+1

�2k + 3�
ψ
22

)1/�2k+3�
�

Let J = Jn be any nonvoid subinterval of �RL−1c∗ρn	1 − RL−1c∗ρn�	 and let
J′ = J′

n be its neighborhood �min�J� −RL−1c∗ρn	max�J� +RL−1c∗ρn�� Then
lim
n→∞ inf

g∈�J′ �k+1	L� � �̃J�g�≥�1+εn�c∗ρn
�g
T�Y� > κ̃α� = 1	

provided that limn→∞�log n�1/2εn = ∞�

Kernel estimators of f�k�. Another interpretation of our test is in terms
of the kernel estimator

f̂
�k�
h �t� �=

∫
I ψt	h�x�dY�x�

n1/2
∫ �x − t�kψt	h�x�dx = cn	h�̂�t	 h�

of f�k��t�, where cn	h �= n−1/2h−k−1/2
ψ
2/�
∫
xkψ�x�dx�. Then the test statis-

tic T�Y� may be written as

T�Y� = sup
h∈�0	R−1/2�

(
c−1
n	h sup

t∈�Rh	1−Rh�
f̂

�k�
h �t� − C�2Rh�

)
�
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Fig. 2. The test signals ψ↓ and ψconc.

Therefore our test identifies pairs �t	 h� such that f̂�k�
h �t� is significantly greater

than 0. This shows that our methods are related and have potential applica-
tions to Chaudhuri and Marron’s (1999) method. Translated into the present
setup, the latter authors use test statistics such as

sup
h∈�a	 b�

sup
t∈�Rh	1−Rh�

�nh�1/2�f̂�1�
h �t��	

with fixed �a	 b� ⊂ �0	1� in order to identify a set of pairs �t	 h� such that
Ɛf̂

�1�
h �t� �= 0 (with a certain confidence).

Rate optimality. The rate ρn appearing in Theorem 3.2 coincides with the
optimal rate for estimating the kth derivative of a function in � �k+1	L� with
respect to the sup-norm; see Ibragimov and Khasminskii (1980). Moreover, our
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optimization problem (3.9) is closely related to (but does not coincide with) the
optimal recovery problem from Donoho (1994a, b) arising in the estimation of a
function and its derivatives in sup-norm. Similarly to the estimation problem,
the case of a smoothness degree differing from k + 1 would require different
test signals. At the same time, one can easily verify that the test proposed
here yields the optimal rate of testing for an arbitrary Hölder class � �β	L�
with β > k.

4. Modifications and further developments.

4.1. Gaussian regression. Suppose that instead of the process Y on I we

observe a random vector
→
Y ∈ Rn with components

Yi = f�xi� + εi for i = 1	2	 � � � 	 n	(4.12)

where xi �= �i − 1/2�/n, and the random errors εi are independent with
Gaussian distribution � �0	 σ2�. One can show that Theorems 2.2, 3.1 and
3.2 remain valid with σc∗ in place of c∗, provided that we replace �̂�t	 h� with

�̂n�t	 h� �= σ−1
( n∑

i=1

ψt	h�xi�2
)−1/2 n∑

i=1

ψt	h�xi�Yi�(4.13)

Moreover, it suffices to consider pairs �t	 h� such that t = j/n and h = R−1d/n
for integers d ∈ �1	 n/2� and j ∈ �d	n − d�.

Suppose that σ is unknown and replaced with an estimator σ̂n. Then our
tests are asymptotically valid and keep their optimality properties provided
that

�σ̂n/σ − 1� = op��log n�−1/2��(4.14)

For instance, let σ̂2
n be defined as

�2�n − 1��−1
n∑

i=1

�Yi − Yi−1�2 or �6�n − 2��−1
n−1∑
i=1

�2Yi − Yi−1 − Yi+1�2#

see Rice (1984) for the first and Gasser, Sroka and Jennen-Steinmetz (1986) for
the second proposal. Then (4.14) holds whenever f has bounded total variation
TV�f�. Indeed, elementary calculations show that

Ɛ��σ̂2
n/σ

2 − 1�2� = O��1 + TV�f�2�/n��

4.2. General regression models. If one observes Yi = f�xi� + Ei for i =
1	2	 � � � 	 n with arbitrary fixed numbers xi and independent, identically dis-
tributed random errors Ei, one can modify the multiscale tests of �↓ in
Section 3.2 using linear rank statistics in place of the linear statistics in (4.13);
see Dümbgen (1998). In that paper the aspect of localizing interesting features
such as modes is discussed in more detail.
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4.3. Other testing problems. If a qualitative property of f is plausible one
can construct a confidence set for f under this assumption only. There are
asymptotically optimal and adaptive confidence bands for monotone or concave
functions f based on appropriate multiscale statistics; see Dümbgen (2000).

5. Numerical examples. In this section we illustrate the tests of Section
3.2 for �↓ and �conc within the Gaussian regression model (4.12) with sample
size n = 700 and standard deviation σ = 1. For notational convenience the
test signals ψ↓ and ψconc are rescaled to have support �−1	1�, namely, ψ↓�x� �=
1
�x� ≤ 1�x�1 − �x�� and ψconc �= 1
�x� ≤ 1��−1/8 + 9x2/8 − �x�3�.

As for �↓, we estimated the distribution function of

T̃n�→
Y� �= max

h∈Sn

T̃n�→
Y	h�	 with T̃n�→

Y	h� �= max
t∈Ln�h�

��̂n�t	 h� − C�2h��

in the case f ≡ 0, using 9999 Monto Carlo simulations. Here Sn denotes
the set of scale parameters 1/n	2/n	 � � � 	 �n/2�	 and Ln�h� stands for the set
of location parameters h	2h	 � � � 	1 − h. Further �̂n�t	 h� is the linear filter
defined in (4.13) with the test signal ψ↓. Here are some estimated �1 − α�
quantiles κ̃n	 α�

α 0.50 0.10 0.05
κ̃n	 α 1.029 1.773 2.018

Figure 3 shows four realizations of the random function T̃n�→
Y	 ·� on Sn, again

in the case f ≡ 0. The lower dashed line depicts the additive correction term,
h %→ −C�2h�, while the upper horizontal line shows the critical value κ̃n	0�05 =
2�018.

The process T̃n�→
Y	 ·� behaves differently if, for example, f is the function

depicted in Figure 1. Figure 4 shows observationsYi together with this regres-
sion function f (left plot) and the corresponding process T̃n�→

Y	 ·� (right plot).
We see the critical value κ̃n	0�05 is exceeded for bandwidths h in two disjoint
regions. For two of these bandwidths Figure 5 shows the process �̂n�t	 ·� on
Ln�h� (upper row). In addition, for both bandwidths a location parameter t

with �̂n�t	 h� > C�2h� + κ̃n	0�05 was picked. Each plot in the lower row shows
the data vector

→
Y together with its orthogonal projection onto the linear span

of

�1
�xi − t� < h��ni=1 and �ψt	h�xi��ni=1�

Note that the larger bandwidth enables us to find a moderate increasing trend
over a large interval on the left-hand side, while the smaller bandwidth is
appropriate for detecting and localizing a sharp increasing trend of f over a
smaller interval on the right-hand side. Indeed the underlying function f is a
quadratic spline (i.e., f�2� is piecewise constant) such that

�̃�0	0�05��f� = f�1��0�33� = 5�8 and �̃�0�5	1��f� = f�1��0�80� = 60�7	
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Fig. 3. Four realizations of T̃n�→
Y	 ·� in the case f ≡ 0.

whereas

sup
t∈�0�1	0�5�

�f�2�� = 90 and sup
t∈�0�77	0�83�

�f�2�� = 2720�

For n = 700 and k = 1 the number ρnc∗�90� in Theorem 3.2 equals 5.518,
which is slightly smaller than f�1��0�33�. The number ρnc∗�2720� equals 42.66,
which is about 0.71 times f�1�(0.80). These pictures and numbers illustrate
the benefits of using several bandwidths simultaneously, which yields spatial
adaptivity as stated in Theorem 3.2.

Now we show analogous plots for a function f �∈ �conc and the multiscale
statistic T̃n based on the test signal ψconc. More precisely, we define �̂n�t	 h�
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Fig. 4. Simulated data with f �∈ �↓ and T̃n�→
Y	 ·�.

as in (4.13) with

ψ�x	nh� �= 1
�x� ≤ 1��−a�nh� + �1 + a�nh��x2 − �x�3�
in place of ψ�x�, where a�d� �= �1 + d−2/2�/�8 + d−2�. For then Ɛg�̂�t	 h� ≤ 0
for all g ∈ �conc, a consequence of Lemma 6.1. Figure 6 shows simulated

data and the process T̃n�→
Y	 ·�. Figure 7 shows the process �̂n�·	 h� for two

different bandwidths together with “convex features” of the data. The latter

are orthogonal projections of
→
Y onto the linear span of

�1
�xi − t� < h��ni=1	 �1
�xi − t� < h��xi − t��ni=1 and �ψt	h�xi	 nh��ni=1�

6. Proofs.

6.1. An extension of Lévy’s modulus of continuity. Theorem 2.1 may be
seen as a generalization of Lévy’s modulus of continuity for Brownian motion
[cf. Shorack and Wellner (1986), Theorem 4.1.1]. For if we apply Theorem 2.1
to ψ�x� �= 1
�x� ≤ 1�, then

�̂�t	 h� − Ɛ�̂�t	 h� = �2h�−1/2�W�t + h� − W�t − h��	
so that

sup
s	 t∈I � s<t

( �W�t� − W�s��
�t − s�1/2 − C�t − s�

)/
D�t − s� < ∞ almost surely�

Theorem 2.1 itself follows from a general theorem about stochastic processes
with sub-Gaussian increments on some pseudometric space �	 	 ρ�. For any
subset 	 ′ of 	 and ε > 0 the capacity number (covering number) N�ε		 ′� is
defined as the supremum of #	 ′′ over all 	 ′′ ⊂ 	 ′ such that ρ�a	 b� > ε for
arbitrary different points a	 b ∈ 	 ′′.
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Fig. 5. The process �̂n�·	 h� for h = 0�170 and h = 0�029.

Theorem 6.1. LetX be a stochastic process on a pseudometric space �	 	 ρ�
with continuous sample paths. Suppose that the following three conditions
hold:

(i) There is a function σ � 	 →�0	1� and a constant K ≥ 1 such that

�
X�a� > σ�a�η� ≤ K exp�−η2/2� for all η > 0 and a ∈ 	 �

Moreover,

σ�b�2 ≤ σ�a�2 + ρ�a	 b�2 for all a	 b ∈ 	 �

(ii) For some constants L	M ≥ 1,

�
�X�a� − X�b�� > ρ�a	 b�η� ≤ L exp�−η2/M� for all η > 0 and a	 b ∈ 	 �

(iii) For some constants A	B	V > 0,

N��δu�1/2	 
a ∈ 	 � σ�a�2 ≤ δ�� ≤ Au−Bδ−V for all u	 δ ∈ �0	1��
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Fig. 6. Simulated data with f �∈ �conc and T̃n�→
Y	 ·�.

Then the random variable

S�X� �= sup
a∈	

X�a�2/σ�a�2 − 2V log�1/σ�a�2�
log log�ee/σ�a�2�

is finite almost surely. More precisely, �
S�X� > r� ≤ p�r� for some function p
depending only on the constants K	L	M	A	B	V such that limr→∞ p�r� = 0.

Remark 1. By definition of S�X�, the ratio X�a�2/σ�a�2 is not greater
than 2V log�σ�a�−2� + S�X� log log�eeσ�a�−2� for arbitrary a ∈ 	 . Since �x +
y�1/2 ≤ x1/2 + x−1/2y/2 for arbitrary positive numbers x and y, Theorem 6.1
implies that

sup
a∈	

��X�a��/σ�a� − C�σ�a�2��/D�σ�a�2� < ∞ almost surely	

with C�·� and D�·� as defined in Theorem 2.1.

Remark 2. Theorem 6.1 can be applied, for instance, to stochastic pro-
cesses whose index set is the family of all quadrangles in �0	1�d or the family
of all Euclidean balls on the unit sphere in Rd. Thus it has potential applica-
tions to multiscale tests for image analysis and for directional data.

Proof of Theorem 6.1. For positive numbers v let

ω�X	 v� �= sup
a	 b∈	 �ρ�a	 b�≤v

�X�a� − X�b���

It follows from assumptions (ii) and (iii) with δ = 1, Theorem 2.2.4 of van der
Vaart and Wellner (1996) and elementary calculations that

�
ω�X	 v� > η� ≤ C exp
(

− η2

CV2 log�e/v�
)

for 0 < v ≤ 1	 η > 0�(6.15)
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Fig. 7. The process �̂n�·	 h� for h = 0�136 and h = 0�253.

Here and throughout the sequel C denotes a generic positive constant depend-
ing only on K	L	M	A	B	V. Its value may differ from place to place.

For 0 < δ ≤ 1 let 	 �δ� �= 
a ∈ 	 � δ/2 < σ�a�2 ≤ δ�. Now fix some u ≤ 1/2,
and let 	 �δ	 u� be a maximal subset of 	 �δ� such that ρ�a	 b�2 > uδ for
arbitrary different a	 b ∈ 	 �δ	 u�. For each a ∈ 	 �δ� there exists a point
ã ∈ 	 �δ	 u� such that ρ�a	 ã�2 ≤ uδ. In particular,

σ�a�2 ≥ σ�ã�2 − uδ ≥ σ�ã�2�1 − 2u�
by assumption (ii) and the definition of 	 �δ�. For 0 < λ < 1 and r > 0, the
inequality

X�a�2 > σ�a�2r
implies that either

ω
(
X	 �uδ�1/2)2 ≥ �X�a� − X�ã��2 > λ2X�a�2 ≥ λ2δr/2
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or

X�ã�2 ≥ �1 − λ�2X�a�2 > �1 − λ�2σ�a�2r
≥ �1 − λ�2�1 − 2u�σ�ã�2r�

Thus, for any nonincreasing function r � �0	 1� →�0	 ∞�,

<�δ� �= �
X�a�2/σ�a�2 > r�a� for some a ∈ 	 �δ��
≤ �

{
ω�X	 �uδ�1/2�2 > λ2δr�δ�/2

}
+ ∑

b∈	 �δ	u�
�
X�b�2 > �1 − λ�2�1 − 2u�σ�b�2r�δ��

≤ C exp
(

− λ2r�δ�
Cu log�e/�uδ��

)

+Cu−Bδ−V exp
(

−�1 − λ�2�1 − 2u�r�δ�
2

)

≤ C exp
(

− λ2r�δ�
Cu log�e/�uδ��

)

+C exp
(
B log�1/u� + V log�1/δ� + ur�δ� − �1/2 − λ�r�δ�)

according to assumptions (i) and (iii) and inequality (6.15). Specifically let

r�δ� �= 2V log�1/δ� + S log log�ee/δ�

for some constant S ≥ 1. If we set

λ = λ�δ� �= �S/4� log log�ee/δ�/r�δ�	

then �1/2 − λ�r�δ� = V log�1/δ� + �S/4� log log�ee/δ�, whence <�δ� is not
greater than

C exp
(

− S2�log log�ee/δ��2
Cur�δ� log�e/�uδ��

)
+ C exp�B log�1/u� + ur�δ� − �S/4� log log�ee/δ���

Finally, let

u = u�δ� �= �r�δ� log�e/δ��−1	

which is less than 1/2 if S ≥ 2. Then 1/u ≤ C�log�e/δ��2, so that

<�δ� ≤ C exp��C − S/C� log log�ee/δ���
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Now we apply this bound to δ = 2−k	 k ≥ 0. This yields

�
{
X�a�2/σ�a�2 > 2V log�1/σ�a�2� + S log log�ee/σ�a�2� for some a ∈ τ

}

≤
∞∑
k=0

<�2−k�

≤ C
∞∑
k−0

exp�−�S/C − C� log log�ee2k��

= C
∞∑
k=0

�e + k log 2�−�S/C−C�

→ 0 as S → ∞� ✷

Proof of Theorem 2.1. Without loss of generality let f = 0, R = 1 and

ψ
2 = 1. Let 	 be the set of all pairs �t	 h� with 0 < h ≤ 1/2	 h ≤ t ≤ 1 − h,
and define

ρ��t	 h�	 �t′	 h′��2 �= Leb��t − h	 t + h� & �t′ − h′	 t′ + h′��	

σ�t	 h�2 �= Leb��t − h	 t + h�� = 2h�

Then σ�b�2 ≤ σ�a�2 + ρ�a	 b�2 for all a	 b ∈ 	 , and

X�t	 h� �= �2h�1/2�̂�t	 h� = 21/2
∫
I
ψt	h dW

defines a centered Gaussian process on 	 with Var�X�t	 h�� = σ�t	 h�2. It
suffices to show that this process X and the triple �	 	 ρ	 σ� satisfies the
assumptions of Theorem 6.1 with V = 1; see also Remark 1 on Theorem 6.1.

Since �
�Z� ≥ η� ≤ exp�−η2/2� for standard Gaussian random variables
Z, our process X satisfies condition (i) with K = 1. As for the continuity of
its sample paths, the assumptions about ψ imply that

ψ�x� =
∫

�−1	x�
gdP

for all but at most countably many numbers x ∈ �−1	 1�, where P is some
probability measure on �−1	 1�, and g is some measurable function with �g� ≤
TV�ψ�	 ∫ gdP = 0. Integration by parts shows that

X�t	 h� = −21/2
∫
g�x�W�t + hx�P�dx�	
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which is continuous in �t	 h� by continuity of W and dominated convergence.
Moreover,

Var�X�t	 h� − X�t′	 h′��

= 2Var
(∫

g�x�(W�t + hx� − W�t′ + h′x�)P�dx�
)

≤ 2
(∫

�g�x�� �t + hx − t′ − h′x�P�dx�
)2

≤ 2TV�ψ�2ρ(�t	 h�	 �t′	 h′�)2�
Hence condition (ii) of Theorem 6.1 holds with L = 1 and M = 4TV�ψ�2.
Finally,

N
(

�uδ�1/2	 {a ∈ 	 � σ�a�2 ≤ δ
}) ≤ 12u−2δ−1 for all u	 δ ∈ �0	1��

For let 	 ′′ be any maximal subset of 
a ∈ 	 � σ�a�2 ≤ δ� such that ρ�a	 b�2 >
uδ for arbitrary different points a	 b ∈ 	 ′′. With m �= �2/�uδ�� define Mj �=
��j − 1�uδ/2	 juδ/2� for j = 1	2	 � � � 	m and Mm+1 �= �muδ/2	1�. For any
�t	 h� ∈ 	 ′′ let t − h ∈ Mj and t + h ∈ Mk. The inequalities 0 < 2h ≤ δ imply
that

0 ≤ k − j ≤ 1 + 2/u	

and there are at most �1+2/�uδ���2+2/u� pairs �j	 k� with these properties.
Moreover, since all sets Ml have length at most uδ/2, for any pair �j	 k� of
integers there is at most one point �t	 h� ∈ 	 ′′ such that t − h ∈ Mj and
t + h ∈ Mk. Thus the cardinality of 	 ′′ is not greater than �1 + 2/�uδ���2 +
2/u� ≤ 12u−2δ−1. ✷

6.2. Basic properties of the test signals. Here we collect some useful state-
ments about test signals ψ.

Proof of inequality (3.6). Since �̂�t	 h� = �̂�t	 h	Y� can be written as
�̂�t	 h	W� + n1/2�f	ψt	h�, it suffices to show that for h ∈ �0	1/2� and h ≤ s ≤
t ≤ 1 − h the following inequalities hold:

�ψt	hf� ≤ 0 for f ∈ �≤0	

�ψt	h − ψs	h	f� ≤ 0 for f ∈ �↓�

The assertion about �≤0 is obvious, because ψt	h ≥ 0. The assertion about �↓
follows from Lemma 6.1, because

∫ �ψt	h − ψs	h��x�dx = 0 and

ψt	h − ψs	h

{≥ 0 on ��s + t�/2	 ∞�,
≤ 0 on � − ∞	 �s + t�/2�. ✷
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Lemma 6.1. Let µ be some measure on the line, and let ψ ∈ L2�µ��
(a) Suppose that

∫
ψ�x�µ�dx� = 0 and

ψ

{≤ 0 on �−∞	 a�	
≥ 0 on �a	∞�

for some real number a� Then
∫
ψ�x�f�x�µ�dx� ≤ 0 for all f ∈ �↓�

(b) Suppose that
∫
ψ�x�µ�dx� = ∫

ψ�x�xµ�dx� = 0 and

ψ




≥ 0 on �−∞	 b�,
≤ 0 on �b	 c�	
≥ 0 on �c	∞�

for some real numbers b	 c with b < c� Then
∫
ψ�x�f�x�µ�dx� ≤ 0 for all

f ∈ �conc�

Proof of Lemma 6.1. As for part (a), let f ∈ �↓ and f̃ �= f − f�a�. Then
f̃ ∈ �↓, and our assumptions on ψ imply that

∫
ψfdµ = ∫

ψf̃dµ ≤ 0, because
ψf̃ ≤ 0.

Part (b) follows similarly, this time with the auxiliary function

f̃�x� �= f�x� − x − b

c − b

(
f�c� − f�b�) − f�b��

If f ∈ �conc, then f̃ belongs to �conc, too, and
∫
ψfdµ = ∫

ψf̃dµ ≤ 0, because
ψf̃ ≤ 0. ✷

Proof of Lemma 3.1. The functions ψ↓ and ψconc are constructed such
that they satisfy the conditions of Lemma 6.1(a) and (b), respectively, where
µ is Lebesgue measure on the line. Moreover, in both cases, foψ ≡ 0. Thus
condition (3.10) is satisfied. It remains to verify condition (3.11).

For g ∈ � �2	1� with f�1��0� ≥ 1 the inner product �g	ψ↓� equals �g̃	 ψ↓�,
where g̃�x� �= �g�x� −g�−x��/2, because ψ↓ is an odd function. Since g̃ is an
odd function in � �2	1� with g̃�1��0� = g�1��0� ≥ 1,

g̃�x� =
∫ x

0
g̃�1��s�ds ≥

∫ x

0
�1 − s�ds = ψ↓�x� ≥ 0 for x ∈ �0	 2�	

so that

�g̃	 ψ↓� = 2�g̃	 ψ↓��0	2� ≥ 2
ψ↓
22	 �0	2� = 
ψ↓
22�
Let b = 8/3, and let a be the unique point in �0	 b� with ψconc�a� = 0 =

ψconc�b�. For g ∈ � �3	1� with g�2��0� ≥ 1 the inner product �g	ψconc� equals
�g̃	 ψconc�, where g̃�x� �= �g�x� + g�−x��/2 − �g�a� + g�−a��/2, because ψconc
is an even function with �1	 ψconc� = 0. Since g̃ is an even function in � �3	1�
with g̃�2��0� = g�2��0� ≥ 1,

g̃�1��x� =
∫ x

0
g̃�2��s�ds ≥

∫ x

0
�1 − s�ds = ψ

�1�
conc�x� for x ∈ �0	 b��
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This, together with g̃�a� = ψconc�a� = 0, implies that

g̃ ≤ ψconc ≤ 0 on �0	 a�	
g̃ ≥ ψconc ≥ 0 on �a	 b��

Consequently,

�g̃	 ψconc� = 2�g̃	 ψconc��0	 b� ≥ 2
ψconc
22	 �0	 b� = 
ψconc
22� ✷

6.3. Minimax optimality. The proofs of Theorems 2.2(a) and 3.1(a) rely
on the following result about Gaussian likelihood ratios [cf. Ingster (1993) or
Lepski and Tsybakov (2000)].

Lemma 6.2. Let C1	 C2	 C3	 � � � be independent random variables with stan-
dard Gaussian distribution. If wm = �2 logm�1/2�1 − εm� with limm→∞
εm = 0 and limm→∞�logm�1/2εm = ∞	 then

lim
m→∞Ɛ

∣∣∣∣m−1
m∑
i=1

exp�wmCi − w2
m/2� − 1

∣∣∣∣ = 0�

For the reader’s convenience a proof is given here.

Proof of Lemma 6.2. Let Zm �= exp�wmC1 − w2
m/2�. Since ƐZm = 1, the

assertion follows from the weak law of large numbers for triangular arrays,
provided that

lim
m→∞Ɛ1
�Zm − 1� ≥ ηm��Zm − 1� = 0 for any η > 0�

But for m ≥ 1/η, the expectation of 1
�Zm − 1� ≥ ηm��Zm − 1� is not greater
than

Ɛ1
Zm ≥ ηm�Zm ≤ ƐZ1+δ
m �ηm�−δ for any δ > 0

= exp�δ�1 + δ�w2
m/2 − δ log�ηm��

= exp�δ�1 + δ��1 − εm�2 log m − δ log m − δ log η�
for any δ > 0. In the case δ = εm the latter bound equals

exp
(

−
(
ε2m + O�ε3m�

)
logm + o�1�

)
→ 0 as m → ∞� ✷

Proof of Theorem 3.1(a). Let ψ be the triangular kernel with ψ�x� =
1
�x� ≤ 1��1 − �x��. For a given bandwidth h ∈ �0	1/2� and any integer j let

gj �= Lhψ�2j−1�h	h�

All these functions gj belong to � �1	L�. Now let �a	 a + 2b� ⊂ J ⊂ �0	1� for
some b > 0. For l = 1	2 define


l �= 
integers j � �2j − 1�h ∈ �a + �l − 1�b	 a + lb���
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These sets 
l contain at least b/�2h� − 1 indices, and


g∈� �1	L� ��J�g�≥Lh�⊃
{
gk �k∈
2�	 if�o=�≤0,


gk−gj � �j	k�∈
1×
2�	 if �o=�↓.

Let �o denote the finite set on the right-hand side, depending on �o. Then for
any test φ � � �0	 1� → �0	 1� with Ɛ0φ�Y� ≤ α,

inf
g∈� �1	L���J�g�≥Lh

Ɛgφ�Y� − α

≤ min
g∈�o

Ɛgφ�Y� − Ɛ0φ�Y�

≤ �#�o�−1 ∑
g∈�o

Ɛgφ�Y� − Ɛ0φ�Y�

≤ Ɛ0

(
�#�o�−1 ∑

g∈�o

d�g
d�0

�Y� − 1
)
φ�Y�

≤ Ɛ0

∣∣∣∣�#�o�−1 ∑
g∈�o

d�g
d�0

�Y� − 1
∣∣∣∣�

(6.16)

Now we want to determine h = hn such that the right-hand side tends to 0
as n → ∞.

Recall that log�d�g/d�0��Y� = n1/2
∫
I gdY− n
g
22/2. If g = Lhψ�2j−1�h	h,

the stochastic integral n1/2
∫
gdY is equal to n1/2Lh3/2
ψ
2�̂��2j − 1�h	 h�.

With Ci �= �−1�l�̂��2i−1�h	 h� for i ∈ 
l, the random variables Ci	 i ∈ 
1∪
2,
are independent and standard normally distributed under �0. If we define the
constant w �= n1/2Lh3/2
ψ
2 and the random variable Zi �= exp�wCi −w2/2�,
Then we can write

d�gk
d�0

�Y� − 1 = Zk − 1	

d�gk−gj

d�0
�Y� − 1 = ZjZk − 1 = �Zj − 1��Zk − 1� + �Zj − 1� + �Zk − 1�

for j ∈ 
1	 k ∈ 
2. Consequently,

�#�o�−1 ∑
g∈�o

�d�g/d�0��Y� − 1 =
{
S2	 if �o = �≤0,

S1S2 + S1 + S2	 if �o = �↓,

where Sl �= �#
l�−1∑
i∈
l

Zi −1. Therefore, since S1 and S2 are independent,
the expected value (6.16) tends to 0 if

Ɛ0�Sl� → 0 for l = 1	2�
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According to Lemma 6.2, the latter condition holds as n → ∞, provided that
hn → 0 and the corresponding w = wn satisfies

�log n�1/2
(
1 − w2

n

2 log�b/�2hn� − 1�
)

= �log n�1/2
(
1 − L2nh3

n/3
log�b/�2hn� − 1�

)
→ ∞�

If hn = L−2/3�1 − εn�ρn, where ρn = �log�n�/n�1/3, then

�log n�1/2
(
1 − w2

n

2 log�b/�2hn� − 1�
)

= �log n�1/2�1 − �1 − εn�3� + o�1� → ∞�

The corresponding lower bound Lhn for �J�g� equals �1 − εn�L1/3ρn, as
desired. ✷

Proof of Theorem 2.2(b). Let δ = δn �= c∗ρn	 h = hn = �δ/L�1/β and
J = Jn = �Rh	 1 − Rh�. For any t ∈ J, the probability of rejecting the null
hypothesis, �g
T�Y� > κα�, is bounded from below by

�g

{��̂�t	 h�� > C�2h� + κα
}

= �0

{
��̂�t	 h� + �n/h�1/2
ψ
−1

2 �g	ψt	h�� > C�2h� + κα

}
≥ �0

{
−sign ��g	ψt	h���̂�t	 h� < �n/h�1/2
ψ
−1

2 ��g	ψt	h�� − C�2h� − κα

}
= E

(
�n/h�1/2
ψ
−1

2 ��g	ψt	h�� − C�2h� − κα

)
	

where E denotes the standard Gaussian distribution function. Thus it suffices
to show that

�1 + εn�max
t∈J

�n/h�1/2
ψ
−1
2 ��g	 ψt	h�� − C�2h� → ∞

uniformly for all g ∈ � �β	L� such that 
g
J ≥ δ. Let g be any such function,
and let t ∈ J with �g�t�� ≥ δ. By construction of ψ and definition of h, the
function δψt	h belongs to � �β	L�, and the considerations following (2.2) show
that

��g	ψt	h�� = δ−1��g	 δψt	h�� ≥ δ−1
δψt	h
22 = hδ
ψ
22�
Thus

�1 + εn�max
t∈J

�n/h�1/2
ψ
−1
2 ��g	ψt	h�� − C�2h�

≥ �1 + εn�
ψ
2n1/2h1/2δ − C�2h�
= εn�2/�2β + 1��1/2�log n�1/2 + o�1� → ∞� ✷
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Proof of Theorem 3.1(b). In the case �o = �≤0 the proof is almost iden-
tical to the proof of Theorem 2.2(b). Thus we focus on �o = �↓. Let δ = δn =
L1/3ρn and h = hn = δ/L. Further let J = Jn be any nonvoid subinterval
of �h	1 − h� and J′ = J′

n its h-neighborhood. For s	 t ∈ J with s < t the
probability �g
To�Y� > κo	α� is not smaller than

�g
��̂�t	 h� − �̂�s	 h��/2 > C�2h� + κ0	 α�
= �0
��̂�s	 h� − �̂�t	 h��/2

< �n/h�1/2
ψ
−1
2 �g	ψt	h − ψs	h�/2 − C�2h� − κo	α�

≥ E��n/h�1/2
ψ
−1
2 �g	ψt	h − ψs	h�/2 − C�2h� − κo	α�	

provided that the argument of E�·� is positive, because the variance of
(�̂�s	 h� − �̂�t	 h��/2 is not greater than 1. Thus it suffices to show that

�1 + εn� max
s	 t∈J � s<t

�n/h�1/2
ψ
−1
2 �g	ψt	h − ψs	h�/2 − C�2h� → ∞

uniformly for all g ∈ �J′ �1	L� with �J�g� ≥ δ. For any such function g we pick
two points s	 t ∈ J with s < t and g�t�−g�s� ≥ 2δ. Letting γ �= �g�s�+g�t��/2,

�g	ψt	h − ψs	h�/2 = 2−1
∫

�g�x� − γ��ψt	h − ψs	h��x�dx

≥ 2−1
∫

��δ − L�x − t��ψt	h�x� − �−δ + L�x − s��ψs	h�x��dx

= h
∫ 1

−1
�δ − Lh�x���1 − �x��dx

= Lh2
ψ
22�

Thus

�1 + εn� max
s	 t∈J � s<t

�n/h�1/2
ψ
−1
2 �g̃	 ψt	h − ψs	h�/2 − C�2h�

≥ �1 + εn�L
ψ
2n1/2h3/2 − C�2h�
= �2/3�1/2�log n�1/2εn + o�1� → ∞� ✷

Proof of Theorem 3.2. Let h = hn ∈ �0	R−1/2� and δ = δn > 0 such that
limn→∞ hn = limn→∞ δn = 0. Further let J = Jn be any nonvoid subinterval of
�Rh	1−Rh� and J′ = J′

n its Rh-neighborhood. For any t ∈ J, the probability
�
T̃�Y� > κ̃α� is not smaller than

�g
�̂�t	 h� > C�2Rh� + κ̃α�
= �0
�̂�t	 h� + �n/h�1/2
ψ
−1

2 �g	ψt	h� > C�2Rh� + κ̃α�
≥ E��n/h�1/2
ψ
−1

2 �g	ψt	h� − C�2Rh� − κ̃α��
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Now the question is how to choose h = hn and δ = δn such that

�1 + εn�max
t∈J

�n/h�1/2
ψ
−1
2 �g	ψt	h� − C�2Rh� → ∞

uniformly for all g ∈ �J′ �k + 1	L� with �̃J�g� ≥ δ. For any such function g
we pick some point t ∈ J with g�k��t� ≥ δ. Then

�g	ψt	h� = h�g�t + h·�	 ψ� = ha−1�ag�t + h·�	 ψ�
for any a > 0. Note that ag�t + h·� belongs to the Hölder class ��−R	R��k +
1	 ahk+1L� and

�ag�t + h·���k��0� = ahkg�k��t� ≥ δahk�

Specifically let h �= δ/L and a �= Lkδ−�k+1�, so that ahk+1L = δahk = 1. Then,
by (3.11),

�g	ψt	h� ≥ ha−1
ψ
22 = L−�k+1�δk+2
ψ
22	
whence

�1 + εn�max
t∈J

�n/h�1/2
ψ
−1
2 �g	ψt	h� − C�2Rh�

≥ �1 + εn�L−�2k+1�/2
ψ
2n1/2δ�2k+3�/2 − C�2Rδ/L��
The right-hand side equals εn�2/�2k + 3��1/2�log n�1/2 + o�1� and tends to ∞,
provided that δ = δn�L� as stated in the theorem. ✷
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