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This paper offers a new approach for estimating and forecasting the
volatility of financial time series. No assumption is made about the parametric
form of the processes. On the contrary, we only suppose that the volatility
can be approximated by a constant over some interval. In such a framework,
the main problem consists of filtering thisinterval of time homogeneity; then
the estimate of the volatility can be simply obtained by local averaging. We
construct alocally adaptive volatility estimate(LAVE) which can perform
this task and investigate it both from the theoretical point of view and through
Monte Carlo simulations. Finally, the LAVE procedure is applied to a data set
of nine exchange rates and a comparison with a standard GARCH model is
also provided. Both models appear to be capable of explaining many of the
features of the data; nevertheless, the new approach seems to be superior to
the GARCH method as far as the out-of-sample results are concerned.

1. Introduction. The aim of this paper is to offer a new perspective for the
estimation and forecasting of the volatility of financial asset returns such as stocks
and exchange rate returns.

A remarkable amount of statistical research is devoted to financial time series,
in particular, to the volatility of asset returns, where the term volatility indicates a
measure of dispersion, usually the variance or the standard deviation. The interest
in this topic is motivated by the needs of the financial industry, which regards
volatility as one of the main reference numbers for risk management and derivative
pricing.

Actually, asset returns time series display very peculiar stylized facts, which
are connected with their second moments. Graphically, they look like white noise,
where periods of high and low volatility seem to alternate. Their density has fat
tails if compared to that of a normal random variable, and they show significantly
positive and highly persistent autocorrelation of the absolute returns, meaning that
large (resp. small) absolute returns are likely to be followed by large (resp. small)
absolute returns. Typical examples can be seen in Section 6, and further details
on this topic can be found in Taylor (1986). Therefore, a white-noise process with
time-varying variance is usually taken to model such features. LetSt denote the
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observed asset process. Then the corresponding (log) returnsRt = log(St/St−1)

follow the heteroscedastic model

Rt = σtξt ,

whereξt are standard Gaussian independent innovations andσt is a time-varying
volatility coefficient. It is often assumed thatσt is measurable w.r.t. theσ -field
generated by the preceding returnsR1, . . . ,Rt−1. For modeling this volatility
process, parametric assumptions are usually used. The main model classes are the
ARCH and GARCH family [Engle (1995)] and the stochastic volatility models
[Harvey, Ruiz and Shephard (1994)]. A large number of papers has followed the
first publications on this topic, and the original models have been extended in
order to provide better explanations. For example, models which take into account
asymmetries in volatility have been proposed, such as EGARCH [Nelson (1991)],
QGARCH [Sentana (1995)] and GJR [Glosten, Jagannathan and Runkle (1993)];
furthermore, the research on integrated processes has produced integrated [Engle
and Bollerslev (1986)] and fractal integrated versions of the GARCH model.

The availability of very large samples of financial data has made it possible
to construct models which display quite complicated parameterizations in order
to explain all the observed stylized facts. Obviously, these models rely on the
assumption that the parametric structure of the process remains constant through
the whole sample. This is a nontrivial and possibly dangerous assumption, in
particular, as far as forecasting is concerned [Clements and Hendry (1998)].
Furthermore, checking for parameter instability becomes quite difficult if the
model is nonlinear and/or the number of parameters is large. Thus, those
characteristics of the returns, which are often explained by the long memory
and (fractal) integrated nature of the volatility process, could also depend on the
parameters being time varying.

In this paper we propose another approach focusing on a very simple model but
with a possibility for model parameters to depend on time. This means that the
model is regularly checked and adapted to the data. No assumption is made about
the parametric structure of the volatility process. We only suppose that it can be
locally approximated by a constant; that is, for every time pointτ there exists a
past interval[τ − m,τ ] where the volatilityσt did not vary much. This interval is
referred to as theinterval of time homogeneity. An algorithm is proposed for data-
driven estimation of the interval of time homogeneity, after which the estimate of
the volatility can be simply obtained by averaging.

Our approach is similar to varying-coefficient modeling from Fan and Zhang
(1999); see also Cai, Fan and Li (2000) and Cai, Fan and Yao (2000). Fan,
Jiang, Zhang and Zhou (2003) discussed applications of this method to stock price
volatility modeling. The proposed procedure is based on the assumption that the
model parameters smoothly vary with time and can be locally approximated by
a linear function of time. This approach has the drawback of not allowing one to
incorporate structural breaks into the model.
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Change point modeling with applications to financial time series was consid-
ered in Mikosch and Starica (2000). Kitagawa (1987) applied non-Gaussian ran-
dom walk modeling with heavy tails as the prior for the piecewise constant mean
for one-step-ahead prediction of nonstationary time series. However, the afore-
mentioned approaches require some essential amount of prior information about
the frequency of change points and their size.

The LAVE approach proposed in this article does not assume smooth or
piecewise constant structure of the underlying process and does not require any
prior information. The procedure proposed below in Section 3 focuses on adaptive
choice of the interval of homogeneity that allows one to proceed in a unified way
with smoothly varying coefficient models and change point models.

The proposed approach attempts to describe thelocal dynamic of the volatility
process, and it is particularly appealing for short-term forecasting purposes which
is an important building block, for example, in value-at-risk and portfolio hedging
problems or backtesting [Härdle and Stahl (1999)].

The remainder of the paper is organized as follows. Section 2 introduces the
adaptive modeling procedure. Then some theoretical properties are discussed in
the general situation and for a change point model. A simulation study illustrates
the performance of the new methodology with respect to the change point model.
The question of selecting the smoothing parameters is also addressed and some
solutions are proposed. Finally, the procedure is applied to a set of nine exchange
rates and it appears to be highly competitive with standard GARCH(1,1), which
is used as a benchmark model. Mathematical proofs are given in Section 8.

2. Modeling volatility via power transformation. Let St be an observed
asset process in discrete time,t = 1,2, . . . , τ andRt are the corresponding returns:
Rt = log(St/St−1). We model this process via theconditional heteroscedasticity
assumption

Rt = σtξt ,(2.1)

whereξt , t ≥ 1, is a sequence of independent standard Gaussian random variables
andσt is thevolatility process which is in general a predictable random process,
that is,σt ∼ Ft−1 with Ft−1 = σ(R1, . . . ,Rt−1) (theσ -field generated by the first
t − 1 observations).

A time-homogeneous(time-homoscedastic) model means thatσt is a constant.
The processSt is then a geometric Brownian motion observed at discrete time
moments. The assumption of time homogeneity is too restrictive in practical
applications, and it does not allow one to fit real data very well. In this paper,
we consider an approach based on thelocal time homogeneity, which means that
for every time momentτ there exists a time interval[τ −m,τ ] where the volatility
processσt is nearly constant. Under such a modeling, the main intention is both
to describe the interval of homogeneity and to estimate the corresponding value
στ which can then be used for one-step forecasting and the like.
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2.1. Data transformation. The model equation (2.1) links the target volatility
processσt with the observationsRt via the multiplicative errorsξt . The classical
well-developed regression approach relies on the assumption of additive errors
which can then be smoothed out by some kind of averaging. A natural and
widespread method of transforming equation (2.1) into a regression-like equation
is to apply the log function to both its sides squared:

logR2
t = logσ 2

t + logξ2
t ,(2.2)

which can be rewritten in the form

logR2
t = logσ 2

t + C + vζt ,

with C = E logξ2
t , v2 = Var logξ2

t andζt = v−1(logξ2
t − C); see, for example,

Gouriéroux (1997). This is a usual regression equation with the “response”
Yt = logR2

t , target regression functionf (t) = logσ 2
t + C and homogeneous

“noise” vζt .
The main problem with this approach is due to the distribution of the errorsζt ,

which is highly skewed and gives very high weights to the small values of the
errorsξt . In particular, this leads to a serious problem with missing data which are
typically modeled equal to previous values providingRt = 0.

Another possibility is based on power transformation [see Carroll and Ruppert
(1988)] which also leads to a regression with additive noise and this noise is much
closer to a Gaussian one. Due to (2.1), the random variableRt is conditionally
onFt−1 Gaussian and

E(R2
t |Ft−1) = σ 2

t .

Similarly, for everyγ > 0,

E(|Rt |γ |Ft−1) = σ
γ
t E(|ξ |γ |Ft−1) = Cγ σ

γ
t ,

E(|Rt |γ − Cγ σ
γ
t |Ft−1)

2 = σ
2γ
t E(|ξ |γ − Cγ )2 = σ

2γ
t D2

γ ,

where ξ denotes a standard Gaussian r.v.,Cγ = E|ξ |γ and D2
γ = Var|ξ |γ .

Therefore, the process|Rt |γ allows for the representation

|Rt |γ = Cγ σ
γ
t + Dγ σ

γ
t ζt ,(2.3)

whereζt is equal to(|ξ |γ − Cγ )/Dγ . Note that the problem of estimatingσt is
in some sense equivalent to the problem of estimatingθt = Cγ σ

γ
t , which is the

conditional mean of the transformed process|Rt |γ . This is already a kind of
heteroscedastic regression problem with additive errorsDγ σ

γ
t ζt satisfying

E(Dγ σ
γ
t ζt |Ft−1) = 0,

E(D2
γ σ

2γ
t ζ 2

t |Ft−1) = D2
γ σ

2γ
t .
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FIG. 1. Density ofp1/2(x) (straight line) and the standard normal density(dotted line).

A natural choice of the parameterγ is γ = 2 providing nearly efficient variance
estimation under homogeneity. Forγ = 2 one hasCγ = 1 andD2

γ = 2. Note,
however, that the distribution of the “errors”ζt = (|ξt |γ − Cγ )/Dγ is still heavy
tailed and highly skewed, which results in a low sensitivity of the method in
an inhomogeneous situation. The other important cases areγ = 1 andγ = 1/2.
A minimization of the skewnessEζ 3

γ and the fatEζ 4
γ −3 with respect toγ leads to

the choiceγ ≈ 1/2. The corresponding densityp1/2(x) of ζ1/2 together with the
standard normal densityφ(x) is plotted in Figure 1. Our numerical results are also
in favor of the choiceγ = 1/2; see Section 5.

3. Adaptive estimation under local time homogeneity. Here we describe
one approach to volatility modeling based on the assumption of local time
homogeneity starting from the preliminary heuristic discussion. The assumption
of local time homogeneity means that the functionσt is nearly constant within
an interval I = [τ − m,τ ], and the processRt follows the regression-like
equation (2.3) with the constant trendθI = Cγ σ

γ
I which can be estimated by

averaging over this intervalI :

θ̃I = 1

|I |
∑
t∈I

|Rt |γ .(3.1)

For the particular caseγ = 2 the estimatẽθI coincides with the local maximum
likelihood estimator (MLE) of the volatilityσ 2

t considered in Fan, Jiang, Zhang
and Zhou (2003). As discussed in the previous section, a smaller value ofγ might
be preferred for improving the stability of the method. Similarly to Fan, Jiang,
Zhang and Zhou (2003), one can also incorporate the one-sided kernel weighting
to this estimator.

By (2.3)

θ̃I = Cγ

|I |
∑
t∈I

σ
γ
t + Dγ

|I |
∑
t∈I

σ
γ
t ζt = 1

|I |
∑
t∈I

θt + sγ

|I |
∑
t∈I

θt ζt ,(3.2)
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with sγ = Dγ /Cγ so that

Eθ̃I = E
1

|I |
∑
t∈I

θt ,(3.3)

s2
γ

|I |2E

(∑
t∈I

θtζt

)2

= s2
γ

|I |2E
∑
t∈I

θ2
t .(3.4)

3.1. Some properties of the estimatẽθI . Due to our assumption of local
homogeneity, the processθt is close toθτ for all t ∈ I . Define also

�I = sup
t∈I

|θt − θτ | and v2
I = s2

γ

|I |2
∑
t∈I

θ2
t .

The value of�I measures the departure from homogeneity within the intervalI ,
and it can be regarded as an upper bound of the “bias” of the estimateθ̃I . The
value of v2

I , because of (3.4), will be referred as the “conditional variance” of
the estimatẽθI . The next theorem provides a probability bound for the estimation
error, that is, the deviation of̃θI from the present value of the volatilityθτ in terms
of �I andvI .

THEOREM 3.1. Let the volatility coefficientσt satisfy the condition

b ≤ σ
γ
t ≤ bB,(3.5)

with some positive constantsb,B. Then there existsaγ > 0 such that, for every
λ ≥ 1,

P(|θ̃I − θτ | > �I + λvI ) ≤ 4
√

ea−1
γ λ(1+ logB)e−λ2/(2aγ ).

REMARK 3.1. This result can be slightly refined for the special case when the
volatility processσt for t ∈ I is deterministic or (conditionally) independent of the
observationsRt precedingI . Namely, in such a situation the factor 4

√
ea−1

γ λ(1+
logB) in the bound can be replaced by 2:

P(|θ̃I − θτ | > �I + λvI ) ≤ 2e−λ2/(2aγ ).

A similar remark applies to all the results that follow.

The result of this theorem bounds the loss of the estimateθ̃I via the value�I

and the conditional standard deviationvI . Under homogeneity�I ≡ 0 and the
error of estimation is of ordervI . Unfortunately,vI depends, in turn, on the target
processθt . One would be interested in another bound which does not involve
the unknown functionθt . Namely, using (3.4) and assuming�I small, one may
replace the conditional standard deviationvI by its estimate

ṽI = sγ θ̃I |I |−1/2.
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THEOREM 3.2. Let R1, . . . ,Rτ obey(2.1) and let(3.5) hold true. Then, for
the estimatẽθI of θτ for everyD ≥ 0 andλ ≥ 1,

P
(|θ̃I − θτ | > λ′ṽI , �I/vI ≤ D

) ≤ 4
√

eλ(1+ logB)e−λ2/(2aγ ),

whereλ′ solves

λ + D = λ′/(1+ λ′sγ |I |−1/2).

3.2. Adaptive choice of the interval of homogeneity.Given observations
R1, . . . ,Rτ following the time-inhomogeneous model (2.1), we aim to estimate
the current value of the parameterθτ using the estimatẽθI with a properly selected
time intervalI of the form [τ − m,τ ] to minimize the corresponding estimation
error. Below we discuss one approach which goes back to the idea of pointwise
adaptive estimation; see Lepski (1990), Lepski and Spokoiny (1997) and Spokoiny
(1998). The idea of the method can be explained as follows. SupposeI is an
interval candidate; that is, we expect time homogeneity inI and, hence, in every
subinterval ofI . This particularly implies that the value�I is small and similarly
for all �J , J ⊂ I , and that the mean values of theθt over I and overJ nearly
coincide. Our adaptive procedure roughly means the choice of the largest possible
interval I such that the hypothesis that the valueθt is a constant withinI is
not rejected. For testing this hypothesis, we consider the family of subintervals
of I of the form J = [τ − m′, τ ] with m′ < m and for every such subinterval
J compare two different estimates: one is based on the observations fromJ , and
the other one is calculated from the complementI \J = [τ −m,τ −m′[. Theorems
3.1 and 3.2 can be used to bound the differenceθ̃J − θ̃I\J under homogeneity
within I . Indeed, the conditional variance ofθ̃I\J − θ̃J is v2

I\J + v2
J and can be

estimated bỹv2
I\J + ṽ2

J . Thus, with high probability it holds that

|θ̃I\J − θ̃J | ≤ λ
√

ṽ2
I\J + ṽ2

J ,

provided thatλ is sufficiently large. Therefore, if there exists a testing interval
J ⊂ I such that the quantity|θ̃I\J − θ̃J | is significantly positive, then we reject
the hypothesis of homogeneity for the intervalI . Finally, our adaptive estimate
corresponds to the largest intervalI such that the hypothesis of homogeneity is
not rejected forI itself and all smaller considered intervals.

Now we present a formal description. Suppose a familyI of interval candi-
datesI is fixed. Each of them is of the formI = [τ − m,τ ], m ∈ N, so that the set
I is ordered due tom. With every such interval, we associate the estimateθ̃I of θτ

and the corresponding estimateṽI of the conditional standard deviationsvI .
Next, for every intervalI from I we assume there is a setJ(I ) of testing

subintervalsJ [one example of these setsI and J(I ) is given in Section 6].
For everyJ ∈ J(I ) we construct the corresponding estimateθ̃J (resp.θ̃I\J ) from



584 D. MERCURIO AND V. SPOKOINY

the observationsYt = |Rt |γ for t ∈ J (resp. fort ∈ I \ J ) according to (3.1) and
computeṽJ (resp.ṽI\J ).

Now, with a constantλ, define the adaptive choice of the interval of homogene-
ity by the following iterative procedure:

Initialization. Select the smallest interval inI.

Iteration. Select the next intervalI in I and calculate the corresponding
estimateθ̃I and the estimated conditional standard deviationṽI .

Testing homogeneity.RejectI if there exists oneJ ∈ J(I ) such that

|θ̃I\J − θ̃J | > λ
√

ṽ2
I\J + ṽ2

J .(3.6)

Loop. If I is not rejected, then continue with the iteration step by choosing a
larger interval. Otherwise, setÎ = “the latest nonrejectedI .”

The locally adaptive volatility estimate(LAVE) θ̂τ of θτ is defined by applying
this selected interval̂I :

θ̂τ = θ̃
Î
.

The next section discusses the theoretical properties of the LAVE algorithm in a
general framework, while Section 6 gives a concrete example for the choice of the
setsI, J(I ) and the parameterλ. This choice is then applied to simulated and real
data.

4. Theoretical properties. In this section we collect some results describing
the quality of the proposed adaptive procedure.

4.1. Accuracy of the adaptive estimate.Let Î be the interval selected by our
adaptive procedure. We aim to show that our adaptive choice is up to some constant
factor in the losses as good as the “ideal” choiceI that may utilize the knowledge
of the volatility processσt . This “ideal” choice can be defined by balancing
the accuracy of approximating the underlying processθt (which is controlled
by �I ) and the stochastic error controlled by the stochastic standard deviationvI .
By definition, vI = sγ |I |−1(

∑
t∈I θ2

t )1/2 so that vI typically decreases when
|I | increases. For simplicity of notation we shall suppose further thatvI ≤ vJ for
J ⊂ I .

We do not give a formal definition of an “ideal” choice of the intervalI since
there is no one universally optimal choice even if the processθt is known. Instead,
we consider a family of all “good” intervalsI such that the variability of the process
θt inside I is not too large compared to the conditional stochastic deviationvI.
This, due to Theorem 3.1, allows us to bound with high probability the losses of
the “ideal” estimatẽθ I by (D +λ)vI provided that�I/vI ≤ D andλ is sufficiently
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large. A similar property should hold for all smaller intervalsI ⊂ I. Hence, it is
natural to quantify the quality of the intervalI by

δI = sup
I∈I : I⊆I

�I/vI .

The next assertion claims that the risk of the adaptive estimate is not larger in order
thanvI for all I such thatδI is sufficiently small.

THEOREM 4.1. Let (3.5) hold true. Let an intervalI be such that, for some
D ≥ 0, it holds with positive probabilityδI ≤ D. Then

P( I is rejected, δI ≤ D)

≤ ∑
I∈I(I)

∑
J∈J(I )

12
√

eλJ (1+ logB)e−(λJ −D)2/(2aγ ),
(4.1)

whereλJ = λ(1− sγ λN
−1/2
J ) with NJ = min{|J |, |I \ J |}.

Moreover, if NJ ≥ 2sγ λ for all J ∈ J(I ) and all I ∈ I, then it holds for the
adaptive estimatêθ = θ̃

Î
on the random setA = {I is not rejected, δI ≤ D}:

|θ̃I − θ̃ I| ≤ 2λṽI

and

|θ̃I − θτ | ≤ (
D + 3λ + 2λsγ (D + λ)|I|−1/2)vI.

REMARK 4.1. It is easy to see that the sum on the right-hand side of the
bound (4.1) can be made arbitrarily small by proper choice of the constantλ and
the setsJ(I ). Hence, the result of the theorem claims that with a dominating
probability a “good” intervalI will not be rejected and the adaptive estimateθ̂

is up to a constant factor as good as any of the “good” estimatesθ̃ I.

REMARK 4.2. As mentioned in Remark 3.1, the probability bound on the
right-hand side of (4.1) can be refined for the special case when the processθt is
constant withinI by replacing the factor 12

√
eλJ (1 + logB)e−(λJ −D)2/(2aγ ) by

6e−λ2
J /(2aγ ).

5. Change point model. A change pointmodel is described by a sequence
T1 < T2 < · · · of stopping times with respect to the filtrationFt and by values
σ1, σ2, . . . , where eachσk is FTk

-measurable. By definition,σt = σk for Tk <

t ≤ Tk+1 and σt is constant fort < T1. This is an important special case of
the model (2.1). For this special case the above procedure has a very natural
interpretation: when estimating at the pointτ we search for a largest interval of the
form [τ − m,τ ] that does not contain a change point. This is done via testing for a
change point within the candidate intervalI = [τ − m,τ ]. Note that the classical
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maximum likelihood test for no change point in the regression case with Gaussian
N (0, σ 2) errors is also based on comparison of the mean values of observations
Yt over the subintervalsI = [τ −m,τ −m′] and every subintervalJ = [τ −m′, τ ]
for differentm′, so that the proposed procedure has strong appeal in this situation.
However, there is an essential difference between testing for a change point and
testing for homogeneity appearing as a building block of our adaptive procedure.
Usually, a test for a change point is constructed in a way to provide the prescribed
probability of a “false alarm,” that is, rejecting the “no change point” hypothesis
under homogeneity. Our adaptive procedure involves a lot of such tests for every
candidateI , which leads to a multiple-testing problem. As a consequence, each
particular test should be performed at a very high level; that is, it should be rather
conservative providing a joint error probability at a reasonable level.

5.1. Probability of a “ false alarm.” For the change point model, a “false
alarm” would mean that the candidate intervalI is rejected although the hypothesis
of homogeneity is still fulfilled. The arguments used in the proof of Theorem 4.1
lead to the following upper bound for the probability of a “false alarm”:

THEOREM 5.1. If I = [τ −m,τ ] is an interval of homogeneity, that is, θt = θτ

for all t ∈ I , then

P(I is rejected) ≤ ∑
I∈I(I)

∑
J∈J(I )

6 exp
(
− λ2

2aγ (1+ λsγ |J |−1/2)2

)
.

This result is a special case of Theorem 4.1 with�J ≡ 0 when taking into
account Remark 4.2.

Theorem 4.1 implies that for every fixed valueM there exists a fixedλ
providing a prescribed upper boundα for the probability of a “false alarm” for
a homogeneous intervalI of lengthM . Namely, the choice

λ ≥ (1+ ε)

√
2aγ log

M

m0α

leads for a proper small positive constantε > 0 to the inequality

∑
I∈I(I)

∑
J∈J(I )

6 exp
(
− λ2

2aγ (1+ λsγ |J |−1/2)2

)
≤ α.

Here,M/m0 is approximately the number of intervals inJ(I ) (see Section 6.1).
This bound is, however, very rough, and it is only of theoretical importance since
we estimate the probability of the sum of dependent events by the sum of single
probabilities. The value ofλ providing a prescribed probability of a “false alarm”
can be found by Monte Carlo simulation for the homogeneous model with constant
volatility as described in Section 6.
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5.2. Sensitivity to change points and the mean delay.The quality (sensitivity)
of a change point procedure is usually measured by the mean delay between the
occurrence of a change point and its detection.

To study this property of the proposed method, we consider the case of
estimation at a pointτ immediately after a change pointTcp. It is convenient
to suppose thatTcp belongs to the end points of an interval which is tested for
homogeneity. In this case the “ideal” choiceI is clearly [Tcp, τ ]. Theorem 4.1
claims that the quality of estimation atτ is essentially the same as if we knew
the latest change pointTcp a priori. In fact, one can state a slightly stronger
assertion: every intervalI which is essentially larger thanI will be rejected with
high probability provided that themagnitude of the change is large enough.

Denotem′ = |I|, that is,m′ = τ − Tcp. Let alsoI = [Tcp − m,τ ] = [τ − m′ −
m,τ ] for somem, so that|I | = m + m′, and letθ (resp.θ ′) denote the value of
the parameterθt before (resp. after) the change pointTcp. The magnitude of the
change point is measured by the relative changeb = 2|θ ′ − θ |/θ .

It is worth mentioning that the valuesθt and especiallyθ ′
t can be random and

dependent on past observations. For instance,θ ′
t may depend onYt for all t < Tcp.

The interval I will certainly be rejected if|θ̃I\I − θ̃ I| is sufficiently large
compared to the corresponding critical value.

THEOREM 5.2. Let E(Yt |Ft−1) = θ before the change point atTcp and
E(Yt |Ft−1) = θ ′ after it, and letb = |θ ′ − θ |/θ . Let I = [τ − m′ − m,τ ] with
m′ = τ − Tcp. If ρ := λsγ

/√
min{m,m′} < 1 and

b ≥ 2ρ + √
2ρ(1+ ρ)

1− ρ
,(5.1)

thenP(I is not rejected) ≤ 4e−λ2/(2aγ ).

The result of Theorem 5.2 delivers some additional information about the
sensitivity of the proposed procedure to change points. One possible question is
about the minimal delaym′ between the change pointTcp and the first momentτ
when the procedure starts to indicate this change point by selecting an interval of
type I = [Tcp, τ ]. Due to Theorem 5.2, the change will be “detected” with high
probability if the valueρ = λsγ /

√
m′ fulfills (5.1). With fixed b > 0, condition

(5.1) leads toρ ≤ bC0 for some fixed constantC0. The latter condition can be
rewritten in the formm′ ≥ b−2λ2s2

γ /C2
0. We see that this lower bound for the

required delaym′ is proportional tob−2, whereb is the change point magnitude.
It is also proportional to the thresholdλ squared. In turn, for the prescribed
probability α of rejecting a homogeneous interval of lengthM , the thresholdλ
can be bounded byC

√
log(M/m0α). In particular, if we fix the lengthM andα,

thenm′ = O(b−2). If we keep fixed the valuesb andM but aim to provide a very
small probability of a “false alarm” by lettingα go to 0, thenm′ = O(logα−1).
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All these issues are in agreement with the theory of change point detection; see,
for example, Pollak (1985) and Brodsky and Darkhovsky (1993).

6. LAVE in practice. The aim of this section is to give some hints concern-
ing the choice of the testing intervals and the smoothing parameterλ and to il-
lustrate the performance of the LAVE procedure on simulated and real data. We
consider the simplest homogeneous model and we study the stability of the proce-
dure in such a situation. Then a change point model is analyzed and the sensitivity
with respect to the jump magnitude is measured. Finally, LAVE is applied to a set
of exchange rate data.

6.1. Choice of the setsI andJ(I ). The presented algorithm involves the sets
of interval candidatesI and of testing intervalsJ(I ). The simplest proposal is
based on the use of a regular time gridt1, t2, . . . , with grid stepm0 ∈ N, that is,
tk = m0k, k = 1,2, . . . . For a given time pointτ , the setI of interval candidates is
defined in the following way:

I = {
Ik = [tk, τ ] : tk ≤ τ − m0, k = 1,2 . . .

}
.

Next, for every intervalIk, we define the setJ(Ik) of testing subintervalsJk′ ⊂ Ik

such thatJk′ = [tk′ , τ ] for all tk′ > tk belonging to the grid. The homogeneity
within Ik is then tested by comparing the pairs of estimatesθ̃J and θ̃Ik\J for all
J ∈ J(Ik).

In this construction the setsI, J(I ) are completely determined by the grid
stepm0. The value ofm0 should be selected possibly small, because it represents
the minimal delay before the LAVE algorithm can detect a change point.
Nevertheless,m0 should be sufficiently large to provide stability of the estimates
ṽJ and ṽI\J . For the simulation and the analysis of real data we usem0 = 10,
which represents a good compromise. However, small changes in this value, that
is, 5≤ m0 ≤ 20, do not appear to have great influence on the estimation results.

6.2. Choice of λ and γ . The selection ofγ and, in particular,λ is more
critical. Theorem 5.1 suggests that in the context of a change point model,
a reasonable approach for selectingλ is by providing a prescribed levelα for
rejecting a homogeneous intervalI of a given lengthM . This would clearly imply
at most the same levelα for rejecting a homogeneous interval of a smaller length.
However, the value ofλ which can be derived with the help of Theorem 5.1
is rather conservative. A more accurate choice can be made by Monte Carlo
simulation. We examine the procedure described in Section 3.2 with the sets of
intervalsI andJ(I ) on the regular grid with the fixed stepm0 = 10. A constant
(and therefore also time homogeneous) model assumes that the parameterθt does
not vary in time, that is,θt ≡ θ . It can easily be seen that the valueθ has no
influence on the procedure under time homogeneity. One can therefore suppose
that θ = 1 and the original model (2.1) is transformed into the regression model
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TABLE 1
The value ofλ, which, for a given power transformationγ, provides the rejection

of an interval of time homogeneity of lengthM with a frequency of5%

Smoothing parameter

γ = 0.5 γ = 1.0 γ = 2.0

M = 80 M = 40 M = 80 M = 40 M = 80 M = 40
λ = 2.74 λ = 2.40 λ = 2.58 λ = 2.24 λ = 2.18 λ = 1.86

Yt = 1 + sγ ζt with constant trend and homogeneous variancesγ . This model is
completely described, and, therefore, one can determine by simulation the value
of λ for which an interval of time homogeneity of lengthM is not rejected with a
frequency of 95%.

The values ofλ are computed forM = 40 and 80 and for the power
transformationsγ = 0.5, 1.0 and 2.0. The results are shown in Table 1. Note that
the values ofλ calibrated forM = 80 are necessarily larger and therefore more
conservative than the values ofλ calibrated forM = 40.

6.3. Simulation results for the change point model.We now evaluate the
performance of the LAVE algorithm on simulated data. Two change point time
series of lengthT = 240 are considered. The simulated data display two jumps
of the same magnitude in opposite directions:σt = σ for t ∈ [1,80] and t ∈
[161,240] and σt = σ ′ for t ∈ [81,160], where σ = 1 and σ ′ = 3 and 5,
respectively. For each model 500 realizations are generated, and the estimation
is performed at each time pointt ∈ [t0,240], wheret0 is set equal to 20.

We compute the estimation error for each combination ofγ and λ with the
following criterion:

240∑
t=20

500∑
ω=1

(
σ̂t − σt

σt

)2

(ω),(6.1)

where the indexω indicates the realizations of the change point model. We note
that in (6.1) the quadratic error is divided by the true volatility so that the criterion
does not depend on the scale ofσt . The results shown in Table 2 are favorable
to the choice of the smaller value ofγ , confirming that the loss of efficiency
caused byγ < 2 is offset by the greater normality of the errors. Figures 2 and 3
show the results of the estimation for the power transformationγ = 0.5 and the
value ofλ calibrated for an interval of time homogeneity of lengthM = 40 and
M = 80, respectively. The plots on the top display the true process (straight line),
the empirical median among all estimates (thick dotted line) and the empirical
quartiles among all estimates (thin dotted lines). The plots on the bottom similarly
display the length of the interval of time homogeneity, which is minimal (resp.
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TABLE 2
Estimation errors for all the combinations of parametersγ andλ

Estimation error

γ = 0.5 γ = 1.0 γ = 2.0

Parameter λ = 2.74 λ = 2.40 λ = 2.58 λ = 2.24 λ = 2.18 λ = 1.86

Small jump 19,241.9 17,175.3 19,121.2 16,522.5 24,887.2 17,490.9
Large jump 46,616.2 43,282.5 51,363.9 46,706.4 68,730.7 55,706.3

maximal) just after (resp. just before) a change point, and the median and the
quartiles among all estimates.

The results are satisfactory. The volatility is estimated precisely and the change
points are quickly detected. As expected, the behavior of the method within
homogeneous regions is very stable. The delay in detecting a change point
becomes smaller as the jump size grows. Taking a smallerλ also results in a smaller
delay and improves the quality of estimation after the change points. The results
for other power transformations look very similar and therefore are not displayed.

FIG. 2. Estimation results for the change point model. The upper plots show the values of the
standard deviation, while the lower plots show the values of the interval of homogeneity at each time
point. True values(solid line), median of all estimates(thick dotted line), upper and lower quartiles
(thin dotted lines). The value ofλ for γ = 0.5 andM = 40 has been used.
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FIG. 3. Estimation results for the jump model. The value ofλ for γ = 0.5 and M = 80 has been
used.

6.4. Estimation of exchange rate volatility.We apply the LAVE procedure
to a set of nine exchange rates, which are available from the web site http://
federalreserve.gov of the U.S. Federal Reserve. The data sets represent daily
exchange rates of the U.S. dollar (USD) against the following currencies:
Australian dollar (AUD), British pound (BPD), Canadian dollar (CAD), Danish
krone (DKR), Japanese yen (JPY), Norwegian krone (NKR), New Zealand

TABLE 3
Summary statistics

Currency n Mean × 105 Variance × 105 Skewness Kurtosis

AUD 2583 −10.41 3.191 −0.187 8.854
BPD 2583 −0.679 3.530 −0.279 5.792
CAD 2583 8.819 0.895 0.042 5.499
DKR 2583 6.097 4.201 −0.037 4.967
JPY 2583 −12.70 5.486 −0.585 7.366
NKR 2583 9.493 4.251 0.313 8.630
NZD 2583 −6.581 3.604 −0.356 49.17
SFR 2583 1.480 5.402 −0.186 4.526
SKR 2583 12.66 4.615 0.372 9.660
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dollar (NZD), Swiss franc (SFR) and Swedish krona (SKR). The period under
consideration goes from January 1, 1990, to April 7, 2000. See Table 3.

All the time series show qualitatively almost the same pattern; therefore, we
provide the graphical example only for the two representative exchange rates
JPY/USD and BPD/USD (Figure 4). The empirical mean of the returns is close
to 0, while the empirical kurtosis is larger than 3. Furthermore, variance clustering
and persistence of the autocorrelation of the square returns are also visible.
The estimated standard deviation is nicely in accordance with the development
of the volatility and, in particular, sharp changes in the volatility tend to be
quickly recognized. Note also that the variability of the estimated interval of time
homogeneity appears to grow as the estimated interval becomes larger. This is
a feature of the algorithm because the number of tests grows with the accepted

FIG. 4. Exchange rate returns, estimated standard deviation and estimated interval of time
homogeneity. The value ofλ for γ = 0.5 andM = 80 has been used.
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FIG. 5. ACF of the absolute values of the exchange rate returns and ACF of the absolute values of
the exchange rate returns standardized by LAVE.

interval, so that a rejection becomes more probable. Nevertheless, this variability
does not strongly affect the estimated volatility coefficient. Figure 5 shows the
significantly persistent autocorrelation of the absolute returns, together with the
autocorrelation of the absolute returns divided by the estimated standard deviation.
The autocorrelation of the standardized absolute returns is not significant any
more, and this fact supports the choice of a locally homogeneous model in order
to explain the data.

A benchmark model.As a matter of comparison, we also consider a model
which is commonly used to estimate and forecast volatility processes: the
GARCH(1,1) model proposed by Bollerslev (1986):

σ 2
t = ω + αR2

t−1 + βσ 2
t−1.

Among all parametric volatility models, it represents the most common specifica-
tion: “The GARCH(1,1) is the leading generic model for almost all asset classes
of returns. . . . it is quite robust and does most of the work in almost all cases”
[Engle (1995)].

We do not require the parameters to be constant throughout the whole sample,
but, similarly to Franses and van Dijk (1996), we consider a rolling estimate. We
thus fit the model to a sample of 350 observations, generate the forecast, delete the
first observation from the sample and add the next one. Such a procedure reduces
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TABLE 4
Forecast performance of LAVE relative to GARCH

γ = 0.5 γ = 1.0 γ = 2.0

Currency M = 80 M = 40 M = 80 M = 40 M = 80 M = 40

AUD 0.942 0.945 0.963 0.962 0.991 0.982
BPD 0.961 0.960 0.979 0.970 1.006 1.000
CAD 0.974 0.979 0.989 0.992 1.010 0.997
DKR 0.978 0.980 0.985 0.987 1.010 1.004
JPY 0.951 0.949 0.971 0.966 1.006 0.997
NKR 0.961 0.957 0.972 0.965 0.998 0.984
NZD 0.878 0.879 0.904 0.902 0.952 0.947
SFR 0.985 0.984 0.992 0.990 1.004 1.000
SKR 0.965 0.961 0.973 0.968 0.982 0.977

the harmful effect of possible parameter shifts on the forecasting performances of
the model, even if at the same time it may increase the estimation variability.

The volatility is a hidden process which can be observed only together with
a multiplicative error; therefore, the evaluation of the forecasting performance of
an algorithm is not straightforward. Due to the model (2.1),E(R2

t+1|Ft ) = σ 2
t+1.

Therefore, given a forecastσ̂t+1|t , the empirical mean value of|R2
t+1− σ̂ 2

t+1|t |p can
be used to measure the quality of this forecast. The forecast ability of the LAVE
and the GARCH estimates is therefore evaluated with the following criterion:

1

T − t0 − 1

T∑
t=t0

∣∣R2
t+1 − σ̂ 2

t+1|t
∣∣p with p = 0.5.

The value ofp = 0.5 is chosen instead of the more commonp = 2 because we are
interested in a robust criterion which is not too sensitive to the presence of outliers.
The relative performance of the LAVE and the GARCH estimates is displayed in
Table 4. The performance of the LAVE approach is clearly better; furthermore,
the table gives a clear hint for the choice of the power transformation. Indeed,
γ = 0.5 provides the smallest forecasting errors, whileγ = 2.0 leads to the largest
forecasting errors, which are sometimes larger than that of the GARCH model.

7. Conclusions and outlook. The locally adaptive volatility estimate (LAVE)
is described and analyzed in this paper. It provides a nonparametric way for
estimating and short-term forecasting the volatility of financial returns.

It is assumed that a local constant approximation of the volatility process
holds over some unknown interval. The issue of filtering this interval of time
homogeneity out of the return time series is considered, and a nonparametric
approach is presented. The estimate of the volatility process is then found by
averaging over the interval of time homogeneity.
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A theoretical analysis of the properties of the LAVE algorithm is provided and
the problem of selecting the smoothing parameters is analyzed through Monte
Carlo simulation. The estimation results on change point models show that the
method has reasonable performance in practice. An empirical application to
exchange rate returns and a comparison with a GARCH(1,1) also provide good
evidence that the new method is competitive and can even outperform the standard
parametric models, especially for forecasting with a short horizon.

An important feature of the proposed method is that it allows for a straight-
forward extension to multivariate volatility estimation; see Härdle, Herwartz and
Spokoiny (2000) for a detailed discussion.

Obviously, if the underlying conditional distribution is not normal, the estimated
volatility can give only partial information about the riskiness of the asset. Recent
developments in risk analysis tend to focus on the estimation of the quantiles of
the distribution. In this direction, the LAVE procedure can be used as a convenient
tool for prewhitening the returns and obtaining a sample of “almost” identical
and independently distributed returns, which do not display any more variance
clustering. Therefore, the usual techniques of quantile estimation could be applied
in a static framework. We regard such a development as a topic for future research.

8. Proofs. In this section, we collect the proofs of the results stated above.
We begin by considering some useful properties of the power transformation
introduced in Section 2.1.

Some properties of the power transformation.Let gγ (u) be the moment
generating function ofζγ = D−1

γ (|ξ |γ − Cγ ):

gγ (u) = Eeuζγ .

It is easy to see that this function is finite forγ < 2 and allu and forγ = 2 and
u < 1. Forγ = 1/2, the function 2u−2 loggγ (u) is plotted in Figure 6.

FIG. 6. The log-Laplace transform ofζ1/2 divided by the log-Laplace transform of a standard
normal r.v.
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LEMMA 8.1. For everyγ ≤ 1 there exists a constantaγ > 0 such that

logEeuζγ ≤ aγ u2

2
.(8.1)

PROOF. It is easy to check that the functiongγ (u) with γ ≤ 1 is positive
and smooth (infinitely many times differentiable). Moreover, the functionhγ (u) =
loggγ (u) is also smooth and satisfieshγ (0) = h′

γ (0) = 0, h′′
γ (0) = Eζ 2

γ = 1. This
yields thatu−2hγ (u) = u−2 loggγ (u) is bounded on every finite interval of the
positive semiaxis[0,∞). It therefore remains to show that

lim
u→∞u−2 logEeuζγ < ∞.

Since ζγ (u) = D−1
γ (|ξ |γ − Cγ ), it suffices to boundu−2Eeu|ξ |γ /Dγ . For every

t > 0,

Eeu|ξ |γ D−1
γ = Eeu|ξ |γ D−1

γ 1(|ξ | ≤ t) + Eeu|ξ |γ D−1
γ 1(|ξ | > t)

≤ eutγ D−1
γ + Eeu|ξ |tγ −1D−1

γ

≤ eutγ D−1
γ + 2Eeuξ tγ −1D−1

γ

= e
utγ D−1

γ + 2e
u2t2γ −2D−2

γ .

Next, with t = u1/(2γ ) andγ < 1, for u → ∞,

u−2 loge
utγ D−1

γ = u−1/2D−1
γ → 0,

u−2 loge
u2t2γ −2D−2

γ = u−(1−γ )/γ D−2
γ → 0.

Forγ = 1, the last expression remains bounded and the assertion follows.�

Forγ = 1/2, condition (8.1) is satisfied withaγ = 1.005.
The next technical statement is a direct consequence of Lemma 8.1.

LEMMA 8.2. Let ct be a predictable process w.r.t. the filtration F = (Ft );
that is, every ct is a function of previous observationsR1, . . . ,Rt−1 : ct =
ct (R1, . . . ,Rt−1). Then the process

Et = exp

(
t∑

s=1

csζs − aγ

2

t∑
s=1

c2
s

)

is a supermartingale, that is,

E(Et |Ft−1) ≤ Et−1.(8.2)

The next result has been stated in Liptser and Spokoiny (2000) for Gaussian
martingales; however, the proof is based only on the property (8.2) and allows for
straightforward extension to sums of the formMt = ∑t

s=1 csζs .
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THEOREM 8.1. LetMt = ∑t
s=1 csζs with predictable coefficientscs . Then let

T be fixed or a stopping time. For everyb > 0, B ≥ 1 andλ ≥ 1,

P
(|MT | > λ

√〈M〉T , b ≤ √〈M〉T ≤ bB
) ≤ 4

√
eλ(1+ logB)e−λ2/(2aγ ),

where

〈M〉T =
T∑

t=1

c2
t .

REMARK 8.1. If the coefficientsct are deterministic or independent ofM ,
then Lemma 8.1 and the Chebyshev inequality yield

P
(|MT | > λ

√〈M〉T ) ≤ 2e−λ2/(2aγ ).

PROOF OFTHEOREM 3.1. Define

θ̄I = 1

|I |
∑
t∈I

θt , ξI = sγ |I |−1
∑
t∈I

θt ζt .

Thenθ̃I = θ̄I + ξI . By the definition of�I ,

|θ̄I − θτ | = |I |−1

∣∣∣∣∣
∑
t∈I

(θt − θτ )

∣∣∣∣∣ ≤ �I .(8.3)

Next, by (3.2)

θ̃I − θτ = θ̄I − θτ + ξI ,

and the use of (8.3) yields

P(|θ̃I − θτ | > �I + λvI ) ≤ P

(∣∣∣∣∣
∑
t∈I

θt ζt

∣∣∣∣∣ > λ

(∑
t∈I

θ2
t

)1/2)
.

In addition, if the volatility coefficientσt satisfiesb ≤ σ 2
t ≤ bB with some positive

constantsb,B, then the conditional variancev2
I = s2

γ |I |−2 ∑
t∈I θ2

t satisfies

b′|I |−1 ≤ v2
I ≤ b′|I |−1B,

with b′ = bs2
γ . Now the assertion follows from (3.5) and Theorem 8.1.�

PROOF OFTHEOREM 3.2. It suffices to show that the inequalities�I/vI ≤ D

and

|ξ̃I | = |θ̃I − θ̄I | ≤ λvI(8.4)

imply |θ̃I −θτ | ≤ λ′ṽI , whereλ′ solves the equationD+λ = λ′/(1+λ′sγ |I |−1/2).
This would yield the desired result by Theorem 8.1; compare the proof of
Theorem 3.1.
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LEMMA 8.3. Let (�I /vI )sγ |I |−1/2 < 1. Under(8.4)

ṽI ≥ vI

(√
1− (�I /vI )2s2

γ |I |−1 − sγ λ|I |−1/2
)

≥ vI

(
1− sγ |I |−1/2(�I /vI + λ)

)
.

PROOF. By the definition ofṽI in view of (8.4),

ṽI = sγ θ̃I |I |−1/2 ≥ sγ (θ̄I − λvI )|I |−1/2.

Sinceθ̄I is the arithmetic mean ofθt overI ,∑
t∈I

(θt − θ̄I )
2 ≤ ∑

t∈I

(θt − θτ )
2 ≤ �2

I |I |.

Next

s−2
γ |I |v2

I = |I |−1
∑
t∈I

θ2
t = θ̄2

I + |I |−1
∑
t∈I

(θt − θ̄I )
2 ≤ θ̄2

I + �2
I ,

so that

θ̄I ≥ s−1
γ |I |1/2vI

√
1− (�I sγ v−1

I |I |−1/2)2.

Hence, under (8.4),

ṽI ≥ vI

(√
1− (�I sγ v−1

I |I |−1/2)2 − sγ λ|I |−1/2
)
,

and the assertion follows.�

The bound (8.4) and the definition of�I imply

|θ̃I − θτ | ≤ |θ̄I − θτ | + |θ̃I − θ̄I | ≤ �I + λvI ≤ (D + λ)vI .

By Lemma 8.3,̃vI ≥ vI (1− sγ D|I |−1/2 − sγ λ|I |−1/2). Thus,

|θ̃I − θτ | ≤ D + λ

1− sγ (D + λ)|I |−1/2
ṽI = λ′ṽI

as required. �

PROOF OF THEOREM 4.1. Let I be a “good” interval in the sense that,
with high probability,�J /vJ ≤ D for some nonnegative constantD and every
J ∈ J(I). First we show thatI will not be rejected with high probability provided
thatλ is sufficiently large.

We proceed similarly as in the proofs of Theorems 3.1 and 3.2. The procedure
involves the estimates̃θJ , θ̃I\J and the differences̃θJ − θ̃I\J for all I ∈ I(I) and
all J ∈ J(I ). The expansioñθJ = θ̄J + ξJ implies

θ̃J − θ̃I\J = (θ̄J − θ̄I\J ) + (ξJ − ξI\J ).
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Under the conditionδI ≤ D,

|θ̄J − θ̄I\J | ≤ �I ≤ DvI ≤ D
√

v2
J + v2

I\J .

Define the events

AI = ⋃
J∈J(I )

{
|ξJ − ξI\J | ≤ (λJ − D)

√
v2
J + v2

I\J

and

√√√√ ṽ2
J + ṽ2

I\J
v2
J + v2

I\J
≥ 1− sγ λN

−1/2
J

}
,

AI = ⋃
I∈I : I⊆I

AI ,

whereNJ = min{|J |, |I \ J |} andλJ = λ(1− sγ λN
−1/2
J ).

DefineA∗
I
= AI ∩ {δI ≤ D}. On this set

|θ̃J − θ̃I\J |√
ṽ2
J + ṽ2

I\J
≤ |θ̄J − θ̄I\J | + |ξJ − ξI\J |√

ṽ2
J + ṽ2

I\J

≤ (D + λJ − D)

√√√√v2
J + v2

I\J
ṽ2
J + ṽ2

I\J
≤ D + λJ − D

1− sγ λN
−1/2
J

= λ.

It is easy to see that the conditional variance ofξJ − ξI\J is equal tov2
J + v2

I\J .
Arguing similarly to Lemma 8.3 and Theorem 3.1, we bound, withλJ,D = λJ −D,

P(AI ) ≤ ∑
J∈J(I )

P
( |ξJ |

vJ

> λJ,D

)

+ P
( |ξI\J |

vI\J
> λJ,D

)
+ P

( |ξJ − ξI\J |√
v2
J + v2

I\J
> λJ,D

)

≤ ∑
J∈J(I )

12
√

eλJ (1+ logB)e
−λ2

J,D/(2aγ )
,

and the first assertion of the theorem follows.
Now we show that on the setA∗

I
the estimatêθ = θ̃

Î
satisfies|θ̂ − θ̂ I| ≤ 2λṽI.

Due to the above, onA∗
I

the intervalI will not be rejected and, hence|Î | ≥ |I|.
Let I be an arbitrary interval fromI which is not rejected by the procedure.
By constructionI is one of the testing intervals forI . DenoteJ = I \ I. Note
that |I |(θ̃I − θ̃ I) = |J |(θ̃J − θ̃ I), so that the event “I is not rejected” implies

|θ̃J − θ̃ I| ≤ λ
√

ṽ2
J + ṽ2

I
and

|θ̃I − θ̃ I| ≤ λ|J |
|I |

√
ṽ2
J + ṽ2

I
≤ λ|J |

|I | (ṽJ + ṽI).
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The use of̃vJ = sγ θ̃J |J |−1/2 and|θ̃I − θ̃ I| ≤ λ(ṽJ + ṽI) yields

|ṽJ |J |1/2 − ṽI|I|1/2| ≤ λsγ (ṽJ + ṽI),

implying

ṽJ ≤ |I|1/2 + λsγ

|J |1/2 − λsγ
ṽI, ṽJ + ṽI ≤ |J |1/2 + |I|1/2

|J |1/2 − λsγ
ṽI.

Therefore,

|θ̃I − θ̃ I| ≤ λ|J |(|J |1/2 + |I|1/2)

(|J | + |I|)(|J |1/2 − λsγ )
ṽI.

It is straightforward to check that the functionf (x) = x2(x +1)/[(x2 +1)(x − c)]
with anyc ≥ 0 satisfiesf (x) ≤ 2 for allx ≥ 2c. This implies withx = |J |1/2/|I|1/2

andc = λsγ /|I|1/2 that

|θ̃I − θ̃ I| ≤ 2λṽI

under the condition that|J |1/2 ≥ 2λsγ .
Let �I ≤ DvI. Similarly to Lemma 8.3,̃vI ≤ vI(1+ sγ (D + λ)|I|−1/2) and, by

Theorem 3.1,|θ̃ I − θτ | ≤ (D + λ)vI. This yields

|θ̃I − θ̃ I| ≤ 2λvI

(
1+ sγ (D + λ)|I|−1/2)

and

|θ̃I − θτ | ≤ 2λvI

(
1+ sγ (D + λ)|I|−1/2) + (D + λ)vI

= (
D + 3λ + 2λsγ (D + λ)|I|−1/2)vI

as required. �

PROOF OF THEOREM 5.2. To simplify the exposition we suppose that
θ = 1. (This does not restrict generality since one can always normalize each
“observation”Yt by θ .) We also suppose thatθ ′ > 1 andb = θ ′ − 1. (The case
when θ ′ < θ can be considered similarly.) Finally, we assume thatm′ = m.
(One can easily see that this case is the most difficult one.) We again apply the
decomposition

θ̃J = 1+ ξJ , θ̃ I = θ ′ + ξI;
see the proof of Theorem 3.1. Hence

θ̃ I − θ̃J = b + ξI − ξJ .

It is straightforward to see thatv2
J = s2

γ /m andv2
I

= s2
γ θ ′/m. By Lemma 8.1 (see

also Remark 8.1)

P(|ξJ | > λvJ ) + P(|ξ ′| > λvI) ≤ 4e−λ2/(2aγ ),
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and it suffices to check that the inequalities|ξJ | ≤ λvJ , |ξI| ≤ λvI and (5.1) imply

|θ̃J − θ̃ I| ≥ λ

√
ṽ2
J + ṽ2

I
.

Sinceθ ′ − 1 = b and sincẽvJ = sγ |J |−1/2θ̃J and similarly forṽI , we have under
the conditions|ξJ | ≤ λvJ , |ξI| ≤ λvI,

|θ̃J − θ̃ I| ≥ b − λsγ (θ ′ + 1)√
m

= b(1− ρ) − 2ρ,

ṽJ = sγ√
m

(1+ ξJ ) ≤ λ−1ρ(1+ ρ),

ṽI = sγ√
m

(1+ ξI) ≤ λ−1ρ(1+ ρ),

with ρ = m−1/2λsγ . Therefore,

|θ̃J − θ̃ I| − λ

√
ṽ2
J + ṽ2

I
≥ b(1− δ) − 2ρ − √

2ρ(1+ ρ) > 0

in view of (5.1), and the assertion follows.�
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