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Abstract

The general reverse diffusion equations are derived. They are applied to the prob-

lem of transition density estimation of diffusion processes between two fixed states. For

this problem we propose density estimation based on forward-reverse representations

and show that this method allows for achieving essentially better results in comparison

with usual kernel or projection estimation based on forward representations only.

1 Introduction

Consider the SDE in the Ito sense

dX = a(s,X)ds + σ(s,X)dW (s), t0 ≤ s ≤ T, (1.1)

where X = (X1, ..., Xd)>, a = (a1, ..., ad)> are d-dimensional vectors, W = (W 1, ...,Wm)>

is an m-dimensional standard Wiener process, σ = {σij} is a d ×m-matrix, m ≥ d. We

assume that the d × d-matrix b := σσ>, b = {bij}, is of full rank and that moreover the

uniform ellipticity condition holds: there exists α > 0 such that

∥∥∥
(
σ(s, x)σ>(s, x)

)−1∥∥∥ ≤ α−1 (1.2)

for all (s, x), s ∈ [t0, T ], x ∈ Rd and some α > 0 . The functions ai(s, x) and σij(s, x) are

assumed to satisfy the same regularity conditions as in Bally and Talay (1996b), i.e. their

derivatives of any order exist and are bounded. This particularly implies existence and

uniqueness of the solution Xt,x(s) ∈ Rd, Xt,x(t) = x, t0 ≤ t ≤ s ≤ T , of (1.1), smoothness

of the transition density p(t, x, s, y) of the Markov process X, and existence of exponential

bounds for the density and its derivatives with respect to t > t0, x, y.

The aim of this paper is the construction of a Monte Carlo estimator of the unknown

transition density p(t, x, T, y) for fixed t, x, T, y, which improves upon classical kernel or

projection estimators based on realisations of Xt,x(T ) directly.
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Classical Monte-Carlo methods allow for effective estimation of functionals of the form

I(f) =
∫

p(t, x, T, y)f(y)dy (1.3)

for smooth, not too fast increasing functions f. These methods exploit the probabilistic

representation I(f) = E f(Xt,x(T )) . Let X̄t,x be an approximation of the process Xt,x

and let X̄
(n)
t,x (T ) for n = 1, . . . , N be independent realizations of X̄t,x(T ). Then, provided

the accuracy of approximating Xt,x by X̄t,x is sufficiently good, I(f) may be estimated

by

̂̄I =
1
N

N∑

n=1

f
(
X̄

(n)
t,x (T )

)

with root-N accuracy, i.e. a statistical error of order N−1/2.

The problem of estimating the transition density of a diffusion process is more in-

volved, see Bally and Talay (1996a), Hu and Watanabe (1996), Kohatsu-Higa (1997). For

an approximation X̄t,x, it is natural to expect that its transition density p̄(t, x, T, y) is

an approximation of p(t, x, T, y). Indeed, if X̄t,x(T, h) is the approximation of Xt,x(T )

obtained via numerical integration by the strong Euler scheme with time step h, then the

density p̄h(t, x, T, y) converges to p(t, x, T, y) uniformly in y when the step size h tends to

zero. More precisely:

p(t, x, T, y)− p̄h(t, x, T, y) = hC(t, x, T, y) + h2Rh(t, x, T, y), (1.4)

with

|C(t, x, T, y)|+ |Rh(t, x, T, y)| ≤ K

(T − t)q
exp(−c

|x− y|2
T − t

),

where K, c, q are some positive constants, see Bally and Talay (1996b). Strictly speaking

the equality (1.4) is derived in Bally and Talay (1996b) for autonomous systems. However,

there is no doubt that under our assumptions of smoothness, boundedness, and uniform

ellipticity this result holds for the non-autonomous case as well.
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Further, Hu and Watanabe (1996) and Kohatsu-Higa (1997) show that the quantity

p̃h(t, x, T, y) = E φh(X̄t,x(T, h)− y)

with φh(x) = (2πh2)−d/2 exp
{−|x|2/(2h2)

}
converges to p(t, x, T, y) as h → 0 . Hu

and Watanabe (1996) used schemes of numerical integration in the strong sense, while

Kohatsu-Higa (1997) applied numerical schemes in a weak sense. Combining this result

with the classical Monte Carlo methods leads to the following estimator of the transition

density

̂̃p (t, x, T, y) =
1
N

N∑

n=1

φh

(
X̄n − y

)
, (1.5)

where X̄n = X̄
(n)
t,x (T, h) , n = 1, . . . , N , are independent realizations of X̄t,x(T, h) .

More generally, one may estimate the transition density p(t, x, T, y) from the sample

Xn = X
(n)
t,x (T ) by using standard methods of nonparametric statistics. For example, the

kernel (Parzen-Rosenblatt) density estimator with a kernel K and a bandwidth δ is given

by

p̂(t, x, T, y) =
1

Nδd

N∑

n=1

K

(
Xn − y

δ

)
, (1.6)

see e.g. Devroye and Gyrfi (1985), Silverman (1986) or Scott (1992). Of course, in reality

we have only the approximation X̄n instead of Xn and so we get the estimator

̂̄ph (t, x, T, y) =
1

Nδd

N∑

n=1

K

(
X̄n − y

δ

)
. (1.7)

Clearly, proposal (1.5) is a special case of estimator (1.7) with kernel K being the standard

normal density and bandwidth δ equal to the step of numerical integration h.

The estimation loss ̂̄ph(t, x, T, y) − p(t, x, T, y) can be split up into an error ̂̄ph − p̂

due to numerical approximation of the process X by X̄ and an error p̂ − p due to the

kernel estimation which depends on the sample size N , the bandwidth δ and the kernel

K. The loss of the first kind can be reduced considerably by properly selecting a scheme
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of numerical integration and choosing a small step h. The most important loss, however,

is caused by the kernel estimation. It is well known that the quality of density estimation

strongly depends on the bandwidth δ and the choice of a suitable bandwidth is a delicate

issue (see e.g. Devroye and Gyrfi (1985)). Even an optimal choice of the bandwidth δ leads

to quite poor estimation quality, in particular for large dimension d. More specifically,

if the underlying density is known to be two times continuously differentiable then the

optimal bandwidth δ is of order N−1/(4+d) leading to the accuracy of order N−2/(4+d) ,

see Scott (1992) or Silverman (1986). For larger d, this would require a huge sample size

N for providing a reasonable accuracy of estimation. In the statistical literature this

problem is referred to as “curse of dimensionality”.

In this paper we propose a method of density estimation which is generally root-N

consistent and thus avoids the curse of dimensionality problem. First we consider in Sec-

tion 2 probabilistic representations for the functionals I(f) in (1.3), which provide different

Monte-Carlo methods for the evaluation of I(f) . Besides, we show how the variance of

the Monte Carlo estimation can be reduced by the choice of a suitable probabilistic repre-

sentation. Then, in Section 3 we introduce the reverse diffusion process in order to derive

probabilistic representations for functionals of the form

I∗(g) =
∫

g(x)p(t, x, T, y)dx. (1.8)

Clearly, the “curse of dimensionality” problem doesn’t encounter in the estimation of

functionals I(f) in (1.3) by forward representations. Similarly, as we shall see in Section 3,

Monte Carlo estimation of functionals of the form (1.8) via probabilistic representations

based on reverse diffusion goes with root-N accuracy also. These important features have

been utilised in the central theme of this paper, the development of a new method for

estimating the transition density p(t, x, T, y) of a diffusion process which generally allows
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for root-N consistent estimation for pre-specified values of t, x, T, and y (we emphasize

that the problem of estimating p(t, x, T, y) for fixed t, x, T, and y is more difficult than

the problem of estimating the integrals I(f), I(f, g) or I∗(g)). This method, which is

presented in Section 4, is based on a combination of forward representation (1.3) and re-

verse representation (1.8) via the Chapman-Kolmogorov equation and has been led to two

different types of estimators called kernel and projection estimators. General properties

of these estimators are studied in Sections 6 and 7. Previously, in Section 5 we demon-

strate the advantages of combining the forward and reverse diffusion for transition density

estimation at a simple one-dimensional example. We show by an explicit analysis of an

Ornstein-Uhlenbeck type process that root-N accuracy can be achieved.

Throughout sections 5-7 all results are derived with respect to exact solutions of the

respective SDE’s. In Section 8 we study in particular the estimation loss due to applica-

tion of the strong Euler scheme with discretization step h of the different kernel estimators

presented in this sequel and found that this loss is of order O(h), uniform in the band-

width δ.

In Section 9 we compare the computational complexity of the forward-reverse esti-

mators with pure forward estimators and give some numerical results for the example

in Section 5. We conclude that, in general, for the problem of estimating the transition

density between two particular states the forward reverse estimator outperforms the usual

estimator based on forward diffusion only.

2 Probabilistic representations based on forward diffusion

In this section we present a general probabilistic representation and the corresponding

Monte Carlo estimator for a functional of the form (1.3). We also show that the variance
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of the Monte Carlo method can be reduced by choosing a proper representation.

For a given function f , the function

u(t, x) = E f(Xt,x(T )) =
∫

p(t, x, T, y)f(y)dy (2.1)

is the solution of the Cauchy problem for the parabolic equation

Lu :=
∂u

∂t
+

1
2

d∑

i,j=1

bij(t, x)
∂2u

∂xi∂xj
+

d∑

i=1

ai(t, x)
∂u

∂xi
= 0, u(T, x) = f(x).

Via the probabilistic representation (2.1), u(t, x) may be computed by Monte Carlo simu-

lation using weak methods for numerical integration of SDE (1.1). Let X̄ be an approxi-

mation of the process X in (1.1), obtained by some numerical integration scheme. With

X̄
(n)
t,x (T ) being independent realizations of X̄t,x(T ) , the value u(t, x) can be estimated

by

̂̄u =
1
N

N∑

n=1

f
(
X̄

(n)
t,x (T )

)
. (2.2)

Moreover, by taking a random initial value X(t) = ξ , where the random variable ξ has

a density g , we get a probabilistic representation for integrals of the form

I(f, g) =
∫∫

g(x)p(t, x, T, y)f(y) dx dy. (2.3)

The estimation error |̂̄u − u| of the estimator ̂̄u in (2.2) is due to the Monte Carlo

method and to the numerical integration of SDE (1.1). The second error can be reduced

by selecting a suitable method and step of numerical integration. The first one, the Monte

Carlo error, is of order {N−1 Var f(X̄t,x(T ))}1/2 ' {N−1 Var f(Xt,x(T ))}1/2 and can, in

general, be reduced by using variance reduction methods. Variance reduction methods

can be derived from the following generalized probabilistic representation for u(t, x) :

u(t, x) = E [f(Xt,x(T ))Xt,x(T ) + Xt,x(T )], (2.4)
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where Xt,x(s), Xt,x(s), Xt,x(s), s ≥ t, is the solution of the system of SDEs given by

dX = (a(s,X)− σ(s,X)h(s,X))ds + σ(s, X)dW (s), X(t) = x,

dX = h>(s,X)XdW (s), X (t) = 1,

dX = F>(s,X)XdW (s), X(t) = 0.

(2.5)

In (2.5), X and X are scalars, and h(t, x) = (h1(t, x), ..., hm(t, x))> ∈ IRm, F (t, x) =

(F 1(t, x), ..., Fm(t, x))> ∈ IRm are vector functions satisfying some regularity conditions

(for example, they are sufficiently smooth and have bounded derivatives). The usual

probabilistic representation (2.1) is a particular case of (2.4)–(2.5) with h = 0, F = 0,

see, e.g., Dynkin (1965). The representation for h 6= 0, F = 0 follows from Girsanov’s

theorem and then we get (2.4) since E X = 0.

Consider the random variable η := f(Xt,x(T ))Xt,x(T )+Xt,x(T ). While the mathemat-

ical expectation E η does not depend on h and F , the variance Var η = E η2 − (E η)2

does. The Monte Carlo error in the estimation of (2.4) is of order
√

N−1Var η and so

by reduction of the variance Var η the Monte Carlo error may be reduced. Two variance

reduction methods are well known: the method of importance sampling where F = 0, see

Milstein (1995), Newton (1994), Wagner (1988), and the method of control variates where

h = 0, see Newton (1994). For both methods it is shown that for sufficiently smooth

function f the variance can be reduced to zero. A more general statement by Milstein

and Schoenmakers (2002) is given in Theorem 2.1 below. Introduce the process

η(s) = u(s,Xt,x(s))Xt,x(s) + Xt,x(s), t ≤ s ≤ T.

Clearly η(t) = u(t, x) and η(T ) = f(Xt,x(T ))Xt,x(T ) + Xt,x(T ).

Theorem 2.1. Let h and F be such that for any x ∈ IRd there is a solution of the system

(2.5) on the interval [t, T ]. Then the variance Var η(T ) is equal to

Var η(T ) = E

∫ T

t
X 2

t,x(s)
m∑

j=1

(
d∑

i=1

σij ∂u

∂xi
+ uhj + F j

)2

ds (2.6)
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provided that the mathematical expectation in (2.6) exists.

In particular, if h and F satisfy

d∑

i=1

σij ∂u

∂xi
+ uhj + F j = 0, j = 1, ...,m,

then Var η(T ) = 0 and η(s) is deterministic and independent of s ∈ [t, T ].

Proof. The Ito formula implies

dη(s) = Xt,x(s)(Lu)ds + Xt,x(s)
m∑

j=1

(
d∑

i=1

σij ∂u

∂xi
+ uhj + F j

)
dW j(s)

and then by Lu = 0 we have

η(s) = η(t) +
∫ s

t
Xt,x(s′)

m∑

j=1

(
d∑

i=1

σij ∂u

∂xi
+ uhj + F j

)
dW j(s′).

Hence, (2.6) follows and the last assertion is obvious.

Remark 2.1. Clearly, h and F from Theorem 2.1 cannot be constructed without knowing

u(s, x). Nevertheless, the theorem claims a general possibility of variance reduction by

properly choosing the functions hj and F j , j = 1, ...,m.

3 Representations relying on reverse diffusion

In the previous section a broad class of probabilistic representations for the integral

functionals I(f) =
∫

f(y)p(t, x, T, y)dy , and more generally, for the functionals I(f, g) =

∫∫
g(x)p(t, y, T, y)f(y)dx dy is described. Another approach is based on the so called

reverse diffusion and has been introduced by Thomson (1987) (see also Kurbanmuradov

et al., 1999, 2001). We here derive the reverse diffusion system in a more transparent and

more rigorous way. The method of reverse diffusion provides a probabilistic representation

(hence a Monte Carlo method) for functionals of the form

I∗(g) =
∫

g(x)p(t, x, T, y)dx, (3.1)
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where g is a given function. This representation may be easily extended to the functionals

I(f, g) from (2.3).

For a given function g and fixed t we define

v(s, y) :=
∫

g(x′)p(t, x′, s, y)dx′, s > t,

and consider the Fokker-Planck equation (forward Kolmogorov equation) for p(t, x, s, y),

∂p

∂s
=

1
2

d∑

i,j=1

∂2

∂yi∂yj
(bij(s, y)p)−

d∑

i=1

∂

∂yi
(ai(s, y)p).

Then, multiplying this equation by g(x) and integrating with respect to x yields the

following Cauchy problem for the function v(s, y):

∂v

∂s
=

1
2

d∑

i,j=1

∂2

∂yi∂yj
(bij(s, y)v)−

d∑

i=1

∂

∂yi
(ai(s, y)v), s > t,

v(t, y) = g(y).

We introduce the reversed time variable s̃ = T + t− s and define

ṽ(s̃, y) = v(T + t− s̃, y),

ãi(s̃, y) = ai(T + t− s̃, y),

b̃ij(s̃, y) = bij(T + t− s̃, y).

Clearly, v(T, y) = ṽ(t, y) and

∂ṽ

∂s̃
+

1
2

d∑

i,j=1

∂2

∂yi∂yj
(̃bij(s̃, y)ṽ)−

d∑

i=1

∂

∂yi
(ãi(s̃, y)ṽ) = 0, s̃ < T,

ṽ(T, y) = v(t, y) = g(y).

(3.2)

Since bij = bji and so b̃ij = b̃ji, the PDE in (3.2) may be written in the form (with s

instead of s̃)

L̃ṽ :=
∂ṽ

∂s
+

1
2

d∑

i,j=1

b̃ij(s, y)
∂2ṽ

∂yi∂yj
+

d∑

i=1

αi(s, y)
∂ṽ

∂yi
+ c(s, y)ṽ = 0, s < T, (3.3)
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where

αi(s, y) =
d∑

j=1

∂b̃ij

∂yj
− ãi, c(s, y) =

1
2

d∑

i,j=1

∂2b̃ij

∂yi∂yj
−

d∑

i=1

∂ãi

∂yi
. (3.4)

So we obtain a Cauchy problem in reverse time and may state the following result.

Theorem 3.1. I∗(g) has a probabilistic representation,

I∗(g) = v(T, y) = ṽ(t, y) = E [g(Yt,y(T ))Yt,y(T )], (3.5)

where the vector process Yt,y(s) ∈ IRd and the scalar process Yt,y(s) solve the stochastic

system

dY = α(s, Y )ds + σ̃(s, Y )dW̃ (s), Y (t) = y,

dY = c(s, Y )Yds, Y(t) = 1,

(3.6)

with σ̃(s, y) = σ(T + t− s, y) and W̃ being an m-dimensional standard Wiener process.

It is natural to call (3.6) the reverse system of (1.1). The probabilistic representa-

tion (3.5)–(3.6) for the integral (3.1) leads naturally to the Monte Carlo estimator ̂̄v for

v(T, y) ,

̂̄v =
1
M

M∑

m=1

g
(
Ȳ

(m)
t,y (T )

)
Ȳ(m)

t,y (T ), (3.7)

where (Ȳ (m)
t,y , Ȳ(m)

t,y ), m = 1, . . . , M, are independent realizations of the process (Ȳt,y, Ȳt,y)

that approximates the process (Yt,y,Yt,y) from (3.6).

Similar to (2.4)–(2.5), the representation (3.5)–(3.6) may be extended to

v(T, y) = E [g(Yt,y(T ))Yt,y(T ) + Yt,y(T )], (3.8)

where Yt,y(s), Yt,y(s), Yt,y(s), s ≥ t, solve the following system of SDEs,

dY = (α(s, Y )− σ̃(s, Y )h̃(s, Y ))ds + σ̃(s, Y )dW̃ (s), Y (t) = y,

dY = c(s, Y )Yds + h̃>(s, Y )YdW̃ (s), Y(t) = 1,

dY = F̃>(s, Y )YdW̃ (s), Y(t) = 0.

(3.9)
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In (3.9), Y and Y are scalars, h̃(t, x) ∈ IRm, and F̃ (t, x) ∈ IRm are arbitrary vector

functions which satisfy some regularity conditions.

Remark 3.1. If system (1.1) is autonomous, then b̃ij , ãi, αi, σ̃, and c depend on y only,

b̃ij(y) = bij(y), ãi(y) = ai(y), and so σ̃(y) can be taken equal to σ(y).

Remark 3.2. By constructing the reverse system of reverse system (3.6), we get the

original system (1.1) accompanied by a scalar equation with coefficient −c. By then

taking the reverse of this system we get (3.6) again.

Remark 3.3. If the original stochastic system (1.1) is linear, then the system (3.6) is

linear as well and c depends on t only.

Remark 3.4. Variance reduction methods discussed in Section 2 may be applied to the

reverse system as well. In particular, for the reverse system a theorem analogue to Theo-

rem 2.1 applies.

4 Transition density estimation based on forward-reverse

representations

In this section we present estimators for the target probability density p(t, x, T, y), which

utilize both the forward and the reverse diffusion system. More specifically, we give two

different Monte Carlo estimators for p(t, x, T, y) based on forward-reverse representations:

a forward-reverse kernel estimator and a forward-reverse projection estimator. A detailed

analysis of the performance of these estimators is postponed to Sections 6 and 7.

We start with a heuristic discussion. Let t∗ be an internal point of the interval [t, T ] .

By the Kolmogorov-Chapman equation for the transition density we have

p(t, x, T, y) =
∫

p(t, x, t∗, x′)p(t∗, x′, T, y)dx′. (4.1)
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By applying Theorem 3.1 with g(x′) = p(t, x, t∗, x′) , it follows that this equation has a

probabilistic representation,

p(t, x, T, y) = E p(t, x, t∗, Yt∗,y(T ))Yt∗,y(T ). (4.2)

Since in general the density function x′ → p(t, x, t∗, x′) is unknown also, we cannot apply

the Monte Carlo estimator v̂ in (3.7) to representation (4.2) directly. However, the key

idea is now to estimate this density function from a sample of independent realizations of X

on the interval [t, t∗] by standard methods of non-parametric statistics and then to replace

in the r.h.s. of (4.2) the unknown density function by its estimator, say x′ → p̂(t, x, t∗, x′).

This idea suggests the following procedure. Generate by numerical integration of the

forward system (1.1) and the reverse system (3.6) (or (3.9)) independent samples X̄
(n)
t,x (t∗) ,

n = 1, . . . , N and (Ȳ (m)
t∗,y (T ) , Ȳ(m)

t∗,y (T )), m = 1, . . . , M, respectively (in general different

step sizes may be used for X̄ and Ȳ ). Let ̂̄p(t, x, t∗, x′) be, for instance, the kernel

estimator of p(t, x, t∗, x′) from (1.7), that is,

̂̄p(t, x, t∗, x′) =
1

Nδd

N∑

n=1

K

(
X̄

(n)
t,x (t∗)− x′

δ

)
.

Thus, replacing p by this kernel estimator in the r.h.s. of reverse representation (4.2)

yields a representation which may be estimated by

̂̄p(t, x, T, y) =
1
M

[
1

Nδd

M∑

m=1

N∑

n=1

K

(
X̄

(n)
t,x (t∗)− Ȳ

(m)
t∗,y (T )

δ

)
Ȳ(m)

t∗,y (T )

]
. (4.3)

The estimator (4.3) will be called a forward-reverse kernel estimator.

We will show that the above heuristic idea really works and leads to estimators which

have superior properties in comparison with usual density estimators based on pure for-

ward or pure reverse representations. Of course, the kernel estimation of p(t, x, t∗, x′) in

the first step will be crude as usual for a particular x′. But, due to a good overall property

of kernel estimators, namely, the fact that any kernel estimator is a density, the impact
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of these point-wise errors will be reduced in the second step, the estimation of (4.2). In

fact, by the Chapman-Kolmogorov equation (4.1) the estimation of the density at one

point is done via the estimation of a functional of the form (4.2). It can be seen that the

latter estimation problem has smaller degree of ill-posedness and therefore, the achievable

accuracy for a given amount of computational effort will be improved.

Now we proceed with a formal description which essentially utilizes the next general

result naturally extending Theorem 3.1.

Theorem 4.1. For a bivariate function f we have

J(f) :=
∫∫

p(t, x, t∗, x′)p(t∗, y′, T, y)f(x′, y′)dx′dy′

= E [f(Xt,x(t∗), Yt∗,y(T ))Yt∗,y(T )], (4.4)

where Xt,x(s) obeys the forward equation (1.1) and (Yt∗,y(s),Yt∗,y(s)), s ≥ t∗, is the

solution of the reverse system (3.6).

Proof. Conditioning on Xt,x(t∗) and applying Theorem 3.1 with g(·) = f(x′, ·) for every

x′ yields

E
(
f(Xt,x(t∗), Yt∗,y(T ))Yt∗,y(T )

)
= E E

(
f(Xt,x(t∗), Yt∗,y(T ))Yt∗,y(T ) | Xt,x(t∗)

)

=
∫

p(t, x, t∗, x′)
(∫

f(x′, y′)p(t∗, y′, T, y)dy′
)

dx′.

Let X̄
(n)
t,x (t∗), n = 1, . . . , N, be a sample of independent realizations of an approxima-

tion X̄ of X, obtained by numerical integration of (1.1) on the interval [t, t∗] . Similarly,

let (Ȳ (m)
t∗,y (T )Ȳ(m)

t∗,y (T )), m = 1, . . . , M be independent realizations of a numerical solution

of (3.6) on the interval [t∗, T ]. Then the representation (4.4) leads to the following Monte

Carlo estimator for J(f),

̂̄J =
1

MN

N∑

n=1

M∑

m=1

f
(
X̄

(n)
t,x (t∗), Ȳ (m)

t∗,y (T )
)
Ȳ(m)

t∗,y (T ). (4.5)
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Formally, J(f) → p(t, x, T, y) as f → δdiag (in distribution sense), where δdiag(x′, y′) :=

δ0(x′ − y′) and δ0 is the Dirac function concentrated at zero. So, aiming to estimate the

density p(t, x, T, y), two families of functions f naturally arise. Let us take functions f of

the form

f(x′, y′) =: fK,δ(x′, y′) = δ−dK

(
x′ − y′

δ

)

where δ−dK(u/δ) converge to δ0(u) (in distribution sense) as δ ↓ 0. Then the correspond-

ing expression for Ĵ coincides with the forward-reverse kernel estimator p̂ in (4.3). As

an alternative, consider functions f of the form

f(x′, y′) =: fϕ,L(x′, y′) =
L∑

`=1

ϕ`(x′)ϕ`(y′),

where {ϕ` , ` ≥ 1} is a total orthonormal system in the function space L2(IRd) and L is

a natural number. It is known that fϕ,L → δdiag (in distribution sense) as L → ∞. This

leads to the forward-reverse projection estimator,

̂̄ppr =
1

MN

N∑

n=1

M∑

m=1

L∑

`=1

ϕ`

(
X̄

(n)
t,x (t∗)

)
ϕ`

(
Ȳ

(m)
t∗,y (T )

)
Ȳ(m)

t∗,y (T ) =
L∑

`=1

̂̄α` ̂̄γ`, (4.6)

with

̂̄α` =
1
N

N∑

n=1

ϕ`

(
X̄

(n)
t,x (t∗)

)
, ̂̄γ` =

1
M

M∑

m=1

ϕ`

(
Ȳ

(m)
t∗,y (T )

)
Ȳ(m)

t∗,y (T ).

The general properties of the forward-reverse kernel estimator are studied in Section 6

and the forward-reverse projection estimator is studied in Section 7. As mentioned previ-

ously, by selecting properly a numerical integration scheme and step size h, approximate

solutions of systems of SDEs can be simulated sufficiently close to exact solutions. There-

fore, in sections 6 and 7 the analysis is done with respect to exact solutions Xt,x(s) and

(Yt∗,y(s),Yt∗,y(s)). For the impact of their approximations X̄t,x(s) and (Ȳt∗,y(s), Ȳt∗,y(s))

obtained by the Euler scheme on the estimation accuracy, we refer to Section 8.
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Remark 4.1. If we take t∗ = T in (4.3) we obtain the usual forward kernel estimator (1.6)

again. Indeed, for t∗ = T we have Ȳ
(m)
T,y (T ) = y and Ȳ(m)

T,y (T ) = 1 for any m. Similarly,

taking t∗ = t in (4.3) leads to the pure reverse estimator:

̂̄p(t, x, T, y) :=
1

Mδd

M∑

m=1

K

(
x− Ȳ

(m)
t,y (T )
δ

)
Ȳ(m)

t,y (T ). (4.7)

It should be noted that the pure forward estimator gives for fixed x and one simulation

sample of X̄ an estimation of the density p(t, x, T, y) for all y. On the other hand, the

pure reverse estimator gives for fixed y and one simulation of the reverse system a density

estimation for all x. In contrast, the proposed forward-reverse estimators require for each

pair (x, y) a simulation of both the forward and the reverse process. However, as we will

see, these estimators have superior convergence properties.

Remark 4.2. In general it is possible to apply variance reduction methods to the estimator

Ĵ in (4.5), based on the extended representations (2.4)–(2.5) and (3.8)–(3.9).

5 The explicit analysis of the forward-reverse kernel esti-

mator in a one-dimensional example

We consider an example of a one-dimensional diffusion for which all characteristics of the

forward-reverse kernel estimator introduced in Section 4 can be derived analytically. For

constant a, b, the one-dimensional diffusion is given by the SDE

dX = aXdt + bdW (t), X(0) = x, (5.1)

which is known for a < 0 as the Ornstein-Uhlenbeck process. By (3.6), the reverse system

belonging to (5.1) is given by

dY = −aY ds + bdW̃ (s), Y (t) = y, s > t, (5.2)

dY = −aYds, Y(t) = 1. (5.3)
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Both systems (5.1) and (5.2) can be solved explicitly. Their solutions are given by

X(t) = eat

(
x + b

∫ t

0
e−audW (u)

)

and

Y (s) = e−a(s−t)

(
y + b

∫ s

t
ea(u−t)dW̃ (u)

)
,

Y(s) = e−a(s−t),

respectively. It follows that

E X(t) = eatx, VarX(t) = b2e2at

∫ t

0
e−2audu = b2 e2at − 1

2a
:= σ2(t)

and, since the probability density of a Gaussian process is determined by its expectation

and variance process, we have X(t) ∼ N (eatx, σ2(t)). The transition density of X is thus

given by,

pX(t, x, s, z) =
1√

2πσ2(s− t)
exp

(
−(ea(s−t)x− z)2

2σ2(s− t)

)
. (5.4)

Similarly, for the reverse process Y we have Y (s) ∼ N (
e−a(s−t)y, e−2a(s−t)σ2(s− t)

)
and

so

pY (t, y, s, z) =
1√

2πe−2a(s−t)σ2(s− t)
exp

(
− (e−a(s−t)y − z)2

2e−2a(s−t)σ2(s− t)

)

is the transition density of Y .

We now consider the forward-reverse estimator (4.3) for the transition density (5.4),

where we take t = 0 and 0 < t∗ < T . For simplicity, we don’t deal with variance reduction,

i.e, we take h ≡ 0 and F ≡ 0. It follows that

pX(0, x, T, y) ' ξN,M :=
e−a(T−t∗)

MNδ

M∑

m=1

N∑

n=1

Knm, (5.5)



18

where

Knm := K

(
δ−1eat∗

(
x + b

∫ t∗

0
e−audW (n)(u)

)

− δ−1e−a(T−t∗)
(

y + b

∫ T

t∗
ea(u−t∗)dW̃ (m)(u)

))

= K
(
δ−1

(
eat∗x− e−a(T−t∗)y + σ(t∗)U (n) − e−a(T−t∗)σ(T − t∗)V (m)

))
(5.6)

with U (n) and V (m) being i.i.d. standard normally distributed random variables. Note

that in general δ in (5.5) and (5.6) may be chosen in dependence of both N and M, so δ

= δN,M in fact.

By choosing the Gaussian kernel

K(z) =
1√
2π

exp(−z2/2), (5.7)

it is possible to derive explicit expressions for the first and second moment of ξN,M in

(5.5). In particular, for the expected value we have

E ξN,M =
1√

2π
(
δ2e2a(T−t∗) + σ2(T )

) exp
(
− (eaT x− y)2

2(δ2e2a(T−t∗) + σ2(T ))

)
(5.8)

and for the variance it follows that

Var (ξN,M) = −N−M+1
2πMN(B+σ2(T ))

exp
(
− A

B+σ2(T )

)

+ M−1

2πMN
√

B+σ2(T−t∗)
√

B+2σ2(T )−σ2(T−t∗)
exp

(
− A

B+2σ2(T )−σ2(T−t∗)

)

+ N−1

2πMN
√

B+σ2(T )−σ2(T−t∗)
√

B+σ2(T )+σ2(T−t∗)
exp

(
− A

B+σ2(T )+σ2(T−t∗)

)

+ e−a(T−t∗)

2πMNδ
√

B+2σ2(T )
exp

(
− A

B+2σ2(T )

)
. (5.9)

with the abbreviations A := (eaT x−y)2, B := δ2e2a(T−t∗). Since in Sections 6 the forward

reverse kernel estimator will be analysed quite general, we here sketch the derivation of

(5.8) and (5.9) just briefly. It is convenient to use the following standard lemma which we

state without proof.
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Lemma 5.1. Let U be a standard normally distributed random variable and let the kernel

K be given by (5.7). Then,

E K(p + qU) =
exp

(
− p2

2+2q2

)
√

2π(1 + q2)
.

In (5.5) the Knm are identically distributed and so (5.8) follows straightforwardly by

application of Lemma 5.1. The variance expression can be derived as follows. We consider

the second moment

E ξ2
N,M =

e−2a(T−t∗)

M2N2δ2

M∑

m=1

N∑

n=1

M∑

m′=1

N∑

n′=1

E KnmKn′m′ (5.10)

and split the sum into four parts: n 6= n′ and m 6= m′; n = n′ and m 6= m′; n 6= n′ and m =

m′; n = n′ and m = m′. Then, to each part we apply Lemma 5.1 with appropriate

substitutes for p and q. After collecting the results, (5.9) follows by Var (ξN,M ) = E ξ2
N,M−

(E ξN,M )2.

Clearly, as in Remark 4.1, substituting t∗ = T and t∗ = 0 in (5.5) yields the pure

forward estimator and pure reverse estimator, respectively. In this example the forward

estimator is given by

ξN :=
1

Nδ

N∑

n=1

Kn :=
1

Nδ

N∑

n=1

K((eaT x− y + σ(T )U (n))δ−1)

and a similar expression holds for the reverse estimator. The bias and variance of these

estimators may be derived analogously, but, also follow from (5.8) and (5.9) by setting

t∗ = T or t∗ = 0.

We now compare the bias and variance of the forward-reverse estimator with the pure

forward estimator. By (5.8) we have for the forward-reverse estimator, i.e. (5.5) with 0 <

t∗ < T,

E ξN,M =
exp

(
− (eaT x−y )2

2σ2(T )

)
√

2πσ2(T )
(1 + c0δ

2 +O(δ3)) = pX(0, x, T, y)(1 +O(δ2)), (5.11)



20

where c0 is a constant not equal to zero. Hence, for a kernel given by (5.7) the bias is of

order O(δ2). Obviously, the same is true for the forward estimator.

For the variance of the forward estimator we have

Var (ξN ) =
1

2πN

exp
(
−(eaT x−y)2

δ2+2σ2(T )

)

δ
√

δ2 + 2σ2(T )
− 1

2πN

exp
(
−(eaT x−y)2

δ2+σ2(T )

)

δ2 + σ2(T )
, (5.12)

which follows by substituting t∗ = T in (5.9) where then M drops out. Then, comparison

of (5.9) with (5.12) leads to the following interesting conclusion.

Conclusion 5.1. We consider the case M = N and denote the forward-reverse estimator

for pX(0, x, T, y) by ξN as well. The width δ will thus be chosen in relation to N, hence δ

= δN . We observe that

E(ξN − pX(0, x, T, y))2 = Var (ξN ) + (E ξN − pX(0, x, T, y))2, (5.13)

where εN :=
√

E(ξN − pX(0, x, T, y))2 is usually referred to as the accuracy of the esti-

mation. From (5.11), (5.12), and (5.13) it is clear that for the forward estimator εN ↓ 0

when N → ∞, if and only if δN → 0 and NδN → ∞. By (5.11) and (5.12) we have for

the forward estimator

ε2
N = (

c1

NδN
+ c2δ

4
N )(1 + o(1)), NδN→∞ and δN ↓ 0, (5.14)

for some positive constants c1, c2. It thus follows that the best achievable accuracy rate

for the forward estimator is εN ∼ N−2/5, which is attained by taking δN ∼ N−1/5.

We next consider the forward-reverse estimator which is obtained for 0 < t∗ < T. From

(5.11), (5.9), and (5.13) it follows by similar arguments that

ε2
N = (

d1

N
+

d2

N2δN
+ d3δ

4
N )(1 + o(1)), N2δN→∞ and δN ↓ 0, (5.15)

for some positive constants d1, d2 and d3. So, from (5.15) we conclude that by using the

forward-reverse estimator the accuracy rate is improved to εN ∼ N−1/2 and this rate may

be achieved by δN ∼ N−p for any p ∈ [14 , 1].
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Remark 5.1. It is easy to check that for the reverse estimator we have the same accuracy

(5.14) and so the same conclusions as in 5.1 apply.

6 Accuracy analysis of the forward-reverse kernel estimator

in general

In this section we study the properties of the kernel estimator (4.3) for the transition

density p = p(t, x, T, y) in general. However, here and in Section 7 we will disregard the

discretization bias caused by numerical integration of SDE’s and will only concentrate

on the loss due to the particular structure of the new estimators. We thus assume in

sections 6,7 that all random variables involved are due to exact solutions of the respective

SDE’s.

Let r(u) be the density of the random variable Xt,x(t∗) , that is, r(u) = p(t, x, t∗, u).

Similarly, let q(u) be the density of Yt∗,y(T ) and further denote by µ(u) the conditional

mean of Yt∗,y(T ) given Yt∗,y(T ) = u. By the following lemma we may reformulate the

representation for p in (4.2) and J(f) in (4.4).

Lemma 6.1.

p =
∫

r(u)µ(u)q(u)du, (6.1)

J(f) =
∫∫

f(u, v)r(u)q(v)µ(v) du dv. (6.2)

Proof. Equality (6.1) follows from (4.2) by

p = E r (Yt∗,y(T ))Yt∗,y(T ) = E [r (Yt∗,y(T ))E (Yt∗,y(T ) | Yt∗,y(T ))]

= E r (Yt∗,y(T ))µ(Yt∗,y(T )) =
∫

r(u)µ(u)q(u)du (6.3)

and (6.2) follows from (4.4) in a similar way.
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For a kernel function K(z) in IRd and a bandwidth δ , we put f(u, v) = fK,δ(u, v) :=

δ−dK((u− v)/δ) and thus have by Lemma 6.1,

J(fK,δ) =
∫∫

δ−dK(
u− v

δ
)r(u)q(v)µ(v) du dv,

which formally converges to the target density p in (6.1) as δ ↓ 0. Following Section 4,

this leads to the Monte Carlo kernel estimator

p̂ =
1

δdMN

N∑

n=1

M∑

m=1

YmK

(
Xn − Ym

δ

)
=

1
MN

N∑

n=1

M∑

m=1

Znm (6.4)

with

Znm := δ−dYmK

(
Xn − Ym

δ

)
,

where Xn := X
(n)
t,x (t∗) ∈ IRd , n = 1, . . . , N , may be regarded as an i.i.d. sample from

the distribution with density r, the sequence Ym = Y
(m)
t∗,y (T ) ∈ IRd, m = 1, . . . , M , as an

i.i.d. sample from the distribution with the density q, and the weights Ym = Y(m)
t∗,y (T ),

m = 1, . . . , M, may be seen as independent samples from a distribution conditional on

Ym, with conditional mean µ(y) given Ym = u. Below we derive some properties of this

estimator.

Lemma 6.2. We have

E p̂ = pδ :=
∫∫

r(u + δv)q(u)µ(u)K(v) du dv =
∫

rδ(u)λ(u)du

with

λ(u) := q(u)µ(u)

and

rδ(u) := δ−d

∫
r(v)K

(
δ−1(v − u)

)
dv =

∫
r(u + δv)K(v)dv.

Moreover, if the kernel K fulfills
∫

K(u)du = 1 , K(u) ≥ 0 , K(u) = K(−u) for all

u ∈ IRd , and K(u) = 0 for |u| > 1 , then the bias |p−E p̂| satisfies

|p−E p̂| = |p− pδ| ≤ CK‖r′′‖δ2 (6.5)
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with CK =
1
2

∫ |v|2K(v)dv · ∫ λ(u)du and ‖r′′‖ = supv ‖r′′(v)‖, where ‖r′′(v)‖ is the

Euclidean norm of the matrix r′′(v) =
{

∂2r

∂vi∂vj

}
.

Proof. Since all Znm are i.i.d., by (4.4) it holds E p̂ = J(fK,δ) = E Znm for every n =

1, . . . , N , and m = 1, . . . ,M . Hence, by Lemma 6.1,

E Znm = δ−d

∫∫
r(u)q(v)µ(v)K

(
δ−1(u− v)

)
du dv

=
∫∫

r(u + δv)q(u)µ(u)K(v) du dv = pδ .

For the second assertion it is sufficient to note that the properties
∫

K(v)dv = 1 ,
∫

K(v) v dv =

0, and K(v) = 0 for |v| > 1, imply

rδ(u)− r(u) =
∫

r(u + δv)K(v) dv − r(u) =
∫ [

r(u + δv)− r(u)− δv>r′(u)
]
K(v)dv

=
∫

1
2
δ2v>r′′(u + θ(v)δv)v K(v)dv

≤ 1
2
δ2‖r′′‖

∫
|v|2K(v)dv,

where |θ(v)| ≤ 1, and so

|pδ − p| ≤
∫
|rδ(u)− r(u)|λ(u)du ≤ CKδ2‖r′′‖

∫
λ(u)du.

Remark 6.1. The order of the bias |pδ − p| can be improved by using higher-order

kernels K . We say that K is of order β if it holds
∫

uj1
1 . . . ujd

d K(u)du = 0 for all

nonnegative integer numbers j1, . . . , jd satisfying 0 < j1 + . . . + jd ≤ β . Similar to the

proof of Lemma 6.2 one can show that the application of a kernel K of order β satisfying

∫
K(u)du = 1, K(u) = 0 for |u| ≥ 1, leads to a bias with |pδ − p| ≤ Cδβ+1, where C is

a constant depending on r, q and K.

Concerning the variance Var p̂ = E (p̂−E p̂)2 of the estimator (6.4) we obtain the

next result.
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Lemma 6.3. It holds

Var p̂ =
1

NM
δ−dBδ +

M − 1
NM

∫
r(u)λ2

δ(u)du +
N − 1
NM

∫
r2
δ (u)µ2(u)q(u) du

−N + M − 1
NM

p2
δ , (6.6)

where

Bδ =
∫

rδ,2(u)µ2(u)q(u)du

with

λδ(u) = δ−d

∫
λ(v)K

(
δ−1(v − u)

)
dv =

∫
λ(u + δv)K(v)dv,

rδ,2(u) = δ−d

∫
r(v)K2

(
δ−1(v − u)

)
dv =

∫
r(u + δv)K2(v)dv,

µ2(v) = E (Y2
1 | Y1 = v).

Proof. Since Znm and Zn′m′ are independent if both n 6= n′ and m 6= m′ , it follows

that

M2N2Var p̂ = E

(
N∑

n=1

M∑

m=1

(Znm − pδ)

)2

(6.7)

=
N∑

n=1

M∑

m=1

E (Znm − pδ)2 +
N∑

n=1

M∑

m=1

∑

m′ 6=m

(E ZnmZnm′ − p2
δ)

+
N∑

n=1

∑

n′ 6=n

M∑

m=1

(E ZnmZn′m − p2
δ).

Note that for m 6= m′ we have

E ZnmZnm′ = δ−2d

∫∫∫
K

(
δ−1(u− v)

)
K

(
δ−1(u− v′)

)
r(u)λ(v)λ(v′)du dv dv′

= δ−d

∫∫
K

(
δ−1(u− v)

)
r(u)λδ(u)λ(v) du dv

=
∫

r(u)λ2
δ(u) du

and, similarly, for n 6= n′ it follows

E ZnmZn′m =
∫

r2
δ (u)µ2(u)q(u) du.
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Further,

E Z2
nm = δ−2dE Y2

mK2
(
δ−1 (Xn − Ym)

)

= δ−2dE
(
K2

(
δ−1 (Xn − Ym)

)
E

(Y2
m | Ym

))

= δ−2d

∫∫
K2

(
δ−1(u− v)

)
r(u)q(v)µ2(v) du dv

= δ−d

∫
µ2(v)q(v)rδ,2(v)dv

and so we get

Var p̂ =
δ−dBδ − p2

δ

NM
+

M − 1
NM

(∫
r(u)λ2

δ(u)du− p2
δ

)
+

N − 1
NM

(∫
r2
δ (u)µ2(u) q(u)du− p2

δ

)

from which the assertion follows.

Let us define

B =
∫

K2(u)du ·
∫

r(u)µ2(u) q(u)du. (6.8)

By the Taylor expansion

r(u + δv) = r(u) + δv>r′(u) +
1
2
δ2v>r′′(u + θ(v)δv)v,

one can show in a way similar to the proof of Lemma 6.1 that

|Bδ −B| = O(δ2), δ ↓ 0.

In the same way we get

∣∣∣∣
∫

r(u)λ2
δ(u)du−

∫
r(u)λ2(u)du

∣∣∣∣ = O(δ2), δ ↓ 0,

∣∣∣∣
∫

r2
δ (u)µ2(u) q(u) du−

∫
r2(u)µ2(u) q(u) du

∣∣∣∣ = O(δ2), δ ↓ 0.

Further, introduce the constant D by

D :=
∫

r(u)λ2(u)du +
∫

r2(u)µ2(u) q(u) du− 2p2. (6.9)

Then, from Lemmas 6.1 and 6.3 the next lemma follows.
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Lemma 6.4. For N = M we have

∣∣∣∣Var p̂− D

N
− δ−dB

N2

∣∣∣∣ ≤ C

(
δ−d+2

N2
+

δ2

N
+

1
N2

)
. (6.10)

In particular, if δ =: δN depends on N such that δ−d
N N−1 = o(1) and δN = o(1) as

N →∞, then
∣∣∣∣Var p̂− D

N

∣∣∣∣ =
o(1)
N

, N →∞.

Now, by combining Lemmas 6.2 and 6.4 we have the following theorem.

Theorem 6.1. Let N = M and δ = δN depend on N. The following statements hold:

1) If d < 4 and δN is such that

1
Nδd

N

= o(1) and δ4
NN = o(1), N →∞,

then the estimate p̂ (see (4.3) or (6.4)) of the transition density p = p(t, x, T, y) satisfies

E (p̂− p)2 = (pδ − p)2 + Var p̂ =
D

N
+

o(1)
N

, N →∞. (6.11)

Hence, a root-N accuracy rate is achieved (we recall that
√

E (p̂− p)2 is the accuracy of

the estimator). Besides in this case the variance is of order N−1 and the squared bias is

o(N−1).

2) If d = 4 and δN = CN−1/4, where C is a positive constant, then the accuracy rate

is again N−1/2 but now both the squared bias and the variance are of order N−1.

3) If d > 4 and δN = CN−2/(4+d), then the accuracy rate is N−4/(4+d) and both the

squared bias and the variance are of the same order N−8/(4+d).

Proof. Clearly, (6.5) and (6.10) imply (6.11). The conditions δ−d
N N−1 = o(1) and Nδ4

N =

o(1) can be fulfilled simultaneously only when d < 4 . In this case one may take,

for instance, δN = N−1/d log1/d N yielding δ−d
N N−1 = 1/ log N = o(1) and Nδ4

N =

N1−4/d log4/d N = o(1) . By (6.5) the squared bias is then of orderO(δ4
N ) =O(N−4/d log4/d N)

= o(N−1) for d < 4 . The statements for d = 4 and d > 4 follow in a similar way.



27

Remark 6.2. We conclude that, by combining forward and reverse diffusion, it is really

possible to achieve an estimation accuracy of rate N−1/2 for d ≤ 4 . Moreover, for d > 4

an accuracy rate of root-N may be achieved as well by applying a higher order kernel K .

In section 9 we will see that with the proposed choice of the bandwidth δN = N−1/d log1/d N

for d ≤ 3 and δN = N−2/(4+d) for d ≥ 4 , the kernel estimator p̂ can be computed at a

cost of order N log N operations.

Remark 6.3. For the pure forward estimator (1.6) and pure reverse estimator (1.6) it is

not difficult to show that

ε2
N := E (p̂− p)2 =

(
c1

Nδd
N

+ c2δ
4
N

)
(1 + o(1)), δN ↓ 0 andNδd

N →∞, (6.12)

where c1 and c2 are positive constants. So the best achievable accuracy rate for the forward

estimator is εN = O(N−2/(4+d)), which is obtained by a bandwidth choice δN = N−1/(4+d).

Clearly, this rate is lower than the accuracy rate of the forward-reverse estimator which is

basically root-N.

Remark 6.4. In applications it is important to choose the intermediate time t∗ properly.

In this respect we note that D in (6.9) only depends on the choice of t∗ and, in particular,

it is not difficult to show that D → ∞ as t∗ ↓ t or t∗ ↑ T. So, by Lemma 6.4, in the

case N = M and d < 4 we should select a t∗ for which this constant is not too big. In

practice, however, a suitable t∗ is best found by just comparing for different choices the

performance of the estimator for relatively small sample sizes. For d ≥ 4 and N = M also

the constant B in (6.8) is involved but similar conclusions can be made.

7 The forward-reverse projection estimator

In this section we discuss statistical properties of the projection estimator p̂pr from (4.6)

for the transition density p(t, x, T, y) . First we sketch the main idea.
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Let {ϕ`(x), ` = 1, 2, . . .} be a total orthonormal system in the Hilbert space L2(IRd) .

For example, in the case d = 1 one could take

ϕl+1(u) =
1√

2ll! 4
√

π
Hl(u)e−u2/2, l = 0, 1, . . . ,

where Hl(u) are the Hermite polynomials. In the d-dimensional case it is possible to

construct a similar basis by using Hermite functions as well. Consider formally for r(u) =

p(t, x, t∗, u) (see Section 6) and h(u) := p(t∗, u, T, y) the Fourier expansions

r(u) =
∞∑

`=1

α`ϕ`(u), h(u) =
∞∑

`=1

γ`ϕ`(u), with

α` :=
∫

r(u)ϕ`(u)du, γ` :=
∫

h(u)ϕ`(u)du.

By (2.1), (3.1), and (3.5) it follows that

α` = E ϕ`(Xt,x(t∗)), (7.1)

γ` = E ϕ`(Yt∗,y(T ))Yt∗,y(T ), (7.2)

respectively. Since by the Chapman-Kolmogorov equation (4.1) the transition density p =

p(t, x, T, y) may be written as a scalar product p =
∫

r(u)h(u)du we thus formally obtain

p =
∞∑

`=1

α`γ`. (7.3)

Therefore, it is natural to consider the estimator

p̂pr =
L∑

`=1

α̂`γ̂`, (7.4)

where L is a natural number and

α̂` :=
1
N

N∑

n=1

ϕ`(Xn), γ̂` :=
1
M

M∑

m=1

ϕ`(Ym)Ym (7.5)

are estimators for the Fourier coefficients α`, γ`, respectively. For the definition of Xn,

Ym and Ym, see Section 6. Note that (7.4)–(7.5) coincides with the projection estimator

introduced in (4.6).
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We now study the accuracy of the projection estimator. In the subsequent analysis

we assume that the originating diffusion coefficients a and σ in (1.1) are sufficiently good

in analytical sense such that, in particular, the functions y′ → p(t, x, t∗, y′) and y′ →

p(t∗, y′, T, y) are squared integrable. Hence, we assume that the Fourier expansions used

in this section are valid in L2(IRd). The notation introduced in Section 6 is maintained

below. We have the following lemma.

Lemma 7.1. It holds for every ` ≥ 1

E α̂` = α` =
∫

r(u)ϕ`(u)du,

Var α̂` = N−1 Varϕ`(X1) = N−1

(∫
ϕ2

`(u)r(u)du− α2
`

)
=: N−1α`,2.

Similarly,

E γ̂` = γ` =
∫

ϕ`(u)µ(u)q(u)du,

Var γ̂` = M−1 VarY1ϕ`(Y1) = M−1

(∫
µ2(u)ϕ2

`(u)q(u)du− γ2
`

)
=: M−1γ`,2,

where µ2(u) := E (Y2
1 |Y1 = u).

Proof. The first part is obvious and the second part follows by a conditioning argument

similar to (6.3) in the proof of Lemma 6.1.

Since the α̂` and the γ̂`’s are independent, it follows by Lemma 7.1 that

E p̂pr = E
L∑

`=1

α̂`γ̂` =
L∑

`=1

α`γ`.

So, by (7.3) and the Cauchy-Schwarz inequality we obtain the next lemma for the bias

E p̂pr − p of the estimator p̂pr.

Lemma 7.2. It holds

(E p̂pr − p)2 =

( ∞∑

`=L+1

α`γ`

)2

≤
∞∑

`=L+1

α2
`

∞∑

`=L+1

γ2
` .
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By the following result we may estimate the variance of p̂pr . For convenience, we

restrict ourselves to the case N = M .

Lemma 7.3. Let (L + 1)2 ≤ N and the Fourier coefficients α` and γ` satisfy the

conditions

∞∑

`=1

|α`| ≤ C1,α ,
∞∑

`=1

|γ`| ≤ C1,γ (7.6)

max
`

α`,2 ≤ C2,α , max
`

γ`,2 ≤ C2,γ . (7.7)

Then we have

N Var p̂pr ≤ C

with C depending on C1,α , C2,α and C1,γ , C2,γ only.

Proof. Let us write

L∑

`=1

α̂`γ̂` −
L∑

`=1

α`γ` =
L∑

`=1

(α̂` − α`)(γ̂` − γ`) +
L∑

`=1

α`(γ̂` − γ`) +
L∑

`=1

(α̂` − α`)γ`

=: I1 + I2 + I3.

The Cauchy-Schwarz inequality implies

E (I2)2 = E

(
L∑

`=1

α`(γ̂` − γ`)

)2

≤ E

(
L∑

`=1

|α`|
L∑

`=1

|α`|(γ̂` − γ`)2
)

≤ C1,α

L∑

`=1

|α`|E (γ̂` − γ`)2 ≤ C2
1,αC2,γN−1

and similarly

E (I3)2 = E

(
L∑

`=1

γ`(α̂` − α`)

)2

≤ C2
1,γC2,αN−1.

The Cauchy-Schwarz inequality and independence of the α̂`’s and the γ̂`’s imply

E (I1)2 = E

(
L∑

`=1

(α̂` − α`)(γ̂` − γ`)

)2

≤ E
L∑

`=1

(α̂` − α`)2E
L∑

`=1

(γ̂` − γ`)2

≤ C2,αC2,γ(L + 1)2N−2 ≤ C2,αC2,γN−1.
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Hence,

Var p̂pr = E (I1 + I2 + I3)2 ≤
(√

E(I1)2 +
√

E(I2)2 +
√

E(I3)2
)2
≤ C

N

with C := 3(C2
1,αC2,γ + C2

1,γC2,α + C2,αC2,γ).

Application of lemmas 7.2 and 7.3 yields the following theorem.

Theorem 7.1. Let the Fourier coefficients α` and γ` satisfy the condition

∞∑

`=1

α2
``

2β/d ≤ C2
α,

∞∑

`=1

γ2
` `2β/d ≤ C2

γ (7.8)

with β > d/2 and let condition (7.7) hold true. Let also L = LN fulfill L2
N/N = o(1) ,

NL
−4β/d
N = o(1) as N → ∞. Then, for the accuracy of the estimator p̂pr with N = M

we have

E (p̂pr − p)2 ≤ CN−1.

Proof. Clearly,

∞∑

`=L+1

α2
` ≤ (L + 1)−2β/d

∞∑

`=L+1

α2
``

2β/d ≤ C2
αL−2β/d.

Similarly,
∑∞

`=L+1 γ2
` ≤ C2

γL−2β/d and so

N

( ∞∑

`=L+1

α`γ`

)2

≤ C2
αC2

γNL−4β/d = o(1).

Next, (
L∑

`=1

|α`|
)2

≤
L∑

`=1

α2
``

2β/d
L∑

`=1

`−2β/d ≤ C2
α

L∑

`=1

`−2β/d ≤ C2
αCβ

with Cβ =
∑L

`=1 `−2β/d < ∞. Similarly

(
L∑

`=1

|γ`|
)2

≤ C2
γCβ

and thus condition (7.6) holds with C1,α = CαC
1/2
β and C1,γ = CγC

1/2
β . Now the assertion

follows from Lemma 7.3.
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Remark 7.1. In Theorem 7.1, β plays the role of a smoothness parameter. Indeed,

for a usual functional basis such as the Hermite bases, condition (7.8) is fulfilled if the

functions x′ → p(t, x, t∗, x′) and x′ → p(t∗, x′, T, y) have square integrable derivatives up

to order β. For β = 2 , the conditions L2
N/N = o(1) and NL

−4β/d
N = o(1) can be fulfilled

simultaneously only if d < 4, so we then have a similar situation as for the kernel estimator

in Section 6. In general, if (7.8) holds for β > d/2, one may take LN = (N log N)d/(4β)

in Theorem 7.1 thus yielding L2
N/N = N−1+d/(2β) logd/(2β) N = o(1) and NL

−4β/d
N =

log−1 N = o(1). However, with respect to sufficiently regular basis functions (e.g. Hermite

basis functions) condition (7.8) is fulfilled for any β > d/2 when the densities p(t, x, t∗, x′)

and p(t∗, x′, T, y) have square integrable derivatives up to any order. So, according to

Theorem 7.1, one could take LN = O(N τ ) for any 0 < τ < 1/2 to get the desirable

root-N consistency. If, moreover, the coefficients α` and γ` decrease exponentially fast

so that
∑

` α`e
c` < ∞ and

∑
` γ`e

c` < ∞ for some positive c (which corresponds to the

case of analytical densities p(t, x, t∗, x′) and p(t∗, x′, T, y) ), then even LN = O(log N)

Fourier coefficients provide a negligible estimation bias (see Pinsker (1980)) thus leading

to root-N consistency again. Generally it is clear that properly choosing LN is essential

for reducing the numerical complexity of the procedure, see Section 9.

Remark 7.2. The conditions of Theorem 7.1 are given in terms of the Fourier coefficients

α` and γ` . We do not investigate in a rigorous way how these conditions can be transferred

into conditions on the coefficients of the original diffusion model (1.1) and the chosen

orthonormal basis. Note, however, that in the case of e.g. the Hermite basis, both (7.7)

and (7.8) follow from standard regularity conditions. For instance, when the coefficients of

(1.1) are smooth and bounded, their derivatives are smooth and bounded, and the matrix

σ(s, x)σ>(s, x) is of full rank for all s, x .
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8 Estimation loss caused by numerical integration of SDE’s

In this section we analyse the estimation loss of the kernel estimators due to application

of the Euler scheme. Let X̄ := X̄t,x(t∗, h) and (Ȳ , Ȳ) := (Ȳt∗,y(T, h), Ȳt∗,y(T, h)) be an

approximation of Xt,x(t∗) and (Yt∗,y(T ),Yt∗,y(T )), obtained by applying the Euler scheme

to the systems (1.1), and (3.6), respectively. Let r̄(u) be the density of the random variable

X̄, so r̄(u) = p̄h(t, x, t∗, u). Let further q̄(u) be the density of Ȳ and denote by µ̄(u) the

conditional mean of Ȳ given Ȳ = u. Instead of (6.4) we now consider the estimator

̂̄p :=
1

δdMN

N∑

n=1

M∑

m=1

ȲmK

(
X̄n − Ȳm

δ

)
=

1
MN

N∑

n=1

M∑

m=1

Z̄nm, (8.1)

where

Z̄nm := δ−dȲmK

(
X̄n − Ȳm

δ

)

with X̄n, n = 1, . . . , N and (Ȳm, Ȳm) m = 1, . . . , M being independent realizations of X̄

and (Ȳ , Ȳ), respectively. We thus have

E ̂̄p = E Z̄nm = δ−d

∫ ∫
r̄(u)q̄(v)µ̄(v)K(δ−1(u− v)) dudv

=
∫ ∫

r̄(u + δv)q̄(u)µ̄(u)K(v) dudv

=
∫

r̄δ(u)q̄(u)µ̄(u) du, where (8.2)

r̄δ(u) :=
∫

r̄(u + δv)K(v) dv.

Due to the result of Bally and Talay (1996b) (see (1.4) we obtain

|r̄δ(u)− rδ(u)| ≤ Kh, (8.3)

uniform in u and δ for some positive constant K. Hence for some K1 > 0,

|E ̂̄p−
∫

rδ(u)q̄(u)µ̄(u) du| ≤ K1h. (8.4)
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uniform in δ. Further we have

∫
rδ(u)q̄(u)µ̄(u) du = E rδ(Ȳ )Ȳ. (8.5)

It is not difficult to show that rδ(u) has derivatives which are uniformly bounded with

respect to δ. Therefore, since the Euler scheme has weak order 1, we have for some K2 > 0,

|E rδ(Ȳ )Ȳ −E p̂| ≤ K2h, (8.6)

uniform in δ. Combining (8.4)-(8.6) yields

|E ̂̄p−E p̂| ≤ K3h, (8.7)

uniform in δ for some K3 > 0 and then by Lemma 6.2 we get

Lemma 8.1. The estimation loss |E ̂̄p− p| satisfies

|E ̂̄p− p| ≤ K4δ
2 + K5h,

for some positive constants K4,K5 independent of δ and h.

We now proceed with estimating Var ̂̄p. For Var ̂̄p we obtain an expression similar to

(6.6) by replacing pδ in (6.6) with p̄δ := E ̂̄p and throughout Lemma 6.3 the quantities

r, rδ, rδ,2, q, µ2, λ, λδ, Bδ by their corresponding analogies r̄, r̄δ, r̄δ,2, q̄, µ̄2, λ̄, λ̄δ, B̄δ defined

with respect to the random variables X̄ and (Ȳ , Ȳ). Analogue to the proof of (8.7) it

follows that for some positive constants C, C1,

|B̄δ −Bδ| ≤ Ch and |
∫

r̄2
δ (u)µ̄2(u)q̄(u) du−

∫
r2
δ (u)µ2(u)q(u) du| ≤ C1h,

uniform in δ. From our boundedness assumptions in Section 1, it follows that c(s, y) in (3.6)

is bounded (see (3.4)). As a consequence, Ȳt∗,y(T ) is bounded and so exists a constant

C2 > 0 such that for every h and u,

|µ̄(u)| = ∣∣E (Ȳt∗,y(T ) | Ȳt∗,y(T ) = u)
∣∣ ≤ C2.
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Therefore,

|λ̄δ(u)| = ∣∣
∫

q̄(u + δv)µ̄(u + δv)K(v) dv
∣∣ ≤ C3

∫
q̄(u + δv)K(v) dv (8.8)

for some C3 > 0 and all u, h, δ.

By Bally and Talay (1996b) again, q̄(u) − q(u) = O(h) uniform in u, hence, λ̄δ(u) is

uniformly bounded with respect to u, h and δ and so
∫

r̄(u)λ2
δ(u)du is uniformly bounded

with respect to h and δ. Now, from Lemma 6.3 and the above arguments the following

result is obvious.

Lemma 8.2. There exists positive constants C4 and C5, not depending on h and δ, such

that for N = M,

Var ̂̄p ≤ C4

N2δd
+

C5

N
. (8.9)

It should be noted that Lemma 6.4 is more refined compared to Lemma 8.2 in the sense

that it gives some kind of expansion of Var p̂. Nevertheless, it is clear that Lemma 8.1 and

Lemma 8.2 are sufficient to get the following main theorem.

Theorem 8.1. For M = N and positive constants D, D1, D2, D3 we have

E (̂̄p− p)2 ≤ Dδ4 + D1h
2 +

D2

N2δd
+

D3

N
. (8.10)

Let us take δ = δN as in Theorem 6.1. Then it is clear from Theorem 6.1 that for

d ≤ 4 and h = O(N−1/2) the accuracy of the estimator ̂̄p is O(N−1/2) and for d > 4 and

h = O(N−4/(4+d)) the accuracy of ̂̄p is O(N−4/(4+d)). Hence by properly choosing h in

dependence of N the accuracy rates for ̂̄p and p̂ coincide.

Remark 8.1. For the pure forward estimator (1.7) (and the pure reverse estimator cor-

responding to (4.7)) similar arguments (even much simpler) give

E (̂̄p− p)2 ≤ D4h
2 + D5δ

4 +
D6

Nδd
. (8.11)

for some positive constants D4, D5, D6. For comparison see also Remark 6.3.
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Remark 8.2. The assertions of this section are derived only for the Euler method in

the strong sense since we essentially use the results of Bally and Talay (1996b). Most

likely they remain true in the context of methods of numerical integration in a weak sense.

However, this requires additional investigations.

Remark 8.3. Without proof we note that for the projection estimators similar conclusions

can be made with respect to the estimation loss due to application of the Euler scheme.

9 Implementation of the forward-reverse estimators, com-

plexity of the estimation algorithms, numerical examples

In the previous sections we have shown that, both, the forward-reverse kernel and projec-

tion estimator have superior convergence properties compared with the classical Parzen-

Rosenblatt estimator. However, while the implementation of the classical estimator is

rather straightforward one has to be more careful with implementing the forward-reverse

estimation algorithms. This especially concerns the evaluation of the double sum in (4.3)

for the kernel estimation. Indeed, straightforward computation would require the cost of

MN kernel evaluations which would be tremendous, for example, when M = N = 105.

But, fortunately, by using kernels with an in some sense small support we can get around

this difficulty as outlined below.

Implementation of the kernel estimator and its numerical complexity

We here assume that the kernel K(x) used in (4.3) has a small support contained in

|x|max ≤ α/2 for some α > 0, where |x|max := max1≤i≤d |xi|. This assumption is easily

fulfilled in practice. For instance, for the Gaussian kernel, K(x) = (2π)−d/2 exp(−|x|2/2),

which has strictly speaking unbounded support, in practice K(x) is negligible if for some
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i, 1 ≤ i ≤ d, |xi| > 6 and so we could take for this kernel α = 12. Then, due to the small

support of K, the following Monte Carlo algorithm for the kernel estimator is possible.

For simplicity we take t = 0, t∗ = T/2 and assume N = M . For both forward and reverse

trajectory simulation we use the Euler scheme with time discretization step h = T/(2L),

with 2L being the total number of steps between 0 and T.

Monte Carlo algorithm for the forward-reverse kernel estimator (FRE simulation)

• Simulate N trajectories on the interval [0, t∗], with end points {X(n)(t∗) : n =

1, . . . , N}, at a cost of O(NLd) elementary computations;

• Simulate N reverse trajectories on the interval [t∗, T ], with end points {(Y (m)(T ),Y(m)(T )) :

m = 1, . . . , N} at a cost of O(NLd) elementary computations;

• Search for each m the subsample

{X(nk)(t∗) : k = 1, . . . , lm} := {X(n)(t∗) : n = 1, . . . , N}∩{x : |x−Y (m)(T )|max ≤ αδN}.

The size lm of this intersection is, on average, approximately Nδd
N×{density of X(t∗)

at Y (m)(T )}. This search procedure can be done at a cost of order O(N log N), see

for instance Greengard and Strain (1991) where this is proved in the context of the

Gauss transform;

• Finally, evaluate (4.3) by

1
N2δd

N

N∑

m=1

lm∑

k=1

K(δ−1
N (X(nk)(t∗)− Y (m)(T )))Y(m)(T ),

at an estimated cost of O(N2δd
N ).

For the study of complexity we use the results in Section 6. We distinguish be-

tween d < 4 and d ≥ 4. For 1 ≤ d < 4 we achieve root-N accuracy by choosing δN =
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(N/ log N)−1/d. In practice, the number of discretization steps 2L (typically 100-1000) is

much smaller than the Monte Carlo number N, which is typically 105 - 106. Therefore, as

we see from the FRE algorithm, with δN = (N/ log N)−1/d the FRE simulation requires a

total cost of O(N log N). Hence, the aggregated costs for achieving εN ∼ 1/
√

N amounts

O(N log N) which comes down to a complexity Ckern
ε ∼ | log ε|/ε2. For d ≥ 4 we achieve

an accuracy rate εN ∼ N− 4
4+d by taking δN = N− 2

4+d , again at a cost of O(N log N). So

the complexity Ckern
ε is then of order O(| log ε|/ε

4+d
4 ). For comparison we now consider

the classical estimator. It is well known (see also Remark 6.3) that for N trajectories the

optimal bandwidth choice is δN ∼ N− 1
4+d , which yields an accuracy of εN ∼ N− 2

4+d . The

costs of the classical estimator amounts O(N) and thus its complexity Cclass
ε is of order

O(1/ε
4+d
2 ). By comparing the complexities Cε and Cclass

ε it is clear that the forward-

reverse kernel estimator is superior to the classical Parzen-Rosenblatt kernel estimator for

any d.

Complexity of the projection estimator

From its construction in Section 7 it is clear that the evaluation of the projection estimator

(4.6) requires a cost of order O(LNN) elementary computations. Just as for the kernel

estimator, we now consider the complexity of the projection estimator. In Remark 7.1 we

saw that if condition (7.8) is fulfilled for a smoothness β with β > d/2, we may choose LN

= (N log N)d/(4β) which yields a complexity Cproj(ε) of order O(logd/(4β) |ε|/ε2+d/(2β)).

If, moreover, the Fourier coefficients α` and γ` decrease exponentially then, (see Re-

mark 7.1) we get root-N accuracy by taking LN = log N and so we obtain a complexity

of order Cproj(ε) = | log ε|/ε2 for any d. Obviously, compared to the classical estimator,

the projection estimator has in any case a better order of complexity.
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Remark 9.1. For transparency, the complexity comparison of the different estimators

above is done with respect to exact solutions of the respective SDE’s. Of course when

Euler approximations are used, the discretization step h must tend to zero as well when

the required accuracy ε tends to zero. However, it is easy to see that also with respect to

approximate Euler scheme solutions the same conclusions can be made.

Numerical experiments

We have implemented the classical and forward-reverse kernel estimator for the one di-

mensional example of Section 5. We fix a = −1, b = 1 and choose fixed initial data t = 0,

x = 1, T = 1, y = 0, for which p = 0.518831.

Let us aim to approximate the ”true” value p = 0.518831 with both the forward-reverse

estimator (FRE for short) and the classical forward estimator (FE for short). Throughout

this experiment we choose t∗ = 0.5 and M = N for the FRE and the FE is simply

obtained by taking t∗ = 1. For the bandwidth we take δFE
N = N−1/5 and δFRE

N = N−1,

yielding variances σ2
FE ≈ C1N

−4/5 and σ2
FRE ≈ C2N

−1, respectively. It is clear that

σFE may be estimated directly from the density estimation since the classical estimator

is proportional to a sum of N independent random variables. As the forward-reverse

estimator is proportional to a double sum of generally dependent random variables it is,

of course, strictly not correct to estimate its deviation in the same way by just treating

these random variables as independent. However, the result of such an, in fact, incorrect

estimation, below denoted by σ∗, turns out to be roughly proportional to the correct

deviation σFRE . To show this we estimate σFRE for N = 102, 103, 104, respectively,

by running 50 FRE simulations for each value of N and then compute the ratios κ :=

σFRE/σ∗, see Table 1. The SDEs are simulated by the Euler scheme with time step

∆t = 0.01.
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Table 1: 50 FRE simulations

N σFRE σ∗ κ

102 0.068 0.050 1.4

103 0.021 0.015 1.4

104 0.007 0.005 1.4

So, in general applications we recommend this procedure for determination of the

ratio κ which may be carried out with relatively low sample sizes and allows for simple

estimation of the variance σ2
FRE . If, for instance, we define the Monte Carlo simulation

error to be two standard deviations, the Monte Carlo error of the forward-reverse estimator

may be approximated by 2κσ∗.

In this article we did not address the time discretization error due to the numerical

scheme used for the simulation of the SDEs. In fact, this is conceptually the same as

assuming that we have at our disposal a weak numerical scheme of sufficiently high order.

We note that if a relatively high accuracy is required in practice, the Euler scheme turns out

to be inefficient, as it involves a high number of time steps which yields in combination

with a high number of paths a huge complexity. Fortunately, in most cases it will be

sufficient to use a weak second order scheme, for instance, the method of Talay Tubaro

(1990). The application of this method comes down to Richardson extrapolation of the

results obtained by the Euler method for time step 2∆t and ∆t, respectively. However,

we have to take into account that the deviation of this extrapolation, and so the Monte

Carlo error, is
√

5 times higher. In the experiments below we compare the forward-reverse

estimator with the classical one for different sample sizes. For both estimators FRE and

FE we use the weak order O((∆t)2) method of Talay-Tubaro with time discretization

steps ∆t = 0.02 and ∆t = 0.01. From Table 2 it is obvious that for larger N the forward-
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Table 2: True p = 0.518831

N FRE 2σFRE σ2
FREN (sec.) FE 2σFE σ2

FEN4/5 (sec.)

104 0.522 0.031 2.40 2 0.524 0.036 0.51 2

105 0.519 0.010 2.50 20 0.515 0.016 0.64 18

106 0.5194 0.0031 2.45 203 0.5164 0.0064 0.65 183

107 0.5193 0.0010 2.50 2085 0.5171 0.0026 0.68 1854

reverse estimator gives a higher Monte Carlo error than the pure forward estimator while

the computational effort involved for the FRE is only a little bit larger. For example,

the FRE gives for N = 106 almost the same Monte Carlo error as the FE for N = 107.

Moreover, due to the choice δN = N−1 in the FRE, the bias of the FRE is O(N−2) and so

negligible with respect to its deviation being O(N−1/2). Unlike the FRE, with the usual

choice δN = N−1/5 the bias of the FE is of the same order as its deviation and so its

overall error is even larger than its Monte Carlo error displayed in Table 2.
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