Transition density estimation for stochastic differential equations via forward-reverse representations

G. N. Milstein $^{a,b},$ J.G.M. Schoenmakers $^{a},$ V. Spokoiny a *

Keywords: transition density, forward and reverse diffusion, statistical estimation, Monte Carlo simulation

AMS 2000 Subject Classification: 62G07, 60H10, 65C05.

^{*}a) Weierstrass Institut für Angewandte Analysis und Stochastik, Berlin, Germany, b) Ural State University, Ekaterinburg, Russia

Abstract

The general reverse diffusion equations are derived. They are applied to the problem of transition density estimation of diffusion processes between two fixed states. For this problem we propose density estimation based on forward-reverse representations and show that this method allows for achieving essentially better results in comparison with usual kernel or projection estimation based on forward representations only.

1 Introduction

Consider the SDE in the Ito sense

$$dX = a(s, X)ds + \sigma(s, X)dW(s), \qquad t_0 \le s \le T,$$
(1.1)

where $X = (X^1, ..., X^d)^{\top}$, $a = (a^1, ..., a^d)^{\top}$ are *d*-dimensional vectors, $W = (W^1, ..., W^m)^{\top}$ is an *m*-dimensional standard Wiener process, $\sigma = \{\sigma^{ij}\}$ is a $d \times m$ -matrix, $m \ge d$. We assume that the $d \times d$ -matrix $b := \sigma \sigma^{\top}$, $b = \{b^{ij}\}$, is of full rank and that moreover the uniform ellipticity condition holds: there exists $\alpha > 0$ such that

$$\left\| \left(\sigma(s,x)\sigma^{\top}(s,x) \right)^{-1} \right\| \le \alpha^{-1} \tag{1.2}$$

for all (s, x), $s \in [t_0, T]$, $x \in \mathbb{R}^d$ and some $\alpha > 0$. The functions $a^i(s, x)$ and $\sigma^{ij}(s, x)$ are assumed to satisfy the same regularity conditions as in Bally and Talay (1996b), i.e. their derivatives of any order exist and are bounded. This particularly implies existence and uniqueness of the solution $X_{t,x}(s) \in \mathbb{R}^d$, $X_{t,x}(t) = x$, $t_0 \leq t \leq s \leq T$, of (1.1), smoothness of the transition density p(t, x, s, y) of the Markov process X, and existence of exponential bounds for the density and its derivatives with respect to $t > t_0$, x, y.

The aim of this paper is the construction of a Monte Carlo estimator of the unknown transition density p(t, x, T, y) for fixed t, x, T, y, which improves upon classical kernel or projection estimators based on realisations of $X_{t,x}(T)$ directly. Classical Monte-Carlo methods allow for effective estimation of functionals of the form

$$I(f) = \int p(t, x, T, y) f(y) dy$$
(1.3)

for smooth, not too fast increasing functions f. These methods exploit the probabilistic representation $I(f) = \mathbf{E} f(X_{t,x}(T))$. Let $\bar{X}_{t,x}$ be an approximation of the process $X_{t,x}$ and let $\bar{X}_{t,x}^{(n)}(T)$ for n = 1, ..., N be independent realizations of $\bar{X}_{t,x}(T)$. Then, provided the accuracy of approximating $X_{t,x}$ by $\bar{X}_{t,x}$ is sufficiently good, I(f) may be estimated by

$$\widehat{\bar{I}} = \frac{1}{N} \sum_{n=1}^{N} f\left(\bar{X}_{t,x}^{(n)}(T)\right)$$

with root-N accuracy, i.e. a statistical error of order $N^{-1/2}$.

The problem of estimating the transition density of a diffusion process is more involved, see Bally and Talay (1996a), Hu and Watanabe (1996), Kohatsu-Higa (1997). For an approximation $\bar{X}_{t,x}$, it is natural to expect that its transition density $\bar{p}(t, x, T, y)$ is an approximation of p(t, x, T, y). Indeed, if $\bar{X}_{t,x}(T, h)$ is the approximation of $X_{t,x}(T)$ obtained via numerical integration by the strong Euler scheme with time step h, then the density $\bar{p}_h(t, x, T, y)$ converges to p(t, x, T, y) uniformly in y when the step size h tends to zero. More precisely:

$$p(t, x, T, y) - \bar{p}_h(t, x, T, y) = hC(t, x, T, y) + h^2 R_h(t, x, T, y),$$
(1.4)

with

$$|C(t, x, T, y)| + |R_h(t, x, T, y)| \le \frac{K}{(T-t)^q} \exp(-c\frac{|x-y|^2}{T-t}),$$

where K, c, q are some positive constants, see Bally and Talay (1996b). Strictly speaking the equality (1.4) is derived in Bally and Talay (1996b) for autonomous systems. However, there is no doubt that under our assumptions of smoothness, boundedness, and uniform ellipticity this result holds for the non-autonomous case as well. Further, Hu and Watanabe (1996) and Kohatsu-Higa (1997) show that the quantity

$$\widetilde{p}_h(t, x, T, y) = \boldsymbol{E} \phi_h(\bar{X}_{t,x}(T, h) - y)$$

with $\phi_h(x) = (2\pi h^2)^{-d/2} \exp\{-|x|^2/(2h^2)\}$ converges to p(t, x, T, y) as $h \to 0$. Hu and Watanabe (1996) used schemes of numerical integration in the strong sense, while Kohatsu-Higa (1997) applied numerical schemes in a weak sense. Combining this result with the classical Monte Carlo methods leads to the following estimator of the transition density

$$\widehat{\widetilde{p}}(t,x,T,y) = \frac{1}{N} \sum_{n=1}^{N} \phi_h \left(\overline{X}_n - y \right), \qquad (1.5)$$

where $\bar{X}_n = \bar{X}_{t,x}^{(n)}(T,h)$, n = 1, ..., N, are independent realizations of $\bar{X}_{t,x}(T,h)$.

More generally, one may estimate the transition density p(t, x, T, y) from the sample $X_n = X_{t,x}^{(n)}(T)$ by using standard methods of nonparametric statistics. For example, the kernel (Parzen-Rosenblatt) density estimator with a kernel K and a bandwidth δ is given by

$$\widehat{p}(t, x, T, y) = \frac{1}{N\delta^d} \sum_{n=1}^N K\left(\frac{X_n - y}{\delta}\right), \qquad (1.6)$$

see e.g. Devroye and Gyrfi (1985), Silverman (1986) or Scott (1992). Of course, in reality we have only the approximation \bar{X}_n instead of X_n and so we get the estimator

$$\widehat{\overline{p}}_h(t, x, T, y) = \frac{1}{N\delta^d} \sum_{n=1}^N K\left(\frac{\overline{X}_n - y}{\delta}\right) .$$
(1.7)

Clearly, proposal (1.5) is a special case of estimator (1.7) with kernel K being the standard normal density and bandwidth δ equal to the step of numerical integration h.

The estimation loss $\hat{p}_h(t, x, T, y) - p(t, x, T, y)$ can be split up into an error $\hat{p}_h - \hat{p}$ due to numerical approximation of the process X by \bar{X} and an error $\hat{p} - p$ due to the kernel estimation which depends on the sample size N, the bandwidth δ and the kernel K. The loss of the first kind can be reduced considerably by properly selecting a scheme of numerical integration and choosing a small step h. The most important loss, however, is caused by the kernel estimation. It is well known that the quality of density estimation strongly depends on the bandwidth δ and the choice of a suitable bandwidth is a delicate issue (see e.g. Devroye and Gyrfi (1985)). Even an optimal choice of the bandwidth δ leads to quite poor estimation quality, in particular for large dimension d. More specifically, if the underlying density is known to be two times continuously differentiable then the optimal bandwidth δ is of order $N^{-1/(4+d)}$ leading to the accuracy of order $N^{-2/(4+d)}$, see Scott (1992) or Silverman (1986). For larger d, this would require a huge sample size N for providing a reasonable accuracy of estimation. In the statistical literature this problem is referred to as "curse of dimensionality".

In this paper we propose a method of density estimation which is generally root-N consistent and thus avoids the curse of dimensionality problem. First we consider in Section 2 probabilistic representations for the functionals I(f) in (1.3), which provide different Monte-Carlo methods for the evaluation of I(f). Besides, we show how the variance of the Monte Carlo estimation can be reduced by the choice of a suitable probabilistic representation. Then, in Section 3 we introduce the reverse diffusion process in order to derive probabilistic representations for functionals of the form

$$I^{*}(g) = \int g(x)p(t, x, T, y)dx.$$
 (1.8)

Clearly, the "curse of dimensionality" problem doesn't encounter in the estimation of functionals I(f) in (1.3) by forward representations. Similarly, as we shall see in Section 3, Monte Carlo estimation of functionals of the form (1.8) via probabilistic representations based on reverse diffusion goes with root-N accuracy also. These important features have been utilised in the central theme of this paper, the development of a new method for estimating the transition density p(t, x, T, y) of a diffusion process which generally allows for root-N consistent estimation for pre-specified values of t, x, T, and y (we emphasize that the problem of estimating p(t, x, T, y) for fixed t, x, T, and y is more difficult than the problem of estimating the integrals I(f), I(f,g) or $I^*(g)$). This method, which is presented in Section 4, is based on a combination of forward representation (1.3) and reverse representation (1.8) via the Chapman-Kolmogorov equation and has been led to two different types of estimators called *kernel* and *projection* estimators. General properties of these estimators are studied in Sections 6 and 7. Previously, in Section 5 we demonstrate the advantages of combining the forward and reverse diffusion for transition density estimation at a simple one-dimensional example. We show by an explicit analysis of an Ornstein-Uhlenbeck type process that root-N accuracy can be achieved.

Throughout sections 5-7 all results are derived with respect to exact solutions of the respective SDE's. In Section 8 we study in particular the estimation loss due to application of the strong Euler scheme with discretization step h of the different kernel estimators presented in this sequel and found that this loss is of order O(h), uniform in the bandwidth δ .

In Section 9 we compare the computational complexity of the forward-reverse estimators with pure forward estimators and give some numerical results for the example in Section 5. We conclude that, in general, for the problem of estimating the transition density between two particular states the forward reverse estimator outperforms the usual estimator based on forward diffusion only.

2 Probabilistic representations based on forward diffusion

In this section we present a general probabilistic representation and the corresponding Monte Carlo estimator for a functional of the form (1.3). We also show that the variance

of the Monte Carlo method can be reduced by choosing a proper representation.

For a given function f, the function

$$u(t,x) = \boldsymbol{E} f(X_{t,x}(T)) = \int p(t,x,T,y)f(y)dy$$
(2.1)

is the solution of the Cauchy problem for the parabolic equation

$$Lu := \frac{\partial u}{\partial t} + \frac{1}{2} \sum_{i,j=1}^{d} b^{ij}(t,x) \frac{\partial^2 u}{\partial x^i \partial x^j} + \sum_{i=1}^{d} a^i(t,x) \frac{\partial u}{\partial x^i} = 0, \qquad u(T,x) = f(x)$$

Via the probabilistic representation (2.1), u(t, x) may be computed by Monte Carlo simulation using weak methods for numerical integration of SDE (1.1). Let \bar{X} be an approximation of the process X in (1.1), obtained by some numerical integration scheme. With $\bar{X}_{t,x}^{(n)}(T)$ being independent realizations of $\bar{X}_{t,x}(T)$, the value u(t,x) can be estimated by

$$\widehat{\bar{u}} = \frac{1}{N} \sum_{n=1}^{N} f\left(\bar{X}_{t,x}^{(n)}(T)\right).$$
(2.2)

Moreover, by taking a random initial value $X(t) = \xi$, where the random variable ξ has a density g, we get a probabilistic representation for integrals of the form

$$I(f,g) = \iint g(x)p(t,x,T,y)f(y) \, dx \, dy.$$
(2.3)

The estimation error $|\hat{u} - u|$ of the estimator \hat{u} in (2.2) is due to the Monte Carlo method and to the numerical integration of SDE (1.1). The second error can be reduced by selecting a suitable method and step of numerical integration. The first one, the Monte Carlo error, is of order $\{N^{-1} \operatorname{Var} f(\bar{X}_{t,x}(T))\}^{1/2} \simeq \{N^{-1} \operatorname{Var} f(X_{t,x}(T))\}^{1/2}$ and can, in general, be reduced by using variance reduction methods. Variance reduction methods can be derived from the following generalized probabilistic representation for u(t,x):

$$u(t,x) = \boldsymbol{E}\left[f(X_{t,x}(T))\mathcal{X}_{t,x}(T) + \mathbb{X}_{t,x}(T)\right],$$
(2.4)

where $X_{t,x}(s)$, $\mathcal{X}_{t,x}(s)$, $\mathbb{X}_{t,x}(s)$, $s \ge t$, is the solution of the system of SDEs given by

$$dX = (a(s, X) - \sigma(s, X)h(s, X))ds + \sigma(s, X)dW(s), \quad X(t) = x,$$

$$d\mathcal{X} = h^{\top}(s, X)\mathcal{X}dW(s), \qquad \qquad \mathcal{X}(t) = 1,$$

$$d\mathbb{X} = F^{\top}(s, X)\mathcal{X}dW(s), \qquad \qquad \mathbb{X}(t) = 0.$$

(2.5)

In (2.5), \mathcal{X} and \mathbb{X} are scalars, and $h(t,x) = (h^1(t,x), ..., h^m(t,x))^\top \in \mathbb{R}^m$, $F(t,x) = (F^1(t,x), ..., F^m(t,x))^\top \in \mathbb{R}^m$ are vector functions satisfying some regularity conditions (for example, they are sufficiently smooth and have bounded derivatives). The usual probabilistic representation (2.1) is a particular case of (2.4)–(2.5) with h = 0, F = 0, see, e.g., Dynkin (1965). The representation for $h \neq 0$, F = 0 follows from Girsanov's theorem and then we get (2.4) since $\mathbf{E} \mathbb{X} = 0$.

Consider the random variable $\eta := f(X_{t,x}(T))\mathcal{X}_{t,x}(T) + \mathbb{X}_{t,x}(T)$. While the mathematical expectation $\mathbf{E} \eta$ does not depend on h and F, the variance $\operatorname{Var} \eta = \mathbf{E} \eta^2 - (\mathbf{E} \eta)^2$ does. The Monte Carlo error in the estimation of (2.4) is of order $\sqrt{N^{-1}\operatorname{Var} \eta}$ and so by reduction of the variance $\operatorname{Var} \eta$ the Monte Carlo error may be reduced. Two variance reduction methods are well known: the method of importance sampling where F = 0, see Milstein (1995), Newton (1994), Wagner (1988), and the method of control variates where h = 0, see Newton (1994). For both methods it is shown that for sufficiently smooth function f the variance can be reduced to zero. A more general statement by Milstein and Schoenmakers (2002) is given in Theorem 2.1 below. Introduce the process

$$\eta(s) = u(s, X_{t,x}(s))\mathcal{X}_{t,x}(s) + \mathbb{X}_{t,x}(s), \qquad t \le s \le T.$$

Clearly $\eta(t) = u(t, x)$ and $\eta(T) = f(X_{t,x}(T))\mathcal{X}_{t,x}(T) + \mathbb{X}_{t,x}(T)$.

Theorem 2.1. Let h and F be such that for any $x \in \mathbb{R}^d$ there is a solution of the system (2.5) on the interval [t, T]. Then the variance $\operatorname{Var} \eta(T)$ is equal to

$$\operatorname{Var} \eta(T) = \boldsymbol{E} \, \int_{t}^{T} \mathcal{X}_{t,x}^{2}(s) \sum_{j=1}^{m} \left(\sum_{i=1}^{d} \sigma^{ij} \frac{\partial u}{\partial x^{i}} + uh^{j} + F^{j} \right)^{2} ds \tag{2.6}$$

provided that the mathematical expectation in (2.6) exists.

In particular, if h and F satisfy

$$\sum_{i=1}^{d} \sigma^{ij} \frac{\partial u}{\partial x^{i}} + uh^{j} + F^{j} = 0, \qquad j = 1, \dots, m,$$

then $\operatorname{Var} \eta(T) = 0$ and $\eta(s)$ is deterministic and independent of $s \in [t, T]$.

Proof. The Ito formula implies

$$d\eta(s) = \mathcal{X}_{t,x}(s)(Lu)ds + \mathcal{X}_{t,x}(s)\sum_{j=1}^{m} \left(\sum_{i=1}^{d} \sigma^{ij} \frac{\partial u}{\partial x^{i}} + uh^{j} + F^{j}\right) dW^{j}(s)$$

and then by Lu = 0 we have

$$\eta(s) = \eta(t) + \int_t^s \mathcal{X}_{t,x}(s') \sum_{j=1}^m \left(\sum_{i=1}^d \sigma^{ij} \frac{\partial u}{\partial x^i} + uh^j + F^j \right) dW^j(s').$$

Hence, (2.6) follows and the last assertion is obvious.

Remark 2.1. Clearly, h and F from Theorem 2.1 cannot be constructed without knowing u(s, x). Nevertheless, the theorem claims a general possibility of variance reduction by properly choosing the functions h^j and F^j , j = 1, ..., m.

3 Representations relying on reverse diffusion

In the previous section a broad class of probabilistic representations for the integral functionals $I(f) = \int f(y)p(t, x, T, y)dy$, and more generally, for the functionals $I(f, g) = \iint g(x)p(t, y, T, y)f(y)dx dy$ is described. Another approach is based on the so called *reverse diffusion* and has been introduced by Thomson (1987) (see also Kurbanmuradov *et al.*, 1999, 2001). We here derive the reverse diffusion system in a more transparent *and* more rigorous way. The method of reverse diffusion provides a probabilistic representation (hence a Monte Carlo method) for functionals of the form

$$I^*(g) = \int g(x)p(t, x, T, y)dx, \qquad (3.1)$$

For a given function g and fixed t we define

$$v(s,y) := \int g(x')p(t,x',s,y)dx', \qquad s > t,$$

and consider the Fokker-Planck equation (forward Kolmogorov equation) for p(t, x, s, y),

$$\frac{\partial p}{\partial s} = \frac{1}{2} \sum_{i,j=1}^d \frac{\partial^2}{\partial y^i \partial y^j} (b^{ij}(s,y)p) - \sum_{i=1}^d \frac{\partial}{\partial y^i} (a^i(s,y)p).$$

Then, multiplying this equation by g(x) and integrating with respect to x yields the following Cauchy problem for the function v(s, y):

$$\begin{split} \frac{\partial v}{\partial s} &= \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial^2}{\partial y^i \partial y^j} (b^{ij}(s,y)v) - \sum_{i=1}^{d} \frac{\partial}{\partial y^i} (a^i(s,y)v), \qquad s > t, \\ v(t,y) &= g(y). \end{split}$$

We introduce the reversed time variable $\widetilde{s}=T+t-s$ and define

$$\begin{split} \widetilde{v}(\widetilde{s},y) &= v(T+t-\widetilde{s},y), \\ \widetilde{a}^{i}(\widetilde{s},y) &= a^{i}(T+t-\widetilde{s},y), \\ \widetilde{b}^{ij}(\widetilde{s},y) &= b^{ij}(T+t-\widetilde{s},y). \end{split}$$

Clearly, $v(T, y) = \tilde{v}(t, y)$ and

$$\frac{\partial \widetilde{v}}{\partial \widetilde{s}} + \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial^2}{\partial y^i \partial y^j} (\widetilde{b}^{ij}(\widetilde{s}, y)\widetilde{v}) - \sum_{i=1}^{d} \frac{\partial}{\partial y^i} (\widetilde{a}^i(\widetilde{s}, y)\widetilde{v}) = 0, \qquad \widetilde{s} < T,$$

$$\widetilde{v}(T, y) = v(t, y) = g(y).$$
(3.2)

Since $b^{ij} = b^{ji}$ and so $\tilde{b}^{ij} = \tilde{b}^{ji}$, the PDE in (3.2) may be written in the form (with s instead of \tilde{s})

$$\widetilde{L}\widetilde{v} := \frac{\partial \widetilde{v}}{\partial s} + \frac{1}{2} \sum_{i,j=1}^{d} \widetilde{b}^{ij}(s,y) \frac{\partial^2 \widetilde{v}}{\partial y^i \partial y^j} + \sum_{i=1}^{d} \alpha^i(s,y) \frac{\partial \widetilde{v}}{\partial y^i} + c(s,y)\widetilde{v} = 0, \qquad s < T, \quad (3.3)$$

where

$$\alpha^{i}(s,y) = \sum_{j=1}^{d} \frac{\partial \widetilde{b}^{ij}}{\partial y^{j}} - \widetilde{a}^{i}, \qquad c(s,y) = \frac{1}{2} \sum_{i,j=1}^{d} \frac{\partial^{2} \widetilde{b}^{ij}}{\partial y^{i} \partial y^{j}} - \sum_{i=1}^{d} \frac{\partial \widetilde{a}^{i}}{\partial y^{i}}.$$
(3.4)

So we obtain a Cauchy problem in reverse time and may state the following result.

Theorem 3.1. $I^*(g)$ has a probabilistic representation,

$$I^*(g) = v(T, y) = \widetilde{v}(t, y) = \boldsymbol{E}\left[g(Y_{t,y}(T))\mathcal{Y}_{t,y}(T)\right],\tag{3.5}$$

where the vector process $Y_{t,y}(s) \in \mathbb{R}^d$ and the scalar process $\mathcal{Y}_{t,y}(s)$ solve the stochastic system

$$dY = \alpha(s, Y)ds + \widetilde{\sigma}(s, Y)d\widetilde{W}(s), \quad Y(t) = y,$$

$$d\mathcal{Y} = c(s, Y)\mathcal{Y}ds, \qquad \qquad \mathcal{Y}(t) = 1,$$
(3.6)

with $\widetilde{\sigma}(s,y) = \sigma(T+t-s,y)$ and \widetilde{W} being an m-dimensional standard Wiener process.

It is natural to call (3.6) the reverse system of (1.1). The probabilistic representation (3.5)–(3.6) for the integral (3.1) leads naturally to the Monte Carlo estimator \hat{v} for v(T, y),

$$\widehat{\overline{v}} = \frac{1}{M} \sum_{m=1}^{M} g\left(\bar{Y}_{t,y}^{(m)}(T)\right) \bar{\mathcal{Y}}_{t,y}^{(m)}(T), \qquad (3.7)$$

where $(\bar{Y}_{t,y}^{(m)}, \bar{\mathcal{Y}}_{t,y}^{(m)})$, m = 1, ..., M, are independent realizations of the process $(\bar{Y}_{t,y}, \bar{\mathcal{Y}}_{t,y})$ that approximates the process $(Y_{t,y}, \mathcal{Y}_{t,y})$ from (3.6).

Similar to (2.4)–(2.5), the representation (3.5)–(3.6) may be extended to

$$v(T,y) = \boldsymbol{E}\left[g(Y_{t,y}(T))\mathcal{Y}_{t,y}(T) + \mathbb{Y}_{t,y}(T)\right],\tag{3.8}$$

where $Y_{t,y}(s)$, $\mathcal{Y}_{t,y}(s)$, $\mathbb{Y}_{t,y}(s)$, $s \ge t$, solve the following system of SDEs,

$$dY = (\alpha(s, Y) - \widetilde{\sigma}(s, Y)\widetilde{h}(s, Y))ds + \widetilde{\sigma}(s, Y)d\widetilde{W}(s), \quad Y(t) = y,$$

$$d\mathcal{Y} = c(s, Y)\mathcal{Y}ds + \widetilde{h}^{\top}(s, Y)\mathcal{Y}d\widetilde{W}(s), \qquad \qquad \mathcal{Y}(t) = 1,$$

$$d\mathbb{Y} = \widetilde{F}^{\top}(s, Y)\mathcal{Y}d\widetilde{W}(s), \qquad \qquad \mathbb{Y}(t) = 0.$$

(3.9)

In (3.9), \mathcal{Y} and \mathbb{Y} are scalars, $\tilde{h}(t,x) \in \mathbb{R}^m$, and $\tilde{F}(t,x) \in \mathbb{R}^m$ are arbitrary vector functions which satisfy some regularity conditions.

Remark 3.1. If system (1.1) is autonomous, then \tilde{b}^{ij} , \tilde{a}^i , α^i , $\tilde{\sigma}$, and c depend on y only, $\tilde{b}^{ij}(y) = b^{ij}(y)$, $\tilde{a}^i(y) = a^i(y)$, and so $\tilde{\sigma}(y)$ can be taken equal to $\sigma(y)$.

Remark 3.2. By constructing the reverse system of reverse system (3.6), we get the original system (1.1) accompanied by a scalar equation with coefficient -c. By then taking the reverse of this system we get (3.6) again.

Remark 3.3. If the original stochastic system (1.1) is linear, then the system (3.6) is linear as well and c depends on t only.

Remark 3.4. Variance reduction methods discussed in Section 2 may be applied to the reverse system as well. In particular, for the reverse system a theorem analogue to Theorem 2.1 applies.

4 Transition density estimation based on forward-reverse representations

In this section we present estimators for the target probability density p(t, x, T, y), which utilize both the forward and the reverse diffusion system. More specifically, we give two different Monte Carlo estimators for p(t, x, T, y) based on forward-reverse representations: a forward-reverse kernel estimator and a forward-reverse projection estimator. A detailed analysis of the performance of these estimators is postponed to Sections 6 and 7.

We start with a heuristic discussion. Let t^* be an internal point of the interval [t, T]. By the Kolmogorov-Chapman equation for the transition density we have

$$p(t, x, T, y) = \int p(t, x, t^*, x') p(t^*, x', T, y) dx'.$$
(4.1)

By applying Theorem 3.1 with $g(x') = p(t, x, t^*, x')$, it follows that this equation has a probabilistic representation,

$$p(t, x, T, y) = \mathbf{E} \, p(t, x, t^*, Y_{t^*, y}(T)) \, \mathcal{Y}_{t^*, y}(T).$$
(4.2)

Since in general the density function $x' \to p(t, x, t^*, x')$ is unknown also, we cannot apply the Monte Carlo estimator \hat{v} in (3.7) to representation (4.2) directly. However, the key idea is now to estimate this density function from a sample of independent realizations of Xon the interval $[t, t^*]$ by standard methods of non-parametric statistics and then to replace in the r.h.s. of (4.2) the unknown density function by its estimator, say $x' \to \hat{p}(t, x, t^*, x')$. This idea suggests the following procedure. Generate by numerical integration of the forward system (1.1) and the reverse system (3.6) (or (3.9)) independent samples $\bar{X}_{t,x}^{(n)}(t^*)$, $n = 1, \ldots, N$ and $(\bar{Y}_{t^*,y}^{(m)}(T), \bar{\mathcal{Y}}_{t^*,y}^{(m)}(T)), m = 1, \ldots, M$, respectively (in general different step sizes may be used for \bar{X} and \bar{Y}). Let $\hat{p}(t, x, t^*, x')$ be, for instance, the kernel estimator of $p(t, x, t^*, x')$ from (1.7), that is,

$$\widehat{p}(t, x, t^*, x') = \frac{1}{N\delta^d} \sum_{n=1}^N K\left(\frac{\bar{X}_{t,x}^{(n)}(t^*) - x'}{\delta}\right).$$

Thus, replacing p by this kernel estimator in the r.h.s. of reverse representation (4.2) yields a representation which may be estimated by

$$\widehat{\bar{p}}(t,x,T,y) = \frac{1}{M} \left[\frac{1}{N\delta^d} \sum_{m=1}^M \sum_{n=1}^N K\left(\frac{\bar{X}_{t,x}^{(n)}(t^*) - \bar{Y}_{t^*,y}^{(m)}(T)}{\delta}\right) \bar{\mathcal{Y}}_{t^*,y}^{(m)}(T) \right].$$
(4.3)

The estimator (4.3) will be called a forward-reverse kernel estimator.

We will show that the above heuristic idea really works and leads to estimators which have superior properties in comparison with usual density estimators based on pure forward or pure reverse representations. Of course, the kernel estimation of $p(t, x, t^*, x')$ in the first step will be crude as usual for a particular x'. But, due to a good overall property of kernel estimators, namely, the fact that any kernel estimator is a density, the impact of these point-wise errors will be reduced in the second step, the estimation of (4.2). In fact, by the Chapman-Kolmogorov equation (4.1) the estimation of the density at one point is done via the estimation of a functional of the form (4.2). It can be seen that the latter estimation problem has smaller degree of ill-posedness and therefore, the achievable accuracy for a given amount of computational effort will be improved.

Now we proceed with a formal description which essentially utilizes the next general result naturally extending Theorem 3.1.

Theorem 4.1. For a bivariate function f we have

$$J(f) := \iint p(t, x, t^*, x') p(t^*, y', T, y) f(x', y') dx' dy'
 = \mathbf{E} [f(X_{t,x}(t^*), Y_{t^*,y}(T)) \mathcal{Y}_{t^*,y}(T)],$$
(4.4)

where $X_{t,x}(s)$ obeys the forward equation (1.1) and $(Y_{t^*,y}(s), \mathcal{Y}_{t^*,y}(s)), s \geq t^*$, is the solution of the reverse system (3.6).

Proof. Conditioning on $X_{t,x}(t^*)$ and applying Theorem 3.1 with $g(\cdot) = f(x', \cdot)$ for every x' yields

$$\begin{split} \boldsymbol{E} \left(f(X_{t,x}(t^*), Y_{t^*,y}(T)) \, \mathcal{Y}_{t^*,y}(T) \right) &= \boldsymbol{E} \, \boldsymbol{E} \left(f(X_{t,x}(t^*), Y_{t^*,y}(T)) \, \mathcal{Y}_{t^*,y}(T) \mid X_{t,x}(t^*) \right) \\ &= \int p(t, x, t^*, x') \left(\int f(x', y') p(t^*, y', T, y) dy' \right) dx'. \end{split}$$

Let $\bar{X}_{t,x}^{(n)}(t^*)$, n = 1, ..., N, be a sample of independent realizations of an approximation \bar{X} of X, obtained by numerical integration of (1.1) on the interval $[t, t^*]$. Similarly, let $(\bar{Y}_{t^*,y}^{(m)}(T)\bar{\mathcal{Y}}_{t^*,y}^{(m)}(T))$, m = 1, ..., M be independent realizations of a numerical solution of (3.6) on the interval $[t^*, T]$. Then the representation (4.4) leads to the following Monte Carlo estimator for J(f),

$$\widehat{\bar{J}} = \frac{1}{MN} \sum_{n=1}^{N} \sum_{m=1}^{M} f\left(\bar{X}_{t,x}^{(n)}(t^*), \bar{Y}_{t^*,y}^{(m)}(T)\right) \bar{\mathcal{Y}}_{t^*,y}^{(m)}(T).$$
(4.5)

Formally, $J(f) \to p(t, x, T, y)$ as $f \to \delta_{\text{diag}}$ (in distribution sense), where $\delta_{\text{diag}}(x', y') := \delta_0(x' - y')$ and δ_0 is the Dirac function concentrated at zero. So, aiming to estimate the density p(t, x, T, y), two families of functions f naturally arise. Let us take functions f of the form

$$f(x',y') \coloneqq f_{K,\delta}(x',y') = \delta^{-d} K\left(\frac{x'-y'}{\delta}\right)$$

where $\delta^{-d}K(u/\delta)$ converge to $\delta_0(u)$ (in distribution sense) as $\delta \downarrow 0$. Then the corresponding expression for \widehat{J} coincides with the forward-reverse kernel estimator \widehat{p} in (4.3). As an alternative, consider functions f of the form

$$f(x',y') \coloneqq f_{\varphi,L}(x',y') = \sum_{\ell=1}^{L} \varphi_{\ell}(x')\varphi_{\ell}(y'),$$

where $\{\varphi_{\ell}, \ell \geq 1\}$ is a total orthonormal system in the function space $L_2(\mathbb{R}^d)$ and L is a natural number. It is known that $f_{\varphi,L} \to \delta_{\text{diag}}$ (in distribution sense) as $L \to \infty$. This leads to the forward-reverse projection estimator,

$$\widehat{p}_{pr} = \frac{1}{MN} \sum_{n=1}^{N} \sum_{m=1}^{M} \sum_{\ell=1}^{L} \varphi_{\ell} \left(\bar{X}_{t,x}^{(n)}(t^{*}) \right) \varphi_{\ell} \left(\bar{Y}_{t^{*},y}^{(m)}(T) \right) \bar{\mathcal{Y}}_{t^{*},y}^{(m)}(T) = \sum_{\ell=1}^{L} \widehat{\alpha}_{\ell} \, \widehat{\gamma}_{\ell}, \tag{4.6}$$

with

$$\widehat{\alpha}_{\ell} = \frac{1}{N} \sum_{n=1}^{N} \varphi_{\ell} \left(\bar{X}_{t,x}^{(n)}(t^*) \right), \qquad \widehat{\bar{\gamma}}_{\ell} = \frac{1}{M} \sum_{m=1}^{M} \varphi_{\ell} \left(\bar{Y}_{t^*,y}^{(m)}(T) \right) \bar{\mathcal{Y}}_{t^*,y}^{(m)}(T).$$

The general properties of the forward-reverse kernel estimator are studied in Section 6 and the forward-reverse projection estimator is studied in Section 7. As mentioned previously, by selecting properly a numerical integration scheme and step size h, approximate solutions of systems of SDEs can be simulated sufficiently close to exact solutions. Therefore, in sections 6 and 7 the analysis is done with respect to exact solutions $X_{t,x}(s)$ and $(Y_{t^*,y}(s), \mathcal{Y}_{t^*,y}(s))$. For the impact of their approximations $\bar{X}_{t,x}(s)$ and $(\bar{Y}_{t^*,y}(s), \bar{\mathcal{Y}}_{t^*,y}(s), \bar{\mathcal{Y}}_{t^*,y}(s))$ obtained by the Euler scheme on the estimation accuracy, we refer to Section 8. **Remark 4.1.** If we take $t^* = T$ in (4.3) we obtain the usual forward kernel estimator (1.6) again. Indeed, for $t^* = T$ we have $\bar{Y}_{T,y}^{(m)}(T) = y$ and $\bar{\mathcal{Y}}_{T,y}^{(m)}(T) = 1$ for any m. Similarly, taking $t^* = t$ in (4.3) leads to the pure reverse estimator:

$$\widehat{\bar{p}}(t,x,T,y) := \frac{1}{M\delta^d} \sum_{m=1}^M K\left(\frac{x - \bar{Y}_{t,y}^{(m)}(T)}{\delta}\right) \bar{\mathcal{Y}}_{t,y}^{(m)}(T).$$

$$(4.7)$$

It should be noted that the pure forward estimator gives for fixed x and one simulation sample of \overline{X} an estimation of the density p(t, x, T, y) for all y. On the other hand, the pure reverse estimator gives for fixed y and one simulation of the reverse system a density estimation for all x. In contrast, the proposed forward-reverse estimators require for each pair (x, y) a simulation of both the forward and the reverse process. However, as we will see, these estimators have superior convergence properties.

Remark 4.2. In general it is possible to apply variance reduction methods to the estimator \hat{J} in (4.5), based on the extended representations (2.4)–(2.5) and (3.8)–(3.9).

5 The explicit analysis of the forward-reverse kernel estimator in a one-dimensional example

We consider an example of a one-dimensional diffusion for which all characteristics of the forward-reverse kernel estimator introduced in Section 4 can be derived analytically. For constant a, b, the one-dimensional diffusion is given by the SDE

$$dX = aXdt + bdW(t), \qquad X(0) = x, \tag{5.1}$$

which is known for a < 0 as the Ornstein-Uhlenbeck process. By (3.6), the reverse system belonging to (5.1) is given by

$$dY = -aYds + bdW(s), Y(t) = y, s > t,$$
 (5.2)

$$d\mathcal{Y} = -a\mathcal{Y}ds, \ \mathcal{Y}(t) = 1.$$
(5.3)

Both systems (5.1) and (5.2) can be solved explicitly. Their solutions are given by

$$X(t) = e^{at} \left(x + b \int_0^t e^{-au} dW(u) \right)$$

and

$$\begin{split} Y(s) &= e^{-a(s-t)} \left(y + b \int_t^s e^{a(u-t)} d\widetilde{W}(u) \right), \\ \mathcal{Y}(s) &= e^{-a(s-t)}, \end{split}$$

respectively. It follows that

$$E X(t) = e^{at}x, \quad Var X(t) = b^2 e^{2at} \int_0^t e^{-2au} du = b^2 \frac{e^{2at} - 1}{2a} := \sigma^2(t)$$

and, since the probability density of a Gaussian process is determined by its expectation and variance process, we have $X(t) \sim \mathcal{N}(e^{at}x, \sigma^2(t))$. The transition density of X is thus given by,

$$p_X(t, x, s, z) = \frac{1}{\sqrt{2\pi\sigma^2(s-t)}} \exp\left(-\frac{(e^{a(s-t)}x - z)^2}{2\sigma^2(s-t)}\right).$$
(5.4)

Similarly, for the reverse process Y we have $Y(s) \sim \mathcal{N}\left(e^{-a(s-t)}y, e^{-2a(s-t)}\sigma^2(s-t)\right)$ and so

$$p_Y(t, y, s, z) = \frac{1}{\sqrt{2\pi e^{-2a(s-t)}\sigma^2(s-t)}} \exp\left(-\frac{(e^{-a(s-t)}y - z)^2}{2e^{-2a(s-t)}\sigma^2(s-t)}\right)$$

is the transition density of Y.

We now consider the forward-reverse estimator (4.3) for the transition density (5.4), where we take t = 0 and $0 < t^* < T$. For simplicity, we don't deal with variance reduction, i.e, we take $h \equiv 0$ and $F \equiv 0$. It follows that

$$p_X(0, x, T, y) \simeq \xi_{N,M} := \frac{e^{-a(T-t^*)}}{MN\delta} \sum_{m=1}^M \sum_{n=1}^N K_{nm},$$
 (5.5)

where

$$K_{nm} := K \left(\delta^{-1} e^{at^*} \left(x + b \int_0^{t^*} e^{-au} dW^{(n)}(u) \right) - \delta^{-1} e^{-a(T-t^*)} \left(y + b \int_{t^*}^T e^{a(u-t^*)} d\widetilde{W}^{(m)}(u) \right) \right)$$

$$= K \left(\delta^{-1} \left(e^{at^*} x - e^{-a(T-t^*)} y + \sigma(t^*) U^{(n)} - e^{-a(T-t^*)} \sigma(T-t^*) V^{(m)} \right) \right)$$
(5.6)

with $U^{(n)}$ and $V^{(m)}$ being i.i.d. standard normally distributed random variables. Note that in general δ in (5.5) and (5.6) may be chosen in dependence of both N and M, so δ = $\delta_{N,M}$ in fact.

By choosing the Gaussian kernel

$$K(z) = \frac{1}{\sqrt{2\pi}} \exp(-z^2/2), \tag{5.7}$$

it is possible to derive explicit expressions for the first and second moment of $\xi_{N,M}$ in (5.5). In particular, for the expected value we have

$$\boldsymbol{E}\,\xi_{N,M} = \frac{1}{\sqrt{2\pi\left(\delta^2 e^{2a(T-t^*)} + \sigma^2(T)\right)}} \exp\left(-\frac{(e^{aT}x - y)^2}{2(\delta^2 e^{2a(T-t^*)} + \sigma^2(T))}\right)$$
(5.8)

and for the variance it follows that

$$\mathbf{Var}\left(\xi_{N,M}\right) = \frac{-N - M + 1}{2\pi M N (B + \sigma^{2}(T))} \exp\left(-\frac{A}{B + \sigma^{2}(T)}\right) + \frac{M - 1}{2\pi M N \sqrt{B + \sigma^{2}(T - t^{*})} \sqrt{B + 2\sigma^{2}(T) - \sigma^{2}(T - t^{*})}} \exp\left(-\frac{A}{B + 2\sigma^{2}(T) - \sigma^{2}(T - t^{*})}\right) + \frac{N - 1}{2\pi M N \sqrt{B + \sigma^{2}(T) - \sigma^{2}(T - t^{*})} \sqrt{B + \sigma^{2}(T) + \sigma^{2}(T - t^{*})}} \exp\left(-\frac{A}{B + \sigma^{2}(T) + \sigma^{2}(T - t^{*})}\right) + \frac{e^{-a(T - t^{*})}}{2\pi M N \delta \sqrt{B + 2\sigma^{2}(T)}} \exp\left(-\frac{A}{B + 2\sigma^{2}(T)}\right).$$
(5.9)

with the abbreviations $A := (e^{aT}x - y)^2$, $B := \delta^2 e^{2a(T-t^*)}$. Since in Sections 6 the forward reverse kernel estimator will be analysed quite general, we here sketch the derivation of (5.8) and (5.9) just briefly. It is convenient to use the following standard lemma which we state without proof. **Lemma 5.1.** Let U be a standard normally distributed random variable and let the kernel K be given by (5.7). Then,

$$E K(p+qU) = rac{\exp\left(-rac{p^2}{2+2q^2}
ight)}{\sqrt{2\pi(1+q^2)}}.$$

In (5.5) the K_{nm} are identically distributed and so (5.8) follows straightforwardly by application of Lemma 5.1. The variance expression can be derived as follows. We consider the second moment

$$\boldsymbol{E}\,\xi_{N,M}^2 = \frac{e^{-2a(T-t^*)}}{M^2 N^2 \delta^2} \sum_{m=1}^M \sum_{n=1}^N \sum_{m'=1}^M \sum_{n'=1}^N \boldsymbol{E}\,K_{nm}K_{n'm'}$$
(5.10)

and split the sum into four parts: $n \neq n'$ and $m \neq m'$; n = n' and $m \neq m'$; $n \neq n'$ and m = m'; n = n' and m = m'. Then, to each part we apply Lemma 5.1 with appropriate substitutes for p and q. After collecting the results, (5.9) follows by $\operatorname{Var}(\xi_{N,M}) = \mathbf{E} \xi_{N,M}^2 - (\mathbf{E} \xi_{N,M})^2$.

Clearly, as in Remark 4.1, substituting $t^* = T$ and $t^* = 0$ in (5.5) yields the pure forward estimator and pure reverse estimator, respectively. In this example the forward estimator is given by

$$\xi_N := \frac{1}{N\delta} \sum_{n=1}^N K_n := \frac{1}{N\delta} \sum_{n=1}^N K((e^{aT}x - y + \sigma(T)U^{(n)})\delta^{-1})$$

and a similar expression holds for the reverse estimator. The bias and variance of these estimators may be derived analogously, but, also follow from (5.8) and (5.9) by setting $t^* = T$ or $t^* = 0$.

We now compare the bias and variance of the forward-reverse estimator with the pure forward estimator. By (5.8) we have for the forward-reverse estimator, i.e. (5.5) with $0 < t^* < T$,

$$\boldsymbol{E}\,\xi_{N,M} = \frac{\exp\left(-\frac{(e^{aT}x-y)^2}{2\sigma^2(T)}\right)}{\sqrt{2\pi\sigma^2(T)}} (1+c_0\delta^2 + \mathcal{O}(\delta^3)) = p_X(0,x,T,y)(1+\mathcal{O}(\delta^2)), \quad (5.11)$$

where c_0 is a constant not equal to zero. Hence, for a kernel given by (5.7) the bias is of order $\mathcal{O}(\delta^2)$. Obviously, the same is true for the forward estimator.

For the variance of the forward estimator we have

$$\mathbf{Var}\left(\xi_{N}\right) = \frac{1}{2\pi N} \frac{\exp\left(-\frac{\left(e^{aT}x-y\right)^{2}}{\delta^{2}+2\sigma^{2}(T)}\right)}{\delta\sqrt{\delta^{2}+2\sigma^{2}(T)}} - \frac{1}{2\pi N} \frac{\exp\left(-\frac{\left(e^{aT}x-y\right)^{2}}{\delta^{2}+\sigma^{2}(T)}\right)}{\delta^{2}+\sigma^{2}(T)},$$
(5.12)

which follows by substituting $t^* = T$ in (5.9) where then M drops out. Then, comparison of (5.9) with (5.12) leads to the following interesting conclusion.

Conclusion 5.1. We consider the case M = N and denote the forward-reverse estimator for $p_X(0, x, T, y)$ by ξ_N as well. The width δ will thus be chosen in relation to N, hence δ = δ_N . We observe that

$$\mathbf{E}(\xi_N - p_X(0, x, T, y))^2 = \mathbf{Var}(\xi_N) + (\mathbf{E}\xi_N - p_X(0, x, T, y))^2, \qquad (5.13)$$

where $\varepsilon_N := \sqrt{\mathbf{E}(\xi_N - p_X(0, x, T, y))^2}$ is usually referred to as the accuracy of the estimation. From (5.11), (5.12), and (5.13) it is clear that for the forward estimator $\varepsilon_N \downarrow 0$ when $N \to \infty$, if and only if $\delta_N \to 0$ and $N\delta_N \to \infty$. By (5.11) and (5.12) we have for the forward estimator

$$\varepsilon_N^2 = \left(\frac{c_1}{N\delta_N} + c_2\delta_N^4\right)(1+o(1)), \quad N\delta_N \to \infty \text{ and } \delta_N \downarrow 0, \tag{5.14}$$

for some positive constants c_1 , c_2 . It thus follows that the best achievable accuracy rate for the forward estimator is $\varepsilon_N \sim N^{-2/5}$, which is attained by taking $\delta_N \sim N^{-1/5}$.

We next consider the forward-reverse estimator which is obtained for $0 < t^* < T$. From (5.11), (5.9), and (5.13) it follows by similar arguments that

$$\varepsilon_N^2 = \left(\frac{d_1}{N} + \frac{d_2}{N^2 \delta_N} + d_3 \delta_N^4\right) (1 + o(1)), \quad N^2 \delta_N \to \infty \text{ and } \delta_N \downarrow 0, \tag{5.15}$$

for some positive constants d_1 , d_2 and d_3 . So, from (5.15) we conclude that by using the forward-reverse estimator the accuracy rate is improved to $\varepsilon_N \sim N^{-1/2}$ and this rate may be achieved by $\delta_N \sim N^{-p}$ for any $p \in [\frac{1}{4}, 1]$. **Remark 5.1.** It is easy to check that for the reverse estimator we have the same accuracy (5.14) and so the same conclusions as in 5.1 apply.

6 Accuracy analysis of the forward-reverse kernel estimator in general

In this section we study the properties of the kernel estimator (4.3) for the transition density p = p(t, x, T, y) in general. However, here and in Section 7 we will disregard the discretization bias caused by numerical integration of SDE's and will only concentrate on the loss due to the particular structure of the new estimators. We thus assume in sections 6,7 that all random variables involved are due to exact solutions of the respective SDE's.

Let r(u) be the density of the random variable $X_{t,x}(t^*)$, that is, $r(u) = p(t, x, t^*, u)$. Similarly, let q(u) be the density of $Y_{t^*,y}(T)$ and further denote by $\mu(u)$ the conditional mean of $\mathcal{Y}_{t^*,y}(T)$ given $Y_{t^*,y}(T) = u$. By the following lemma we may reformulate the representation for p in (4.2) and J(f) in (4.4).

Lemma 6.1.

$$p = \int r(u)\mu(u)q(u)du, \qquad (6.1)$$

$$J(f) = \iint f(u,v)r(u)q(v)\mu(v)\,du\,dv.$$
(6.2)

Proof. Equality (6.1) follows from (4.2) by

$$p = \mathbf{E} r (Y_{t^*,y}(T)) \mathcal{Y}_{t^*,y}(T) = \mathbf{E} [r (Y_{t^*,y}(T)) \mathbf{E} (\mathcal{Y}_{t^*,y}(T) | Y_{t^*,y}(T))]$$

$$= \mathbf{E} r (Y_{t^*,y}(T)) \mu (Y_{t^*,y}(T)) = \int r(u)\mu(u)q(u)du$$
(6.3)

and (6.2) follows from (4.4) in a similar way.

For a kernel function K(z) in \mathbb{R}^d and a bandwidth δ , we put $f(u, v) = f_{K,\delta}(u, v) := \delta^{-d}K((u-v)/\delta)$ and thus have by Lemma 6.1,

$$J(f_{K,\delta}) = \iint \delta^{-d} K(\frac{u-v}{\delta}) r(u) q(v) \mu(v) \, du \, dv,$$

which formally converges to the target density p in (6.1) as $\delta \downarrow 0$. Following Section 4, this leads to the Monte Carlo kernel estimator

$$\widehat{p} = \frac{1}{\delta^d M N} \sum_{n=1}^N \sum_{m=1}^M \mathcal{Y}_m K\left(\frac{X_n - Y_m}{\delta}\right) = \frac{1}{MN} \sum_{n=1}^N \sum_{m=1}^M Z_{nm}$$
(6.4)

with

$$Z_{nm} := \delta^{-d} \mathcal{Y}_m K\left(\frac{X_n - Y_m}{\delta}\right),$$

where $X_n := X_{t,x}^{(n)}(t^*) \in \mathbb{R}^d$, n = 1, ..., N, may be regarded as an i.i.d. sample from the distribution with density r, the sequence $Y_m = Y_{t^*,y}^{(m)}(T) \in \mathbb{R}^d$, m = 1, ..., M, as an i.i.d. sample from the distribution with the density q, and the weights $\mathcal{Y}_m = \mathcal{Y}_{t^*,y}^{(m)}(T)$, m = 1, ..., M, may be seen as independent samples from a distribution conditional on Y_m , with conditional mean $\mu(y)$ given $Y_m = u$. Below we derive some properties of this estimator.

Lemma 6.2. We have

$$\boldsymbol{E}\,\widehat{\boldsymbol{p}} = p_{\delta} := \iint r(\boldsymbol{u} + \delta \boldsymbol{v})q(\boldsymbol{u})\mu(\boldsymbol{u})K(\boldsymbol{v})\,d\boldsymbol{u}\,d\boldsymbol{v} = \int r_{\delta}(\boldsymbol{u})\lambda(\boldsymbol{u})d\boldsymbol{u}$$

with

$$\lambda(u):=q(u)\mu(u)$$

and

$$r_{\delta}(u) := \delta^{-d} \int r(v) K\left(\delta^{-1}(v-u)\right) dv = \int r(u+\delta v) K(v) dv$$

Moreover, if the kernel K fulfills $\int K(u)du = 1$, $K(u) \ge 0$, K(u) = K(-u) for all $u \in \mathbb{R}^d$, and K(u) = 0 for |u| > 1, then the bias $|p - \mathbf{E}\hat{p}|$ satisfies

$$|p - \boldsymbol{E}\,\hat{p}| = |p - p_{\delta}| \le C_K \|r''\|\delta^2 \tag{6.5}$$

with $C_K = \frac{1}{2} \int |v|^2 K(v) dv \cdot \int \lambda(u) du$ and $||r''|| = \sup_v ||r''(v)||$, where ||r''(v)|| is the Euclidean norm of the matrix $r''(v) = \left\{\frac{\partial^2 r}{\partial v^i \partial v^j}\right\}$.

Proof. Since all Z_{nm} are i.i.d., by (4.4) it holds $\boldsymbol{E}\,\hat{p} = J(f_{K,\delta}) = \boldsymbol{E}\,Z_{nm}$ for every $n = 1, \ldots, N$, and $m = 1, \ldots, M$. Hence, by Lemma 6.1,

$$\boldsymbol{E} Z_{nm} = \delta^{-d} \iint r(u)q(v)\mu(v)K\left(\delta^{-1}(u-v)\right) du dv$$
$$= \iint r(u+\delta v)q(u)\mu(u)K(v) du dv = p_{\delta}.$$

For the second assertion it is sufficient to note that the properties $\int K(v)dv = 1$, $\int K(v)v dv = 0$, and K(v) = 0 for |v| > 1, imply

$$\begin{aligned} r_{\delta}(u) - r(u) &= \int r(u + \delta v) K(v) \, dv - r(u) = \int \left[r(u + \delta v) - r(u) - \delta v^{\top} r'(u) \right] K(v) dv \\ &= \int \frac{1}{2} \delta^2 v^{\top} r''(u + \theta(v) \delta v) v \, K(v) dv \\ &\leq \frac{1}{2} \delta^2 \|r''\| \int |v|^2 K(v) dv, \end{aligned}$$

where $|\theta(v)| \leq 1$, and so

$$|p_{\delta} - p| \leq \int |r_{\delta}(u) - r(u)|\lambda(u)du \leq C_K \delta^2 ||r''|| \int \lambda(u)du.$$

Remark 6.1. The order of the bias $|p_{\delta} - p|$ can be improved by using higher-order kernels K. We say that K is of order β if it holds $\int u_1^{j_1} \dots u_d^{j_d} K(u) du = 0$ for all nonnegative integer numbers j_1, \dots, j_d satisfying $0 < j_1 + \dots + j_d \leq \beta$. Similar to the proof of Lemma 6.2 one can show that the application of a kernel K of order β satisfying $\int K(u) du = 1$, K(u) = 0 for $|u| \geq 1$, leads to a bias with $|p_{\delta} - p| \leq C\delta^{\beta+1}$, where C is a constant depending on r, q and K.

Concerning the variance $\operatorname{Var} \widehat{p} = E (\widehat{p} - E \widehat{p})^2$ of the estimator (6.4) we obtain the next result.

Lemma 6.3. It holds

$$\operatorname{Var} \widehat{p} = \frac{1}{NM} \delta^{-d} B_{\delta} + \frac{M-1}{NM} \int r(u) \lambda_{\delta}^2(u) du + \frac{N-1}{NM} \int r_{\delta}^2(u) \mu_2(u) q(u) du - \frac{N+M-1}{NM} p_{\delta}^2, \quad (6.6)$$

where

$$B_{\delta} = \int r_{\delta,2}(u)\mu_2(u)q(u)du$$

with

$$\lambda_{\delta}(u) = \delta^{-d} \int \lambda(v) K\left(\delta^{-1}(v-u)\right) dv = \int \lambda(u+\delta v) K(v) dv,$$

$$r_{\delta,2}(u) = \delta^{-d} \int r(v) K^2 \left(\delta^{-1}(v-u)\right) dv = \int r(u+\delta v) K^2(v) dv,$$

$$\mu_2(v) = \mathbf{E}\left(\mathcal{Y}_1^2 \mid Y_1 = v\right).$$

Proof. Since Z_{nm} and $Z_{n'm'}$ are independent if both $n \neq n'$ and $m \neq m'$, it follows that

$$M^{2}N^{2}\operatorname{Var} \widehat{p} = \mathbf{E} \left(\sum_{n=1}^{N} \sum_{m=1}^{M} (Z_{nm} - p_{\delta}) \right)^{2}$$

$$= \sum_{n=1}^{N} \sum_{m=1}^{M} \mathbf{E} (Z_{nm} - p_{\delta})^{2} + \sum_{n=1}^{N} \sum_{m=1}^{M} \sum_{m' \neq m} (\mathbf{E} Z_{nm} Z_{nm'} - p_{\delta}^{2})$$

$$+ \sum_{n=1}^{N} \sum_{n' \neq n} \sum_{m=1}^{M} (\mathbf{E} Z_{nm} Z_{n'm} - p_{\delta}^{2}).$$
(6.7)

Note that for $m \neq m'$ we have

$$\begin{split} \boldsymbol{E} \, Z_{nm} Z_{nm'} &= \delta^{-2d} \iiint K\left(\delta^{-1}(u-v)\right) K\left(\delta^{-1}(u-v')\right) r(u)\lambda(v)\lambda(v')du\,dv\,dv'\\ &= \delta^{-d} \iint K\left(\delta^{-1}(u-v)\right) r(u)\lambda_{\delta}(u)\lambda(v)\,du\,dv\\ &= \int r(u)\lambda_{\delta}^{2}(u)\,du \end{split}$$

and, similarly, for $n \neq n'$ it follows

$$\boldsymbol{E} Z_{nm} Z_{n'm} = \int r_{\delta}^2(u) \mu_2(u) q(u) \, du.$$

24

Further,

$$\boldsymbol{E} Z_{nm}^2 = \delta^{-2d} \boldsymbol{E} \, \mathcal{Y}_m^2 K^2 \left(\delta^{-1} \left(X_n - Y_m \right) \right)$$

$$= \delta^{-2d} \boldsymbol{E} \left(K^2 \left(\delta^{-1} \left(X_n - Y_m \right) \right) \boldsymbol{E} \left(\mathcal{Y}_m^2 \mid Y_m \right) \right)$$

$$= \delta^{-2d} \iint K^2 \left(\delta^{-1} (u - v) \right) r(u) q(v) \mu_2(v) \, du \, dv$$

$$= \delta^{-d} \int \mu_2(v) q(v) r_{\delta,2}(v) dv$$

and so we get

$$\operatorname{Var}\widehat{p} = \frac{\delta^{-d}B_{\delta} - p_{\delta}^2}{NM} + \frac{M-1}{NM} \left(\int r(u)\lambda_{\delta}^2(u)du - p_{\delta}^2 \right) + \frac{N-1}{NM} \left(\int r_{\delta}^2(u)\mu_2(u)\,q(u)du - p_{\delta}^2 \right)$$

from which the assertion follows.

Let us define

$$B = \int K^2(u)du \cdot \int r(u)\mu_2(u) q(u)du.$$
(6.8)

By the Taylor expansion

$$r(u+\delta v) = r(u) + \delta v^{\top} r'(u) + \frac{1}{2} \delta^2 v^{\top} r''(u+\theta(v)\delta v)v,$$

one can show in a way similar to the proof of Lemma 6.1 that

$$|B_{\delta} - B| = O(\delta^2), \qquad \delta \downarrow 0.$$

In the same way we get

$$\left| \int r(u)\lambda_{\delta}^{2}(u)du - \int r(u)\lambda^{2}(u)du \right| = O(\delta^{2}), \qquad \delta \downarrow 0,$$
$$\left| \int r_{\delta}^{2}(u)\mu_{2}(u)q(u)du - \int r^{2}(u)\mu_{2}(u)q(u)du \right| = O(\delta^{2}), \qquad \delta \downarrow 0.$$

Further, introduce the constant D by

$$D := \int r(u)\lambda^2(u)du + \int r^2(u)\mu_2(u)\,q(u)\,du - 2p^2.$$
(6.9)

Then, from Lemmas 6.1 and 6.3 the next lemma follows.

Lemma 6.4. For N = M we have

$$\left|\operatorname{Var}\widehat{p} - \frac{D}{N} - \frac{\delta^{-d}B}{N^2}\right| \le C\left(\frac{\delta^{-d+2}}{N^2} + \frac{\delta^2}{N} + \frac{1}{N^2}\right).$$
(6.10)

In particular, if $\delta =: \delta_N$ depends on N such that $\delta_N^{-d} N^{-1} = o(1)$ and $\delta_N = o(1)$ as $N \to \infty$, then

$$\left| \operatorname{Var} \widehat{p} - \frac{D}{N} \right| = \frac{o(1)}{N}, \qquad N \to \infty.$$

Now, by combining Lemmas 6.2 and 6.4 we have the following theorem.

Theorem 6.1. Let N = M and $\delta = \delta_N$ depend on N. The following statements hold:

1) If d < 4 and δ_N is such that

$$\frac{1}{N\delta_N^d} = o(1) \quad and \quad \delta_N^4 N = o(1), \qquad N \to \infty,$$

then the estimate \hat{p} (see (4.3) or (6.4)) of the transition density p = p(t, x, T, y) satisfies

$$\boldsymbol{E}(\widehat{p}-p)^2 = (p_{\delta}-p)^2 + \operatorname{Var}\widehat{p} = \frac{D}{N} + \frac{o(1)}{N}, \qquad N \to \infty.$$
(6.11)

Hence, a root-N accuracy rate is achieved (we recall that $\sqrt{E(\hat{p}-p)^2}$ is the accuracy of the estimator). Besides in this case the variance is of order N^{-1} and the squared bias is $o(N^{-1})$.

2) If d = 4 and $\delta_N = CN^{-1/4}$, where C is a positive constant, then the accuracy rate is again $N^{-1/2}$ but now both the squared bias and the variance are of order N^{-1} .

3) If d > 4 and $\delta_N = CN^{-2/(4+d)}$, then the accuracy rate is $N^{-4/(4+d)}$ and both the squared bias and the variance are of the same order $N^{-8/(4+d)}$.

Proof. Clearly, (6.5) and (6.10) imply (6.11). The conditions $\delta_N^{-d}N^{-1} = o(1)$ and $N\delta_N^4 = o(1)$ can be fulfilled simultaneously only when d < 4. In this case one may take, for instance, $\delta_N = N^{-1/d} \log^{1/d} N$ yielding $\delta_N^{-d}N^{-1} = 1/\log N = o(1)$ and $N\delta_N^4 = N^{1-4/d} \log^{4/d} N = o(1)$. By (6.5) the squared bias is then of order $\mathcal{O}(\delta_N^4) = \mathcal{O}(N^{-4/d} \log^{4/d} N) = o(N^{-1})$ for d < 4. The statements for d = 4 and d > 4 follow in a similar way. \Box

Remark 6.2. We conclude that, by combining forward and reverse diffusion, it is really possible to achieve an estimation accuracy of rate $N^{-1/2}$ for $d \le 4$. Moreover, for d > 4 an accuracy rate of root-N may be achieved as well by applying a higher order kernel K.

In section 9 we will see that with the proposed choice of the bandwidth $\delta_N = N^{-1/d} \log^{1/d} N$ for $d \leq 3$ and $\delta_N = N^{-2/(4+d)}$ for $d \geq 4$, the kernel estimator \hat{p} can be computed at a cost of order $N \log N$ operations.

Remark 6.3. For the pure forward estimator (1.6) and pure reverse estimator (1.6) it is not difficult to show that

$$\varepsilon_N^2 := \boldsymbol{E} \, (\hat{p} - p)^2 = \left(\frac{c_1}{N\delta_N^d} + c_2\delta_N^4\right) (1 + o(1)), \qquad \delta_N \downarrow 0 \text{ and} N\delta_N^d \to \infty, \qquad (6.12)$$

where c_1 and c_2 are positive constants. So the best achievable accuracy rate for the forward estimator is $\varepsilon_N = \mathcal{O}(N^{-2/(4+d)})$, which is obtained by a bandwidth choice $\delta_N = N^{-1/(4+d)}$. Clearly, this rate is lower than the accuracy rate of the forward-reverse estimator which is basically root-N.

Remark 6.4. In applications it is important to choose the intermediate time t^* properly. In this respect we note that D in (6.9) only depends on the choice of t^* and, in particular, it is not difficult to show that $D \to \infty$ as $t^* \downarrow t$ or $t^* \uparrow T$. So, by Lemma 6.4, in the case N = M and d < 4 we should select a t^* for which this constant is not too big. In practice, however, a suitable t^* is best found by just comparing for different choices the performance of the estimator for relatively small sample sizes. For $d \ge 4$ and N = M also the constant B in (6.8) is involved but similar conclusions can be made.

7 The forward-reverse projection estimator

In this section we discuss statistical properties of the *projection* estimator \hat{p}^{pr} from (4.6) for the transition density p(t, x, T, y). First we sketch the main idea.

Let $\{\varphi_{\ell}(x), \ell = 1, 2, ...\}$ be a total orthonormal system in the Hilbert space $L_2(\mathbb{R}^d)$. For example, in the case d = 1 one could take

$$\varphi_{l+1}(u) = \frac{1}{\sqrt{2^l l!} \sqrt[4]{\pi}} H_l(u) e^{-u^2/2}, \quad l = 0, 1, \dots,$$

where $H_l(u)$ are the Hermite polynomials. In the *d*-dimensional case it is possible to construct a similar basis by using Hermite functions as well. Consider formally for r(u) = $p(t, x, t^*, u)$ (see Section 6) and $h(u) := p(t^*, u, T, y)$ the Fourier expansions

$$r(u) = \sum_{\ell=1}^{\infty} \alpha_{\ell} \varphi_{\ell}(u), \qquad h(u) = \sum_{\ell=1}^{\infty} \gamma_{\ell} \varphi_{\ell}(u), \quad \text{with}$$
$$\alpha_{\ell} := \int r(u) \varphi_{\ell}(u) du, \qquad \gamma_{\ell} := \int h(u) \varphi_{\ell}(u) du.$$

By (2.1), (3.1), and (3.5) it follows that

$$\alpha_{\ell} = \boldsymbol{E} \varphi_{\ell}(X_{t,x}(t^*)), \qquad (7.1)$$

$$\gamma_{\ell} = \boldsymbol{E} \varphi_{\ell}(Y_{t^*,y}(T)) \mathcal{Y}_{t^*,y}(T), \qquad (7.2)$$

respectively. Since by the Chapman-Kolmogorov equation (4.1) the transition density p = p(t, x, T, y) may be written as a scalar product $p = \int r(u)h(u)du$ we thus formally obtain

$$p = \sum_{\ell=1}^{\infty} \alpha_{\ell} \gamma_{\ell}.$$
(7.3)

Therefore, it is natural to consider the estimator

$$\widehat{p}^{pr} = \sum_{\ell=1}^{L} \widehat{\alpha}_{\ell} \widehat{\gamma}_{\ell}, \tag{7.4}$$

where L is a natural number and

$$\widehat{\alpha}_{\ell} := \frac{1}{N} \sum_{n=1}^{N} \varphi_{\ell}(X_n), \qquad \widehat{\gamma}_{\ell} := \frac{1}{M} \sum_{m=1}^{M} \varphi_{\ell}(Y_m) \mathcal{Y}_m$$
(7.5)

are estimators for the Fourier coefficients α_{ℓ} , γ_{ℓ} , respectively. For the definition of X_n , Y_m and \mathcal{Y}_m , see Section 6. Note that (7.4)–(7.5) coincides with the projection estimator introduced in (4.6).

We now study the accuracy of the projection estimator. In the subsequent analysis we assume that the originating diffusion coefficients a and σ in (1.1) are sufficiently good in analytical sense such that, in particular, the functions $y' \to p(t, x, t^*, y')$ and $y' \to$ $p(t^*, y', T, y)$ are squared integrable. Hence, we assume that the Fourier expansions used in this section are valid in $L_2(\mathbb{R}^d)$. The notation introduced in Section 6 is maintained below. We have the following lemma.

Lemma 7.1. It holds for every $\ell \geq 1$

$$\boldsymbol{E}\,\widehat{\alpha}_{\ell} = \alpha_{\ell} = \int r(u)\varphi_{\ell}(u)du,$$

$$\operatorname{Var}\,\widehat{\alpha}_{\ell} = N^{-1}\operatorname{Var}\,\varphi_{\ell}(X_{1}) = N^{-1}\left(\int \varphi_{\ell}^{2}(u)r(u)du - \alpha_{\ell}^{2}\right) =: N^{-1}\alpha_{\ell,2}.$$

Similarly,

$$\boldsymbol{E}\,\widehat{\gamma}_{\ell} = \gamma_{\ell} = \int \varphi_{\ell}(u)\mu(u)q(u)du,$$

$$\operatorname{Var}\,\widehat{\gamma}_{\ell} = M^{-1}\operatorname{Var}\,\mathcal{Y}_{1}\varphi_{\ell}(Y_{1}) = M^{-1}\left(\int \mu_{2}(u)\varphi_{\ell}^{2}(u)q(u)du - \gamma_{\ell}^{2}\right) =: M^{-1}\gamma_{\ell,2},$$

where $\mu_2(u) := \mathbf{E} (\mathcal{Y}_1^2 | Y_1 = u).$

Proof. The first part is obvious and the second part follows by a conditioning argument similar to (6.3) in the proof of Lemma 6.1.

Since the $\widehat{\alpha}_\ell$ and the $\widehat{\gamma}_\ell$'s are independent, it follows by Lemma 7.1 that

$$\boldsymbol{E}\,\widehat{p}^{pr} = \boldsymbol{E}\,\sum_{\ell=1}^{L}\widehat{\alpha}_{\ell}\widehat{\gamma}_{\ell} = \sum_{\ell=1}^{L}\alpha_{\ell}\gamma_{\ell}.$$

So, by (7.3) and the Cauchy-Schwarz inequality we obtain the next lemma for the bias $E \hat{p}^{pr} - p \text{ of the estimator } \hat{p}^{pr}.$

Lemma 7.2. It holds

$$(\boldsymbol{E}\,\widehat{p}^{pr}-p)^2 = \left(\sum_{\ell=L+1}^{\infty} \alpha_{\ell}\gamma_{\ell}\right)^2 \le \sum_{\ell=L+1}^{\infty} \alpha_{\ell}^2 \sum_{\ell=L+1}^{\infty} \gamma_{\ell}^2$$

Lemma 7.3. Let $(L+1)^2 \leq N$ and the Fourier coefficients α_{ℓ} and γ_{ℓ} satisfy the conditions

$$\sum_{\ell=1}^{\infty} |\alpha_{\ell}| \le C_{1,\alpha}, \qquad \sum_{\ell=1}^{\infty} |\gamma_{\ell}| \le C_{1,\gamma}$$
(7.6)

$$\max_{\ell} \alpha_{\ell,2} \le C_{2,\alpha} , \qquad \max_{\ell} \gamma_{\ell,2} \le C_{2,\gamma} .$$
(7.7)

Then we have

$$N \operatorname{Var} \widehat{p}^{pr} \leq C$$

with C depending on $C_{1,\alpha}, C_{2,\alpha}$ and $C_{1,\gamma}, C_{2,\gamma}$ only.

Proof. Let us write

$$\sum_{\ell=1}^{L} \widehat{\alpha}_{\ell} \widehat{\gamma}_{\ell} - \sum_{\ell=1}^{L} \alpha_{\ell} \gamma_{\ell} = \sum_{\ell=1}^{L} (\widehat{\alpha}_{\ell} - \alpha_{\ell}) (\widehat{\gamma}_{\ell} - \gamma_{\ell}) + \sum_{\ell=1}^{L} \alpha_{\ell} (\widehat{\gamma}_{\ell} - \gamma_{\ell}) + \sum_{\ell=1}^{L} (\widehat{\alpha}_{\ell} - \alpha_{\ell}) \gamma_{\ell}$$
$$=: I_1 + I_2 + I_3.$$

The Cauchy-Schwarz inequality implies

$$\boldsymbol{E}(I_2)^2 = \boldsymbol{E}\left(\sum_{\ell=1}^L \alpha_\ell (\widehat{\gamma}_\ell - \gamma_\ell)\right)^2 \leq \boldsymbol{E}\left(\sum_{\ell=1}^L |\alpha_\ell| \sum_{\ell=1}^L |\alpha_\ell| (\widehat{\gamma}_\ell - \gamma_\ell)^2\right)$$
$$\leq C_{1,\alpha} \sum_{\ell=1}^L |\alpha_\ell| \boldsymbol{E} (\widehat{\gamma}_\ell - \gamma_\ell)^2 \leq C_{1,\alpha}^2 C_{2,\gamma} N^{-1}$$

and similarly

$$\boldsymbol{E}(I_3)^2 = \boldsymbol{E}\left(\sum_{\ell=1}^L \gamma_\ell(\widehat{\alpha}_\ell - \alpha_\ell)\right)^2 \leq C_{1,\gamma}^2 C_{2,\alpha} N^{-1}.$$

The Cauchy-Schwarz inequality and independence of the $\widehat{\alpha}_\ell$'s and the $\widehat{\gamma}_\ell$'s imply

$$\boldsymbol{E}(I_1)^2 = \boldsymbol{E}\left(\sum_{\ell=1}^L (\widehat{\alpha}_{\ell} - \alpha_{\ell})(\widehat{\gamma}_{\ell} - \gamma_{\ell})\right)^2 \leq \boldsymbol{E}\sum_{\ell=1}^L (\widehat{\alpha}_{\ell} - \alpha_{\ell})^2 \boldsymbol{E}\sum_{\ell=1}^L (\widehat{\gamma}_{\ell} - \gamma_{\ell})^2 \\ \leq C_{2,\alpha}C_{2,\gamma}(L+1)^2 N^{-2} \leq C_{2,\alpha}C_{2,\gamma}N^{-1}$$

Hence,

$$\operatorname{Var} \widehat{p}^{pr} = \boldsymbol{E} \left(I_1 + I_2 + I_3 \right)^2 \le \left(\sqrt{E(I_1)^2} + \sqrt{E(I_2)^2} + \sqrt{E(I_3)^2} \right)^2 \le \frac{C}{N}$$

with $C := 3(C_{1,\alpha}^2 C_{2,\gamma} + C_{1,\gamma}^2 C_{2,\alpha} + C_{2,\alpha} C_{2,\gamma}).$

Application of lemmas 7.2 and 7.3 yields the following theorem.

Theorem 7.1. Let the Fourier coefficients α_{ℓ} and γ_{ℓ} satisfy the condition

$$\sum_{\ell=1}^{\infty} \alpha_{\ell}^2 \ell^{2\beta/d} \le C_{\alpha}^2, \qquad \sum_{\ell=1}^{\infty} \gamma_{\ell}^2 \ell^{2\beta/d} \le C_{\gamma}^2$$
(7.8)

with $\beta > d/2$ and let condition (7.7) hold true. Let also $L = L_N$ fulfill $L_N^2/N = o(1)$, $NL_N^{-4\beta/d} = o(1)$ as $N \to \infty$. Then, for the accuracy of the estimator \widehat{p}^{pr} with N = Mwe have

$$\boldsymbol{E} \, \left(\hat{p}^{pr} - p \right)^2 \le C N^{-1}$$

Proof. Clearly,

$$\sum_{\ell=L+1}^{\infty} \alpha_{\ell}^{2} \le (L+1)^{-2\beta/d} \sum_{\ell=L+1}^{\infty} \alpha_{\ell}^{2} \ell^{2\beta/d} \le C_{\alpha}^{2} L^{-2\beta/d}$$

Similarly, $\sum_{\ell=L+1}^{\infty} \gamma_{\ell}^2 \leq C_{\gamma}^2 L^{-2\beta/d}$ and so

$$N\left(\sum_{\ell=L+1}^{\infty} \alpha_{\ell} \gamma_{\ell}\right)^2 \le C_{\alpha}^2 C_{\gamma}^2 N L^{-4\beta/d} = o(1).$$

Next,

$$\left(\sum_{\ell=1}^{L} |\alpha_{\ell}|\right)^{2} \leq \sum_{\ell=1}^{L} \alpha_{\ell}^{2} \ell^{2\beta/d} \sum_{\ell=1}^{L} \ell^{-2\beta/d} \leq C_{\alpha}^{2} \sum_{\ell=1}^{L} \ell^{-2\beta/d} \leq C_{\alpha}^{2} C_{\beta}$$

with $C_{\beta} = \sum_{\ell=1}^{L} \ell^{-2\beta/d} < \infty$. Similarly

$$\left(\sum_{\ell=1}^{L} |\gamma_{\ell}|\right)^2 \le C_{\gamma}^2 C_{\beta}$$

and thus condition (7.6) holds with $C_{1,\alpha} = C_{\alpha}C_{\beta}^{1/2}$ and $C_{1,\gamma} = C_{\gamma}C_{\beta}^{1/2}$. Now the assertion follows from Lemma 7.3.

Remark 7.1. In Theorem 7.1, β plays the role of a smoothness parameter. Indeed, for a usual functional basis such as the Hermite bases, condition (7.8) is fulfilled if the functions $x' \to p(t, x, t^*, x')$ and $x' \to p(t^*, x', T, y)$ have square integrable derivatives up to order β . For $\beta = 2$, the conditions $L_N^2/N = o(1)$ and $NL_N^{-4\beta/d} = o(1)$ can be fulfilled simultaneously only if d < 4, so we then have a similar situation as for the kernel estimator in Section 6. In general, if (7.8) holds for $\beta > d/2$, one may take $L_N = (N \log N)^{d/(4\beta)}$ in Theorem 7.1 thus yielding $L_N^2/N = N^{-1+d/(2\beta)} \log^{d/(2\beta)} N = o(1)$ and $NL_N^{-4\beta/d} = 0$ $\log^{-1} N = o(1)$. However, with respect to sufficiently regular basis functions (e.g. Hermite basis functions) condition (7.8) is fulfilled for any $\beta > d/2$ when the densities $p(t, x, t^*, x')$ and $p(t^*, x', T, y)$ have square integrable derivatives up to any order. So, according to Theorem 7.1, one could take $L_N = \mathcal{O}(N^{\tau})$ for any $0 < \tau < 1/2$ to get the desirable root-N consistency. If, moreover, the coefficients α_{ℓ} and γ_{ℓ} decrease exponentially fast so that $\sum_{\ell} \alpha_{\ell} e^{c\ell} < \infty$ and $\sum_{\ell} \gamma_{\ell} e^{c\ell} < \infty$ for some positive c (which corresponds to the case of analytical densities $p(t, x, t^*, x')$ and $p(t^*, x', T, y)$), then even $L_N = \mathcal{O}(\log N)$ Fourier coefficients provide a negligible estimation bias (see Pinsker (1980)) thus leading to root-N consistency again. Generally it is clear that properly choosing L_N is essential for reducing the numerical complexity of the procedure, see Section 9.

Remark 7.2. The conditions of Theorem 7.1 are given in terms of the Fourier coefficients α_{ℓ} and γ_{ℓ} . We do not investigate in a rigorous way how these conditions can be transferred into conditions on the coefficients of the original diffusion model (1.1) and the chosen orthonormal basis. Note, however, that in the case of e.g. the Hermite basis, both (7.7) and (7.8) follow from standard regularity conditions. For instance, when the coefficients of (1.1) are smooth and bounded, their derivatives are smooth and bounded, and the matrix $\sigma(s, x)\sigma^{\top}(s, x)$ is of full rank for all s, x.

8 Estimation loss caused by numerical integration of SDE's

In this section we analyse the estimation loss of the kernel estimators due to application of the Euler scheme. Let $\bar{X} := \bar{X}_{t,x}(t^*, h)$ and $(\bar{Y}, \bar{\mathcal{Y}}) := (\bar{Y}_{t^*,y}(T, h), \bar{\mathcal{Y}}_{t^*,y}(T, h))$ be an approximation of $X_{t,x}(t^*)$ and $(Y_{t^*,y}(T), \mathcal{Y}_{t^*,y}(T))$, obtained by applying the Euler scheme to the systems (1.1), and (3.6), respectively. Let $\bar{r}(u)$ be the density of the random variable \bar{X} , so $\bar{r}(u) = \bar{p}_h(t, x, t^*, u)$. Let further $\bar{q}(u)$ be the density of \bar{Y} and denote by $\bar{\mu}(u)$ the conditional mean of $\bar{\mathcal{Y}}$ given $\bar{Y} = u$. Instead of (6.4) we now consider the estimator

$$\widehat{\overline{p}} := \frac{1}{\delta^d M N} \sum_{n=1}^N \sum_{m=1}^M \overline{\mathcal{Y}}_m K\left(\frac{\overline{X}_n - \overline{Y}_m}{\delta}\right) = \frac{1}{MN} \sum_{n=1}^N \sum_{m=1}^M \overline{Z}_{nm},\tag{8.1}$$

where

$$\bar{Z}_{nm} := \delta^{-d} \bar{\mathcal{Y}}_m K\left(\frac{\bar{X}_n - \bar{Y}_m}{\delta}\right)$$

with \bar{X}_n , n = 1, ..., N and $(\bar{Y}_m, \bar{\mathcal{Y}}_m)$ m = 1, ..., M being independent realizations of \bar{X} and $(\bar{Y}, \bar{\mathcal{Y}})$, respectively. We thus have

$$E\,\widehat{p} = E\,\overline{Z}_{nm} = \delta^{-d} \int \int \overline{r}(u)\overline{q}(v)\overline{\mu}(v)K(\delta^{-1}(u-v))\,dudv$$

$$= \int \int \overline{r}(u+\delta v)\overline{q}(u)\overline{\mu}(u)K(v)\,dudv$$

$$= \int \overline{r}_{\delta}(u)\overline{q}(u)\overline{\mu}(u)\,du, \quad \text{where} \qquad (8.2)$$

$$\overline{r}_{\delta}(u) := \int \overline{r}(u+\delta v)K(v)\,dv.$$

Due to the result of Bally and Talay (1996b) (see (1.4) we obtain

$$\left|\bar{r}_{\delta}(u) - r_{\delta}(u)\right| \le Kh,\tag{8.3}$$

uniform in u and δ for some positive constant K. Hence for some $K_1 > 0$,

$$|\boldsymbol{E}\,\widehat{\bar{p}} - \int r_{\delta}(u)\bar{q}(u)\bar{\mu}(u)\,du| \le K_1h.$$
(8.4)

uniform in δ . Further we have

$$\int r_{\delta}(u)\bar{q}(u)\bar{\mu}(u)\,du = \boldsymbol{E}\,r_{\delta}(\bar{Y})\bar{\mathcal{Y}}.$$
(8.5)

It is not difficult to show that $r_{\delta}(u)$ has derivatives which are uniformly bounded with respect to δ . Therefore, since the Euler scheme has weak order 1, we have for some $K_2 > 0$,

$$|\boldsymbol{E} r_{\delta}(\bar{Y})\bar{\mathcal{Y}} - \boldsymbol{E}\,\hat{p}| \le K_2 h,\tag{8.6}$$

uniform in δ . Combining (8.4)-(8.6) yields

$$|\boldsymbol{E}\,\widehat{\bar{p}} - \boldsymbol{E}\,\widehat{p}| \le K_3 h,\tag{8.7}$$

uniform in δ for some $K_3 > 0$ and then by Lemma 6.2 we get

Lemma 8.1. The estimation loss $|E \hat{\bar{p}} - p|$ satisfies

$$|\boldsymbol{E}\,\widehat{\bar{p}}-p| \le K_4\delta^2 + K_5h,$$

for some positive constants K_4, K_5 independent of δ and h.

We now proceed with estimating $\operatorname{Var} \widehat{p}$. For $\operatorname{Var} \widehat{p}$ we obtain an expression similar to (6.6) by replacing p_{δ} in (6.6) with $\overline{p}_{\delta} := E \widehat{p}$ and throughout Lemma 6.3 the quantities $r, r_{\delta}, r_{\delta,2}, q, \mu_2, \lambda, \lambda_{\delta}, B_{\delta}$ by their corresponding analogies $\overline{r}, \overline{r}_{\delta}, \overline{r}_{\delta,2}, \overline{q}, \overline{\mu}_2, \overline{\lambda}, \overline{\lambda}_{\delta}, \overline{B}_{\delta}$ defined with respect to the random variables \overline{X} and $(\overline{Y}, \overline{Y})$. Analogue to the proof of (8.7) it follows that for some positive constants C, C_1 ,

$$|\bar{B}_{\delta} - B_{\delta}| \le Ch$$
 and $|\int \bar{r}_{\delta}^2(u)\bar{\mu}_2(u)\bar{q}(u)\,du - \int r_{\delta}^2(u)\mu_2(u)q(u)\,du| \le C_1h$,

uniform in δ . From our boundedness assumptions in Section 1, it follows that c(s, y) in (3.6) is bounded (see (3.4)). As a consequence, $\bar{\mathcal{Y}}_{t^*,y}(T)$ is bounded and so exists a constant $C_2 > 0$ such that for every h and u,

$$|\bar{\mu}(u)| = \left| \boldsymbol{E} \left(\bar{\mathcal{Y}}_{t^*, y}(T) \,|\, \bar{Y}_{t^*, y}(T) = u \right) \right| \le C_2.$$

Therefore,

$$\left|\bar{\lambda}_{\delta}(u)\right| = \left|\int \bar{q}(u+\delta v)\bar{\mu}(u+\delta v)K(v)\,dv\right| \le C_3 \int \bar{q}(u+\delta v)K(v)\,dv \tag{8.8}$$

for some $C_3 > 0$ and all u, h, δ .

By Bally and Talay (1996b) again, $\bar{q}(u) - q(u) = O(h)$ uniform in u, hence, $\bar{\lambda}_{\delta}(u)$ is uniformly bounded with respect to u, h and δ and so $\int \bar{r}(u)\lambda_{\delta}^2(u)du$ is uniformly bounded with respect to h and δ . Now, from Lemma 6.3 and the above arguments the following result is obvious.

Lemma 8.2. There exists positive constants C_4 and C_5 , not depending on h and δ , such that for N = M,

$$\operatorname{Var}\widehat{\bar{p}} \le \frac{C_4}{N^2 \delta^d} + \frac{C_5}{N}.$$
(8.9)

It should be noted that Lemma 6.4 is more refined compared to Lemma 8.2 in the sense that it gives some kind of expansion of $\operatorname{Var} \hat{p}$. Nevertheless, it is clear that Lemma 8.1 and Lemma 8.2 are sufficient to get the following main theorem.

Theorem 8.1. For M = N and positive constants D, D_1, D_2, D_3 we have

$$\boldsymbol{E}\,(\hat{\bar{p}}-p)^2 \le D\delta^4 + D_1h^2 + \frac{D_2}{N^2\delta^d} + \frac{D_3}{N}.$$
(8.10)

Let us take $\delta = \delta_N$ as in Theorem 6.1. Then it is clear from Theorem 6.1 that for $d \leq 4$ and $h = O(N^{-1/2})$ the accuracy of the estimator \hat{p} is $O(N^{-1/2})$ and for d > 4 and $h = O(N^{-4/(4+d)})$ the accuracy of \hat{p} is $O(N^{-4/(4+d)})$. Hence by properly choosing h in dependence of N the accuracy rates for \hat{p} and \hat{p} coincide.

Remark 8.1. For the pure forward estimator (1.7) (and the pure reverse estimator corresponding to (4.7)) similar arguments (even much simpler) give

$$\boldsymbol{E}\,(\hat{\bar{p}}-p)^2 \le D_4 h^2 + D_5 \delta^4 + \frac{D_6}{N\delta^d}.$$
(8.11)

for some positive constants D_4, D_5, D_6 . For comparison see also Remark 6.3.

Remark 8.2. The assertions of this section are derived only for the Euler method in the strong sense since we essentially use the results of Bally and Talay (1996b). Most likely they remain true in the context of methods of numerical integration in a weak sense. However, this requires additional investigations.

Remark 8.3. Without proof we note that for the projection estimators similar conclusions can be made with respect to the estimation loss due to application of the Euler scheme.

9 Implementation of the forward-reverse estimators, complexity of the estimation algorithms, numerical examples

In the previous sections we have shown that, both, the forward-reverse kernel and projection estimator have superior convergence properties compared with the classical Parzen-Rosenblatt estimator. However, while the implementation of the classical estimator is rather straightforward one has to be more careful with implementing the forward-reverse estimation algorithms. This especially concerns the evaluation of the double sum in (4.3) for the kernel estimation. Indeed, straightforward computation would require the cost of MN kernel evaluations which would be tremendous, for example, when $M = N = 10^5$. But, fortunately, by using kernels with an in some sense small support we can get around this difficulty as outlined below.

Implementation of the kernel estimator and its numerical complexity

We here assume that the kernel K(x) used in (4.3) has a small support contained in $|x|_{\max} \leq \alpha/2$ for some $\alpha > 0$, where $|x|_{\max} := \max_{1 \leq i \leq d} |x^i|$. This assumption is easily fulfilled in practice. For instance, for the Gaussian kernel, $K(x) = (2\pi)^{-d/2} \exp(-|x|^2/2)$, which has strictly speaking unbounded support, in practice K(x) is negligible if for some

 $i, 1 \leq i \leq d, |x_i| > 6$ and so we could take for this kernel $\alpha = 12$. Then, due to the small support of K, the following Monte Carlo algorithm for the kernel estimator is possible. For simplicity we take $t = 0, t^* = T/2$ and assume N = M. For both forward and reverse trajectory simulation we use the Euler scheme with time discretization step h = T/(2L), with 2L being the total number of steps between 0 and T.

Monte Carlo algorithm for the forward-reverse kernel estimator (FRE simulation)

- Simulate N trajectories on the interval $[0, t^*]$, with end points $\{X^{(n)}(t^*) : n = 1, \ldots, N\}$, at a cost of $\mathcal{O}(NLd)$ elementary computations;
- Simulate N reverse trajectories on the interval $[t^*, T]$, with end points $\{(Y^{(m)}(T), \mathcal{Y}^{(m)}(T)) : m = 1, ..., N\}$ at a cost of $\mathcal{O}(NLd)$ elementary computations;
- Search for each m the subsample

$$\{X^{(n_k)}(t^*): k = 1, \dots, l_m\} := \{X^{(n)}(t^*): n = 1, \dots, N\} \cap \{x: |x - Y^{(m)}(T)|_{max} \le \alpha \delta_N\}.$$

The size l_m of this intersection is, on average, approximately $N\delta_N^d \times \{ \text{density of } X(t^*)$ at $Y^{(m)}(T) \}$. This search procedure can be done at a cost of order $\mathcal{O}(N \log N)$, see for instance Greengard and Strain (1991) where this is proved in the context of the Gauss transform;

• Finally, evaluate (4.3) by

$$\frac{1}{N^2 \delta_N^d} \sum_{m=1}^N \sum_{k=1}^{l_m} K(\delta_N^{-1}(X^{(n_k)}(t^*) - Y^{(m)}(T))) \mathcal{Y}^{(m)}(T),$$

at an estimated cost of $\mathcal{O}(N^2 \delta_N^d)$.

For the study of complexity we use the results in Section 6. We distinguish between d < 4 and $d \ge 4$. For $1 \le d < 4$ we achieve root-N accuracy by choosing $\delta_N =$ $(N/\log N)^{-1/d}$. In practice, the number of discretization steps 2L (typically 100-1000) is much smaller than the Monte Carlo number N, which is typically $10^5 - 10^6$. Therefore, as we see from the FRE algorithm, with $\delta_N = (N/\log N)^{-1/d}$ the FRE simulation requires a total cost of $\mathcal{O}(N\log N)$. Hence, the aggregated costs for achieving $\varepsilon_N \sim 1/\sqrt{N}$ amounts $\mathcal{O}(N\log N)$ which comes down to a complexity $C_{\varepsilon}^{kern} \sim |\log \varepsilon|/\varepsilon^2$. For $d \ge 4$ we achieve an accuracy rate $\varepsilon_N \sim N^{-\frac{4}{4+d}}$ by taking $\delta_N = N^{-\frac{2}{4+d}}$, again at a cost of $\mathcal{O}(N\log N)$. So the complexity C_{ε}^{kern} is then of order $\mathcal{O}(|\log \varepsilon|/\varepsilon^{\frac{4+d}{4}})$. For comparison we now consider the classical estimator. It is well known (see also Remark 6.3) that for N trajectories the optimal bandwidth choice is $\delta_N \sim N^{-\frac{1}{4+d}}$, which yields an accuracy of $\varepsilon_N \sim N^{-\frac{2}{4+d}}$. The costs of the classical estimator amounts $\mathcal{O}(N)$ and thus its complexity C_{ε}^{class} is of order $\mathcal{O}(1/\varepsilon^{\frac{4+d}{2}})$. By comparing the complexities C_{ε} and C_{ε}^{class} it is clear that the forwardreverse kernel estimator is superior to the classical Parzen-Rosenblatt kernel estimator for any d.

Complexity of the projection estimator

From its construction in Section 7 it is clear that the evaluation of the projection estimator (4.6) requires a cost of order $\mathcal{O}(L_N N)$ elementary computations. Just as for the kernel estimator, we now consider the complexity of the projection estimator. In Remark 7.1 we saw that if condition (7.8) is fulfilled for a smoothness β with $\beta > d/2$, we may choose L_N $= (N \log N)^{d/(4\beta)}$ which yields a complexity $C^{proj}(\varepsilon)$ of order $\mathcal{O}(\log^{d/(4\beta)} |\varepsilon|/\varepsilon^{2+d/(2\beta)})$. If, moreover, the Fourier coefficients α_{ℓ} and γ_{ℓ} decrease exponentially then, (see Remark 7.1) we get root-N accuracy by taking $L_N = \log N$ and so we obtain a complexity of order $C^{proj}(\varepsilon) = |\log \varepsilon|/\varepsilon^2$ for any d. Obviously, compared to the classical estimator, the projection estimator has in any case a better order of complexity. **Remark 9.1.** For transparency, the complexity comparison of the different estimators above is done with respect to exact solutions of the respective SDE's. Of course when Euler approximations are used, the discretization step h must tend to zero as well when the required accuracy ε tends to zero. However, it is easy to see that also with respect to approximate Euler scheme solutions the same conclusions can be made.

Numerical experiments

We have implemented the classical and forward-reverse kernel estimator for the one dimensional example of Section 5. We fix a = -1, b = 1 and choose fixed initial data t = 0, x = 1, T = 1, y = 0, for which p = 0.518831.

Let us aim to approximate the "true" value p = 0.518831 with both the forward-reverse estimator (FRE for short) and the classical forward estimator (FE for short). Throughout this experiment we choose $t^* = 0.5$ and M = N for the FRE and the FE is simply obtained by taking $t^* = 1$. For the bandwidth we take $\delta_N^{FE} = N^{-1/5}$ and $\delta_N^{FRE} = N^{-1}$, yielding variances $\sigma_{FE}^2 \approx C_1 N^{-4/5}$ and $\sigma_{FRE}^2 \approx C_2 N^{-1}$, respectively. It is clear that σ_{FE} may be estimated directly from the density estimation since the classical estimator is proportional to a sum of N independent random variables. As the forward-reverse estimator is proportional to a double sum of generally *dependent* random variables it is, of course, strictly not correct to estimate its deviation in the same way by just treating these random variables as independent. However, the result of such an, in fact, incorrect estimation, below denoted by σ^* , turns out to be roughly proportional to the correct deviation σ_{FRE} . To show this we estimate σ_{FRE} for $N = 10^2, 10^3, 10^4$, respectively, by running 50 FRE simulations for each value of N and then compute the ratios $\kappa :=$ σ_{FRE}/σ^* , see Table 1. The SDEs are simulated by the Euler scheme with time step $\Delta t = 0.01$.

N	σ_{FRE}	σ^*	κ
10^{2}	0.068	0.050	1.4
10^{3}	0.021	0.015	1.4
10^{4}	0.007	0.005	1.4

Table 1: 50 FRE simulations

So, in general applications we recommend this procedure for determination of the ratio κ which may be carried out with relatively low sample sizes and allows for simple estimation of the variance σ_{FRE}^2 . If, for instance, we define the Monte Carlo simulation error to be two standard deviations, the Monte Carlo error of the forward-reverse estimator may be approximated by $2\kappa\sigma^*$.

In this article we did not address the time discretization error due to the numerical scheme used for the simulation of the SDEs. In fact, this is conceptually the same as assuming that we have at our disposal a weak numerical scheme of sufficiently high order. We note that if a relatively high accuracy is required in practice, the Euler scheme turns out to be inefficient, as it involves a high number of time steps which yields in combination with a high number of paths a huge complexity. Fortunately, in most cases it will be sufficient to use a weak second order scheme, for instance, the method of Talay Tubaro (1990). The application of this method comes down to Richardson extrapolation of the results obtained by the Euler method for time step $2\Delta t$ and Δt , respectively. However, we have to take into account that the deviation of this extrapolation, and so the Monte Carlo error, is $\sqrt{5}$ times higher. In the experiments below we compare the forward-reverse estimator with the classical one for different sample sizes. For both estimators FRE and FE we use the weak order $\mathcal{O}((\Delta t)^2)$ method of Talay-Tubaro with time discretization steps $\Delta t = 0.02$ and $\Delta t = 0.01$. From Table 2 it is obvious that for larger N the forward-

N	FRE	$2\sigma_{FRE}$	$\sigma_{FRE}^2 N$	(sec.)	FE	$2\sigma_{FE}$	$\sigma_{FE}^2 N^{4/5}$	(sec.)
104	0.522	0.031	2.40	2	0.524	0.036	0.51	2
10^{5}	0.519	0.010	2.50	20	0.515	0.016	0.64	18
106	0.5194	0.0031	2.45	203	0.5164	0.0064	0.65	183
107	0.5193	0.0010	2.50	2085	0.5171	0.0026	0.68	1854

Table 2: True p = 0.518831

reverse estimator gives a higher Monte Carlo error than the pure forward estimator while the computational effort involved for the FRE is only a little bit larger. For example, the FRE gives for $N = 10^6$ almost the same Monte Carlo error as the FE for $N = 10^7$. Moreover, due to the choice $\delta_N = N^{-1}$ in the FRE, the bias of the FRE is $\mathcal{O}(N^{-2})$ and so negligible with respect to its deviation being $\mathcal{O}(N^{-1/2})$. Unlike the FRE, with the usual choice $\delta_N = N^{-1/5}$ the bias of the FE is of the same order as its deviation and so its overall error is even larger than its Monte Carlo error displayed in Table 2.

References

- Bally, V. and Talay, D. (1996a) The law of the Euler scheme for stochastic differential equations I: convergence rate of the distribution function. *Probab. Theory Related Fields*, 104, 43–60.
- Bally, V. and Talay, D. (1996b) The law of the Euler scheme for stochastic differential equations I: convergence rate of the density. *Monte Carlo Methods Appl.*, 2, 93–128.
- [3] Bretagnolle, J. and Carol-Huber, C. (1979) Estimation des densités: risque minimax.
 Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 47, 119–137.

- [4] Devroye, L. and Györfi, L. (1985) Nonparametric Density Estimation: The L₁ View.
 Wiley.
- [5] Dynkin, E.B. (1965) Markov Processes. Springer (engl. transl. from Russian 1963).
- [6] Greengard, L. and Strain, J. (1991) The fast Gauss transform. SIAM J. Sci. Stat. Comp., 12, No. 1, 79-94.
- [7] Hu, Y. and Watanabe, S. (1996) Donsker delta functions and approximations of heat kernels by the time discretization method. J. Math. Kyoto Univ., 36, 494–518.
- [8] Kohatsu-Higa, A. (1997) High order Ito-Taylor approximations to heat kernels. J.
 Math. Kyoto Univ., 37, 129–150.
- [9] Kurbanmuradov, O., Rannik, U., Sabelfeld, K. and Vesala, T. (1999) Direct and adjoint Monte Carlo for the footprint problem. *Monte Carlo Methods Appl.*, 5, No. 2, 85–111.
- [10] Kurbanmuradov, O., Rannik, Ü., Sabelfeld, K. and Vesala, T. (2001) Evaluation of mean concentration and fluxes in turbulent flows by Lagrangian stochastic models. *Mathematics and Computers in Simulation*, 54, 459-476.
- [11] Milstein, G.N. (1995) Numerical Integration of Stochastic Differential Equations.Kluwer Academic Publishers (engl. transl. from Russian 1988).
- [12] Milstein, G.N. and Schoenmakers, J.G.M. (2002) Monte Carlo construction of hedging strategies against multi-asset European claims. *Stochastics and Stochastics Reports*, 73, no. 1-2, 125-157.
- [13] Newton, N.J. (1994) Variance reduction for simulated diffusion. SIAM J. Appl. Math., 54, 1780–1805.

- [14] Pinsker, M.S. (1980) Optimal filtration of square-integrable signals in Gaussian noise.*Probl. Inf. Transmission*, 16, 120–133.
- [15] Scott, D.W. (1992) Multivariate Density Estimation. Wiley, New York.
- [16] Silverman, B.W. (1986) Density Estimation for Statistics and Data Analysis. Chapman and Hall, London.
- [17] Talay, D. and Tubaro, L. (1990) Expansion of the global error for numerical schemes solving stochastic differential equations. *Stoch. Anal. and Appl.*, 8, 483–509.
- [18] Thomson, D.J. (1987) Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid. Mech., 180, 529–556.
- [19] Wagner, W. (1988) Monte Carlo evaluation of functionals of solutions of stochastic differential equations. Variance reduction and numerical examples. Stoch. Anal. and Appl., 6, 447–468.